DILLON CONSULTING

1558 Willson Place

October 10, 2017

Manitoba Sustainable Development Unit B – 284 Reimer Avenue Steinbach, MB R5G 0R5

Attention: Curt Bueckert Environment Officer, Steinbach

Local Urban District of Landmark – Lagoon Desludging

Dear Mr. Bueckert:

The Local Urban District of Landmark (LUD) lagoon has significant buildup of sludge solids at and around the truck dump spillway in Cell #3 (primary cell). Due to the accumulation of solids and the presence of other organic matter in the lagoon (wood chips, straw, etc.), the ability for sludge to be distributed within the lagoon is limited. Dillon Consulting Limited (Dillon) has been retained by the R.M. of Taché (RM) to develop this short-term sludge management plan enclosed herein. We propose that an estimated 6,000 m³ to be removed and landfilled, in Fall 2017. If you have any comments, questions or concerns, please do not hesitate to contact the undersigned.

Sincerely,

DILLON CONSULTING LIMITED

(Joha Kalinorich)

Indra Kalinovich, Ph.D., C.Chem. Associate

IKK:jef

 Attachment(s): Figure 1 & 2 Photograph 1 & 2 Laboratory COA and Analytical Results
cc: Robert Boswick, Manitoba Sustainable Development Christine Hutlet, Rural Municipality of Taché Pete Skjaerlund, Rural Municipality of Taché

Our file: 16-3207

Winnipeg, Manitoba Canada R3T 0Y4 Telephone 204.453.2301 Fax 204.452.4412 Landmark Lagoon Sludge Removal Page 2 October 10, 2017

Options for Sludge

Options discussed with the Rural Municipality of Taché (RM) for short-term sludge management at the Landmark lagoon have included:

- 1. Land application;
- 2. Landfilling; and,
- 3. Spreading the sludge within the lagoon cell to reduce the accumulation at the truck dump spillway.

Land application (considered beneficial reuse) of the sludge is the preferred option by Manitoba Sustainable Development (MSD). However, landfilling the sludge may be considered acceptable if the sludge is unsuitable for land application or suitable land is relatively unavailable. Spreading or pushing the sludge out further into the cell is a short-term measure that will not address the issue of accumulated sludge in the cell, but rather delay the need to do so.

Dillon has submitted multiple samples of the sludge solids from the lagoon to Maxxam Analytics laboratory for analysis. Dillon was able to roughly characterize the sludge based on this sampling and analysis and the summary characteristics of the sludge are shown in Table 1 below. The results of this analysis are attached in Appendix A.

Parameter	Average Concentration [ppm]	Max Cumulative Conc. In Soil [ppm]
Arsenic	2.75	12
Cadmium	0.585	1.4
Chromium	43.5	64
Copper	145	63
Lead	8.4	70
Nickel	24	50
Zinc	400	200
Mercury	0.079	6.6

TABLE 1: LAGOON SLUDGE CHARACTERISTICS

Landmark Lagoon Sludge Removal Page 3 October 10, 2017

Parameter	Average Concentration [ppm]	Max Cumulative Conc. In Soil [ppm]
Acid ext. P	5600	-
Ammonia-N	270	-
Nitrate	0	-
TKN	12140	-
Total Organic N	11750	-
Total Solids	34.25%	-
Volatile Solids	57.1%	-

The metals, nutrients, and physical parameters of the sludge that are typically of concern to MSD and the maximum allowable cumulative concentrations of metals in soil are presented in Table 1. It can be seen that although there are elevated levels of the metals of concern in the sludge, they are not orders of magnitude greater than the allowable concentrations in soil. Concentrations of nitrogen and phosphorus are elevated and represent a potentially rich source of nutrients to crops if the sludge has a relatively low moisture content as compared to typical municipal sludge. This is considered to be attributed in part to the coarse textured nature of the sludge solids. Sludge solids are comprised of not only municipal wastewater, but also from several hog washing and truck washing facilities within the municipality, that contribute greater quantities of sand and gravel-sized particles to the sludge. These larger particles are concentrated near the Landmark lagoon spillway. More recent analyses (including leachable metals to evaluate landfilling suitability), demonstrate a total solids content ranging from 89 to 93%.

In conjunction with the chemical parameters of the sludge, the volume of the sludge must be estimated to determine how land is required to apply the sludge at a rate that is typically accepted by MSD. Using design drawings, site observations, and information from the lagoon operators, it was estimated that there are approximately 6,000 cubic metres of sludge in Zone A of the lagoon (see Figure 1, attached).

Landmark Lagoon Sludge Removal Page 4 October 10, 2017

Land Application

Land application is considered a beneficial reuse of an available resource, and is therefore CWS's preferred option for short-term lagoon sludge management. The Landmark lagoon is located within a reasonable distance of large areas of agricultural land, making land application a reasonable option to consider.

The land requirement for this option was estimated based on the sludge analysis results and estimations of disposal field soil quality which was in turn based on generalized soil maps of the area. Three scenarios were considered:

- 1. Metals limiting application rates;
- 2. Phosphorus limiting application rates; and,
- 3. Nitrogen limiting application rates.

In the *metals limiting scenario*, the known concentrations of the metals in the sludge combined with assumed existing soil concentrations of metals (based on generalized soil maps) were used to calculate the maximum dose of sludge (in kg/ha) that would be allowed without exceeding the allowable cumulative concentration of any constituent metal of concern in the receiving soil. This rate was found to be 315,000 kg sludge/ha, which corresponds to a land requirement of approximately 7 ha (not including buffer zones).

In the *phosphorus limiting scenario*, it was assumed that the receiving soil had a moderate to low existing phosphorus concentration (< 120 ppm TP) and that alfalfa would be cropped on the land following sludge application. These assumptions led to an application rate of approximately 65,700 kg sludge/ha which corresponds to a land requirement of approximately 30 ha (not including buffer zones). However, it should be noted that if a different crop is grown on the land in the following season (with a lower P uptake rate) or if the existing total phosphorus concentration in the soil is greater than 120 ppm, the land requirement could double or triple compared to the current estimate.

Finally, in the *nitrogen limiting scenario*, it was assumed that the receiving soil had a low residual nitrate concentration and that the sludge would be applied to land by direct injection, limiting nitrogen losses to the atmosphere. This scenario also assumed alfalfa would be grown on the land in the season following sludge application. Based on these assumptions, a land area of approximately 28 ha will be

Landmark Lagoon Sludge Removal Page 5 October 10, 2017

required for sludge application. Again, it should be noted that this value does not include buffer zones. If there are crops other than alfalfa grown on the land, or if the available land has a medium to high residual nitrate concentration in the soil, the land requirements for sludge application will increase significantly.

The land area requirements for the three scenarios described above are presented in Table 2.

Limiting Scenario	Estimated Land Requirement
Metals	7 ha. (17 acres)
Phosphorus	30 ha. (74 acres)
Nitrogen	28 ha. (69 acres)

TABLE 2: APPROXIMATE LAND REQUIREMENTS PER LIMITING SCENARIO

Based on this preliminary analysis it appears that phosphorus concentration in the sludge will limit the land application rate and that, given the listed assumptions, a land area of approximately 30 hectares will be needed to manage the lagoon sludge by land application in accordance with current regulations.

Dillon met with the Rural Municipality of Taché to discuss available lands for nearby land application. Figure 2 was drafted based on those discussions, which clearly identifies that there is not enough land nearby that is available for land application.

Landfill

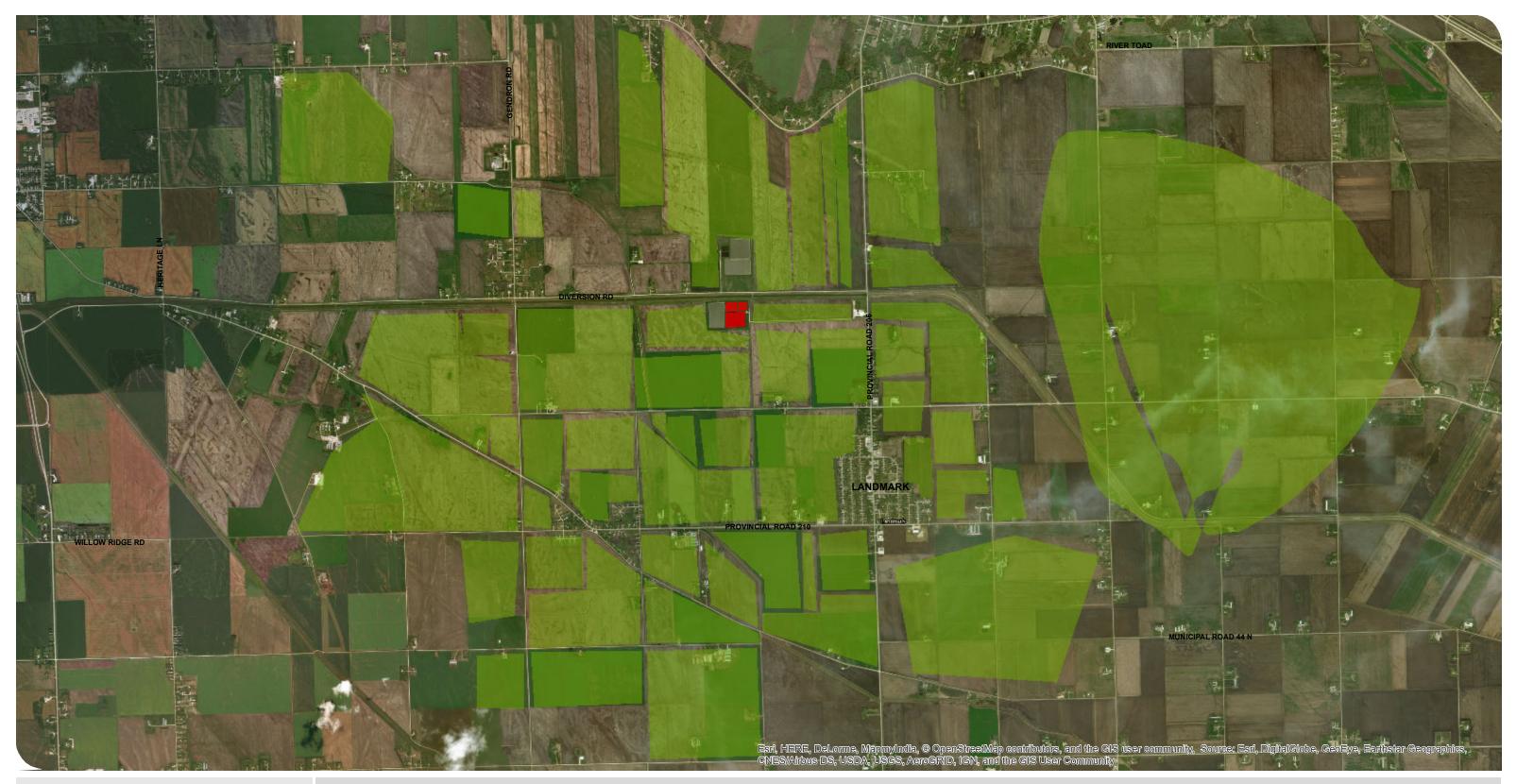
The RM may pursue landfilling of the lagoon sludge as a viable option if sludge testing indicates that the sludge is unsuitable for land application, or if there is not a sufficient amount of suitable land in the vicinity of the lagoon to warrant land application.

We contend that the proposed sludge solids meet both of the above exemptions:

- The quantity of sand and gravel present in the sludge near the spillway do not provide beneficial reuse (see Photographs 1 and 2).
- There is not a sufficient amount of suitable land in the vicinity of the lagoon to warrant land application – land application of animals waste is active throughout the Municipality, and much of the available nearby land is already being used for land application by the local agricultural industry (calculations above, and Figure 2).

Landmark Lagoon Sludge Removal Page 6 October 10, 2017

Sludge samples taken in November 2015 (Table 1) indicate the sludge has a total solids ratio of over 30% which indicates a reasonably dewatered material and allows the sludge to be classified as solid waste as per Waste Disposal Ground Regulation 150/91. At 30% solids, most sludge like materials can be handled, hauled, and placed without additional dewatering. Subsequent analysis has shown this value to increase to 89 - 93%, with 42-46% moisture content in samples obtained from Zone A. Based on these results, the following desludging and landfilling plan should be employed by:


- 1. In Fall 2017, excavate and haul the top layer of sufficiently dry sludge to the RM landfill. Excavation could be accomplished with appropriate machinery such as a "long-stick" excavator;
- Remove remaining sludge from lagoon cell by dredging or "long-stick" excavator and pile on internal berm for dewatering over the winter months; and,
- 3. Once sufficient dewatering has occurred, remove sludge from berm and haul to landfill.

Based on the low volatile solids measured, the case may be made to use the sludge as daily or intermediate cover material at the landfill. Alternatively, if the sludge is not sufficiently stabilized, it could be co-composted with organic waste such as wood chips at the landfill site, provided a suitable (and licensed) composting pad is available. Following this process the co-composted sludge may be suitable for daily/intermediate cover at the landfill.

A significant portion of the sludge in the lagoon cell (Zone A, potentially Zone B) is very high in grit/gravel and will therefore be unsuitable for land application. We also expect that the portion of sludge furthest out from the lagoon may be suitable for land application (as has been shown from our existing analysis). Therefore, Dillon recommends a combined approach where, based on the additional sludge testing, a portion of the sludge is removed for land application while the remainder of less beneficial material would be landfilled. Sludge in Zone A (estimated 6,000 m³) will be removed and landfilled, in Fall 2017.

RURAL MUNICIPALITY OF TACHE, MANITOBA

SLUDGE REMOVAL FROM LANDMARK LAGOON

LAND PARCELS KNOWN TO BE UNAVAILABLE FOR LAND APPLICATION OF SLUDGE FIGURE 2 Landmark Lagoon

Land Parcels Known to be Unavailable for Land Application of Sludge

MAP DRAWING INFORMATION: DATA PROVIDED BY MLI

MAP CREATED BY: TLA MAP CHECKED BY: IK MAP PROJECTION: NAD 1983 UTM Zone 14N

Your C.O.C. #: na

Attention:Ash Raichura

Dillon Consulting Limited 1558 WILLSON PLACE Winnipeg, MB CANADA R3T 0Y4

> Report Date: 2015/11/16 Report #: R3768330 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5M3470

Received: 2015/10/31, 09:50

Sample Matrix: SOLID # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Conductivity	2	N/A	2015/11/06	CAM SOP-00414	OMOE E3138 v2 m
Strong Acid Leachable Metals by ICPMS	2	2015/11/06	2015/11/06	CAM SOP-00447	EPA 6020A m
Moisture	2	N/A	2015/11/04	CAM SOP-00445	Carter 2nd ed 51.2 m
Ammonia-N	2	2015/11/05	2015/11/07	CAM SOP-00441	Carter, SS&A
Nitrate (NO3) and Nitrite (NO2) in Soil	2	N/A	2015/11/09	CAM SOP-00440	SM 22 4500-NO3I/NO2B
Organic Nitrogen in Soil	2	N/A	2015/11/13		
pH CaCl2 EXTRACT	2	2015/11/06	2015/11/06	CAM SOP-00413	EPA 9045 D m
Total Kjeldahl Nitrogen - Soil	2	2015/11/11	2015/11/13	CAM SOP-00454	EPA 351.2 m
Total Solids	2	N/A	2015/11/05	CAM SOP-00428	SM 22 2540 G m
Volatile Solids	2	N/A	2015/11/05	CAM SOP-00428	SM 22 2540 G m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Sara Singh, B.Sc, Senior Project Manager Email: sarasingh@maxxam.ca Phone# (905)817-5730

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Dillon Consulting Limited Sampler Initials: WT

RESULTS OF ANALYSES OF SOLID

Maxxam ID		BGP780	BGP781		
Sampling Date		2015/10/29	2015/10/29		
COC Number		na	na		
	UNITS	SAMPLE #1 (BIOSOLID)	SAMPLE #2 (BIOSOLID)	RDL	QC Batch
Calculated Parameters					
Total Organic Nitrogen	mg/kg	16000	7500	0.1	4255745
Inorganics					
Total Ammonia-N	ug/g	473	67	20	4259628
Conductivity	umho/cm	4040	2940	2	4261903
Moisture	%	70	61	1.0	4258303
Available (CaCl2) pH	рН	6.98	6.77	N/A	4260285
Total Solids	%	29.6	38.9	0.1	4260335
Total Kjeldahl Nitrogen	ug/g	16700	7580	100	4267519
Volatile Solids	%	66.4	47.8	0.2	4260370
Nitrite (N)	ug/g	<0.5	<0.5	0.5	4261470
Nitrate (N)	ug/g	<2	<2	2	4261470
Nitrate + Nitrite (N)	ug/g	<3	<3	3	4261470
RDL = Reportable Detection	n Limit		-	•	
QC Batch = Quality Control	Batch				
N/A = Not Applicable					

Dillon Consulting Limited Sampler Initials: WT

ELEMENTS BY ATOMIC SPECTROSCOPY (SOLID)

Maxxam ID		BGP780	BGP781		
Sampling Date		2015/10/29	2015/10/29		
COC Number		na	na		
	UNITS	SAMPLE #1 (BIOSOLID)	SAMPLE #2 (BIOSOLID)	RDL	QC Batch
Metals					
Acid Extractable Aluminum (Al)	ug/g	4200	3100	50	4261727
Acid Extractable Antimony (Sb)	ug/g	1.1	0.73	0.20	4261727
Acid Extractable Arsenic (As)	ug/g	3.2	2.3	1.0	4261727
Acid Extractable Barium (Ba)	ug/g	84	89	0.50	4261727
Acid Extractable Beryllium (Be)	ug/g	<0.20	<0.20	0.20	4261727
Acid Extractable Bismuth (Bi)	ug/g	5.4	2.5	1.0	4261727
Acid Extractable Boron (B)	ug/g	12	10	5.0	4261727
Acid Extractable Cadmium (Cd)	ug/g	0.50	0.67	0.10	4261727
Acid Extractable Calcium (Ca)	ug/g	42000	66000	50	4261727
Acid Extractable Chromium (Cr)	ug/g	32	55	1.0	4261727
Acid Extractable Cobalt (Co)	ug/g	2.9	2.3	0.10	4261727
Acid Extractable Copper (Cu)	ug/g	160	130	0.50	4261727
Acid Extractable Iron (Fe)	ug/g	19000	18000	50	4261727
Acid Extractable Lead (Pb)	ug/g	8.9	7.9	1.0	4261727
Acid Extractable Magnesium (Mg)	ug/g	13000	26000	50	4261727
Acid Extractable Manganese (Mn)	ug/g	160	220	1.0	4261727
Acid Extractable Molybdenum (Mo)	ug/g	4.2	3.1	0.50	4261727
Acid Extractable Nickel (Ni)	ug/g	26	22	0.50	4261727
Acid Extractable Phosphorus (P)	ug/g	4700	6500	50	4261727
Acid Extractable Potassium (K)	ug/g	1200	810	200	4261727
Acid Extractable Selenium (Se)	ug/g	1.4	0.64	0.50	4261727
Acid Extractable Silver (Ag)	ug/g	0.24	<0.20	0.20	4261727
Acid Extractable Sodium (Na)	ug/g	1500	910	50	4261727
Acid Extractable Strontium (Sr)	ug/g	61	63	1.0	4261727
Acid Extractable Thallium (TI)	ug/g	0.083	0.15	0.050	4261727
Acid Extractable Tin (Sn)	ug/g	7.0	<5.0	5.0	4261727
Acid Extractable Uranium (U)	ug/g	1.7	1.6	0.050	4261727
Acid Extractable Vanadium (V)	ug/g	14	14	5.0	4261727
Acid Extractable Zinc (Zn)	ug/g	440	360	5.0	4261727
Acid Extractable Mercury (Hg)	ug/g	0.095	0.063	0.050	4261727

Dillon Consulting Limited Sampler Initials: WT

GENERAL COMMENTS

Sample BGP780-01 : Conductivity Analysis: Sample entirely absorbed the extraction fluid when the prescribed 1:2 ratio was used. Due to the absorbent nature of the sample, the sample/fluid ratio was changed to 1:4.

Sample BGP781-01 : Conductivity Analysis: Sample entirely absorbed the extraction fluid when the prescribed 1:2 ratio was used. Due to the absorbent nature of the sample, the sample/fluid ratio was changed to 1:4.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

Dillon Consulting Limited Sampler Initials: WT

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
4258303	Moisture	2015/11/04							1.7	20		
4259628	Total Ammonia-N	2015/11/07	108	75 - 125	112	80 - 120	<20	ug/g	NC	35		
4260285	Available (CaCl2) pH	2015/11/06			99	97 - 103			0.47	N/A		
4260335	Total Solids	2015/11/05					<0.1	%	13	35		
4260370	Volatile Solids	2015/11/05					<0.2	%	6.9	35		
4261470	Nitrate (N)	2015/11/09	103	75 - 125	98	75 - 125	<2	ug/g	NC	25	NA	75 - 125
4261470	Nitrate + Nitrite (N)	2015/11/09	106	75 - 125	99	75 - 125	<3	ug/g	NC	25	86	75 - 125
4261470	Nitrite (N)	2015/11/09	NC	75 - 125	104	75 - 125	<0.5	ug/g	NC	25		
4261727	Acid Extractable Aluminum (Al)	2015/11/06	NC	75 - 125	106	80 - 120	<50	ug/g				
4261727	Acid Extractable Antimony (Sb)	2015/11/06	96	75 - 125	97	80 - 120	<0.20	ug/g	NC	30		
4261727	Acid Extractable Arsenic (As)	2015/11/06	101	75 - 125	102	80 - 120	<1.0	ug/g	NC	30		
4261727	Acid Extractable Barium (Ba)	2015/11/06	NC	75 - 125	103	80 - 120	<0.50	ug/g	1.0	30		
4261727	Acid Extractable Beryllium (Be)	2015/11/06	101	75 - 125	99	80 - 120	<0.20	ug/g	NC	30		
4261727	Acid Extractable Bismuth (Bi)	2015/11/06	97	75 - 125	97	80 - 120	<1.0	ug/g				
4261727	Acid Extractable Boron (B)	2015/11/06	94	75 - 125	94	80 - 120	<5.0	ug/g	NC	30		
4261727	Acid Extractable Cadmium (Cd)	2015/11/06	103	75 - 125	101	80 - 120	<0.10	ug/g	NC	30		
4261727	Acid Extractable Calcium (Ca)	2015/11/06	NC	75 - 125	109	80 - 120	<50	ug/g				
4261727	Acid Extractable Chromium (Cr)	2015/11/06	99	75 - 125	101	80 - 120	<1.0	ug/g	0.57	30		
4261727	Acid Extractable Cobalt (Co)	2015/11/06	99	75 - 125	101	80 - 120	<0.10	ug/g	5.9	30		
4261727	Acid Extractable Copper (Cu)	2015/11/06	NC	75 - 125	100	80 - 120	<0.50	ug/g	0.95	30		
4261727	Acid Extractable Iron (Fe)	2015/11/06	NC	75 - 125	105	80 - 120	<50	ug/g				
4261727	Acid Extractable Lead (Pb)	2015/11/06	99	75 - 125	97	80 - 120	<1.0	ug/g	0.57	30		
4261727	Acid Extractable Magnesium (Mg)	2015/11/06	NC	75 - 125	114	80 - 120	<50	ug/g				
4261727	Acid Extractable Manganese (Mn)	2015/11/06	NC	75 - 125	99	80 - 120	<1.0	ug/g				
4261727	Acid Extractable Mercury (Hg)	2015/11/06	113	75 - 125	106	80 - 120	<0.050	ug/g	NC	30		
4261727	Acid Extractable Molybdenum (Mo)	2015/11/06	103	75 - 125	100	80 - 120	<0.50	ug/g	NC	30		
4261727	Acid Extractable Nickel (Ni)	2015/11/06	99	75 - 125	101	80 - 120	<0.50	ug/g	0.91	30		
4261727	Acid Extractable Phosphorus (P)	2015/11/06	NC	75 - 125	104	80 - 120	<50	ug/g				
4261727	Acid Extractable Potassium (K)	2015/11/06	NC	75 - 125	112	80 - 120	<200	ug/g				
4261727	Acid Extractable Selenium (Se)	2015/11/06	101	75 - 125	103	80 - 120	<0.50	ug/g	NC	30		
4261727	Acid Extractable Silver (Ag)	2015/11/06	101	75 - 125	99	80 - 120	<0.20	ug/g	NC	30		
4261727	Acid Extractable Sodium (Na)	2015/11/06	NC	75 - 125	103	80 - 120	<50	ug/g				

Page 5 of 8

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

QUALITY ASSURANCE REPORT(CONT'D)

Dillon Consulting Limited Sampler Initials: WT

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
4261727	Acid Extractable Strontium (Sr)	2015/11/06	NC	75 - 125	102	80 - 120	<1.0	ug/g				
4261727	Acid Extractable Thallium (TI)	2015/11/06	98	75 - 125	97	80 - 120	<0.050	ug/g	NC	30		
4261727	Acid Extractable Tin (Sn)	2015/11/06	105	75 - 125	101	80 - 120	<5.0	ug/g				
4261727	Acid Extractable Uranium (U)	2015/11/06	92	75 - 125	90	80 - 120	<0.050	ug/g	2.2	30		
4261727	Acid Extractable Vanadium (V)	2015/11/06	NC	75 - 125	96	80 - 120	<5.0	ug/g	NC	30		
4261727	Acid Extractable Zinc (Zn)	2015/11/06	NC	75 - 125	97	80 - 120	<5.0	ug/g	2.5	30		
4261903	Conductivity	2015/11/06			100	90 - 110	<2	umho/c m	0.35	10		
4267519	Total Kjeldahl Nitrogen	2015/11/13	73 (1)	80 - 120	97	80 - 120	<10	ug/g	0.66	40	100	80 - 120

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Dillon Consulting Limited Sampler Initials: WT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 16-3207 Site#: LANDMARK LAGOON Site Location: LANDMARK, MB Your C.O.C. #: N015489

Attention:Indra Kalinovich

DILLON CONSULTING LTD. 1558 Willson Place Winnipeg, MB CANADA R3T 0Y4

> Report Date: 2016/11/10 Report #: R2299066 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B697828 Received: 2016/11/02, 08:00

Sample Matrix: Soil # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Conductivity (Soluble) (1)	6	2016/11/08	2016/11/09	BBY6SOP-00029	SM 22 2510 B
Metals - TCLP (1)	6	2016/11/10	2016/11/10	BBY7SOP-00005,	EPA 1311, 6020bR2 m
Moisture (1)	6	2016/11/04	2016/11/04	BBY8SOP-00017	BCMOE BCLM Dec2000 m
Ammonia-N (Available) (1)	6	2016/11/07	2016/11/07	BBY6SOP-00009	SM 22 4500-NH3- G m
Nitrate+Nitrite (N) (Available) (1)	6	N/A	2016/11/08	BBY6SOP-00010	SM 22 4500-NO3- I m
Phosphorus (Available by ICP) (2)	6	2016/11/07	2016/11/07	CAL SOP-00152 / AB SOP-	EPA 200.7 CFR 2012 m
				00042	
TCLP pH Measurements (1)	6	N/A	2016/11/10	BBY7SOP-00005	EPA 1311 R1992
Saturated Paste (1)	6	2016/11/08	2016/11/08	BBY6SOP-00030	Carter 2nd 15.2.1 m
Total Kjeldahl Nitrogen - Soil (2)	6	2016/11/07	2016/11/08	AB SOP-00008	EPA 351.1 R1978 m
Total Solids (Fixed and Volatile) (1)	6	2016/11/09	2016/11/09	BBY6SOP-00050	SM 22 2540 G
Total Organic Nitrogen Soil Subcontract (3)	6	N/A	2016/11/09		

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods. Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 16-3207 Site#: LANDMARK LAGOON Site Location: LANDMARK, MB Your C.O.C. #: N015489

Attention:Indra Kalinovich

DILLON CONSULTING LTD. 1558 Willson Place Winnipeg, MB CANADA R3T 0Y4

> Report Date: 2016/11/10 Report #: R2299066 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B697828 Received: 2016/11/02, 08:00

(1) This test was performed by Maxxam Vancouver

(2) This test was performed by Maxxam Calgary Environmental

(3) This test was performed by Maxxam Ontario (from Winnipeg)

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Amanda Hung, B.Sc., Project Manager Email: AHung@maxxam.ca Phone# (204)772-7276 Ext:2215

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF SOIL

	2016/11/01							
	10:30		2016/11/01 10:40		2016/11/01 10:50	2016/11/01 10:50		
	N015489		N015489		N015489	N015489		
INITS	SAMPLE-16-3	RDL	SAMPLE-16-4	RDL	SAMPLE-16-5	SAMPLE-16-5 Lab-Dup	RDL	QC Batch
				<u> </u>				
N/A	ATTACHED	N/A	ATTACHED	N/A	ATTACHED		N/A	8466477
				• • •				
%	90.2	0.10	89.0	0.10	93.1	92.8	0.10	8465179
%	9.81	0.10	11.0	0.10	6.93	7.21	0.10	8465179
ng/kg	707 (1)	5.0	30.4	0.50	196 (1)	199	5.0	8462304
ug/g	<2.0	2.0	<2.0	2.0	<2.0	<2.0	2.0	8463995
ng/kg	100	1.0	30	1.0	2.3		1.0	8462034
ng/kg	3800 (1)	200	5800 (1)	250	1100 (1)		50	8461916
S/cm	3550	1.0	5230	1.0	1000		1.0	8463438
%	120	1.0	101	1.0	98.2		1.0	8463423
	N/A % % g/kg g/kg g/kg g/kg	NITS SAMPLE-16-3 J/A ATTACHED % 90.2 % 9.81 g/kg 707 (1) g/g <2.0	NITS SAMPLE-16-3 RDL J/A ATTACHED N/A % 90.2 0.10 % 9.81 0.10 g/kg 707 (1) 5.0 g/g <2.0	NITS SAMPLE-16-3 RDL SAMPLE-16-4 N/A ATTACHED N/A ATTACHED % 90.2 0.10 89.0 % 9.81 0.10 11.0 g/kg 707 (1) 5.0 30.4 g/g <2.0	NITS SAMPLE-16-3 RDL SAMPLE-16-4 RDL M/A ATTACHED N/A ATTACHED N/A % 90.2 0.10 89.0 0.10 % 9.81 0.10 11.0 0.10 g/kg 707 (1) 5.0 30.4 0.50 g/g <2.0	NITS SAMPLE-16-3 RDL SAMPLE-16-4 RDL SAMPLE-16-5 N/A ATTACHED N/A ATTACHED N/A ATTACHED N/A % 90.2 0.10 89.0 0.10 93.1 % 9.81 0.10 11.0 0.10 6.93 g/kg 707 (1) 5.0 30.4 0.50 196 (1) g/g <2.0	NITS SAMPLE-16-3 RDL SAMPLE-16-4 RDL SAMPLE-16-5 SAMPLE-16-5 SAMPLE-16-5 M/A ATTACHED N/A ATTACHED N/A ATTACHED N/A ATTACHED % 90.2 0.10 89.0 0.10 93.1 92.8 % 9.81 0.10 11.0 0.10 6.93 7.21 g/kg 707 (1) 5.0 30.4 0.50 196 (1) 199 g/g <2.0	NITS SAMPLE-16-3 RDL SAMPLE-16-4 RDL SAMPLE-16-5 SAMPLE-16-5 RDL M/A ATTACHED N/A ATTACHED N/A ATTACHED N/A % 90.2 0.10 89.0 0.10 93.1 92.8 0.10 % 9.81 0.10 11.0 0.10 6.93 7.21 0.10 g/kg 707 (1) 5.0 30.4 0.50 196 (1) 199 5.0 g/g <2.0

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		PY0399		PY0400		PY0401		
Sampling Date		2016/11/01 11:00		2016/11/01 11:10		2016/11/01		
COC Number		N015489		N015489		N015489		
	UNITS	SAMPLE-16-6	RDL	SAMPLE-16-7	RDL	FD1	RDL	QC Batch
Parameter	<u> </u>		<u> </u>		<u> </u>			
Subcontract Parameter	N/A	ATTACHED	N/A	ATTACHED	N/A	ATTACHED	N/A	8466477
Misc. Inorganics								
Total Solids (Fixed)	%	88.8	0.10	93.6	0.10	92.1	0.10	8465179
Total Solids (Volatile)	%	11.2	0.10	6.38	0.10	7.91	0.10	8465179
Nutrients								
Available (KCl) Ammonia (N)	mg/kg	493 (1)	5.0	386 (1)	5.0	481 (1)	5.0	8462304
Nitrate plus Nitrite (N)	ug/g	<2.0	2.0	<2.0	2.0	<2.0	2.0	8463995
Available (NH4F) Phosphorus (P)	mg/kg	1.5	1.0	<1.0	1.0	140	1.0	8462034
Total Kjeldahl Nitrogen	mg/kg	4200 (1)	200	1900 (1)	100	4800 (1)	200	8461916
Soluble Parameters								
Soluble Conductivity	uS/cm	2990	1.0	3170	1.0	3440	1.0	8463438
Saturation %	%	170	1.0	91.0	1.0	118	1.0	8463423
RDL = Reportable Detection Limit								-
N/A = Not Applicable								
(1) Detection limits raised due to	dilution t	o bring analyte y	vithin t	he calibrated ran				

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

PHYSICAL TESTING (SOIL)

Maxxam ID		PY0284	PY0397	PY0398	PY0399	PY0399	PY0400		
Sampling Date		2016/11/01 10:30	2016/11/01 10:40	2016/11/01 10:50	2016/11/01 11:00	2016/11/01 11:00	2016/11/01 11:10		
COC Number		N015489	N015489	N015489	N015489	N015489	N015489		
	UNITS	SAMPLE-16-3	SAMPLE-16-4	SAMPLE-16-5	SAMPLE-16-6	SAMPLE-16-6 Lab-Dup	SAMPLE-16-7	RDL	QC Batch
Physical Properties									
Physical Properties Moisture	%	46	42	45	50	60	45	0.30	8459624

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		PY0401								
Sampling Date		2016/11/01								
COC Number		N015489								
	UNITS	FD1	RDL	QC Batch						
Physical Properties										
Moisture	%	45	0.30	8459624						
RDL = Reportable Detection Limit										

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Sampling Date COC Number		2016/11/01 10:30	2016/11/01	2016/11/01					
COC Number		10:30		2010/11/01	2016/11/01	2016/11/01	2016/11/01		
			10:40	10:50	11:00	11:10	2010/11/01		
i		N015489	N015489	N015489	N015489	N015489	N015489		
	UNITS	SAMPLE-16-3	SAMPLE-16-4	SAMPLE-16-5	SAMPLE-16-6	SAMPLE-16-7	FD1	RDL	QC Batch
TCLP Extraction Procedure						-		<u> </u>	
Initial pH of Sample	рΗ	8.63	8.38	8.99	9.02	8.99	8.48	N/A	8466092
LEACHATE Antimony (Sb)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
pH after HCl	рΗ	2.01	2.60	1.51	2.51	1.69	1.81	N/A	8466092
LEACHATE Arsenic (As)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
Final pH of Leachate	рΗ	5.94	6.07	5.86	6.09	6.15	6.02	N/A	8466092
LEACHATE Barium (Ba)	mg/L	<0.10	0.15	0.97	0.92	0.80	<0.10	0.10	8467725
pH of Leaching Fluid	рΗ	4.94	4.94	4.94	4.94	4.94	4.94	N/A	8466092
LEACHATE Beryllium (Be)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Boron (B)	mg/L	0.13	0.17	0.14	0.10	<0.10	0.11	0.10	8467725
LEACHATE Cadmium (Cd)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Chromium (Cr)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Cobalt (Co)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Copper (Cu)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Iron (Fe)	mg/L	1.46	4.60	0.78	1.68	1.12	3.06	0.50	8467725
LEACHATE Lead (Pb)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Mercury (Hg)	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	8467725
LEACHATE Molybdenum (Mo)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Nickel (Ni)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Selenium (Se)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Silver (Ag)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Thallium (TI)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Uranium (U)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Vanadium (V)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725
LEACHATE Zinc (Zn)	mg/L	<0.10	0.22	<0.10	<0.10	<0.10	0.16	0.10	8467725
LEACHATE Zirconium (Zr)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	8467725

N/A = Not Applicable

GENERAL COMMENTS

Samples analyzed past recommended hold time for Solids analysis.

Results relate only to the items tested.

DILLON CONSULTING LTD. Client Project #: 16-3207 Site Location: LANDMARK, MB

Sampler Initials: NB

QUALITY ASSURANCE REPORT

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
8459624	CG5	Method Blank	Moisture	2016/11/05	<0.30		%	
8459624	CG5	RPD [PY0399-02]	Moisture	2016/11/05	18		%	20
8461916	MB5	Matrix Spike	Total Kjeldahl Nitrogen	2016/11/08		NC	%	75 - 125
8461916	MB5	QC Standard	Total Kjeldahl Nitrogen	2016/11/07		103	%	75 - 125
8461916	MB5	Spiked Blank	Total Kjeldahl Nitrogen	2016/11/08		111	%	75 - 125
8461916	MB5	Method Blank	Total Kjeldahl Nitrogen	2016/11/07	<10		mg/kg	
8461916	MB5	RPD	Total Kjeldahl Nitrogen	2016/11/08	0.73		%	35
8462034	PL	Spiked Blank	Available (NH4F) Phosphorus (P)	2016/11/07		88	%	80 - 120
8462034	PL	Method Blank	Available (NH4F) Phosphorus (P)	2016/11/07	<1.0		mg/kg	
8462034	PL	RPD	Available (NH4F) Phosphorus (P)	2016/11/07	NC		%	35
8462304	СК	Matrix Spike [PY0398-01]	Available (KCl) Ammonia (N)	2016/11/07		NC	%	75 - 125
8462304	СК	Spiked Blank	Available (KCl) Ammonia (N)	2016/11/07		101	%	75 - 125
8462304	СК	Method Blank	Available (KCl) Ammonia (N)	2016/11/07	<0.50		mg/kg	
8462304	СК	RPD [PY0398-01]	Available (KCl) Ammonia (N)	2016/11/07	1.9		%	30
8463423	JGD	QC Standard	Saturation %	2016/11/08		111	%	75 - 125
8463423	JGD	Method Blank	Saturation %	2016/11/08	<1.0		%	
8463423	JGD	RPD	Saturation %	2016/11/08	0.010		%	30
8463438	MM3	Spiked Blank	Soluble Conductivity	2016/11/09		94	%	80 - 120
8463438	MM3	Method Blank	Soluble Conductivity	2016/11/09	<1.0		uS/cm	
8463438	MM3	RPD	Soluble Conductivity	2016/11/09	0		%	35
8463995	IW1	Matrix Spike [PY0398-01]	Nitrate plus Nitrite (N)	2016/11/08		95	%	70 - 130
8463995	IW1	Spiked Blank	Nitrate plus Nitrite (N)	2016/11/08		101	%	70 - 130
8463995	IW1	Method Blank	Nitrate plus Nitrite (N)	2016/11/08	<2.0		ug/g	
8463995	IW1	RPD [PY0398-01]	Nitrate plus Nitrite (N)	2016/11/08	NC		%	30
8465179	JGD	Method Blank	Total Solids (Fixed)	2016/11/09	<0.10		%	
			Total Solids (Volatile)	2016/11/09	<0.10		%	
8465179	JGD	RPD [PY0398-03]	Total Solids (Fixed)	2016/11/09	0.30		%	20
			Total Solids (Volatile)	2016/11/09	4.0		%	20
8466092	WZ1	Method Blank	Initial pH of Sample	2016/11/10	4.94		рН	
			Final pH of Leachate	2016/11/10	4.94		рН	
			pH of Leaching Fluid	2016/11/10	4.94		рН	
8466092	WZ1	RPD	Initial pH of Sample	2016/11/10	1.4		%	N/A
			Final pH of Leachate	2016/11/10	0.21		%	N/A
			pH of Leaching Fluid	2016/11/10	0		%	N/A
8467725	JC8	Matrix Spike	LEACHATE Arsenic (As)	2016/11/10		97	%	75 - 125
			LEACHATE Beryllium (Be)	2016/11/10		100	%	75 - 125
			LEACHATE Cadmium (Cd)	2016/11/10		108	%	75 - 125
			LEACHATE Chromium (Cr)	2016/11/10		NC	%	75 - 125
			LEACHATE Cobalt (Co)	2016/11/10		95	%	75 - 125
			LEACHATE Copper (Cu)	2016/11/10		96	%	75 - 125
			LEACHATE Lead (Pb)	2016/11/10		97	%	75 - 125
			LEACHATE Nickel (Ni)	2016/11/10		96	%	75 - 125
			LEACHATE Selenium (Se)	2016/11/10		103	%	75 - 125
			LEACHATE Uranium (U)	2016/11/10		100	%	75 - 125
			LEACHATE Vanadium (V)	2016/11/10		101	%	75 - 125
			LEACHATE Zinc (Zn)	2016/11/10		NC	%	75 - 125
8467725	JC8	Spiked Blank	LEACHATE Arsenic (As)	2016/11/10		97	%	75 - 125
			LEACHATE Beryllium (Be)	2016/11/10		102	%	75 - 125
			LEACHATE Cadmium (Cd)	2016/11/10		106	%	75 - 125
			LEACHATE Chromium (Cr)	2016/11/10		95	%	75 - 125
			LEACHATE Cobalt (Co)	2016/11/10		94	%	75 - 125
			LEACHATE Copper (Cu)	2016/11/10		95	%	75 - 125

Report Date: 2016/11/10

DILLON CONSULTING LTD. Client Project #: 16-3207 Site Location: LANDMARK, MB Sampler Initials: NB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			LEACHATE Lead (Pb)	2016/11/10		92	%	75 - 125
			LEACHATE Nickel (Ni)	2016/11/10		96	%	75 - 125
			LEACHATE Selenium (Se)	2016/11/10		101	%	75 - 125
			LEACHATE Uranium (U)	2016/11/10		94	%	75 - 125
			LEACHATE Vanadium (V)	2016/11/10		100	%	75 - 125
			LEACHATE Zinc (Zn)	2016/11/10		101	%	75 - 125
8467725	JC8	Method Blank	LEACHATE Antimony (Sb)	2016/11/10	<0.10		mg/L	
			LEACHATE Arsenic (As)	2016/11/10	<0.10		mg/L	
			LEACHATE Barium (Ba)	2016/11/10	<0.10		mg/L	
			LEACHATE Beryllium (Be)	2016/11/10	<0.10		mg/L	
			LEACHATE Boron (B)	2016/11/10	<0.10		mg/L	
			LEACHATE Cadmium (Cd)	2016/11/10	<0.10		mg/L	
			LEACHATE Chromium (Cr)	2016/11/10	<0.10		mg/L	
			LEACHATE Cobalt (Co)	2016/11/10	<0.10		mg/L	
			LEACHATE Copper (Cu)	2016/11/10	<0.10		mg/L	
			LEACHATE Iron (Fe)	2016/11/10	<0.10		mg/L	
			LEACHATE Lead (Pb)	2016/11/10	<0.10		mg/L	
			LEACHATE Mercury (Hg)	2016/11/10	<0.0020		mg/L	
			LEACHATE Meleculy (lig)	2016/11/10	<0.10		mg/L	
			LEACHATE Molybuendin (Mo)	2016/11/10	<0.10		mg/L	
			LEACHATE Nicker (Ni)	2016/11/10	<0.10		mg/L	
				2016/11/10	<0.10		mg/L	
			LEACHATE Silver (Ag) LEACHATE Thallium (TI)	2016/11/10	<0.10		mg/L	
			LEACHATE Uranium (U)	2016/11/10	<0.10		mg/L	
			LEACHATE Vanadium (V)	2016/11/10	<0.10		mg/L	
			LEACHATE Zinc (Zn)	2016/11/10	<0.10		mg/L	
			LEACHATE Zirconium (Zr)	2016/11/10	<0.10		mg/L	
8467725	JC8	RPD	LEACHATE Antimony (Sb)	2016/11/10	<0.10 NC		111g/L %	35
8407723	100	RF D	LEACHATE Antimony (30)		NC		%	35
			LEACHATE Barium (Ba)	2016/11/10 2016/11/10	NC		%	35
					NC		%	35
			LEACHATE Beryllium (Be)	2016/11/10			%	35
			LEACHATE Boron (B)	2016/11/10	NC		%	35 35
			LEACHATE Cadmium (Cd)	2016/11/10	NC			
			LEACHATE Chromium (Cr)	2016/11/10	1.6		% %	35
			LEACHATE Cobalt (Co)	2016/11/10	NC			35
			LEACHATE Copper (Cu)	2016/11/10	NC		%	35
			LEACHATE Iron (Fe)	2016/11/10	1.3		%	35
			LEACHATE Lead (Pb)	2016/11/10	NC		%	35
			LEACHATE Mercury (Hg)	2016/11/10	NC		%	35
			LEACHATE Molybdenum (Mo)	2016/11/10	NC		%	35
			LEACHATE Nickel (Ni)	2016/11/10	NC		%	35
			LEACHATE Selenium (Se)	2016/11/10	NC		%	35
			LEACHATE Silver (Ag)	2016/11/10	NC		%	35
			LEACHATE Thallium (TI)	2016/11/10	NC		%	35
			LEACHATE Uranium (U)	2016/11/10	NC		%	35
			LEACHATE Vanadium (V)	2016/11/10	NC		%	35
			LEACHATE Zinc (Zn)	2016/11/10	1.6		%	35

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery UNI	rs QC Limits
			LEACHATE Zirconium (Zr)	2016/11/10	NC	%	35

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Maxxam Job #: B697828 Report Date: 2016/11/10 DILLON CONSULTING LTD. Client Project #: 16-3207 Site Location: LANDMARK, MB Sampler Initials: NB

NOTIFICATION LOG

No Reportable Regulation Exceedences Noted.

Report Date: 2016/11/10

DILLON CONSULTING LTD. Client Project #: 16-3207 Site Location: LANDMARK, MB Sampler Initials: NB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Amanda Hung, B.Sc., Project Manager

nely

Andy Lu, Ph.D., P.Chem., Scientific Specialist

-m

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maria	m																	C	CH/	AIN	OF	CU	STO	DY R	ECOF
A Bureau Veritas Group (Company Unit D, 675 Berry St Phone: 204-772-727				=ree:	: (866) 80	00-62	08															Р	age	of
INV	OICE INFORMATION			REPORT	T INFORMATION (if different from invoice)											F	ROJ		MAXX	AM JO	B NUMB				
Company Name: Dill	on Consulting		Compa	ny Name:	same as invoice.								Qu	Quotation #:									LG	2000	
Contact Name: Indr	a Kalinovich.		Contac	t Name:										P.C). #:		11	20					V	0.1-	roa
Address: 1552	SWITSONPI		Address	s:										Pro	oject	#:	16	7-320	-				CHAI	N OF C	USTODY
SULL MIDE	ipey, MB		-											Pro	oject	Name		indima			ga		NI /		100
Phone 2019 35	Fax:		Phone:				_ Fax								catio			ndmar					N	J15	489
imail	Carrie I Kalinovich	Callion	Email:						1			1	2	Sa	mple	d By:	1	anui F	80	suf	xe	<u> </u>			
REGULATORY REQUIREMEN	NTS SERVICE REQUESTED:					ANAL	YSIS	REG	UES	TED	(Plea	se b	-	cific	;)		7			TU	the local days	the local division of the	And in case of the local division of the loc	the local division in which the	REQUIR
DRINKING WATER													Cic	P		1	5				PLEA			PROJECT	E NOTICE S.
Other:						17		П					j	Metal		-	F	9		R	egular	r (Stand	dard) T/	AT:	
]E. coli]aT	Z	z	z				JY.	Se		C	AS	38			X 5	to 7 W	orking l	Days	
					(N /							Demand	Moisture	eachable			21	12	L	R	ush T/				
Special Instructions:					2	Fecal	ed?					Der	P	B	N	¥	307			ALY		dav	Π.	2 days	3 da
					ter			cidifie	cidifie			Oxygen	1	_	8	モ	NIN CUR	8	AA	A	Ц'	day	Ľ,	L days	
					Water?	Total	Field Filter	Field Acidified?	Field Acidified?			Oxy	7	Acid	PINOWW	+N-F-H	IN N	Photophok	TOM		ATE R	equired	i:	改善さい	
AMPLES MUST	BE KEPT COOL (<	10°C) FR		IME OF	bu				7	E		Biochemical	Conductivity	Z.				A	2	3	TATe	for corto	in tasta av	a - E dava	E.
AMPLING UNTIL	DELIVERY TO MAXXAM	e, i i			Drinking	Coliforms: (Method)	Dissolved	Aetals			- m	chen	2	of tone	Ø	NINGE		P	4			se contact	t your Proj	e > 5 days. ect Manage	for details
Lab Use	Sample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil etc	Ď	SÖ	io.	2	Total	BIEX/ F2_F4	PCB	Bio	Ś	あ	3	Z	ÓF	12		# Co	of int.		CO	MMENTS	
1 PY0284	Sample-16-3	Noville	1030	Soil									X	X	X	X,	X x	X							
2 PU0397	Sample-16-4	NOVIILO	1040	Soil									$\boldsymbol{\mathcal{X}}$	X	X	$\langle \rangle$	$\langle \chi$								
3 98	Sample-16-5	Norilib	1050							_	_		X	X	XX	$\langle \rangle$	XX			_					
4 4 99	Sample-16-6	NOVILLE	1100	811	-						_		X,	XX	Ķμ	K)	$\langle x \rangle$		_						
5 PY0400 2	Sample - 16 - 7	VIIICA	1110	SOIL		1		_			_		X	XX	$\langle \rangle$	XΧ			_	_					
3 \$ 01	PD1	Novijiu	/	501		ļ				_	_		X	XÞ	$\langle \rangle$	X	×У	X		_					
7										_					_		_								
3																		+ $+$ $+$	_		_				
9					-											_									
0					-		$\left \right $									_		+		+					
12					-																				
RECEIVED BY (Signature/Print) RECEIVED BY (Signature/Print)) Date T							ime		B	ECEN	ED ON ICE				Labor	atory II	lse Only					
12Borl	NoneiPearre	April		LAURA 1	210	AND		201	6/18		110/22	\uparrow	08			-			-		Ter	mperatu	ure (°C)	on Recei	
1001		Aunter	ap		Mr.2			a	516 h	ila	1		00				YL	N		6	1,3	2.2	3.2		
Unless otherwise agreed to in Signing of this Chain of Cust	n writing, work submitted on this Cha tody document is acknowledgment a	ain of Custody i nd acceptance	s subject to of our terms	o Maxxam's s s which are a	andai ailab	rd Terms a le for view	nd Cor	ndition	ns. naxxan	n.ca/te	erms														
MANDATORY SE	CTIONS IN GREY MUS		the second second second second	UT. AN I	NC	OMPL	ETE	CH	AIN	OF	CONTRACTOR OF THE OWNER.	STO	DY	MA	YR	ESI	JLT								
oC-1028				Maxx	am Int	ernational	Corpora	ation c	o/a Max	cxam								W	nite: N	Maxxar	n	Y	rellow: Cl	lient Copy	

Page 13 of 13