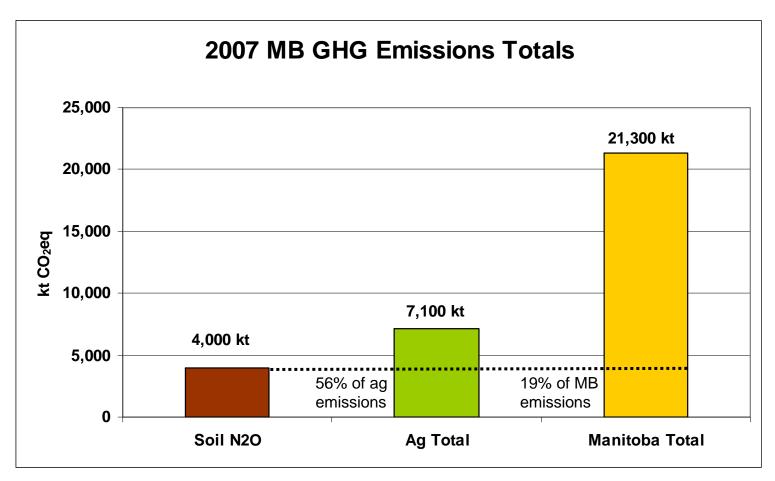
Estimating Differences in Soil Nitrous Oxide Emissions due to Timing of N Fertilizer Application Using a Modified National Inventory Report Approach

53rd Annual Manitoba Soil Science Society Conference February 4th and 5th, 2010

> Matthew Wiens Agri-Environment Knowledge Centre Manitoba Agriculture, Food and Rural Initiatives



- Introduction
 - Context
 - GHG emissions in MB: importance of N₂O
 - Situation in MB: common fertilization practices
 - The case for spring N application
- National Inventory Report Methodology and Modifications
- Potential to Reduce N₂O Emissions in Manitoba
- Conclusion

GHG Emissions in MB:

How much does N_2O from agricultural soils contribute?

Source: Environment Canada. National Inventory Report 1990-2007.

GHG Emissions in MB:

How much does N₂O from agricultural soils contribute?

- ~50% of this 4,000 kt CO₂eq is attributed to synthetic N fertilizer application; manure and crop residues contribute the remainder
- For comparison:
 - Enteric fermentation = 2,200 kt CO₂eq
 - Residential heating = 1,100 kt CO₂eq

- Source: <u>www.cfindustries.com/Products.htm</u>
- Nitrogen fertilizer is often applied in fall in Manitoba.
- 40% of N fertilizer is anhydrous ammonia (based on CFI statistics)

Evidence for reduced N₂O emissions with spring applied N compared with to fall applied N

- Burton, Li and Grant. 2008
- Lemke et al. 2003
- Hao, Chang, Carefoot, Janzen and Ellert, 2001

Indirect evidence

Better N efficiency with spring app vs fall app

- Tiessen et al. 2005
- Ridley. 1975

Table 8. Nitrogen efficiency based on application time and placement.

Time and Method	Relative Values
Spring broadcast	100%
Spring banded	120%
Fall broadcast	80%
Fall banded	100%

How we calculate a reduction

• Assumption:

10% reduction in N₂O emissions due to shift from fall to spring N application

2009 National Inventory Report Approach

- Base N₂O Emission Factor (EF_{BASE})
- Precipitation/Evapotranspiration (P/PE) May to October
 - Based on 1971 2000 long term normals
- EF_{CT} = 0.022 * P/PE 0.0048
- $EF_{BASE} = EF_{CT, P/PE=1} * F_{TOPO} + EF_{CT} * (1 F_{TOPO})$

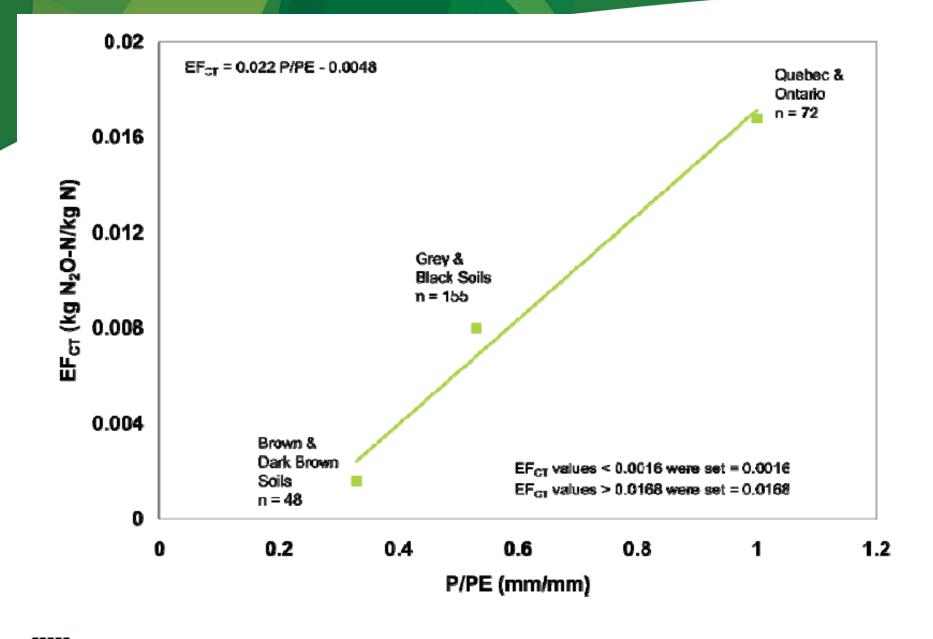
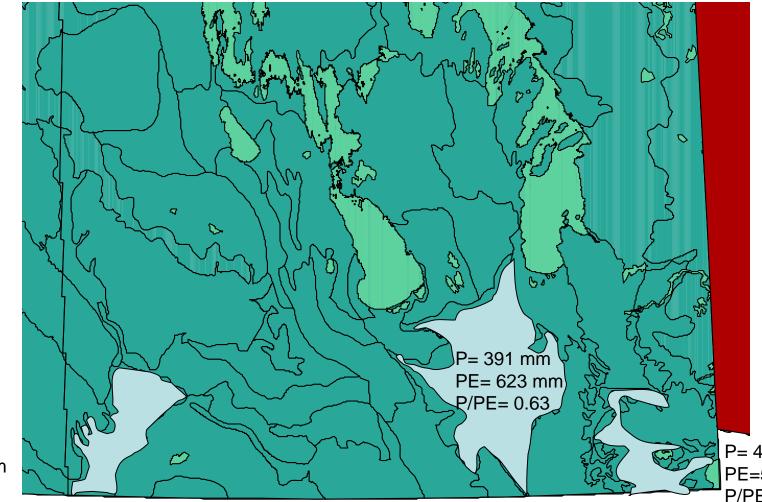
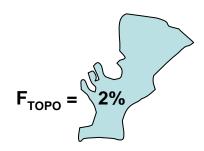



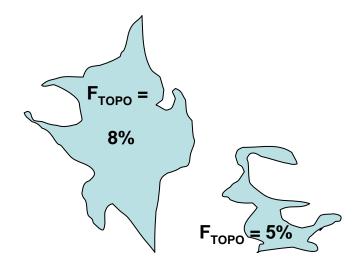
Figure A3-2: EF_{CT} as a Function of Long-term Ratio of Precipitation over Potential Evapotranspiration (P/PE) from 1971 to 2000

Southern Manitoba Ecodistricts

P= 413 mm PE=587 mm P/PE= 0.70

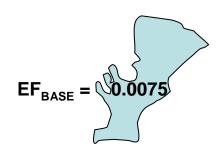
P= 346 mm PE= 629 mm P/PE= 0.55

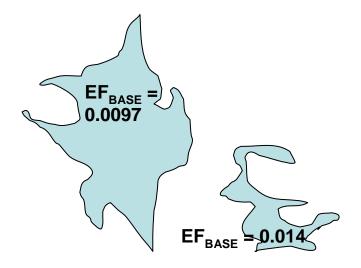

2009 National Inventory Report Approach


- Base N₂O Emission Factor (EF_{BASE})
- Precipitation/Evapotranspiration (P/PE) May to October
 - Based on 1971 2000 long term normals
- EF_{CT} = 0.022 * P/PE 0.0048
- $EF_{BASE} = EF_{CT, P/PE=1} * F_{TOPO} + EF_{CT} * (1 F_{TOPO})$

F_{TOPO}

- Fraction of land in the lower section of toposequence
 - South West = 2%
 - Central = 8%
 - South East = 5%





- Amount of applied N lost as N₂O-N
- Units, kg N₂O-N/kg applied N
 - South West = 0.0075
 - Central = 0.0097
 - South East = 0.014

Average Soil N₂O Emission Factor for Manitoba

- Simple average for all of Manitoba ecodistricts: EF_{BASE} = 0.0099 kg N₂O-N/kg N applied
- Average with ecodistricts weighted for proportion of N fertilizer used in the province = 0.0093 kg N₂O-N/kg N applied

GHG Mitigation Potential

- Total reduction potential of ~5% of current fertilizer N₂O emissions
 - Equal to 100,000 tonnes CO₂eq/year in MB
- Progress so far:
 - -65,000 acres
 - 1,800 tonnes CO₂eq/year
 - 62 tonnes/year/farm

Summary and Conclusion

- 10% reduction in N₂O emissions due to shift from fall to spring N application
- Average MB emission factor of 0.0093 kg N₂O-N/kg N applied
- Potential to reduce fertilizer N₂O emissions in MB by ~100,000 tonnes (5% of total)
- About 60 tonnes/year for a 2200 acre grain farm
- Therefore, shifting from fall to spring N application holds promise for reducing N₂O emissions from N fertilizer in Manitoba.

Thank You

NERP: Is this a Carbon Offset Opportunity?

- NERP: <u>Nitrous Oxide Emission Reduction Protocol</u>
- Being developed for Alberta Offset System
- Could be adopted across Canada if a national offset system is implemented

Mid-row banders on seeder

Source: www.reducedtillage.ca/article28.aspx

R