FORMULAS - MANITOBA CERTIFICATION EXAMINATIONS (Revised January 2006)

AREA	AS
$\frac{\text{Triangle}}{\text{Area} (m^2) = \frac{1}{2} \text{ B x H}}$ $B = \text{length of base (m)}$ $H = \text{height of triangle (m)}$ $\frac{\text{Circle}}{\text{Area} (m^2)} = \pi R^2 = \frac{\pi D^2}{4} = \frac{3.14 x D x D}{4}$	Rectangle Area (m²) = L x W L = length of rectangle (m) W = width of rectangle (m) π = 3.14 R = radius (m) D = diameter (m)
CIRCUMEE	RENCE
<u>Circle</u> Circumference (m) = $2\pi R$ or πD or $C = 3.14 \times D$	$\pi = 3.14$ R = radius (m) C = circumference(m) D = diameter (m)
VOLUM	1ES
Rectangular tankVolume (m^3) = area of base x Hor V= L x W x H	L = length of rectangle (m) W = width of rectangle (m) H = height of rectangle (m)
$\frac{\text{Cylindrical tank}}{\text{Volume (m}^3) = \text{ area of base x H}}$ or V = $\frac{\pi D^2}{4}$ x H or V = πR^2 x H	$\pi = 3.14$ D = diameter of base (m) H = height of cylinder (m) R = radius of base (m)
Cone Volume (m ³) = 1/3 area of base x H or V = 1/3 π R ² x H or V = 1/3 $\pi \frac{D^2}{4}$ x H = $\frac{1}{12} \pi$ D ² x H	$\pi = 3.14$ R = radius of base(m) D = diameter of base (m) H = height of cone from base to apex (m)
PrismVolume (m^3) = area of base of prism x Hor V= A x H	A = area of base of prism (m^2) H = height or depth of prism (m)
Sphere (ball) Volume (m ³) = $\frac{4\pi R^3}{3}$ or V = $\frac{4}{3}\pi \frac{D^3}{8} = \frac{1}{6}\pi D^3$	π = 3.14 R = radius of sphere (m) D = diameter of sphere (m)
$\frac{Lagoon}{Volume (m^3)} = \frac{WxL + (W - 2SH)x(L - 2SH)}{2} x H$	 W = width of lagoon (m) L = length of lagoon (m) S = slope (ratio of horizontal to vertical distances on the interior sides of lagoon). Example: 3:1, slope is taken as 3. H= height of liquid or depth of liquid in lagoon. (m)

TIME

I IME			
1 day = 24 hrs [or] 1440 minutes [or] 86,400 seconds			
TEMPERA	TURE		
Fahrenheit = $({}^{\circ}C \times \frac{9}{5}) + 32{}^{\circ}F$	Celsius = (°F – 32°F) $\times \frac{5}{9}$		
ABBREVIA	TIONS		
Emmotor inefficiencyEppump efficiencyHphorsepowerkPakilopascalmgmilligramggramskgkilogramsqsquare	m metre m ³ cubic metre mL millilitre L litre ML megalitre MLD megalitre (1,000,000 L) per day min/d minutes per day		
METRIC CONVERS	SION FACTORS		
$10 \text{ millimetres (mm)}$ = 1 centimetre (cm) $1 000 \text{ millimetres(mm)}$ = 1 metre (m) $100 \text{ centimetres (cm)}$ = 1 metre (m) $1 \text{ dekametre (dam)}$ = 10 metres (m) $1 000 \text{ metres (m)}$ = 1 kilometre (km) $1 000 \text{ sq. m (m}^2)$ = 1 hectare (ha) 1 cu. meter (m3) = 1,000,000 cu. cm (cm³) $1 000 \text{ cu. cm (cm}^3)$ = 1 Litre (L) $1 litre (L) of water weighs 1 000 grams = 1 kg$ $1 \text{ litre (L) of water weighs 1 000 000 milligrams = 1kg$	1 000 millilitres (mL)= 1 Litre (L)1 000 liters= 1 cu. m (m ³)1 000 000 liters (L)= 1 Megalitre (ML)1 milligram (mg)= 1000 micrograms (ug)1 gram (g)= 1000 milligrams (mg)1 kilogram (kg)= 1000 grams (g)1 000 kilograms (kg)= 1 tonne (t)1 kilowatt (kW)= 1000 watts1 cu. m (m ³) of water weighs 1000 kg1 metre of hydraulic head (m) = 9.81 kPa		
MEASURES OF CO 1 mg/L = 1 ppm (1 part per million) 1 mg/L = 1 gram / m ³	NCENTRATION1 ppm = 1 part /1 million parts1% = 10 000 mg/L		
DETENTION TIME / F Detention Time (seconds) = $\frac{Volume}{FlowRate} = \frac{V}{Q}$	RETENTION TIME $V = Volume (m^3)$ $Q = Flow Rate (m^3/s)$		
Velocity (m/s) = $\frac{Distance}{Time} = \frac{L}{T}$	L = Length (m) T = Time (s) v = Velocity (m/s)		
Velocity (m/s) = $\frac{Flow Rate}{Area} = \frac{Q}{A}$	Q = Flow Rate (m^3/s) A = Cross Sectional Area (m^2) v = Velocity (m/s)		

FLOW RATE				
<u>PIPE</u> Flow Rate (m^3/s) = Area x Velocity Q (m^3/s) = A x v	Q = Flow Rate (m ³ /s) A = Cross Sectional Area (m ²) $A = \pi \frac{D^2}{4}$ y = Velocity (m/s)			
CHANNELFlow Rate (m^3/s) = Area x Velocity $Q (m^3/s)$ = (Width x Depth) x v= (W x d) x vOVERFLOW RATE / SURFClarifier Rise Rate $(m^3/m^2xd) = \frac{Q}{A}$	Q = Flow Rate (m3/s) $A = Cross Sectional Area (m2) A = W x d$ $W = Width of channel (m)$ $d = Depth of liquid in channel (m)$ $v = Velocity (m/s)$ FACE LOADING RATE $A = Clarifier Surface Area (m2)$ $Q = Flow Rate (m3/d)$			
Weir Overflow Rate (m ³ /dxm) = $\frac{Q}{WL}$ FORC Force (Newtons) = (Volume x Density) x (Accel. of Gravity) = (V x ρ) x g	WL = weir length (m) V = Volume (m ³) ρ = density (kg/m ³) g = Acceleration of Gravity = 9.81 m/s ²			
Uplift Force (kilo-Newtons) = (Area x Height) x 9.81 kPa/m = (A x H) x 9.8 1 POWER CALC	A = cross sectional area (m2)H = Liquid Depth (m)ULATIONS			
$P = I \times E$ $E = I \times R$ Water Power (kW) = $Q \times H$ 6125 Water Horsepower (Hp) = $Q \times H$ 4570 (This equation assumes 100% motor and pump efficiency)	P = Power (watts) $E = Voltage (volts)$ $I = Current (amps)$ $R = Resistance (ohms)$ $Q = flow rate (L/min)$ $H = head of water (m)$ $1 Hp (electric) = 0.7457 kW$ $1watt=1Joule/sec.$ $1 kW- hr = 3.6MJ (Mega Joule)$			
Pump Power (W) = $\frac{Force \times Height}{Time} = \frac{F \times h}{T}$ Brake Power (kW) = $\frac{Q \times H}{6125Ep} = \frac{Water Power}{Pump Effic(Ep)}$ Motor Power = $\frac{Brake Power}{Motor Effic.(Em)} = \frac{WaterPower}{(Ep) \times (Em)}$	F = Force (N) h = height of lift (m) T = Time (s) Ep = pump efficiency This equation does not assume 100% motor or pump efficiency. A pump efficiency (Ep) of 100% = 1 A motor efficiency (Em) of 100% = 1			
Description: De	Ci = concentration in the influent Ce - concentration in the effluent			

CHEMICAL/ VOLUME REQUIREMENT				
Volume 1 x Conc. 1 = Volume 2 x Conc. 2	V_1 = Volume 1 (L) C_1 = Concentration 1 (mg/L)			
$V_1 x C_1 = V_2 x C_2$	$V_2 =$ Volume 2 (L) $C_2 =$ Concentration 2 (mg/L)			
CHEMICAL REC	QUIREMENT			
$CD (mg/L) = \frac{C(kg) \times 1000}{V(m^3)}$ $CD (mg/L) = \frac{C(kg/d) \times 1000}{Q(m^3/d)}$	CD = Dosage (mg/L) $C = Mass of Chemical Added (kg or kg/d)$ $V = Volume (m3)$ $Q = Flow Rate (m3/d)$			
	FEEDING			
Chemical Feed Rate (ml/min) = $\frac{CD \times Q}{c \times d \times 1440}$	CD = Dosage (mg/L) $Q = Flow Rate (m3/d)$ $c = % active chemical expressed as a decimal$			
Chemical Required (kg) = <u>Pure Chemical</u> % Purity	d = relative density of chemical feed (g/cm3)			
Note: Pure Chemical expressed in kilograms % Purity expressed as a decimal				
CHLORIN	ATION			
Total Chlorine Dosage = Chlorine	Demand + Chlorine Residual			
Chlorine Residual = Combined	Chlorine + Free Chlorine			
UNIT LOA	ADING			
Flow Loading (m ³ /day x cap) = $\frac{Q}{population}$ BOD Loading (kgBOD/d x cap) = $\frac{Q \times C}{population \times 1000}$	Q = Flow Rate (m ³ /d) C = Concentration of BOD in the influent (mg/L) Note: Population and Capita (cap) are similar			
FILTER YIELD	(VACUUM)			
$Yield (kg/m^2 x h) = \frac{(C/100) x Q}{A}$	C = concentration of solids in sludge feed (%) Q = sludge feed rate to filter (L/h) A = surface area of filter (m2) (This formula assumes there are no solids in the filtrate and the specific gravity of sludge is equal to water.)			
FILTER LOAD	ING RATE			
Filter Loading Rate $(L/m^2xs) = \frac{Q \times 0.0116}{A}$	Q = flow rate (m^3/d) A = surface area of the filter (m^2)			
Note: If flow rate Q is in L/s then the equation is:				
Filter Loading Rate $(L/m^2xs) = \frac{Q}{A}$				
FILTER BACKV	VASH RATE			
Method 1. Filter Backwash Rate = Q (L/m ² x s) A Method 2. Filter Backwash Rate = $\frac{R}{T}$	Q = rate of upflow of backwash water (L/s) A = surface area of filter (m2) R = water rise (m) T = time (h)			

SOLIDS LOADING				
Solids loading refers to the daily mass of suspended solids entering the clarifier or sedimentation basin.				
Solids Loading (kg /d) = $\frac{QxC}{1000}$	Q = Flow of settled wastewater (m^3/d) C = Solids Concentration of SS in settled sewage (mg/L)			
ORGANIC	LOADING			
Organic loading of an aeration tank refers to	the daily mass of BOD entering the aeration tank volume.			
Organic Loading, F (BOD ₅ kg/d) = $\frac{QxC}{1000}$ Volumetric Organic Loading (kg BOD/m ³ x d) = $\frac{QxC}{Vx1000}$	Q = flow of settled sewage to aeration tank (m ³ /d) C = concentration of BOD in settled sewage (mg/L) V = volume of aeration tank (m ³) F = organic loading (BOD ₅ kg/d)			
Note: Volumetric Organic Loading applies to Trickling filters.				
SLUDGE VOI				
SVI = volume of settled sludge x 1000 MLSS	MLSS = mixed liquor suspended solids (mg/L) volume of settled sludge expressed in mL			
SVI = volume of settled sludge (%) mixed liquor suspended solids (%)				
SLUDGE DEN				
$SDI = \frac{100}{SVI}$	SVI = sludge volume index			
F/M R	ATIO			
$\begin{array}{rcl} \underline{F} \text{ ratio} &=& \underline{BOD_5} \underline{kg} \\ M & & MLVSS \underline{kg} \end{array}$	$F = BOD_5 kg/d = \frac{Q \ge C}{1000}$			
$= \frac{Q \times B}{V \times VSS}$	where Q = flow of settled wastewater (m ³ /d) C = BOD ₅ concentration of settled sewage (mg/L) M = MLVSS kg = mixed liquor volatile suspended solids MLVSS is assumed to be equal to the mass of microorganisms in the aeration tank = $\frac{V \times VSS}{1000}$			
	where V = volume of aeration tank (m^3) VSS = mixed liquor volatile suspended solids (mg/L)			

$Q_{\rm R} = \frac{Q_{\rm E} \times \rm{MLSS}}{\rm{RSSS-MLSS}}$	QR = return or recycle sludge flow rate (m³/d) QE = effluent flow rate (m³/d) (may be assumed to equal influent flow rate) MLSS = mixed liquor suspended solids (mg/L) RSSS = return or recycle sludge suspended solids (mg/L)			
SOLIDS RETENTION TIM	IE (or Mean Cell Residence Time)			
Solids Retention Time (SRT) or Mean Cell Retention Time (Me within a process. SRT and MCRT is stated in days.	CRT) is the length of time that biological solids are held			
$MCRT = \frac{(V_A x MLSS) + (V_C x MLSS)}{(Q_W x WSSS) + (Q_E x FESS)}$	$SRT = solids retention time in days$ $V_A = volume of aeration tank(s) (m^3)$ $V_C = volume of final settling tank (m^3)$ $Q_W = daily waste sludge flow (m^3/d)$ $Q_F = effluent (or influent) flow (m^3/d)$			
or in simplified form by omitting sludge in clarifier $SRT = \frac{V_A \times MLSS}{(Q_W \times WSSS)} + (Q_E \times FESS)$	MLSS = mixed liquor suspended solids (mg/L) WSSS = waste sludge suspended solids (mg/L) FESS = final effluent suspended solids (mg/L)			
SLUDGE	VASTING			
Waste Sludge Rate Required = $(M_1 - M_2) \times V$ R	$\begin{split} M_1 &= \text{present MLSS (mg/L)} \\ M_2 &= \text{desired MLSS (mg/L)} \\ V &= \text{volume of aeration tank (m}^3) \\ R &= \text{suspended solids in sludge recycle or return (mg/L)} \end{split}$			
RESPIRATI	ON RATES			
Oxygen Uptake Rate or Specific Uptake Rate (SUR) Oxygen Uptake Rate $(mgO_2/Lx h) = (DO_1 - DO_2) x 60$ T	 DO₁ = dissolved oxygen in mixed liquor sample at start of test (mg/L) DO₂ = dissolved oxygen in mixed liquor sample at end of test (mg/L) T = duration of the test (min.) 			
$= \frac{Oxygen Uptake Rate x 1000}{MLVSS (mg/L)}$	Oxygen Uptake Rate = rate of oxygen utilization (mgO ₂ /hxg) MLVSS = mixed liquor volatile suspended solids (mg/L)			
DIGESTER LOADING (volatile solids)				
Loading (kg/m3 x d) = $C \times P \times Q$ V x 10	C = concentration of solids in sludge feed (%) P = concentration of volatile solids in sludge feed (%) Q = volume of sludge feed (m^3/d) V = volume of digester (m^3)			
REDUCTION OF VOLATIL	E SOLIDS IN DIGESTER			
Reduction (%) = $(P_{\rm L} - P_{\rm D}) = x \ 100$ $P_{\rm I} - (P_{\rm I} \ x \ P_{\rm D})$	P_D = volatile matter in digested sludge (%) P_I = volatile matter in feed (raw) sludge (%)			

Impe	IM rial Units	IPERIAL - M	IETRIC CO	DNVERSI	ON FACTORS
	1 mile 1 mile 1 Imperial gallo 1 cubic foot of y 1 cubic foot of y 1 Imperial gallo 1 million gallon 1 million gallon 1 cubic foot per	on of water water water on hs per day Imperial hs per day Imperial r second		5280 ft 1760 yds. 10 lbs. 62.4 lbs. 6.24 Imperial g 277 cubic inche 700 gallons per 1.85 cubic feet 375 Imperial ga	callons es r minute per second allons per minute
Lengi 1 kilometre 1 metre 1 metre 1 centimetre 1 millimetre	$\begin{array}{rcl} = & 0.6 \\ = & 3.2 \\ = & 39 \\ = & 0.3 \\ = & 0.6 \\ = & 0.6 \end{array}$	621 mile 28 feet 0.37 inches 3937 inch 0394 inch		1 mile = 1 foot = 1 inch = 1 foot = 1 inch =	1.61 kilometre 0.305 metre 0.0254 metre 30.5 centimetres 2.54 cm or 25.4 mm
$\frac{1 \text{ km}^2}{1 \text{ hectare}}$ $\frac{1 \text{ m}^2}{1 \text{ cm}^2}$ $\frac{1 \text{ m}^2}{1 \text{ ft}^2}$	$= 24 \\ = 2.4 \\ = 10 \\ = 0.1 \\ = 92$	7 acres 47 acres 9.765 ft ² 155 in. ² 29 cm ²		$1 \text{ mile}^2 =$ 1 acre = $1 \text{ ft}^2 =$ $1 \text{ in}^2 =$	2.56 km ² 0.405 ha 0.093 m ² 6.45 cm ²
1 kilolitre 1 L 1 L 1 m ³ 1 cm ³ 1 m ³ 1 MG	= 22 = 0.2 = 0.2 = 0.5 = 0.6 = 1.3 = 0.6 = 1.3 = 0.6 = 1.3 = 0.6	0.2 gallons 220 gallons 881 quarts 5.32 ft ³ 061 in ³ 308 yd ³ 54 ML		$\begin{array}{rrrr} 1 \mbox{ gallon} = \\ 1 \mbox{ quart} = \\ 1 \mbox{ ft}^3 = \\ 1 \mbox{ ft}^3 = \\ 1 \mbox{ in}^3 = \\ 1 \mbox{ yd}^3 = \\ 1 \mbox{ ML} = \end{array}$	4.54 L 1.135 L 28.317 L 0.028 m ³ 16.387 cm ³ 0.764 m ³ 0.22 MG
Weigl 1 metric tonno 1 kg 1 gm	ht Equivale e = 1.1 = 2.2 = = 0.0	e nts 103 tons 205 pounds 035 ounces		1 ton = 1 pound = 1 ounce =	0.907 tonne 453.6 gm 28.35 gm
Veloc 1 ft/sec 1 ft/sec 1 mile/hr	ity Equival = 0.3 = 30 = 0.4	ents 305 m/sec 5 mm/sec 45 m/sec		1 m/sec = 1 km/hr = 1 mile/hr =	3.28 ft/sec 0.62 miles/hr 1.61 km/hr
Press 1 pound per in 1 kPa 1 foot of hydr 1 metre of hydr	nch ² [psi] = aulic head [ft]= draulic head [m	 6.9 kPa 0.145 psi 0.433 psi 1.43 psi 	[or]2.31 ft [or]0.328 ft [or]3.05 kPa [or]9.81 kPa	[or]0.704 m [or]0.1 m [or]0.305 m	
1 ft ³ /sec 1 ft ³ /sec 1 gpm 1 MGD 1 gpm/ft ² 1 ft ³ /sec	$\begin{array}{rcrcr} \textbf{Frate=-outv}\\ = & 28\\ = & 0.0\\ = & 0.0\\ = & 4.5\\ = & 0.8\\ = & 37\end{array}$	5.3 L/s 0.28 m ³ /sec 076 L/s 54 MLD 81 mm/s 75 gpm		$1 m^{3}/sec =$ $1 m^{3}/sec =$ 1 L/s = 1 MLD = 1 mm/s =	13212 gpm 35.32 ft ³ /sec 13.2 gpm 0.220 MGD 1.23 gpm/ft ²