Overview Presentation Winnipeg's Wastewater Pollution Prevention Plan

Presented to the Clean Environment Commission

January 27, 2003

City of Winnipeg – Water and Waste Department

Outline

- Introduction
- Plan to Improve Wastewater Treatment
 - → Disinfection
 - Ammonia reduction
 - Nutrients
 - CSO control
- Financial Impact and Options

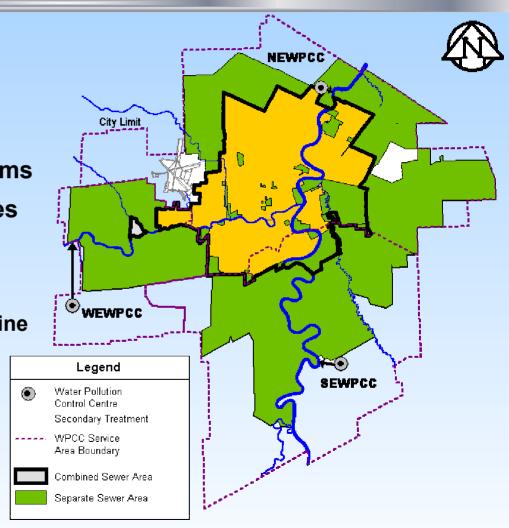
Introduction

- Major considerations
 - Address the issues
 - Provide a scientific basis for action.
 - → Provide a schedule of implementation.
 - → Provide for the operation, maintenance and eventual replacement of assets.
 - → Provide the required financial resources to carry out the plan.

Introduction

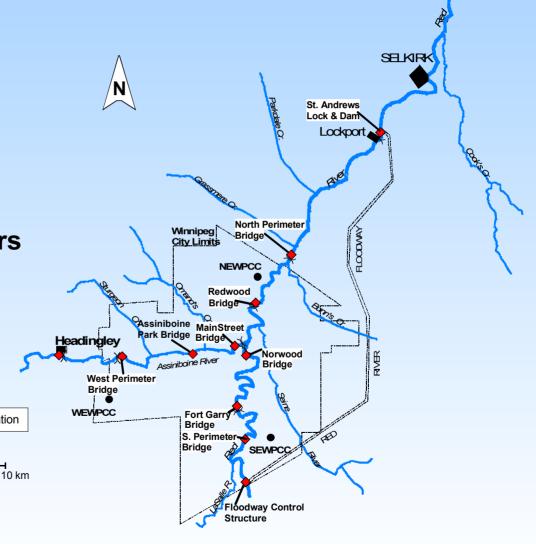
Existing Systems

→ 5 Interceptor Sewer systems


→ 3 Pollution Control Centres

79 CSO locations

→ 231 Land drainage outlet


101 to Red and Assiniboine

→ 2 Major Rivers

Introduction

- Routine River
 Monitoring done by
 City of Winnipeg
- Year-round bi-weekly sampling on the Red and Assiniboine Rivers since 1977 at 11 locations.

Sampling Location

Approximate Scale

Introduction

Scientific Basis:

- → The Red and Assiniboine Rivers Ammonia Criteria Study, November 2002.
- → The Combined Sewer Overflow Management Study, November 2002.
- → The Nitrification Technical Study, November 2002.
- → Executive Summary: Ammonia Reduction in City of Winnipeg Wastewater Effluent, November 2002.
- Nutrient Characterization of Discharges from Winnipeg
- → Effluent Discharges Limits for Winnipeg's Water Pollution Control Centres

Plan to Improve

- A near- and long-term implementation plan has been developed
- Supported by Environmental Projects Reserve (EPR) fund.
- Does not include costs for other system or treatment plant upgrades that might be needed during the same timeframe
- Costs are in 2002 dollars and no inflation allowance has been included.
- Approved by City Council December 11, 2002

Plan to Improve

Component	Capital \$ (Million)	Year Started	Year Completed
NEWPCC Disinfection	\$ 15	2003	2004
Centrate Ammonia Treatment at NEWPCC	\$ 10	2003	2004
CSO Control Program			
(Stage Ia) - SCADA, Demo, Weirs	\$ 14	2003	2005
(Stage Ib) - Integrate with BFR	\$ 26	2005	2043
(Stage II) - In line storage	\$ 50	2028	2033
(Stage III) - Additional storage	\$ 181	2033	2050
WEWPCC Disinfection	\$ 3	2050	2051
Effluent Nutrient Control			
NEWPCC	\$ 127	2019	2022
SEWPCC	\$ 47	2022	2025
WEWPCC	\$ 7	2025	2026
Sub-Total	\$480		
Biosolids Program			
(Stage I) - Pelletization and Storage	\$ 30	2007	2010
(Stage II) - Thermophilic conversion	\$ 20	2012	2014
TOTAL	\$530		

Approximately \$75 Million to be supported by EPR in next 10 years

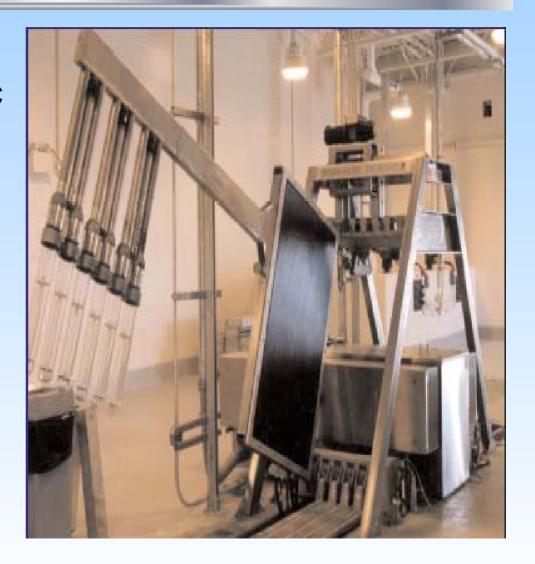
Plan to Improve.

Elements:

- Disinfection and ammonia reduction (centrate) are priorities.
- Disinfection at the WEWPCC can be deferred indefinitely.
- Allows for long-term nutrient control.
- Long-term CSO control strategy to achieve a target of 4 overflows.
- Allows for a new biosolids management system.
- → 45 to 50 year program must be flexible to deal with major uncertainties with future program.
- → Additional research, studies, monitoring, dialogue with the Regulator, and public consultation to be conducted in next 10 years to better assess needs, timing, and costs of future actions.

Plan to Improve

Financial Considerations

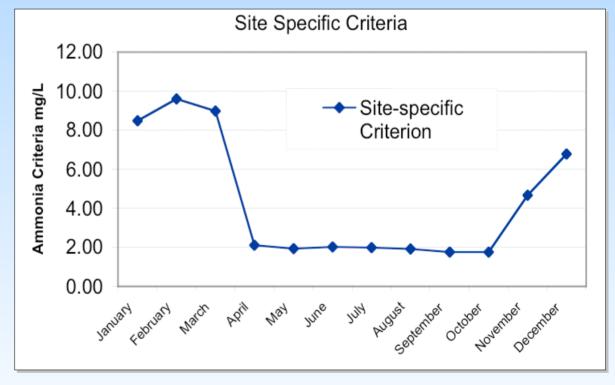

- → Capital funding from EPR, \$7 million/year for first 10 years
- → Preserves "pay-as-you-go" as much as possible for first 10 years
- → Wastewater improvements will not delay water treatment plant
- → Increase to the EPR will be necessary after ten years
- → Need to add inflation to meet timeframes

Annual EPR	Timeframe	
(Millions)	(Years)	
\$7.0	2003 to 2012	
\$14.0	2013 to 2022	
\$21.0	2023 to 2032	

Overview of the Plan

Disinfection

- → In place at the SEWPCC
- Not required at the WEWPCC
- **→** RFP out for NEWPCC
- → In place for May 1, 2005



Ammonia Reduction

- Ammonia (NH₃), a natural by-product of decomposing human and animal waste, is in the treated wastewater (effluent) released to the rivers.
- Ammonia can be toxic to fish at high concentrations
- Studies undertaken to:
 - Understand rationale of existing and evolving regulations
 - Understand abundance, distribution, behavior and health of aquatic life
 - **→** Determine toxicity of ammonia to local aquatic species
 - **→** Explore treatment options and costs

Ammonia Reduction

- Application of Ammonia Criteria
- Involves several important science-based and site-specific considerations
 - Allowable ammonia concentration
 - **→ Exposure**
 - **→ Flow allocation**
 - → Period of Record for Design Flow

Ammonia Reduction

City Proposal to Meet Protective Criteria

NEWPCC

In longer term, additional treatment to further reduce ammonia may be required

→ 10-year will meet City's proposed criteria

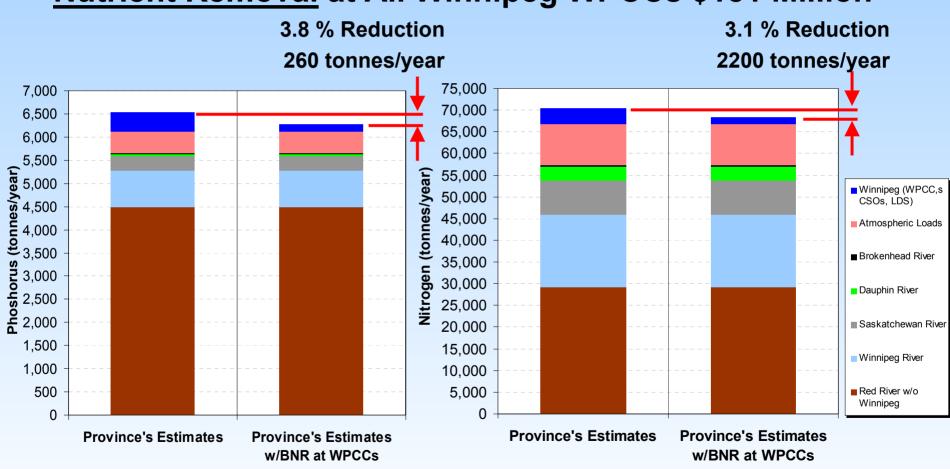
→ Implement Centrate Treatment (2005)

- ▶ \$10 Million
- Monitor
- → Potential additional treatment
 - ▶ \$0 to 122 Million

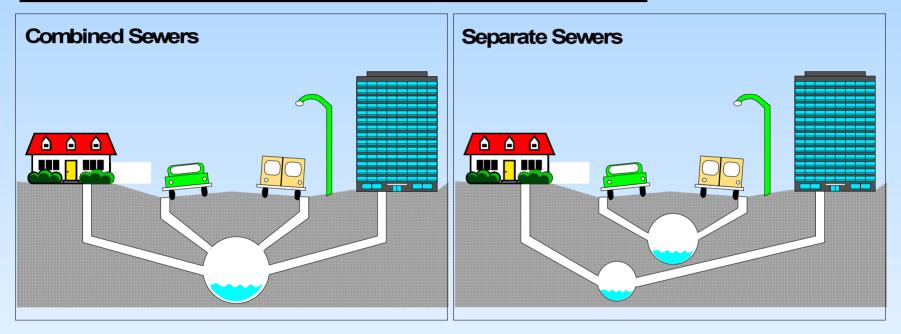
WEWPCC

- Continue use of polishing ponds for ammonia removal
 - **→** Potential modification
 - \$4 Million

SEWPCC

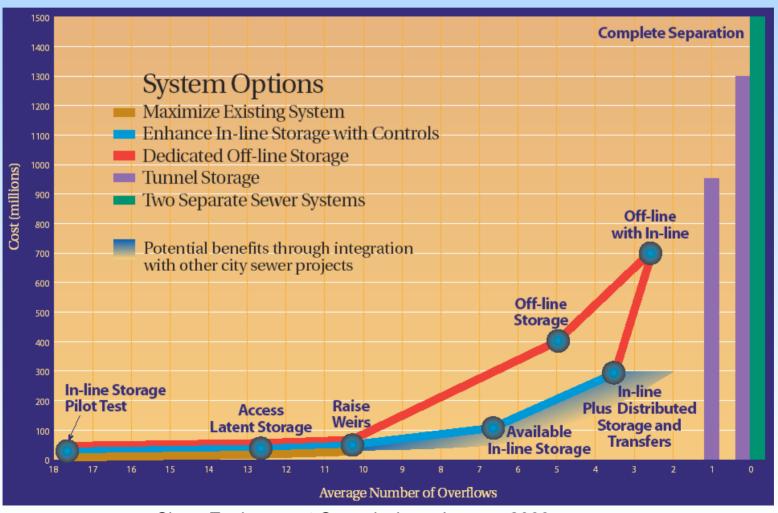

- Continue secondary treatment process
 - **→ Monitor:**
 - **▶** Plant performance
 - River Quality
 - Wastewater flows
 - **→** Potential additional treatment
 - \$0 to 33 Million

Nutrients

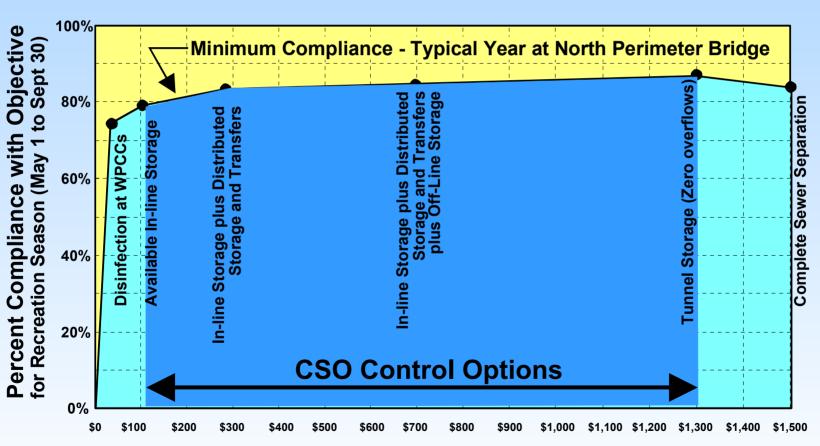

- Winnipeg's contribution to Lake Winnipeg is:
 - → ~ 6.3% of annual phosphorous (P) load**
 - → ~ 5.2% of annual nitrogen (N) load**
- The plan includes \$181 million for nutrient control.
- The City recommends that limits for N and P not be established until:
 - Province completes basin-wide Nutrient Management Study, and
 - Province conducts stakeholder and public consultations
 - Fair and equitable plan involving
 - Municipal
 - Industrial
 - Agriculture
 - Cottage Owners
 - Upstream Neighbours
 Clean Environment Commission January 2003

Nutrient Characterization

Nutrient Removal at All Winnipeg WPCCs \$181 Million



Combined Sewer Overflow (CSO) Control



- Older parts of the City (pre 1960)
- Approximately 30% of City has combined sewers
- CSO dilute mixture of sewage and land drainage
- The major impact is a temporary increase in fecal coliform levels in the rivers above objectives

CSO Control: Cost/Benefit Trade-off

Compliance with Fecal Coliforms Objective of 200 organisms/100mL for Different Control Scenarios

Estimated Cost (Millions)

Combined Sewer Overflow (CSO) Control:

- Long-term CSO control program be adopted in principle to reduce overflow events
 - → City-wide average of 4 events per summer recreation season (reduced from 18 events)
 - **→** Within a 45 to 50 year timeframe
 - → Estimated capital cost: \$270 Million

Effluent Limits

- Base on the existing secondary treatment performance for:
 - **→** 5-day Carbonaceous Biochemical Oxygen Demand (CBOD₅),
 - Total suspended solids (TSS)
- Ammonia limit based on science and site specific flow allocations to allow for future development
- Limits for fecal coliform be established to protect summer recreational use of Rivers.

Systems Reliability

- Risk/Criticality Assessments
 - City will respond to recommendations for design and operational changes at the NEWPCC
 - City will undertake Risk and Criticality Assessments at the three WPCCs
 - Assess reliability and backup capability of treatment systems
 - Estimate mitigation costs, and develop risk reduction plan
 - Implement mitigation measures to prevent discharge of untreated sewage
 - 12-month study, to be complete in 2004

Financial Impact and Options

- Pollution prevention plan to be supported by the current annual EPR funding at \$7 M for next 10 years
- Financial uncertainties
 - → Actual costs of projects versus estimates
 - **→ Inflation over extensive time periods**
 - Other infrastructure costs

Financial Impact and Options

- A commitment to a higher (or lower) degree of control for:
 - Ammonia
 - → CSOs
 - → Nutrients
- Make improvements at a faster (or slower) rate
 - → Increase EPR sooner to \$14 or \$21 million per year
- The regulator(s) will issue the license(s) that determine the final outcome