Wastewater Effluent License Limits

OUTLINE

- Wastewater Treatment
 - Background

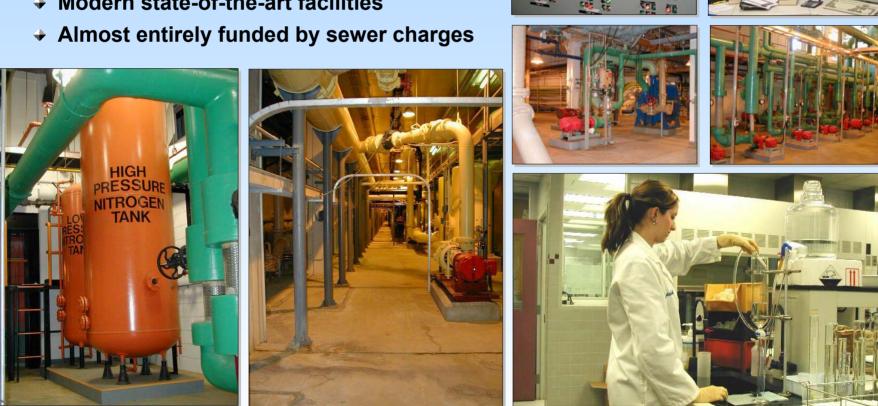
Licensing Considerations

- Typical Effluent Parameters
- Manitoba Conservation Limits

Design and Performance

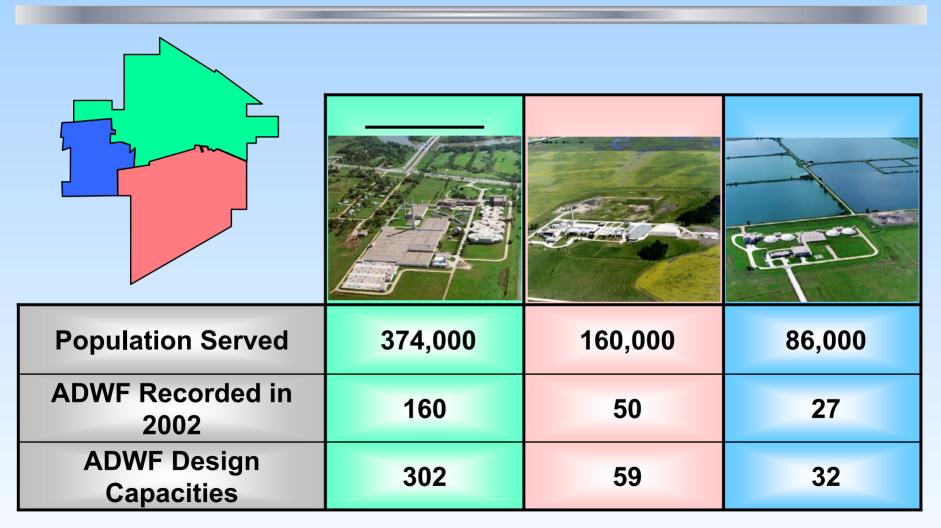
- Biochemical Oxygen Demand
 - Dr. J. Oleszkiewicz parameter selection
 - Performance History
 - River Monitoring
- Total Suspended Solids
- Microbiological

Appropriate Limits for Winnipeg



WASTEWATER TREATMENT

- North End Water Pollution Control Center (NEWPCC)
 - ✤ 1937: primary treatment
 - ✤ 1954: major plant expansion
 - 1965: secondary treatment
 - 1980: primary treatment expansion
 - ✤ 1984: secondary expansion convert to pure oxygen and computer control system
 - 1988: digesters expansion
 - ✤ 1990: dewatering building
- South End Water Pollution Control Center (SEWPCC)
 - 1974: conventional secondary plant
 - ✤ 1993: plant expansion
 - ✤ 1999: UV effluent disinfection
- West End Water Pollution Control Center (WEWPCC)
 - 1964: lagoons commissioned
 - ✤ 1976: mechanical plant (aeration) commissioned
 - ✤ 1994: new conventional secondary plant commissioned
 - ✤ 1998: ponds operated in summer and winter mode


WASTEWATER TREATMENT

- Invested more than \$200 Million since 1978 in wastewater treatment
 - Modern state-of-the-art facilities

WASTEWATER TREATMENT

- All three Water Pollution Control Centers provide conventional secondary treatment
 - Provides best practical secondary treatment
 - Designed to remove the carbonaceous content
 - 90 to 95 % removal of contaminants
 - 100% of dry weather flows
 - Natural physical and biological processes used in treatment
- Disinfection of final effluent
 - Ultraviolet disinfection in place at SEWPCC
 - Existing WEWPCC polishing ponds provide disinfection
 - NEWPCC planned for 2005

ADWF = Average Dry Weather Flow (ML/d)

LICENSING CONSIDERATIONS

- Protect River's health and beneficial uses
 - Aquatic life
 - Dissolved Oxygen (DO),
 - Relates to biochemical oxygen demand (BOD)
 - Other constituents,
 - Ammonia (NH₃)
 - Total suspended solids (TSS)
 - Nutrients Nitrogen (N) and Phosphorus (P)
 - Recreation
 - Microbiological, Fecal coliforms (FC)

LICENSING CONSIDERATIONS

Typical License Limits* for Municipal Wastewater

- Tier 1: Standards
 - Secondary Treatment Technologies
- Implementation, effluent quality must achieve the following minimum standards (monthly average for compliance):
 - 30 mg/L Biochemical Oxygen Demand BOD
 - 30 mg/L Total Suspended Sediments (excluding growing algae)
 - 200 fecal coliform organisms / 100 mL (may be applied on a seasonal basis)
- Tier 2: Objectives
 - Ammonia (NH₃), discussed earlier in detail
- Tier 3: Guidelines
 - Nutrients: Nitrogen (N) and Phosphorus (P) under review by Province
 - Discussed in Nutrient presentation

* - Manitoba Conservation: Manitoba Water Quality Standards, Objectives, and Guidelines, Final Draft November 22, 2002

LICENSING CONSIDERATIONS

- All three Water Pollution Control Centers designed to achieve effluent quality of:
 - → 30 mg/L Total Suspended Solids (TSS)
 - ◆ 25 mg/L 5-day Carbonaceous Biochemical Oxygen Demand (CBOD₅)
- Use of Carbonaceous BOD measure different from parameter put forward by Province
 - Engaged Dr. J. Oleszkiewicz to review situation

PARAMETER REVIEW

- Dr. J. Oleszkiewicz, P.Eng, C.Eng(UK) Diplomate, American Academy of Environmental Engineers
 - 25 years of regulatory, consulting, research and academic experience in water pollution control and waste treatment
 - International consulting work
 - Specialized CBOD vs. TBOD work in Ontario
 - Professor of Environmental Engineering at University of Manitoba since 1983

LICENSING OF DISCHARGES

- Manitoba Conservation historically used TBOD (Total BOD <u>without</u> inhibition of nitrification)
- Plant operation and design based on CBOD (Carbonaceous BOD with inhibited nitrification)
- Most provinces use CBOD
- The need for License based on CBOD warrants discussion

CBOD represents the actual performance of a plant and its true impact on the river

BOD_{total} = **BOD**_{Carbon in organics} + **BOD**_{Nitrogen}

TBOD = CBOD + NBOD

WHAT IS BOD?

BOD: Biochemical Oxygen Demand was developed over a century ago* to measure the ability of bacteria to degrade organic matter in sewage and river waters after 5 day incubation at 20°C

It measures the consumption of dissolved oxygen by bacteria

- Introduced as seed with dilution water containing ammonia and nutrients
- Does not measure the organic pollutants directly
- Why 5 days?
 - Rivers in England reached the sea in 5 days or less

* Baird & Smith: "Third century of biochemical oxygen demand", WEF 2002

EFFLUENT BOD: HISTORY

- US EPA set up 30 mg/L TBOD effluent limit in late 70's; based on 85% removal requirement for the secondary plants
 - Non-compliance was reported for 60% of plants
- EPA found that non-compliance was:
 - artifact of the testing method, and
 - recommended CBOD of 25 mg/L for all wastewater plants with secondary treatment
- CBOD test was developed that inhibits ammonia nitrogen oxidation:
 - *inclusion of ammonia in dilution water, demonstrates that* BOD test is not intended to include oxygen demand of nitrogen in the BOD test "

- Most states e.g., IN, IL, MN, NJ, PA, FL and other converted to CBOD by the early 1990's (effluent permits of 20-25 mg/L CBOD)
- N. Dakota still uses TBOD but considers the switch to CBOD, to be in line with Minnesota which uses CBOD.
- E. Grand Forks, Moorhead use CBOD

Clean Environment/07201676) \$ 10072) - Jalation a 2003 ution Discharge Elimination System 15

EUROPEAN UNION

- Started with TBOD (1991 Wastewater Directive) and ran into problems
- 1998 European Union banned the use of TBOD, allowing the use of CBOD
 - ✤ ISO 5815 Norm
- Some countries (e.g. France, UK, Poland) allow the use of an instrumental rapid biosensor method which registers CBOD*

* Marty et al: Measurement of BOD:correlation between 5-day BOD and commercial BOD biosensor values. Environm. Technol., 18: 333-337, 1997

- Most provinces switched to CBOD (e.g. Ontario 1996) or used it all along (e.g. Alberta)
- BC still uses TBOD but will be switching to CBOD shortly
- Ontario Ministry of Environment recommended:
 - * " 25 mg/L CBOD; measure TAN, TKN and address ammonia toxicity "

WHY USE CBOD?

- Effluent quality expressed in CBOD reflects the true impact on the river
- CBOD does not measure nitrogen, which is added to the test bottle
- Most Regulators use CBOD
- Secondary wastewater treatment plants are designed and operated based on CBOD

NEWPCC CBOD₅ PERFORMANCE

Inhibited Effluent: Monthly Averages of CBOD₅ (mg/L)

						Мо	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1992	17	14	12	9	9	9	9	9	6	9	7	7
1993	9	7	8	6	7	5	6	6	6	7	6	9
1994	11	12	11	10	9	9	9	8	6	9	12	12
1995	13	12	27	11	12	15	16	15	13	13	13	14
1996	14	11	11	20	13	11	13	12	12	12	10	11
1997	10	13	14	21	19	11	11	10	11	11	11	11
1998	11	15	10	12	14	11	13	10	11	9	10	10
1999	15	18	18	12	13	11	9	9	10	10	12	12
2000	10	10	6	10	12	9	10	13	10	11	12	16
2001	12	12	14	10	9	8	10	9	10	10	10	13
2002	12	11	15	13	12	10	10	12	9	9	11	13

Exceeds 25 mg/L Compliance Limit
No Data, Compliance uncertain
Meets 25 mg/L Compliance Limit

SEWPCC CBOD₅ PERFORMANCE

Inhibited Effluent: Monthly Averages of CBOD₅ (mg/L)

						Mor	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1992	9	17	14	13	11	10	12	16	11	14		
1993		23	10	11	10	11	11	10	11	11	10	10
1994	12	10	15	11	15	10	10	10	11	12	10	11
1995	11	12	10	11	10	11	10	10	11	10	10	11
1996	19	21	11	10	10	10	12	10	10	10	11	11
1997	10	10	10	10		17	10	10	10	10	10	11
1998	13	14	13	11	13	12	14	12	7	6	6	6
1999	32	41	23	10	8	5	5	6	7	9	9	13
2000	9	10	6	7	6	8	6	5	6	6	7	8
2001	6	8	12	8	7	10	7	6	6	6	7	7
2002	9	6	6	8	10	6	5	4	5	5	6	4

Exceeds 25 mg/L Compliance Limit

No Data, Compliance uncertain

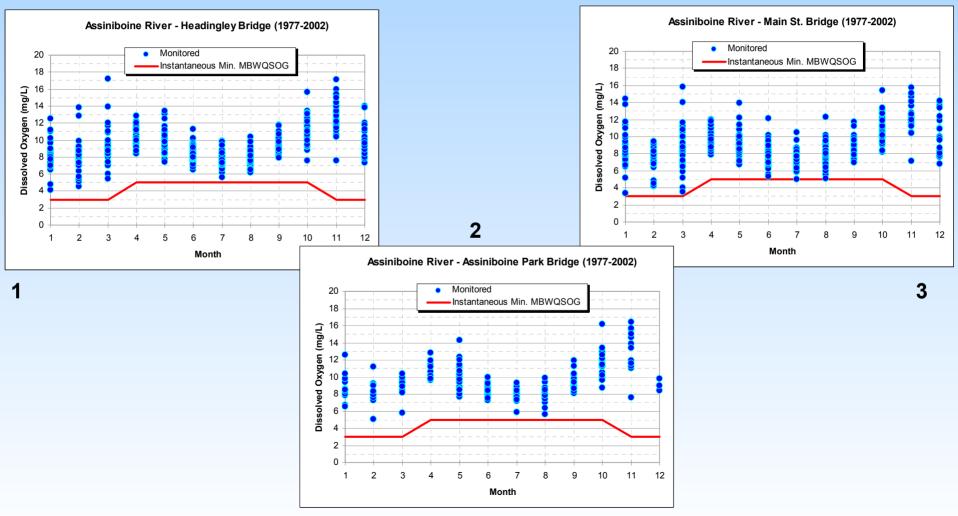
Meets 25 mg/L Compliance Limit

WEWPCC CBOD₅ PERFORMANCE

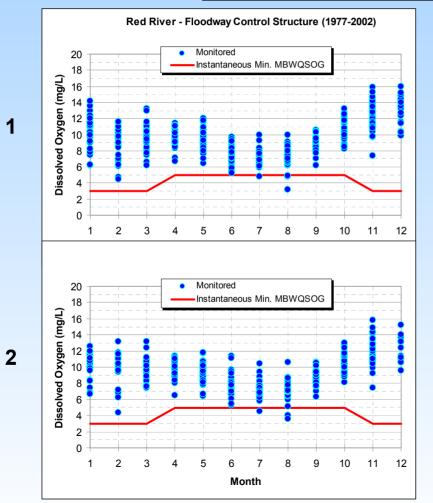
Inhibited Pond Effluent: Monthly Averages of CBOD₅ (mg/L)

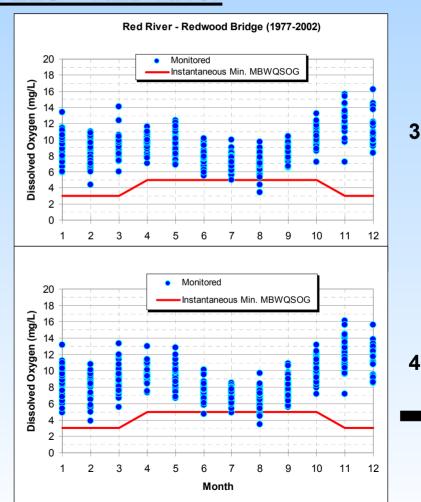
						Мо	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1998			15	17	14		14	12	6	5	6	7
1999	12	9	13	13	14	11	11	8	11	12	18	19
2000	12	11	15	21	13	7	8	8	6	12	10	9
2001	6	6	13	11	17	9	7	8	6	11	11	8
2002	8	6	9	6	17	8	6	10	8	11	11	10
	N	/inter C	peratio	n		Summ	Winter Operation					

Exceeds 25 mg/L Compliance Limit
No Data, Compliance uncertain
Meets 25 mg/L Compliance Limit

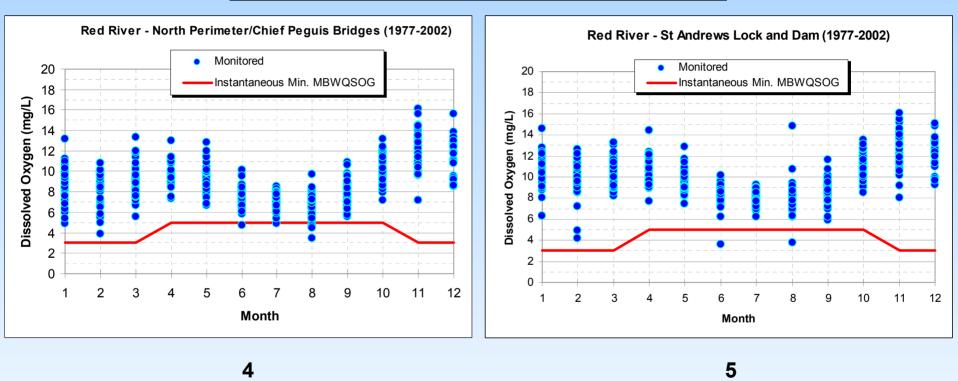

RIVER MONITORING

The City of Winnipeg has conducted year-round bi-week water sampling on the Red and Assiniboine since 1977 at 11 bridge locations as shown




MONITORED DO LEVELS – ASSINIBOINE RIVER

MONITORED DO LEVELS – RED River


1

Clean Environment Commission - January 2003

24

MONITORED DO LEVELS – RED RIVER

HEALTHY DO LEVELS

- Existing design and operational performance of the WPCCs are adequately protecting dissolved oxygen resources of the Rivers
- A limit of 25 mg/L as measure by effluent CBOD₅ on a monthly average basis is an appropriate License compliance condition for Winnipeg's wastewater treatment plants
 - Consistent with other jurisdictions

NEWPCC TSS PERFORMANCE**

Effluent: Monthly Average of Total Suspended Solids (mg/L)

						Мо	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1992	29	20	27	26	23	27	29	31	15	20	18	22
1993	25	15	18	14	19	16	25	25	13	11	10	13
1994	15	13	17	15	16	18	28	20	13	21	16	16
1995	18	13	40	15	17	26	27	35	19	19	15	23
1996	23	11	14	53	29	25	16	30	20	23	25	20
1997	15	30	34	54	66	21	19	18	18	25	21	22
1998	16	26	18	19	26	25	31	20	21	15	18	19
1999	29	35	33	26	32	24	23	21	20	20	19	17
2000	19	14	10	17	23	23	29	24	15	19	19	34
2001	14	18	18	17	19	14	21	18	16	19	13	24
2002	21	17	26	25	21	19	21	26	16	9	14	18

Exceeds 30 mg/L Compliance Limit
No Data, Compliance uncertain
Meets 30 mg/L Compliance Limit

** Note: Monitored final effluent includes wet weather by-pass of secondary treatment.

Performance results to be reported on secondary treated effluent

SEWPCC TSS PERFORMANCE**

Effluent: Monthly Average of Total Suspended Solids (mg/L)

						Мо	nth					
Year	1	2	3	4	5	6	7	8	9	10	11	12
1992	23	29	21	16	14	12	15	18	14	14		
1993	24	18	7	13	9	15	18	14	24	16	16	14
1994	13	11	17	10	17	7	10	9	10	11	9	8
1995	8	11	9	5	6	15	5	6	12	7	7	8
1996	16	16	12	8	10	8	6	7	6	7	13	9
1997	6	7	7	6		9	6	6	10	6	8	9
1998	11	23	15	13	19	13	10	11	11	14	13	10
1999	36	37	30	18	14	11	10	10	10	11	11	19
2000	12	17	9	10	10	14	11	9	7	7	7	8
2001	9	8	13	14	14	15	14	9	8	11	10	11
2002	11	10	14	29	44	10	10	9	15	8	7	9

Exceeds 30 mg/L Compliance Limit
No Data, Compliance uncertain
Meets 30 mg/L Compliance Limit

** Note: Monitored final effluent includes wet weather by-pass of secondary treatment.

Performance results to be reported on secondary treated effluent

WEWPCC TSS PERFORMANCE**

Pond Effluent: Monthly Average of Total Suspended Solids (mg/L)

		Month										
year	1	2	3	4	5	6	7	8	9	10	11	12
1998			15	49	47		31	34	21	12	13	8
1999	16	13	17	31	43	44	29	21	12	24	30	24
2000	10	12	19	34	23	20	26	37	27	26	22	14
2001	7	8	15	19	29	21	17	11	12	20	15	9
2002	8	14	11	12	28	19	18	30	22	22	16	8
	W	inter C)perati	on		Summ	er Ope	Winter Operation				

Exceeds 30 mg/L Compliance Limit
No Data, Compliance uncertain
Meets 30 mg/L Compliance Limit

** Note: Monitored final effluent may include algae and/or re-suspended solids from spring melt conditions

Performance results to be reported on secondary treated effluent

- Minor exceedance of Total Suspended Solids limit of 30 mg/L, as measure on a monthly average, does not adversely affect aquatic life in local rivers.
- River has a naturally high sediment concentration, which is much greater than effluent discharge concentrates
 - Typical local river concentrations, 85 to over 200 mg/L, during open water entering Winnipeg

SEWPCC EFFLUENT DISINFECTION

- Disinfection implemented at SEWPCC to achieve substantial compliance with Manitoba's Surface Water Microbiological Objective under normal operating conditions:
 - Using Ultraviolet technology
 - Compliance target of 200 FC/100mL up to 100 ML/d
 - Compliance based on end-of-pipe effluent quality
 - Seasonal operation, May 1 to Sept 30 inclusive
 - Wet weather and high river level exclusions
 - In operation since July 1999
 - Detailed reporting provided to MB conservation

SEWPCC EFFLUENT SUMMARY: FECAL COLIFORMS

SEWPCC Average¹ Monthly Effluent Bacteriological Quality

Year	2002	2001	2000	1999
Month	Fecal Coliform ²	Fecal Coliform²	Fecal Coliform ²	Fecal Coliform²
May	39	41	14	
June	31	419	81	
July	175	972	89	62
August	63	208	32	73
September	304	425	61	39

(1) Geometric mean

(2) Most Probable Number (MPN) per 100 mL

Exceeds 200 FC/100 mL Compliance Limit	
No Data, Compliance uncertain	
Meets 200 FC/100 mL Compliance Limit	

Problem related to premature UV lamp failure

WEWPCC EFFLUENT DISINFECTION

- WEWPCC operation different than NEWPCC and SEWPCC
 - Plant design and operation similar to SEWPCC
 - Retained the use of polishing ponds as storage cells
 - Continues to polish wastewater and improve effluent quality, especially fecal coliform levels

Need for additional disinfection of WEWPCC effluent unlikely

- Modifications made to treatment train has resulted in effluent quality that achieves significant compliance with fecal coliform objective
- Need for additional disinfection to be assessed through continued effluent monitoring and compliance reporting

WEWPCC EFFLUENT SUMMARY: FECAL COLIFORMS

WEWPCC Average¹ Monthly Effluent Bacteriological Quality

Year	2002	2001	2000	1999	1998
Month	Fecal Coliform ²	Fecal Coliform ²	Fecal Coliform ²	Fecal Coliform ²	Fecal Coliform²
May	116	11	6	25	
June	6	2	10	8	
July	11	15	5	8	11
August	54	57	146	25	59
September	74	27	174	210	285

(1) Geometric mean

(2) Most Probable Number (MPN) per 100 mL

Exceeds 200 FC/100 mL Compliance Limit
No Data, Compliance uncertain
Meets 200 FC/100 mL Compliance Limit

NEWPCC EFFLUENT DISINFECTION

Disinfection to be implemented at NEWPCC:

- Existing plant reduces Fecal coliform (FC) significantly, but doesn't meet microbiological objective
 - "Raw", typical Influent: ~ 10,000,000 FC/100 mL
 - "Treated", typical effluent: ~ 250,000 FC/100 mL
 - Disinfected effluent: ~ 200 FC/100mL or less
- Will be designed to achieve significant compliance with microbiological objective under normal operating conditions, similar to SEWPCC.
 - Compliance with 200 FC/100mL will be assessed
 - CSO plans will influence design requirements and operation
 - Seasonal operation, May 1 to Sept 30 inclusive
- Will be in operation for 2005 summer recreation season.
 - City has committed \$15 Million for facility

LICENSING CONSIDERATIONS

Recommended License limits and conditions for treated secondary effluent:

- Carbonaceous BOD
 - Standard, Tier 1
 - Base on protecting river Dissolved Oxygen content
 - Monthly average to achieve 25 mg/L with excursions to be addressed
- Total Suspended Solids
 - Objective, Tier 2
 - Monthly average to achieve target of 30 mg/L
 - Excursions in accordance with MWQSOG (final draft +/- 25 mg/L)
 - Exclude algae from ponds
- Fecal Coliforms
 - Generally consistent with current SEWPCC License conditions
 - Specifics to be review as part of disinfection project for NEWPCC
- Nutrients
 - Premature to establish limits at this time