1	REFERENCE :	DFO Page 1
2		
3	<u>ITEM</u> :	
4		
5	The EIS refers to C	onstruction Plan A and B. Please clarify the difference between these two plans.
6		
7	RESPONSE:	
8		
9	The difference betw	ween these plans are that in Plan A the excavation proceeds from upstream to
10	downstream (north	to south), while in Plan B the excavation proceeds from downstream to upstream
11	(south to north).	Based on a risk erosion assessment Plan B was recommended in the Preliminary
12	Engineering Report	
13		
14	For more discussion	n on the various construction sequencing plans refer to page 4-36 to 4-38 of the

15 EIS or Section 11.2 in Appendix B of the Preliminary Engineering Report.

1 **REFERENCE**: DFO Page 1 2 3 ITEM: 4 5 Construction plans are missing for certain components of the Project that may impact on fish and fish 6 habitat. These include the proposed erosion control on the west bank of the Red River downstream 7 of the floodway outlet, modifications to the Seine River syphon and overflow structure, recreational 8 facilities, Floodway Outlet conduits, and Prairie Grove Road culvert replacement. Please provide. 9 10 RESPONSE: 11 12 Construction plans for the referenced structures will not be produced until Detailed Design phase, 13 which is scheduled to begin this December. It is anticipated these drawings should be available by

14 April/May 2005.

1	REFERENCE: DFO Page 1
2	
3	ITEM:
4	
5	Describe construction practices that will directly affect fish and fish habitat such as dewatering and
6	installation of temporary instream works.
7	
8	RESPONSE:
9	
10	Detailed site-specific construction practices will not be available until the completion of final design
11	and development of a refined construction schedule. The Environmental Protection Plan will outline
12	these activities and provide site-specific practices to mitigate potential effects. Supplementary Filing
13	Section 12.0 discussed this further.

Page 1 of 1

1	REFERENCE:	DFO Page 1
2		
3	ITEM:	
4		
5	Describe operation	for all project components that may impact fish and fish habitat.
6		
7	RESPONSE:	
8		
9	EIS Section 4.0 "Pro	oject Description" provides a description of the project construction, operation and
10	maintenance. Rele	evant components of these features are further described and explored in the
11	respective assessm	nents outlined primarily in EIS Sections 5.0, and 6.0. Further discussion on
12	Operation is found	in the Supplementary Filing Section 8.0 Floodway Operation.

1 REFERENCE: DFO Page 1

2

3 ITEM:

4

Describe maintenance for all project components (e.g., drain and channel maintenance; debris
management at Seine River Syphon, Floodway Outlet conduits, and culverts; Inlet Control Structure
gate de-silting; Low Level Crossing surface) that may impact fish and fish habitat.

8

9 <u>RESPONSE</u>:

10

MFA will be developing a detailed maintenance program for all Floodway and West Dyke
infrastructure. It is understood that any maintenance activities affecting fish or fish habitat will
require prior approval from DFO.

14

Main channel and outside drain maintenance will consist of periodic cleanouts and annual vegetation management through mechanical and chemical control (mowing and spraying). Chemical control will utilize registered products and licensed applicators. Chemical application programs require annual approval from Manitoba Environmental Approvals Branch.

19

It is proposed to install an improved trash rack on the inlet to the Seine River Syphon. It is
anticipated this will decrease the need for the regular manual clearing of debris required at the
existing structure. Detailed design of the trash rack will not be available until April/May 2005.

23

24 Inlet Control Structure maintenance includes an annual dewatering of at least one of the gate 25 chambers (dependent on flow conditions) to evaluate the requirement for de-silting. If required, this 26 activity is generally scheduled for the period just prior to freeze-up. It is anticipated any future de-27 silting operation will involve substantially less total silt volume and discharge rates than was involved 28 in the fall 1999 emergency de-silting operation. TSS and turbidity monitoring (upstream and 29 downstream of the structure) during that operation, was provided by North/south Consultants. Their 30 report concluded the following: "Based on the historical range of TSS and turbidity at this location, 31 and the flushing that will occur in spring 2000, no issues related to fish sensitivity are anticipated to 32 result from this project". Minor de-silting of the structure has been undertaken by departmental 33 operations staff year since the 1999/2000 emergency de-silting, with no reported concerns from 34 regulating agencies.

Page 1 of 2

November 2004

Information was requested related to maintenance activities at the Dunning Road low-level crossing. Maintenance of this crossing is the responsibility of the RM of St. Clements, and includes responsibility for "traffic safety". Maintenance of this crossing has been confined to restoration of the gravel traveled surface following periods of inundation, and as such has not been assessed as having affected the low-flow channel or its appurtenant fish habitat. Floodway Expansion is not anticipated to require modification of the design of this crossing at the channel base. Consultation with DFO will be required if concerns over this crossing persist.

8

9 Also refer to TAC/MFA-S-8.

Page 2 of 2

1	REFERENCE: DFO Page 2
2	
3	ITEM:
4	
5	Describe deficiencies in available data pertaining to fish and fish habitat and plans to collect
6	additional data.
7	
8	RESPONSE:
9	
10	The February 2004 Guidelines note that the EIS shall describe:
11	
12	• In Section 6.2.4 "Fish and Clam Habitat" "sufficient data on bathymetric mapping,
13	groundwater upwelling, erosion and sediment patterns, substrates, habitat classification and
14	quantification within the study area shall be required to provide a basis for predicting project
15	effects and to quantify the effects of the Project on fish and clam habitat".
16	
17	• In Section 6.2.5 "Fish and Clam Populations" "sufficient data regarding species composition
18	and relative abundance, critical life stages and requirements of key fish species, movements
19	and migration patterns, habitat use and fish quality shall be provided to predict the effects
20	of the Project on fish population in the study area".
21	
22	Appendix 6 of the EIS describes and summarizes available information and outlines data deficiencies,
23	both in the existing dataset and with respect to future survey efforts. The respective evaluations
24	contained in EIS Section 6.0 applies the information which is relevant to the discussion of "predicting
25	project effects and to quantify the effects of the Project" as described by the Guidelines. Data
26	deficiencies relevant to the assessment are discussed and proposed monitoring plans provided in the
27	"Monitoring and Follow-up" components of each sub-section in EIS Section 6.0.

1	REFERENCE: DFO Page 2
2	
3	ITEM:
4	
5	Identify groundwater upwellings in local creeks, rivers and drains that could potentially be impacted
6	by the Project.
7	
8	RESPONSE:
9	
10	Existing groundwater upwelling on the floodway were noted in Appendix 6 of the EIS (Figure 6D-1
11	following page 6D-43).
12	
13	The proposed floodway expansion will consist of widening the existing channel within the existing
14	right-of-way, with no deepening of the channel bottom. Impacts to the existing groundwater
15	piezometric levels are anticipated to be very minor and localized within the right-of-way limits of the
16	Floodway Channel, such that no impacts are anticipated to the bedrock piezometric levels and
17	groundwater upwelling at near by local creeks, rivers and drains.

1	REFERENCE: DFO Page 2
2	
3	ITEM:
4	
5	The EIS states for the purpose of the environmental assessment only two components of aquatic
6	habitat will be considered, bottom substrate and aquatic macrophytes. This is unsatisfactory. There
7	are many other important components to fish habitat such as woody debris, riparian vegetation,
8	groundwater upwellings, channel morphology, and inwater structure.
9	
10	<u>RESPONSE</u> :
11	
12	The EIS Section 6.4.1.2 (pg 6-18) states,
13	
14	" for the purpose of this environmental assessment, aquatic habitat refers to bottom substrate
15	(gravel, silt, sand, etc.) and aquatic macrophytes (vegetation): both are key components that
16	influence the presence and absence of aquatic life. Surface water quality, another key
17	component of the aquatic habitat that affects aquatic life, is discussed in Section 6.3. Water
18	flows and velocities and how these physical water characteristics may affect aquatic life as a
19	result of the Project are discussed, where applicable, in Section 6.5 to 6.7".
20	
21	The EIS does not confine its definition of aquatic habitat with respect to the assessment as a whole
22	to bottom substrate and macrophytes. The various aspects that make up overall aquatic habitat are
23	discussed in all parts of Section 6.0. The above statement notes that for the purposes of the
24	assessment conducted in Section 6.4 only, the environmental assessment has focused its evaluation
25	on two aspects that were determined to be key components of aquatic habitat and did not complicate
26	the assessment by duplicating evaluations outlined by other sections of the EIS.
27	
28	The EIS also provides supplemental definitions and discussion of the various aspects of aquatic
29	habitat provided in the "Sources of Effects" summaries in Section 6.3.1.2 9 (pg 6-7), Section 6.4.1.2
30	(pg 6-20), Section 6.5.1.2 (6-30) and Section 6.6.1.2 (pg 6-38). These summaries provide a broader

31 perspective on the application of aquatic habitat and its various components to the assessment.

Page 1 of 1

1	REFERENCE :	DFO Page 2
2		
3	ITEM:	
4		
5	Describe habitat us	ed by commercially important clam species.
6		
7	RESPONSE:	
8		
9	Currently in Manito	ba, there is no clam commercial fishery. See also DFO/MFA-S-22.
10		
11	REFERENCE:	
12		
13	Scaife, B. 2004. T	elephone conversation between Jacqueline Taylor, Environmental Scientist, TetrES
14	Consultants Inc., a	nd Barb Scaife, Bio-Economist, Manitoba Conservation. November 9, 2004.

Page 1 of 1

1	REFERENCE: DFO Page 2
2	
3	ITEM:
4	
5	Identify clams beds within the Red River and its tributaries that could potentially be impacted by the
6	Project.
7	
8	RESPONSE:
9	
10	Refer to DFO/MFA-S-18 response.

1	REFERENCE: DFO Page 2
2	
3	ITEM:
4	
5	Provide a habitat map for the existing Low Flow Channel indicating substrate, depth, width,
6	vegetation cover, and channel morphology.
7	
8	RESPONSE:
9	
10	The requested mapping will be provided as a component of the Fish Habitat Compensation Plan that
11	will be developed for the project. This information will be submitted to DFO for their review in

12 sufficient time prior to the onset of Project construction.

1	REFERENCE :	DFO Page 2
2		
3	ITEM:	
4		
5	Provide a detailed	habitat map for the area of the Seine River to be impacted by the Prairie Grove
6	Road culvert replace	ement.
7		
8	RESPONSE:	
9		
10	EIS Section 4.6.2.2	"CPR Emerson" (pg 4-88 and 4-89) discusses the Seine River culvert crossing by
11	the railway and the	Prairie Grove Road. The EIS Section 6.0 does not incorporate an assessment of
12	the potential effects	s of the proposed 10 m extension of the culvert at the Prairie Grove Road crossing
13	of the Seine River.	A description of the fish habitat in this area and the related effects and "no net
14	loss" principle appl	ication will be provided as a component of the Fish Habitat Compensation Plans
15	supplemental docur	ment outlined in EIS Section 6.6.3 (pg 6-39) and discussed further in response to
16	DFO/MFA-S-15 and	DFO/MFA-S-38.

1	REFERENCE: DFO Page 2
2	
3	<u>ITEM</u> :
4	
5	Provide detailed habitat maps of the areas to be impacted by the Project immediately downstream of
6	the Floodway Outlet as well as along the west bank of the Red River.
7	
8	RESPONSE:
9	
10	The requested mapping will be provided as a component of the Fish Habitat Compensation Plan that
11	will be developed for the project. This information will be submitted to DFO for their review in

12 sufficient time prior to the onset of Project construction.

1 REFERENCE: DFO Page 2 2 3 ITEM: 4 5 Provide maps (plane view) or diagrams to show water levels on the Red River and its tributaries 6 (including the Seine River upstream and downstream of the syphon) that occur under different 7 operating scenarios. 8 9 RESPONSE: 10 11 Mapping of Flooded Area and depth profiles under different operating are presented in 12 Supplementary Filing Section 8.0 Floodway Operation. Detailed Mapping for purposes of defining

13 effects of the Project on fish habitat will be provide in the Fish Habitat Compensation Plan submitted

14 to DFO in sufficient time prior to Project construction.

1 REFERENCE: DFO Page 2

2

3 <u>ITEM</u>:

4

Quantify the fish habitat that will be harmfully altered, disrupted, or destroyed by the various Project
components. These components include but are not limited to the low-flow channel, outlet control
structure, drains entering the floodway channel, and drains affected by West dyke construction.
Provide a table, and drawings if necessary, summarizing the habitat losses and referencing their
description in the EIS, technical appendices, and supplemental information package(s).

10

11 <u>RESPONSE</u>:

12

The EIS Section 6.0 specifically addresses each of the potential effects of the Project on fish habitat for each component noted, with the exception of the drains entering the floodway channel. EIS Section 5.6.4 (pg 5-43) notes that the alteration of the drainage outfalls to the floodway is not anticipated to result in substantive changes to area drainage patterns. Therefore, no effects were anticipated and the matter was not evaluated further.

18

EIS Section 6.6.3 (pg 6-39) and EIS Table 6.6-3 (pg 6-49) noted that the quantification of the fish
habitat potentially disrupted cannot be performed until final Project design is completed. The Fish
Habitat Compensation Plan will provide a detailed listing of all fish habitat effects and propose
mechanism to achieve compliance with DFO policy.

23

24 This is discussed further in response to DFO/MFA-S-38.

1	REFERENCE: DFO Page 2
2	
3	ITEM:
4	
5	Information is needed on fish movements and migrations patterns. Provide an assessment of possible
6	barriers to fish movement. Address the impact of the existing inlet control structure and gate
7	operation on fish passage and fish populations.
8	
9	RESPONSE:
10	
11	The Supplementary Filing Section 3 provides a detailed description of the potential effects associated
12	with the existing Inlet Control Structure operations under both active and inactive conditions.
13	
14	Note that this evaluation does not alter the assessment conclusions as outlined in EIS Section 6.6.3.3
15	(pg 6-44) and EIS Section 6.6.3.4 (pg 6-47) regarding the absence of any active or inactive
16	operational effects of the Project on fish movement or upstream passage through the Inlet Control
17	Structure.
18	
19	During construction, the potential frequency of active use of the Inlet Control Structure is anticipated
20	to be temporarily reduced (see Supplementary Filing Section 8.3), potentially resulting in reductions
21	in the degree of upstream fish passage impairment. The potential benefits of this effect are
22	anticipated to be minor in magnitude and will not result in a significant positive impact with respect
23	to fish movement in the Red River.
24	
25	MFA is committed to investigating the possible impairment to fish passage by Inlet Control Structure
26	operations (both inactive and active). Supplementary Filing Section 8.3 outlines the adaptive
27	management approach proposed in order to mitigate adverse effects that might result from gate
28	operation.

1	REFERENCE:	DFO Page 2	
2			
3	ITEM:		
4			
5	Identify international fish stocks.		
6			
7	RESPONSE:		
8			
9	A review of fish mo	ovement studies is summarized in Appendix 6E. It is expected	that all species
10	present in the Red	River have the potential to cross from Canada into the United	States and vice
11	versa, therefore all s	species listed in Appendix 6C, Table 6C-1, pages 6C-16 through	6C-21, have the
12	potential of being a c	component of an international fish stock.	

1	REFERENCE :	DFO Page 2	
2			
3	<u>ITEM</u> :		
4			
5	Information is needed on clam dispersal mechanisms.		
6			
7	RESPONSE:		
8			
9	Currently, there is	no known Manitoba based literature (published or unpublished) in the public	
10	domain on clam dis	spersal mechanisms. Available information has been described in the EIS, Section	
11	6.6, pages 6-38 thr	ough 6-50 and indicates that:	
12			
13	"The Proje	ect is not anticipated to have any significant adverse effects on fish and clam	
14	population	<i>S.</i> ″	
1	REFERENCE: DFO Page 2		
----	--		
2			
3	ITEM:		
4			
5	Provide an assessment of fish mortality associated with the inlet control structure, outlet structure,		
6	Seine River syphon, and drop structures.		
7			
8	RESPONSE:		
9			
10	This issue is discussed in response to DFO/MFA-S-34 and TAC/MFA-S-33.		

1 REFERENCE: DFO Page 2

2

3 ITEM:

4

Silver Chub (Schedule 1), Chestnut Lamprey (Schedule 3), and Bigmouth Buffalo (Schedule 3) are
listed as Species of Special Conern in the federal *Species at Risk Act SARA*) and can be found in
the study area. Describe known movements and migration patterns and habitat use of these SARA
fish species.

9

10 <u>RESPONSE</u>:

11

12 Information regarding habitat use of COSEWIC/SARA-listed fish species potentially occurring in the 13 Red River and Floodway Channel, including spawning time and habitat and habitat use of juvenile 14 and adult fish, is provided in EIS Appendix 6C, Table C-1. Fish sampling within the Floodway Channel 15 during 2004 (EIS Appendix 6D) did not reveal the presence of any COSEWIC/SARA-listed fish species, 16 although they may occur in the Floodway Channel, particularly when the Red River flow is diverted 17 into the Floodway Channel.

18

19 The movements and migration patterns of fish species that occur within the Red River and are listed 20 as Special Concern (i.e., Silver Chub, Chestnut Lamprey and Bigmouth Buffalo) have not been 21 extensively studied in the Red River. Some limited fish catch information exists at particular locations 22 with in the Red River (EIS Appendix 6D; Stewart and Watkinson 2004).

23

24 <u>REFERENCE</u>:

25

26 Stewart, K.W., and D.A. Watkinson. 2004. The Freshwater Fishes of Manitoba. University of27 Manitoba Press.

1	REFERENCE:	DFO Page 3
2		
3	ITEM:	
4		
5	While Lake Sturgeo	n is currently not on Schedule 1 of SARA this species is likely to be designated as
6	threatened in Mani	toba in the future. It would be prudent of the proponent to consider this during
7	the assessment.	
8		
9	RESPONSE:	
10		
11	Information regard	ing Lake Sturgeon habitat use, including spawning time and habitat and habitat
12	use of juvenile and	adult fish, is provided in EIS Appendix 6C, Table C-1. Fish sampling within the
13	Floodway Channel	during 2004 (EIS Appendix 6D) did not reveal the presence of Lake Sturgeon.
14	Sturgeon may occu	r in the Floodway Channel, particularly when the Red River flow is diverted into
15	the Floodway Chan	nel.
16		
17	As indicated within	the EIS, Project impacts to the aquatic habitat (Sections 6.5.3 and 6.5.4) and fish,

18 including the Lake Sturgeon (Sections 6.6.3 and 6.6.4), are not expected to be significant.

1	REFERENCE :	DFO Page 3
2		
3	ITEM:	
4		
5	Provide description	ns of the domestic and commercial fisheries as well as a more detailed description
6	of the recreational	fishery present in the study area.
7		
8	RESPONSE:	
9		
10	The Red River is	the largest sport fishery in Manitoba. Manitoba's Southern Fishing Division (which
11	includes the Red	River) has an annual fishing season that opens in May. Table 1 summarizes the
12	results of a sport f	ish survey conducted in 2000 for the Red River and for Manitoba in total.
13		
14 15 16	Number of I	Table 1 Fish Caught and Kept by Sport Anglers, Red River and Manitoba: 2000

	Red River			Total Manitoba		
Fish	Ву	By Non-		Ву	By Non-	
Caught	Residents	Residents	Total	Residents	Residents	Total
Walleye	315,324	35,757	351,081	3,705,609	1,996,911	5,702,520
Pike	34,376	3,073	37,449	2,257,610	1,922,515	4,180,125
Catfish	183,588	56,292	239,879	249,083	56,898	305,981
Perch	35,323	351	35,674	1,957,738	235,272	2,193,010
Other	471,167	24,528	495,695	1,282,804	243,818	1,526,622
Species						
All Species	1,039,778	120,000	1,159,778	9,452,844	4,455,414	13,908,258
	Ву	By Non-		Ву	By Non-	
Fish Kept	Residents	Residents	Total	Residents	Residents	Total
Walleye	124,773	10,686	135,460	1,346,226	323,632	1,669,858
Pike	5,892	451	6,343	443,811	76,577	520,388
Catfish	1,363	2,684	4,046	7,619	2,717	10,336
Perch	3,197	50	3,248	718,948	144,019	862,967
Other	54,126	2,305	56,430	274,827	24,128	298,955
Species						
All Species	189,351	16,176	205,527	2,791,431	571,073	3,362,504

17 Source: Manitoba Conservation 2004¹

18 Note: Based on licensed sport fishing records.

¹ Manitoba Conservation. Angling in Manitoba (2000). Retrieved from:

http://www.gov.mb.ca/conservation/fish/images/survey.pdf Verified on May 15, 2004.

For information on commercial fishing on the Red River in the Flood Study Region, please refer to the
 response to TAC-MFA-S-61.

3

During a conversation with a representative from Manitoba Water Stewardship, Fisheries Branch, it
was indicated that there is a small domestic fishery on the Red River, but that it consists of a few
individuals and is considered negligible compared to the recreational fishing that takes place in the
Flood Study Region. (*Cann, Personal Communication*).²

8

9 With respect to clam harvesting, in 1991, Manitoba Natural Resources issued two experimental 10 licences to harvest clams in the province. No licences have been issued since that time.³ During a 11 conversation with a representative from Manitoba Water Stewardship, it was indicated that there is 12 currently no significant recreational, commercial or domestic freshwater clam fishery in the Flood 13 Study Region. (*Cann, Personal Communication*).

Page 2 of 2

² Personal Communication with Rob Cann, Provincial Angling Manager, Manitoba Water Stewardship, Fisheries Branch, Winnipeg, MB.

³ Source: 1993 State of the Environment Report. Available: <u>http://www.gov.mb.ca/conservation/annual-report/soe-reports/soe93/water.html</u>

1	REFERENCE:	DFO Page 3
2		
3	ITEM:	
4		
5	Describe potential ir	npacts to groundwater upwellings in local creeks, rivers and drains.
6		
7	RESPONSE:	
8		
9	See response to DF	D/MFA-S-7.

1	REFERENCE: DFO Page 3
2	
3	ITEM:
4	
5	List expected flow and depth at several points along the Low Flow Channel under various operating
6	scenarios.
7	
8	RESPONSE:
9	
10	See Attachment DFO/MFA-S-24 which follows.

Page 1 of 1

Additional Information on Water Levels in the Low Flow Channel With the Existing and Expanded Floodway Channels KGS Group October 28, 2004

This document provides information describing the attached water surface profiles and flow duration curves for the summer flow conditions in the low flow channel for the Existing and Expanded Floodway Channels.

Flow duration curves (attached) were estimated for the flows in the Floodway during the summer period from June 1 to October 31. These flows were estimated based on the Water Survey of Canada recorded flows on the Seine River and the Cooks Creek. It should be noted that the duration curves are based on surface water flow only and do not account for local groundwater inflow into the Floodway Channel. The average local groundwater inflow to the Floodway, based on field flow measurements taken by KGS Group during the PDEA2 process, was estimated as approximately 2000 USgpm (0.11 m³/s) in total over the length of the Floodway.

The water surface profiles (attached) were estimated for both the Existing and Expanded Floodway channels for the following summer flow conditions:

- 98% Flow (that is, the flow in the Floodway is less that this magnitude 98% of the time)
- 95% Flow
- 90% Flow
- 50% Flow
- 20% Flow

It should be noted that the water surface profiles were based on a summation of the surface flows as summarized by the duration curves and the estimated groundwater inflow. The groundwater inflow is represented as being additive to the Floodway uniformly between the CNR – Redditt Bridge and the Outlet Structure. The groundwater flow is estimated to be relatively constant at 0.11 m³/s.

Duration Curve of Summer Flows in Floodway

Low Flow Channel Water Surface Profiles Existing Floodway vs. Expanded Floodway Flow Percentile - 98%

Low Flow Channel Water Surface Profiles Existing Floodway vs. Expanded Floodway Flow Percentile - 95%

Low Flow Channel Water Surface Profiles Existing Floodway vs. Expanded Floodway Flow Percentile - 90%

Low Flow Channel Water Surface Profiles Existing Floodway vs. Expanded Floodway Flow Percentile - 50%

Low Flow Channel Water Surface Profiles Existing Floodway vs. Expanded Floodway Flow Percentile - 20%

1 REFERENCE: DFO Page 3

2

- 3 <u>ITEM</u>:
- 4

The proponent proposes to use glyphosate as part of the revegetation plan. This chemical is quite
toxic to fish. Discuss the impacts of its use to fish and fish food sources (e.g., invertebrates, algae,
aquatic plants, benthos).

8

9 <u>RESPONSE</u>:

10

11 Field trials over ground near wetlands indicate that even at the highest application rates (17.1 L/ha), 12 concentrations of glyphosate in adjacent water were 100 – 10000 times less than concentrations 13 known to be toxic to fish and aquatic life (LC_{50} for rainbow trout >7-12 mg/L; Chapman 1989; 14 Solomon and Thompson 2003). In a B.C. study, 4.3 L/ha of Roundup was applied to terrestrial 15 vegetation adjacent to a stream containing a 10m buffer zone. No change in the natural drift 16 densities of a variety of benthic organisms was observed after the application of the herbicide 17 (Kreisweizer and Kingsbury 1989; Reynolds et al. 1989). In comparison, the highest concentration of 18 Roundup applied to vegetation within the Floodway ROW would be approximately 5.0 L/ha with a 19 buffer zone of 50 – 80m.

20

Glyphosate, a herbicide used to control weeds, does not bioaccumulate, biomagnify or persist in a
biologically available form in the environment (Solomon and Thompson 2003). Glyphosate is strongly
adsorbed to soil, where it is broken down by soil microbes. The average half-life of glyphosate in soil
is 60 days, yet may biodegrade at a faster rate in soils with high organic matter. Quick absorption to
soil particles reduces the potential for this herbicide to leach into groundwater (USEPA 2004;
Spectrum 2004; Monsanto 2004).

27

Generally glyphosate is not used to control weedy growth without an added surfactant, a chemical that helps glyphosate adhere to plant tissue (leaves). It is the surfactants that have the potential to cause toxicity in aquatic life (Solomon and Thompson 2003; Tsui and Chu 2003). Roundup (glyphosate + polyoxyethylene amine) is an example of a commonly used glyphosate containing herbicide. At high concentrations this herbicide has the ability to cause toxicity in aquatic life; however proper application of glyphosate mitigates the potential for even low concentrations to enter the low-flow channel.

Page 1 of 3

November 2004

A conservative approach in the amount of glyphosate applied to Floodway soils will minimize the potential for excess herbicide to enter into the low flow channel (Dickerson pers. Comm. 2004). The herbicide would be applied to soils on the upper spoil banks (200m from the low flow channel) using ground spray methods during dry weather (EIS Chapter 7, Section 7.3.1.2). In the event precipitation follows immediately after herbicide application, run-off of diluted glyphosate may enter a buffer of low-flow channel vegetation where it is further absorbed to plants and soil particles.

7

8 If surface runoff were to carry glyphosate-containing chemicals into the aquatic environment, 9 glyphosates strong affinity for soil would cause it to bind to suspended sediment particles present in 10 the low-flow channel and Red River. Sediment load for the Red River ranges from an average of 20 11 mg/L in fall and winter to 300 mg/L in spring (peaks can reach upwards to in excess of 500 mg/L; 12 Chapter 5, Section 5.5). These sediments would either be degraded by microbial action in the 13 surface waters (where glyphosate has a half-life of 7 to 14 days) or settle to the bottom where they 14 would break down over time. Generally, through proper application, the concentration of herbicides 15 entering the low-flow channel through surface run-off would be very diluted. Toxicology studies 16 show that glyphosate levels that might occasionally be detected in surface waters following terrestrial 17 application are sufficiently low so that there is negligible risk to aquatic organisms (Extoxnet 1994).

18

A hypothetical scenario of glyphosate loading from the Floodway to the Red River during minimum
 flows in one year is 2.9 µg/L, approximately 1000 times below the effective concentration of 3000
 µg/L (concentration that would affect 10% of the most sensitive aquatic organisms tested by
 Solomon and Thompson 2003).

23

24 **REFERENCES**:

25

Chapman, P. M. 1989. Salmonid toxicity studies with Roundup. *In* Reynolds, P.E. *(ed.) Proceedings of the Carnation Creek Herbicide Workshop.* Sault Ste. Marie, Ontario, Canada: Forest Pest Management
 Institute. pg. 257.

29

30 Dickerson, J. 2004. Fingerlakes Conservation Services. New York. Personal communications
 31 between John Dickerson and Dave Hiebert from TetrES on November 5, 2004.

32

33 Extension Toxicology Network (Extoxnet) 1994. Pesticide Information Profile: Glyphosate. From

34 <u>http://pmep.cce.cornell.deu/profiles/extoxnet/dienochlor-glyphosate/glyphosate-ext.html</u> on Nov 4,
 35 2004.

Page 2 of 3

November 2004

1	Kreutzweiser, D.P and P.D Kingsbury. 1989. Drift of Aquatic Invertebrates in a Glyphosate
2	Contaminated Watershed. In Reynolds, P.E. (ed.) Proceedings of the Carnation Creek Herbicide
3	Workshop. Sault Ste. Marie, Ontario, Canada: Forest Pest Management Institute. pg. 250.
4	
5	Monsanto. 2004. Backgrounder: Glyphosate and Wildlife. Downloaded from
6	www.monsanto_com/monsanto/layout/VSearchResults.asp?queryText=glyphosate on Nov 2, 2004.
7	
8	Reynolds, P.E., Scrivener, J.C., Holtby, L.B. and P.D. Kingsbury. 1989. An Overview of Carnation
9	Creek Herbicide Study: Historical Perspective, Experimental Protocols and Spray Operations. In
10	Reynolds, P.E. (ed.) Proceedings of the Carnation Creek Herbicide Workshop. Sault Ste. Marie,
11	Ontario, Canada: Forest Pest Management Institute. pg. 15.
12	
13	Solomon, K.R. and D.G. Thompson. 2003. Ecological Risk Assessment for Aquatic Organisms from
14	Over-Water Uses of Glyphosate. Journal of Toxicology and Environmental Health, Part B, 6:289-324.
15	
16	Spectrum Laboratories Inc. 2004. Chemical Factsheet: Glyphosate. From
17	www.speclab.com/compound/c1071836.htm.
18	
19	Tsui, M.T. and L.M. Chu. 2003. Aquatic Toxicity of Glyphosate-Based Formulations: Comparison
20	Between Different Organisms and the Effects of Environmental Factors. From
21	www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=Abstract&list_uids=12821
22	000 on November 4, 2004.
23	
24	United States Environmental Protection Agency (USEPA). 2004. Groundwater and Drinking Water.
25	From www.epa.gov/safewater/contaminants/dw_contamfs/glyphosa.html on April 6 2004.

REFERENCE: DFO Page 3

2

1

3 <u>ITEM</u>:

4 5

Discuss the potential for mercury mobilization into fish bearing waters during construction.

6 7 <u>RESPONSE</u>:

8

9 Mercury in uncontaminated soils of Western Canada has been estimated at approximately 7 to 40 10 ppb (Grigal, 2002). Mercury in these soils is associated with organic matter. Disturbance of 11 agricultural soils reduces organic matter and causes a significant loss of mercury through 12 volatilization and particulate loss. While volatilization will not impact fish-bearing waters directly, 13 watershed inputs of mercury from particulates could be significant in the event of a summer storm 14 event (Grigal, 2002). Some studies suggest that particulate loading during short periods of high flow 15 could contribute 50-90% of annual Hg flux. Even though Hg content in the soil solution is generally 16 low (less than 10 ppb), and yearly mean fluxes are also low (1.7 μ g/m²/yr (Grigal, 2002), extant 17 information suggests that every effort should be made to reduce erosion of floodway banks during 18 construction.

19

Biological methylation of mercury is not expected in the upland soils and vegetation that will be
disturbed by floodway construction, as methylation is normally associated with wetland conditions
(Grigal, 2002). No significant effect is expected.

23

24 <u>REFERENCE</u>:

25

26 Grigal, D.F. 2002. Inputs and Outputs of Mercury from Terrestrial Watersheds: A Review. Environ.27 Rev. 10:1-39.

1	REFERENCE: DFO Page 3	
2		
3	ITEM:	
4		
5	In a project of this magnitude there is the potential for highly concentrated sediment plumes to ent	er
6	fish bearing waters. These plumes are known to persist downstream for several kilometres due	to
7	density differences. Describe the impacts to fish and fish habitat of such an event.	
8		
9	RESPONSE:	
10		
11	In the Red River, concentrations of up to 600 mg/L TSS occur occasionally, and can last for weeks a	it
12	a time (see Figure 5.5-1, EIS). The high sediment load is a normal function of the physical	
13	environment in which the River exists (see Section 5, EIS). These levels are much higher than would	k
14	normally be found in productive fish bearing waters (Alabaster and Lloyd, 1982), which suggests the	at
15	the fish found in the Red River are adapted to conditions of high sediment load.	
16		
17	Short-term sediment plumes high enough to produce acute lethality would likely have to be in the	
18	range of 100,000 mg/L (Alabaster and Lloyd, 1982). Lower concentrations for longer periods would	
19	have the same effect. This is not a likely scenario for the Floodway Expansion project (see Figure 5.	5-
20	3).	
21		
22	When exposed to sublethal concentrations of sediment, the epithelium of gills thicken and proliferat	е
23	(Alabaster and Lloyd, 1982). There are also a host of fish physiological and behavioural responses to	C
24	sublethal concentrations that have been discussed elsewhere. Refer to Appendix 6F-B (EIS) for more	Э
25	details.	
26		
27	Highly concentrated sediment plumes would not be expected to impact habitat in the Red River due	
28	to the normally high sediment load. Again, sediment loads due to project activity, with out any	
29	mitigation during low probability floods or rainfalls occurring during construction (Figure 5.5-3, EIS)	1
30	are projected to be well within the normal range of sediment load. MFA is still committed to	
31	mitigation to reduce erosion during construction and minimize sediment discharged to the Red River	•
32	(Section 4 of the EIS).	

1 **REFERENCES**:

- 2
- 3 Alabaster, J.S., Lloyd, R. 1982. Water Quality Criteria for Freshwater Fish. Butterworth Publishing
- 4 Co., London.

Page 2 of 2

November 2004
1 REFERENCE: DFO Page 3

2

3 <u>ITEM</u>:

4

5 EPPs should include erosion and sediment control plans developed by a Certified Professional in 6 Erosion and Sediment Control, and a monitoring and accountability program to ensure the certified 7 erosion and sediment control plan is implemented. Include plans for monitoring potential sediment 8 releases during construction into fish bearing waters and a description of remedial measures should 9 increases in sediment levels become evident. DFO would like to review the EPPs when they become 10 available.

11

12 <u>RESPONSE</u>:

13

14 Preliminary Erosion and Sediment Control Plan

15 The preliminary engineering phase of the Project included reviews of erosion and sediment control16 issues and presented conceptual measures for environmental protection.

17

18 West Dyke

Section 5 of *Preliminary Engineering Report: Appendix F West Dyke Surveys, Field Investigations and Pre-Design* presents a review of erosion protection measures to protect the West Dyke. The erosion concerns associated with the West Dyke are primarily associated with protecting the integrity of the dyke against wave action. Erosion and sediment control measures to protect watercourses that may be affected as a result of construction activities will generally follow those that will be developed in the detailed design phase and environmental protection plans.

25

26 Floodway Channel

27 Various sections of Preliminary Engineering Report: Appendix B Floodway Channel Pre-Design present 28 the considerations given to erosion protection and sediment control associated with the floodway 29 channel. Sections 3.0 and 7.0 consider the conditions of the existing channel, permissible maximum 30 velocities and tactive forces, and the expected velocities and tactive forces for the preliminary design 31 configurations. Section 9 of Preliminary Engineering Report Appendix B Floodway Channel Pre-32 Design presents the consideration in developing a conceptual channel re-vegetation plan for erosion 33 control which is incorporated into the proposed sediment and erosion control plan described in 34 Section 10. Section 10 of Preliminary Engineering Report: Appendix B Floodway Channel Pre-Design

Page 1 of 4

November 2004

outlines the erosion and sediment control concepts developed to date. These concepts will be further
refined and finalize during the detailed project design and submitted along with the CPEP Plan. The
introduction to Section 10 states:

- 5 "To mitigate potential negative environmental effects downstream from the construction site, 6 it is necessary to identify the requirements for the control of erosion from rainfall runoff and 7 potential sediment transport to downstream habitat in the Red River via the Floodway Outlet. 8 An assessment of potential erosion of exposed excavation areas and their effects on the Red 9 River is discussed in the following section. Recommendations for best management practices 10 (BMPs) for construction timing and sequencing are outlined, and accepted sediment and 11 erosion control techniques to mitigate environmental effects are presented." 12 13 Section 10 proposed BMPs for erosion protections as follows: 14 15 The following best management practices (BMP) will be considered as components of the • 16 sediment and erosion control plan to minimize the potential for erosion. 17 Construction timing and sequencing will be coordinated to maximize excavation while 18 minimizing the time of exposure for newly excavated slopes to less than 30 days before 19 planting. 20 Minimize disturbance to adjacent vegetated areas and base of Floodway for buffering 21 suspended sediment. 22 Implement "Surface Roughening" techniques. • 23 Re-vegetate exposed areas directly after finished grade is established and minimize the • 24 amount of over-winter exposed surfaces. 25 26 Each BMP approach is discussed in detail. 27 28 The following recommendation for erosion and sediment control during construction of the floodway 29 channel are presented: 30
- As a minimum, the following measures are recommended to mitigate erosion and thetransport of sediment within the channel work areas:

Page 2 of 4

4

1	• Excavation of the channel in discrete lengths and from the top of slope downwards.		
2	Maintenance of vegetation buffer where possible (assumed negligible cost to overall		
3	construction).		
4	Slope roughening techniques.		
5	Perimeter and intermediate (along the disposal embankment and Floodway benches)		
6	silt fences.		
7	• Flow interceptor swales at regular intervals (25 to 30 m) cross-slope (parallel to		
8	contours).		
9	Temporary seeding.		
10			
11	Bridges And Drop Structures		
12	Limited excavation will take place at the bridges and drop structures but there will be activities that		
13	impact the existing vegetation cover and expose soils. For example bridge pier demolition and		
14	reconstruction will be required. Again BMPs including silt fences and erosion resistant pads are		
15	discussed for the construction period and rip rap and re-vegetation are discussed for the post-		
16	construction period.		
1/			
18	Section goes on to state "there are many alternatives for the control of erosion and sediment		
19	transport during construction. As such, the final design of the controls will be prepared as part of the		
20	overall Environmental Protection Plan (EPP) specifications."		
21			
22	A framework for the Construction Phase Environmental Protection (CDED) plan is provided as		
20	Soction 12 Construction Phase Environmental Protection (CPEP) Plan is provided as		
2 4 25	section 12 Construction Phase Environmental Protection (CPEP) Plan. The CPEP Plan will be		
26	engineering consultants and the construction contractors and submitted for approval prior to		
27	engineering consultants, and the construction contractors and submitted for approval phor to		
28			
29	The framework calls for:		
30			
31	• The Erosion and Sediment Control Plan to be developed by gualified professionals.		
32	• The Plan to follow the guidance document date November 21, 2003, prepared by Manitoba		
33	Conservation		
34	• Monitoring and reporting of erosion and the effectiveness of erosion and sediment control.		

Page 3 of 4

November 2004

- 1 Monitoring and reporting of nutrient and herbicide application. • 2 Documentation on the monitoring and reporting is to be retained on site. • 3 The CPEP Plan is also to be audited by a trained and experienced auditor. • 4 5 Erosion protection is discussed elsewhere in the reports respecting the Inlet structure, Outlet 6 structure and west bank of the Red River near the Outlet. These are primarily discussed in 7 terms of protecting against effects of erosion on those areas rather than the effects of
- 8 erosion as a vehicle of sediment transport and resultant ecological impacts.

Page 4 of 4

1	REFERENCE:	DFO Page 3
2		
3	ITEM:	
4		
5	Describe the effects	s on fish and fish habitat of increasing agricultural drainage capacity as proposed
6	in the Project.	
7		
8	RESPONSE:	
9		
10	The outlet to the fl	oodway may be increase in some locations so as to not create a "bottleneck" for
11	future drainage pro	jects. Increased drainage is not part the Project. Therefore no fish or fish habitat
12	effects are anticip	ated due to increased drainage. Any changes to habitat due to changes in
13	configuration of th	e drainage outlets to the floodway will be further assessed as part of the Fish
14	Habitat Compensat	ion Plan.
15		
16	This issue is discuss	sed further in response to TAC/MFA-S-34.

1	REFERENCE :	DFO Page 3
2		
3	ITEM:	
4		
5	Discuss the effects	of hardening the river banks and bottom as proposed in the Project on such
6	factors as river mor	phology, invertebrates, riparian vegetation, etc.
7		
8	RESPONSE:	
9		
10	Please refer to the	response to DFO/MFA-S-15 for a discussion of the above issue.

1	REFERENCE:	DFO Page 3
2		
3	ITEM:	
4		
5	Describe more com	prehensively the potential impacts of the Project on fish and clam habitat.
6		
7	RESPONSE:	
8		
9	Refer to DFO/MFA-S	S-15 and DFO/MFA-S-9 responses.

Page 1 of 1

1	REFERENCE :	DFO Page 4	
2			
3	ITEM:		
4			
5	Describe the potent	tial impacts of the Project on fish movements and migration patterns.	Address the
6	implications for don	nestic and international fish stocks.	
7			
8	RESPONSE:		
9			
10	Refer to DFO/MFA-	S-16 and DFO/MFA-S-17 responses.	

1	REFERENCE:	DFO Page 4
2		
3	ITEM:	
4		
5	Describe the poten	tial impacts of the Project on clam dispersal mechanisms.
6		
7	RESPONSE:	
8		
9	Refer to DFO/MFA-	S-18.

1	REFERENCE: DFO Page 4
2	
3	ITEM:
4	
5	Describe the potential fish mortality associated with each project component, including the inlet
6	control structure, outlet structure, low flow channel, Seine River syphon, drop structures and drains.
7	
8	RESPONSE:
9	
10	See response to TAC/MFA-S-33.

1	REFERENCE: DFO Page 4
2	
3	ITEM:
4	
5	Describe the potential impacts of the Project on fish and clam populations.
6	
7	RESPONSE:
8	
9	EIS Section 6.0 provided an assessment with respect to the potential effects and residual impacts of
10	the Project on fish and clams based on available existing information regarding these species (as
11	summarized in Appendix 6) and the various aspects of the Project's construction and operational
12	regimes (i.e., active and inactive operations). An evaluation of the potential significance of impacts
13	of the Project on fish and clam populations is provided, within the fundamental limitations outlined in
14	Appendix 6D (West Dyke, Floodway Channel and Red River near Outlet), and Appendix 6E (existing
15	aquatic environment) regarding the ability to define fish and clam populations. Appendix 6E provides
16	an evaluation of aquatic surveys, which demonstrates the high degree of variability in the local
17	aquatic communities and the inherit difficulty in defining fish and clam populations in the area.

1	REFERENCE :	DFO Page 4
2		
3	ITEM:	
4		
5	Describe potential	impacts of the Project on Aquatic Species at Risk.
6		
7	RESPONSE:	
8		
9	As indicated in the	EIS, Section 6.7:
10		
11	"No Feder	al or Provincial species listed as Endangered or Threatened (i.e., populations and
12	habitat the	at are protected) are anticipated to occur in the area affected by the Project. Four
13	fish specie	es of special concern (as listed by SARA) may occur in the Red River, but are not
14	anticipated	d to be affected by the Project. Therefore, no effects to the listed aquatic biota in
15	the affecte	ed Ecodistricts are anticipated."
16		
17	Please refer to DF	O-MFA-S-20 for additional information.

1	REFERENCE:	DFO Page 4
2		
3	ITEM:	
4		
5	Consider Lake Sturg	eon in assessment as it is likely to be designated SARA.
6		
7	RESPONSE:	
8		
9	Refer to DFO/MFA-S	-21 response.

1 REFERENCE: DFO Page 4

2

3 <u>ITEM</u>:

4

5 In keeping with DFO's Policy for the Management of Fish Habitat, an Authorization under Section 6 35(2) of the Fisheries Act will not be issued until acceptable measures to compensate for the habitat 7 loss are developed and specific terms and conditions for the development of new habitat or 8 enhancement of existing habitat are agreed upon. Please provide a plan for the achievement of no 9 net loss of fish habitat following DFO's hierarchy of preferred compensation options as detailed in 10 DFO's Habitat Conservation and Protection Guidelines. Include a description of the monitoring 11 program used to determine if the compensatory habitat is functioning as intended and corrective 12 measures should this not be the case.

13

14 Describe how unpredicted effects on fish and fish habitat will be identified and addressed.

15

16 <u>RESPONSE</u>:

17

18 Once defined by the final Project design, the projected effects on fish habitat will be summarized and 19 acceptable measures incorporated to remain *"consistent with the concept of sustainable development"* and compliant with the *"Policy for the Management of Fish Habitat"* and the associated *"Habitat Conservation and Protection Guidelines"* principles, of which Section 2.1 notes that *"the purpose of these Guidelines is to assist DFO staff in applying the Policy for the Management of Fish Habitat to projects that could affect fish habitat productive capacity in a fair, consistent and predictable manner across Canada."*

25

26 It is anticipated that both Provincial fisheries Branch and DFO agreement (as per the Policy for the 27 *Management of Fish Habitat)* on whether the proposed measures are acceptable will be necessary to 28 ensure that the Project remains in compliance with the Fisheries Act. These details will be further 29 explored in Fish Habitat Compensation Plan, which will be based on the Project's final design. The 30 supplemental documentation will include additional information including plans to achieve no net loss 31 of habitat, monitoring programs to confirm compensatory habitat is functioning as intended, potential 32 corrective measures it is not, and how other unpredicted effects on fish habitat will be identified and 33 potentially addressed.

Page 1 of 2

November 2004

- 1 In order to address effects which may be difficult to predict, such as future changes to operation, an
- 2 adaptive management approach as described in Supplementary Filing Section 8.0 regarding Floodway
- 3 Operation (specifically Section 8.2.) This approach will both identify effects and will propose and test
- 4 mitigation.