RADIOCOMMUNICATION, RADAR AND SEISMOACOUSTIC SYSTEMS IMPACT ASSESSMENT St. Joseph Wind Energy Project, Manitoba

Prepared for BowArk Energy Ltd.

By Helimax Energy Inc.

June 2008

DOCUMENT INFORMATION

Project Number:	277-02
Issue Date:	17 June 2008
Document Version:	Final
Document Status:	Private and Confidential
Circulation List:	BowArk Energy Ltd., Helimax internal copy

DISCLAIMER

This report has been prepared by Helimax Energy Inc. ("Helimax") in accordance with its proposal and instructions provided by its Client. The information and analysis contained herein is for the sole benefit of the Client and may not be relied upon by any other person. Helimax has taken due regard of data currently available and has performed the services in accordance with standards of care and diligence currently practiced by consulting firms performing services of a similar nature. Notwithstanding the foregoing, neither Helimax nor any person acting on its behalf makes any representation or warranty whatsoever, express or implied, (i) regarding the truth, accuracy, or adequacy of any information contained or referred to herein developed by or obtained from third parties, including the Client, or (ii) that use of the information contained herein by the Client will not infringe on or interfere with privately-owned rights, including any person's intellectual property. The Client is solely responsible for the interpretation and application of the information contained herein and its suitability to the Client's particular circumstances. Accordingly, Helimax does not assume any responsibility whatsoever for any damages or other liability (including any consequential damages) arising from or related to the application, by the Client, of the information, results, findings or analysis contained in this report.

DEFINITIONS AND SYMBOLS

ALS AM CanWEA DME DND FM GHz GMCO RCMP	Assignment and Licensing System amplitude modulation Canadian Wind Energy Association Distance Measurement Equipment Department of National Defence frequency modulation gigahertz Government Mobile Communications Office Royal Canadian Mounted Police
kHz	kilohertz
km	kilometre
ILS	Instrument Landing System
m	metre
MHz	megahertz
MLS	Microwave Landing System
NDB	Non-directional Beacon
RABC	Radio Advisory Board of Canada
RCMP	Royal Canadian Mounted Police
TACAN	Tactical Air Navigation
VOR	VHF Omni-directional Range

TABLE OF CONTENTS

1 INTRODU	ICTION	1
2 INTERFE	RENCE MECHANISMS	2
3 INVENTO	RY OF RADIOCOMMUNICATION SYSTEMS	3
3.2 MULT 3.3 OVER 3.4 SATEI 3.5 LAND 3.6 CELLU 3.7 AERO 3.8 AIR D 3.9 WEAT	IPOINT DISTRIBUTION SYSTEMS -THE-AIR RECEPTION (RADIO AND TV BROADCASTING) LITE SYSTEMS MOBILE RADIO SYSTEMS JLAR TYPE NETWORK NAUTICAL RADIONAVIGATIONAL AIDS EFENCE, VESSEL TRAFFIC AND AIR TRAFFIC CONTROL RADAR SYSTEMS HER RADAR SYSTEMS	
4 IMPACT A	ASSESSMENT	7
5 CONCLU	SION	11
6 REFEREN	NCES	13
APPENDIX A	3.2 MULTIPOINT DISTRIBUTION SYSTEMS 3.3 OVER-THE-AIR RECEPTION (RADIO AND TV BROADCASTING) 3.4 SATELLITE SYSTEMS 3.5 LAND MOBILE RADIO SYSTEMS 3.6 CELLULAR TYPE NETWORK 3.7 AERONAUTICAL RADIONAVIGATIONAL AIDS 3.8 AIR DEFENCE, VESSEL TRAFFIC AND AIR TRAFFIC CONTROL RADAR SYSTEMS 3.9 WEATHER RADAR SYSTEMS 3.10 SEISMOACOUSTIC SYSTEMS 3.10 SEISMOACOUSTIC SYSTEMS IMPACT ASSESSMENT	
APPENDIX B	SYSTEM INVENTORY	16
APPENDIX C	RADIOCOMMUNICATION SYSTEMS – REGIONAL MAP	18
APPENDIX D	RADIOCOMMUNICATION SYSTEMS – PROJECT AREA MAP	19
APPENDIX E	TV BROADCASTING CONSULTATION ZONE	

LIST OF TABLES

Table 4-1: Radiocommunication, Radar and Seismoacoustic Systems Impact Assessment	8
Table A-1: Wind Turbine Coordinates – St. Joseph Wind Farm	14
Table B-1: Low Capacity (LC) Links Transecting Project Area	16
Table B-2: Microwave Links Transecting Project Area	16
Table B-3: Satellite System (Earth Station in the Meteorological Satellite Service) with Consultation Zo Overlapping with Turbine Positions	
Table B-4: Land Mobile and Fixed Radio Systems with Consultation Zones Overlapping Project Layout	16
Table B-5: Cellular Type Network Systems with Consultation Zones Overlapping with Turbine Positions	17

1 INTRODUCTION

It is generally recognized that wind turbine generators (WTG), like other large structures, can disrupt the propagation of electromagnetic signals and thereby interfere with the proper functioning of radiocommunication systems. In this context, BowArk Energy Ltd. ("Client") – which is currently developing a wind farm on behalf of *St. Joseph Wind Farm Inc.*, near St. Joseph, Manitoba (the "Project") – has contracted Helimax Energy Inc. ("Helimax") to evaluate the impact of the the Project on radiocommunication systems present in the region.

Section 2 of this report summarizes the interference mechanisms associated with the presence of wind turbines. An inventory of the radiocommunication, radar and seismoacoustic systems which could potentially be disturbed in the vicinity of the wind farm is presented in Section 3. This system inventory is consistent with the requirements of the document *"Technical Information and Guidelines on the Assessment of the Potential Impact of Wind Turbines on Radiocommunication, Radar and Seismoacoustic Systems"* (Radio Advisory Board of Canada and Canadian Wind Energy Association, 2007: RABC and CanWEA) ("RABC/CanWEA Guidelines") [1]. Though not legally binding, this publication does contain a set of guidelines to help wind energy promoters coordinate with communications system operators in Canada. Additionally, the document defines consultation zones for several systems where further investigation is recommended to ensure a trouble-free coexistence of infrastructure.

Section 4 of this report examines the presence or absence of radiocommunication systems within these proposed consultation zones. When such systems are identified, the anticipated impact of the wind project thereon is described and, if possible and appropriate, potential mitigation measures or recommendations for further investigation are proposed.

2 INTERFERENCE MECHANISMS

Wind turbines can disrupt the functioning of radiocommunication systems by interfering with the propagation of electromagnetic waves. Although a wind turbine does not itself emit electromagnetic waves, its very presence can cause interference by disrupting the waves traveling between an emitter and a receptor. The waves are modified by different physical mechanisms such as reflection, dispersion and diffraction.

Interference can manifest itself in various ways, mainly by creating a shadow zone where the signal is weak or by generating a parasite signal by reflection, thus interfering with the direct signal.

Shadow interference occurs behind an obstacle, i.e. on the side opposite that of the emitter position. By disturbing the propagation of electromagnetic signals, the wind turbine may deprive a certain zone located behind it of part or of the entire signal, thus modifying the coverage and range of the signal whose level may drop below the threshold of the receptor's sensitivity.

Reflection interference occurs when the wind turbine structure reflects towards the receptor part of the signal that it receives from the emitter, creating a parasite signal which interferes with the direct signal. At the receptor location, the parasite signal is characterized by its amplitude and delay with respect to the signal having arrived via a direct path. Having been reflected by various obstacles, the receptor can thus receive the same signal multiple times, though spread over a period of time. This type of interference, referred to as "multiple path distortion", increases the noise perceived by the receptor, and can thereby compromise its operation. Moreover, because of the constantly rotating blades, the reflected signal can be modulated in amplitude, frequency and/or phase.

Wind turbine-caused interference is difficult to predict with certainty. Generally speaking, modeling electromagnetic wave propagation and interference mechanisms is a complex task given the dimensions of the problem with respect to the wavelength in cause. The level of interference depends on several factors related to the emitter, the receptor, the wind turbine and the propagation environment, including:

- Relative positions of emitter, receptor and wind turbines;
- Transmit power (strength of emitted signal);
- Radiating patterns of the antennas used;
- Frequency and modulation of signal;
- Information transfer rate and bandwidth of the system;
- Noise sensitivity of receptor system;
- Site topography and ground cover;
- Meteorological conditions;
- Size and shape of wind turbines;
- Number and layout of wind turbines;
- Material composing the wind turbine;
- Orientation of blades and rotor;
- Rotor rotation speed.

3 INVENTORY OF RADIOCOMMUNICATION SYSTEMS

The present section describes the main types of telecommunication, radar and seismoacoustic systems, and inventories those which are present in the area under study. In Canada, Industry Canada is responsible for attributing frequencies and managing the electromagnetic spectrum. The said agency's Assignment and Licensing System (ALS) database and the Technical and Administrative Frequency List (TAFL) were consulted to identify various types of registered radiocommunication and radar systems. The Canadian National Seismograph Network (CNSN) webpage was consulted to identify the seismoacoustic systems. It should be noted that Helimax assumes no responsibility for missing or erroneous data retrieved.

Additionally, as per the recommendations of the RABC/CanWEA Guidelines, the following agencies have been contacted by memo and were sent the coordinates of the Project:

- Department of National Defence (DND);
- Royal Canadian Mounted Police (RCMP);
- Canadian Coast Guard (CCG).

A "Land Use Submission Form" should also be sent to NAV CANADA once a final project layout is prepared.

This systems inventory is consistent with the recommendations of the RABC/CanWEA Guidelines [1]. Though not legally binding, the publication does contain a set of guidelines to help wind energy developers coordinate with communications system operators in Canada. Additionally, the document defines consultation zones for several systems where further investigation is recommended to ensure a trouble-free coexistence of infrastructure.

The following types of systems are described in the subsequent sections as part of the evaluation of potential impacts:

- Point-to-Point Systems;
- Multipoint Distribution Systems;
- Over-the-Air Reception (Radio and TV Broadcasting);
- Satellite Systems;
- Land Mobile Radio Systems;
- Cellular Type Network;
- Aeronautical Radionavigational Aids;
- Air Defence, Vessel Traffic and Air Traffic Control Radar Systems;
- Weather Radar Systems;
- Seismoacoustic Systems.

The wind turbines coordinates of the Project are presented in Appendix A and the inventoried systems in the vicinity are presented in Appendix B, and illustrated in Appendix C and Appendix D.

3.1 Point-to-Point Systems

Point-to-point links are used to relay information from one tower to another without having to resort to coaxial cables, fibre optics or satellite. In TV broadcasting, point-to-point links are used to link a production studio with a local transmitter antenna. In cellular telecommunications, they serve to link the cellular base station to relay centres.

As recommended by the RABC/CanWEA Guidelines [1], a consultation zone of width L_c was established and mapped for the different links. As shown in the equation below, the size of the buffer zone is a function of the operating frequency (F) and the distance (D) covered by the link (B being the length of a blade). It is based on taking three times the maximum width of the 1st Fresnel zone.

$$L_{c(m)} = 52 \left(\frac{D_{(km)}}{F_{(GHz)}}\right)^{1/2} + 2B$$

Additionally, 1-km radius consultation zones have been set (as per the RABC/CanWEA Guidelines) for each tower position.

The paths of two low capacity links and three microwave links operating at public microwave frequencies transect the planned wind farm Project area. Low capacity links are illustrated for information purposes only, but are not considered exclusion zones per se.

Appropriate authorities have been contacted to identify potential microwave links, operating at protected frequencies, which might transect the wind farm project area (see Section 4).

3.2 Multipoint Distribution Systems

The multipoint distribution system (MDS) is used for television broadcasting and Internet services. It allows companies to offer service in rural regions where it would be too onerous to install conventional cables. This system operates in the microwave frequency band. To receive these services, the user must be equipped with an outside antenna and subscribe to a service provider. For television broadcasting, the service in Canada is known by the name "multipoint distribution television" (MDS-TV). Service providers using frequency bands under licence are listed in the Industry Canada database, while those offering wireless Internet services use unlicensed frequency bands and are not listed in this public database.

The only licensed MDS provider in the area is Craig Wireless International Inc. The nearest antenna is located approximately 100 km from the wind farm. There are potential receivers in the Project area. Helimax considers each residence to be a potential subscriber to an MDS service (wireless television and Internet). In the context of this study, the MDS transmitter antennas of Craig Wireless International are far enough away such that no service is offered in the projected wind farm area. This information was confirmed via direct communication with Craig Wireless International.

3.3 Over-the-Air Reception (Radio and TV Broadcasting)

The RABC/CanWEA Guidelines recommend 1-km radius consultation zones around radio and television broadcasting antennas. In addition, for TV broadcasting, the RABC/CanWEA Guidelines establish a consultation zone around the wind farm. The document recommends further investigation when receivers are within the consultation zone defined by:

$$R = 0.051 \times B \times \sqrt{T}$$

where:

- R: radius of consultation zone [km] from geographical centre of proposed wind farm
- B: length of wind turbine blades [m]
- T: number of turbines in wind farm

3.4 Satellite Systems

There are potential Direct Broadcast Satellite (DBS) receivers (home satellite dishes) in the Project area. This study considers each residence to be a potential subscriber to satellite TV.

Additionally, one registered earth station in the meteorological-satellite service is located in the RABC/CanWEA recommended consultation zone.

3.5 Land Mobile Radio Systems

A multitude of systems of this type are deployed to facilitate the communication of diverse parties covering vast territories. These systems operate by means of networks with fixed stations in liaison, mobile stations in liaison via a fixed repeater, or any arrangement dictated by a specific application. The RABC/CanWEA Guidelines recommend that land mobile radio towers within 1 km of a wind turbine be identified.

3.6 Cellular Type Network

Land-based cellular telephony requires the service provider to deploy a radiocommunication network wherein the entire coverage area is divided into a number of cells. In the centre of each cell is a base station which ensures communication with each mobile station (the cellular telephone of the user). Base stations are in turn linked to control stations and relay stations (switching stations) by microwave hops (or other means) in order to establish communication. The present inventory focuses on the base stations, whereas the inventory of the microwave links is discussed in Section 3.1. The RABC/CanWEA Guidelines recommend that cellular base stations within 1 km of a wind turbine be identified.

3.7 Aeronautical Radionavigational Aids

A number of systems are used in aeronautics for controlling and directing air traffic, including:

- Distance Measurement Equipment (DME);
- Instrument Landing System (ILS);
- Microwave Landing System (MLS);
- Non-directional Beacon (NDB);
- Tactical Air Navigation (TACAN);
- VHF Omni-directional Range (VOR).

The majority of these systems are located along the periphery of airports, though some may also be scattered along aviation routes. Most of these systems are registered to NAV CANADA, a private society providing air traffic control services, radio navigation information systems and airport counselling.

The RABC/CanWEA Guidelines do not stipulate any size for the consultation zone which should be used. However, these systems are protected as defined in a Transport Canada document [2]. Air Traffic Control Radar Systems are discussed in the following section. Helimax considers that a consultation zone of 25 km is necessary around VOR/DME/TACAN and 10 km around the other systems.

3.8 Air Defence, Vessel Traffic and Air Traffic Control Radar Systems

The RABC/CanWEA Guidelines require all air defence radars within 100 km and all vessel traffic radars and air traffic control radars within 60 km of a wind energy project to be identified.

No such radar system was inventoried within the RABC/CanWEA Guidelines recommended consultation zone.

3.9 Weather Radar Systems

Weather radars are used to evaluate the probability of precipitation and to detect and forecast extreme weather events. Environment Canada weather radars have a range of approximately 250 km in normal mode and 125 km in Doppler mode. The Environment Canada radar network comprises 31 radars across Canada in order to cover inhabited areas. The RABC/CanWEA Guidelines recommend a consultation zone of a radius of 80 km.

No Environment Canada weather radar has been identified within the said consultation zone.

3.10 Seismoacoustic Systems

The operation of seismological monitoring systems is not based on the use of electromagnetic waves, but rather on the measurement of seismoacoustic waves, which are mechanical waves. The RABC/CanWEA Guidelines recommend that Natural Resources Canada be consulted if a wind energy project is located within 50 km of a monitoring array or 10 km from a "single monitoring station".

According to the Canadian National Seismograph Network (CNSN) Station Book (available online by NRCan) which provides the locations of such systems, no seismoacoutic stations are found within these consultation zones. The nearest station (code: ULM) is approximately 180 km from the Project.

4 IMPACT ASSESSMENT

Table 4-1 below summarizes the potential impact of the Project on the above-mentioned communication systems identified in the vicinity. Turbines located within the proposed consultation zones are identified. When appropriate, mitigation measures or further analysis are proposed.

As previously mentioned, a certain number of agencies must be contacted in order to verify the presence of protected systems in the vicinity of a project area. In this context, the following agencies were contacted:

- Department of National Defence (DND);
- Royal Canadian Mounted Police (RCMP);
- Canadian Coast Guard (CCG).

The RCMP and the DND have responded to Helimax's notification and do not foresee any detrimental effects to their respective radio communication systems. At the time of this report, the CCG had yet to reply to Helimax's enquiry.

System Type	Recommended Consultation Zone around System	Overlap with Consultation Zones	Comments	Effect Assessment		
Point-to-Point	1 km from towers	No (microwave links)	Microwave links and their buffers were kept free of wind turbines in order to avoid interference. These were taken into account in the Project layout.	No effect is anticipated since microwave links		
Systems	Buffer around link	Yes (low capacity links)	Since low capacity links often do not require a direct line of sight to operate, they would not be sensitive to the presence of wind turbines.	and their buffers are avoided.		
Multipoint Distribution Systems	1 km from towers	No	Though no turbine is located near an emitter, interference might affect signal quality at certain receptor locations, especially if the wind turbine is located between the emitter and the receiver.	No effect is anticipated on registered MDS systems		
	1 km from towers	No turbine within 1 km of towers				
Over-the-Air Television Broadcasting Reception	Calculated radius around wind farm (this case: 27 km)	Approximately 2180 buildings with potential presence of TV receptors within consultation zone defined around Project area	Buildings need to be validated for potential presence of TV receptors	Though no turbine is located near an analogue or digital television emitter, interference might affect signal quality at certain receptor locations [3].		
Over-the-Air AM/FM Radio Broadcasting Reception		-	Although no emitter is located near the site, interference might affect signal quality at certain receptor locations. The reception of AM and FM radiobroadcast would be only affected when the receiver is located in close proximity of a metallic structure, such as a turbine, i.e. a few tens of metres [3].			
				The anticipated effect is considered minimal.		

Table 4-1: Radiocommunication, Radar and Seismoacoustic Systems Impact Assessment

		Overlap with Consultation	Comments	Effect Assessment
	Zone around System	Zones		
Satellite Systems	Conical shape depending on satellite and receptor antenna location	Yes	At the Project's latitude, a satellite dish should have an elevation angle of between 25° and 40° with respect to the ground, pointing to a geostationary satellite orbiting the Earth. A wind turbine – or any structure – will intercept satellite signals if it stands in the line of sight between the satellite dish and a geostationary satellite. In order to avoid interference with a satellite signal, and assuming flat terrain conditions and the lowest angle with the ground (25°), a 127.5-m high turbine (including rotor) should be at least 300 m away from dwellings. Satellite dishes installed at participant and non-participant dwellings will not be affected by the Project since all turbines are at least 500 m away from residences. One registered earth station in the meteorological-satellite service (owned by Environment Canada; call signed XN231) is located 886 m and 552 m from WTGs #144 and 145, respectively.	No effect is anticipated on satellite dish signals. Interference might affect signal quality at Environment Canada earth station in the meteorological-satellite service. The impact should be evaluated with the system owner.
Land Mobile and Fixed Radio Systems	1 km	Yes	Turbine positions overlap with the consultation zone of 6 towers. The following WTGs are located within the 1-km consultation zone: - WTGs #45 and 66: nearest turbine is 809 m away from XNT383. - WTGs #40 and 41: Associated Protein (no call sign registered for this system); nearest turbine is 765 m away. - WTG #66: 949 m from XOB223	If a wind turbine is located too close to the antenna, the metallic tower of the turbine could modify the radiation pattern and thus the quality of the service. As a rule-of-thumb, Salema and Fernandes [4] establish an exclusion zone of between 50 m and 200 m around the antenna. This information should be reviewed with the system owner. The nearest turbine being located at 305 m, no effect to these systems is anticipated.

System Type	Recommended Consultation Zone around System	Overlap with Consultation Zones	Comments	Effect Assessment
			 WTGs #98, 99 and 100: nearest turbine is 305 m away from VFP938. WTG #148: 872 m from XKQ974 WTG #184: 972 m from CIH762 	Reception might be affected when the receiver is a few metres away from a wind turbine [3].
Cellular Type Network	1 km	Yes	 4 turbine positions overlap with the consultation zone of 2 Cellular Type Network towers. The following WTGs are located within the 1-km consultation zone: WTGs #21, 22 and 23 are respectively 368 m, 362 m and 765 m away from the Cellular System tower call signed 92901402 (owned by MTS Allstream Inc.). WTG #75 is 687 m away the Cellular System tower call signed 92901349 (owned by Rogers Wireless Inc.). 	Interference might affect signal quality at certain receptor locations. The impact should be evaluated with the system owners.
Aeronautical Radionavigational Aids (except radars)	25 km (TACAN, DME, VOR) 10 km (other)	No	-	No effect is anticipated.
Air Defence Radars, Vessel Traffic Radars and Air Traffic Control Radars.	100 km (air defence radars) 60 km (vessel traffic radars and air traffic control radars)	No	The distance between the radar and the nearest wind turbine is approximately 80 km.	No effect is anticipated.
Weather Radars	80 km	No	-	No effect is anticipated.
Seismoacoustic Systems	50 km (monitoring array) 10 km (single monitoring station)	No		No effect is anticipated.

5 CONCLUSION

In accordance with the RABC/CanWEA Guidelines [1] and in light of the consultation zones recommended therein, Helimax has conducted an inventory and an impact assessment of radiocommunication, radar and seismoacoustic systems present in the vicinity of the Project. Public databases were queried and notices to relevant agencies (potentially detaining information on protected systems) were sent to complete the inventory. Specifically, the impact of the wind farm on the following systems has been evaluated:

- Point-to-Point Systems;
- Multipoint Distribution Systems;
- Over-the-Air Reception (Radio and TV Broadcasting);
- Satellite Systems;
- Land Mobile Radio Systems;
- Cellular Type Network;
- Aeronautical Radionavigational Aids;
- Air Defence, Vessel Traffic and Air Traffic Control Radar Systems;
- Weather Radar Systems;
- Seismoacoustic Systems.

Protected Systems

The following three agencies were contacted in order to verify the presence of protected systems in the vicinity of the Project area:

- Department of National Defence (DND);
- Royal Canadian Mounted Police (RCMP);
- Canadian Coast Guard (CCG).

The RCMP and the DND have responded and do not foresee any detrimental effects to their respective radio communication systems. At the time of this report, the CCG had yet to reply to Helimax's enquiry.

Non-protected Systems – Publicly Available Information

For the majority of systems, no wind turbines are located within the respective consultation zones, with the following exceptions:

- Two low capacity links and three microwave links operating at public microwave frequencies transect the Project area. No effect is anticipated since microwave links and their buffers are avoided.
- Although no turbine is located near an analogue or digital television emitter, interference might affect signal quality at certain receptor locations. Approximately 2180 buildings with potential presence of TV receptors are located within the recommended consultation zone defined around the Project.
- Two turbine positions (WTGs #144 and 145) overlap with the RABC/CanWEA recommended consultation zone of one registered satellite system (earth station in the meteorological-satellite service) owned by Environment Canada. The nearest turbine is located 552 m from the system.
- WTGs #40, 41, 45, 66, 98, 99, 100, 148 and 184 are located within the 1-km radius consultation zone around land mobile and fixed stations (see Table 4-1). The nearest turbine being located 305 m from the system, no effect thereto is anticipated.

• Two cellular base stations are located within the Project area. As WTGs #21, 22, 23 and 75 overlap the consultation zone of two cellular base stations, interference might affect signal quality at certain receptor locations. The impact should be evaluated with the system owners.

As for next steps, it is recommended that the various system owners be notified of the presence of turbines located within the consultation zones recommended by the CanWEA/RABC Guidelines. The Land Use Submission Form should also be completed and sent to NAV CANADA.

6 **REFERENCES**

Publications

- [1] Radio Advisory Board of Canada (RABC) and Canadian Wind Energy Association (CanWEA), *Technical* Information on the Assessment of the Potential Impact of Wind Turbines on Radio Communication, Radar and Seismoacoustic Systems. April 2007.
- [2] Transport Canada, Planning and Operations Requirements division of Air Navigation Systems Requirements, *Aviation, Land Use in the Vicinity of Airports*, 8th edition, document TP 1247E, May 2005.
- [3] Sengupta, Ph.D. and Thomas B. A. Senior, Wind Turbine Technology Fundamental Concepts of Wind Turbine Engineering, Chapter 9, *Interference from Wind Turbine* by Dipak L., Ph.D. (1994), edited by David A. Spera, ASME, Press, New York, G.1998.
- [4] Carlos Salema and Carlos Fernandes, *Co-siting Criteria for Wind Turbine Generators and Transmitter Antennas*, 2nd Conference for Telecommunications. Sesimbra, Portugal, April 1999.

Internet Sources

Industry Canada's Assignment and Licensing System (ALS) database, April 2008 http://sd.ic.gc.ca/engdoc/main.jsp

Industry Canada Database – Technical and Administrative Frequency List, April 2008 http://spectrum.ic.gc.ca/tafl/tafindxe.html

Natural Resources Canada – Canadian National Seismograph Network (CNSN), April 2008 http://earthquakescanada.nrcan.gc.ca/stnsdata/cnsn/stn_book/index_e.php

Personal Communication

Alex Beckstead, Radio Spectrum Engineer Mobile Communication Services, RCMP. Correspondence in December 2007 and January 2008.

Jim Hawkes, Engineering/Airfield Siting/Wind Turbines/Crystals ATESS/CCISF/EES, Department of National Defence. Correspondence in December 2007.

Mario Lavoie, Spectrum Engineer, Department of National Defence. Correspondence in December 2007.

APPENDIX A WIND TURBINE COORDINATES

Coordinates of the turbines of the Project¹ are presented in the table below. Coordinates are given in UTM-14 NAD83 format.

Table A-1: wind Turbine Coordinates – St. Joseph wind Parm							
WTG No	Easting [m]	Northing [m]	WTG No	Easting [m]	Northing [m]		
1	617427	5451541	101	621504	5442190		
2	617809	5451548	102	621934	5442755		
3	618210	5451567	103	622532	5442753		
4	618584	5451581	104	622946	5442746		
5	619072	5451537	105	613904	5440343		
6	619432	5451560	106	614394	5440355		
7	619799	5451583	107	614823	5440359		
8	618158	5449734	108	615281	5440366		
9	618609	5449745	109	616061	5440372		
10	619051	5449774	110	616547	5440382		
11	619488	5449780	111	617053	5440392		
12	619913	5449738	112	617631	5440519		
13	620410	5449815	113	618016	5440525		
14	620804	5449833	114	618420	5440539		
15	621192	5449835	115	618835	5440550		
16	622162	5449062	116	619276	5440541		
17	607483	5448065	117	619678	5440551		
18	609190	5448106	118	620096	5440554		
19	609547	5448103	119	620502	5440557		
20	609906	5448104	120	620930	5440551		
21	610934	5448111	121	621329	5440553		
22	611402	5448129	122	621738	5440567		
23	611882	5448135	123	613946	5438660		
24	612396	5448085	124	614428	5438682		
25	612790	5448123	125	614815	5438684		
26	613248	5448134	126	615257	5438706		
27	613610	5448140	127	615625	5438716		
28	614111	5448147	128	616133	5438717		
29	614496	5448149	129	616739	5438407		
30	615880	5448212	130	617130	5438418		
31	616258	5448212	131	617653	5438350		
32	616673	5448228	132	617980	5438356		
33	618033	5448290	133	618346	5438362		
34	618468	5448292	134	619793	5437920		
35	619007	5448308	135	622538	5438535		
36	619428	5448316	136	622913	5438537		
37	619869	5448320	137	623296	5438541		
38	620260	5448318	138	623655	5438551		
39	620653	5448328	139	614428	5437180		
40	621911	5448241	140	614829	5437186		
41	622347	5448235	141	615242	5437184		
42	607561	5446907	142	615638	5437194		
43	607922	5446907	143	622546	5436811		
44	607571	5445678	144	622906	5436815		
45	608070	5445680	145	623270	5436825		
46	609273	5445741	146	625038	5437402		

Table A-1: Wind Turbine Coordinates – St. Joseph Wind Farm

¹ L20-277STJO(ALL)-20080520-SD.WLX

WTG No	Easting [m]	Northing [m]	WTG No	Easting [m]	Northing [m]
47	609577	5445742	147	625416	5437402
48	610054	5445904	148	619421	5436253
49	610411	5445905	149	619805	5436263
50	613303	5446516	150	620176	5436268
51	613701	5446520	151	624268	5436128
52	614183	5446525	152	624651	5436119
53	614552	5446528	153	625072	5436243
54	614975	5446533	154	614025	5435078
55	616152	5446015	155	614381	5435453
56	616582	5446023	156	614743	5435451
57	616938	5446026	157	615117	5435520
58	617808	5446111	158	615454	5435520
59	618524	5446150	159	626929	5435256
60	619034	5446474	160	616727	5434828
61	619422	5446482	161	617274	5434845
62	619881	5446398	162	617664	5435517
63	621215	5446149	163	618002	5435523
64	621633	5446146	164	618375	5435525
65	621992	5446149	165	613481	5433894
66	608370	5444074	166	613865	5433904
67	609331	5444094	167	614367	5433891
68	609700	5444095	168	614958	5433902
69	610123	5444102	169	615464	5433807
70	610533	5444254	170	616007	5434025
71	610961	5445170	171	616414	5434033
72	611367	5445176	172	614558	5432173
73	611760	5445201	173	614943	5432175
74	612118	5445188	174	615335	5432174
75	614585	5444904	175	615752	5432179
76	615011	5444910	176	616207	5432205
77	615418	5444906	177	616626	5432211
78	619089	5445022	178	617008	5432221
79	619500	5445029	179	620973	5434062
80	619950	5445041	180	621387	5434068
81	620375	5445053	181	621821	5434076
82	620803	5445066	182	622231	5434074
83	621200	5445073	183	622859	5434090
84	621597	5445083	184	624326	5434118
85	614515	5443129	185	624718	5434118
86	614960	5443123	186	625105	5434130
87	611474	5442487	187	625493	5434137
88	612182	5442210	188	626040	5434156
89	613026 613413	5441941 5441948	189	626391 626814	5434150 5434160
90 91	613413		190 191	627211	5434160
91	616144	5441952 5442027	191	621496	5432402
92	616605	5442027	192	621883	5432402
93	617841	5442033	193	622260	5432408
94 95	618236	5442083	194	622756	5432345
95 96	618655	5442089	195	623175	5432338
90	619259	5442089	190	624284	5432382
97	619613	5442113	197	624689	5432390
99	619990	5442113	198	625110	5432390
100	621131	5442120	200	625522	5432394
100	021131	J442170	200	020022	J432390

APPENDIX B SYSTEM INVENTORY

Licensee Name	Frequency [MHz]	Station Calling Sign	Link Station Calling Sign
Manitoba Hydro	170	VAK385 Lettelier	XOM51 Rosenfeld
Golden West Broadcasting	451	CJY491 Morris	CJY490 Altona

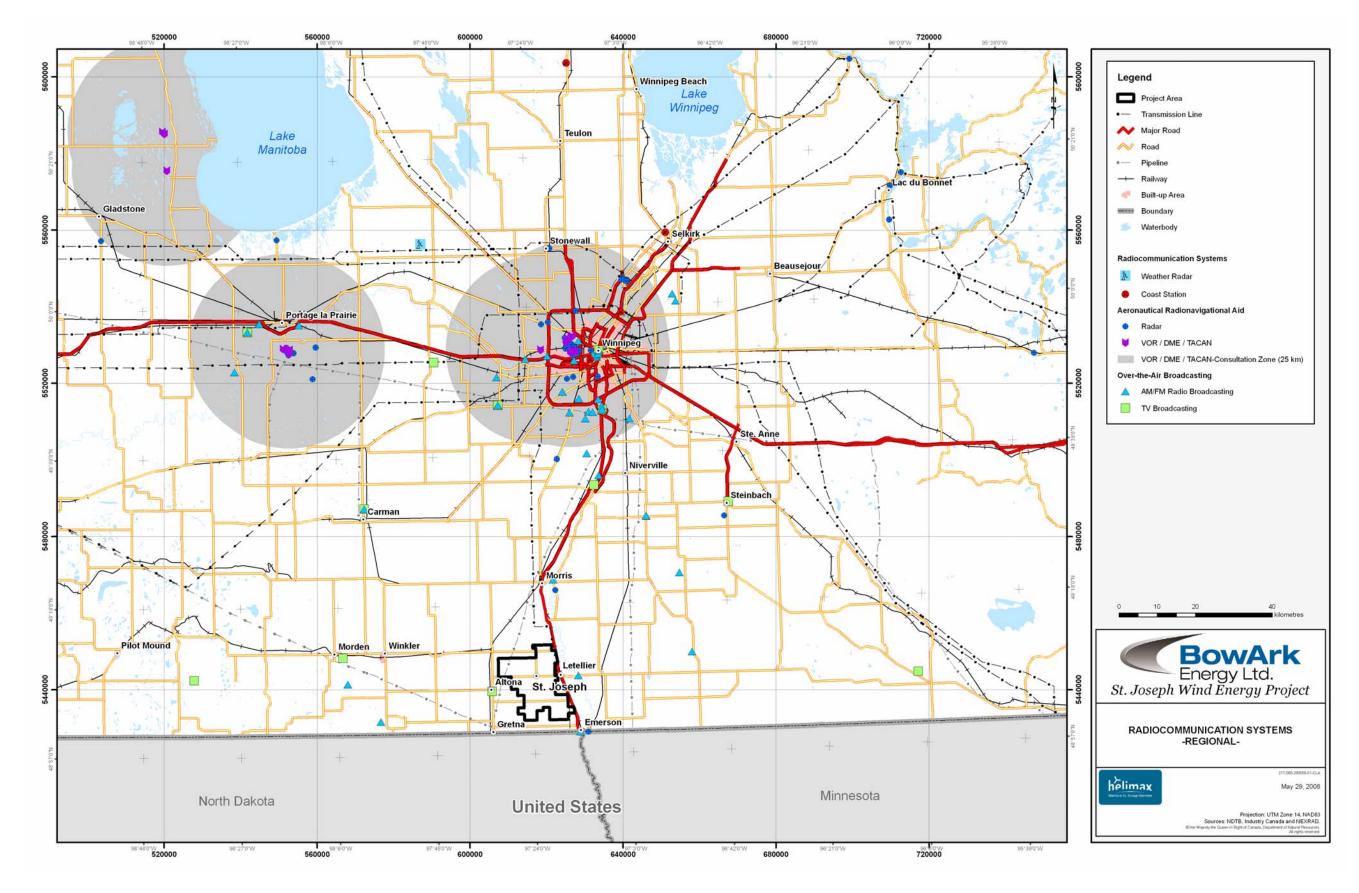
Table B-1: Low Capacity (LC) Links Transecting Project Area

Table B-2: Microwave Links Transecting Project Area

Licensee Name	Frequency [MHz]	Station Calling Sign	Link Station Calling Sign
Rogers Wireless	5.9 GHz	CFB318 Sommerfeld	VAM463 Morden
Rogers Wireless	5.9 GHz	VOO520 Morris	CFB318 Sommerfeld
Golden West Broadcasting	934.8 MHz	CJY491 Morris	CJY490 Altona

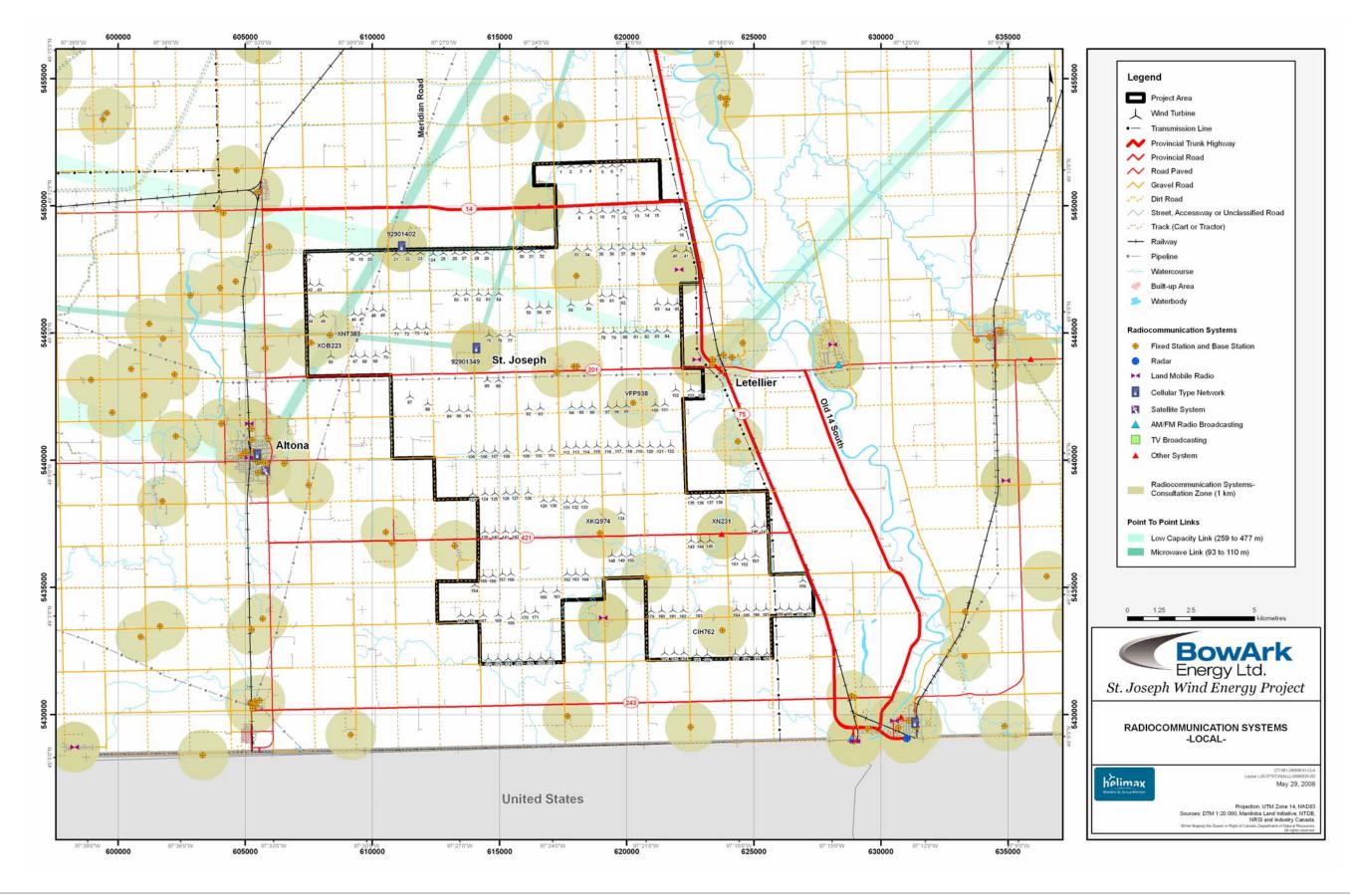
Table B-3: Satellite System (Earth Station in the Meteorological Satellite Service) with Consultation Zone Overlapping with Turbine Positions

Tx Frequency [MHz]	Latitude [ddmmss] (NAD83)	Longitude [ddmmss] (NAD83)	Station Location	Licensee Name	ITU	Call Sign	Azimut	Distance [m]
401	490428	971820	Riviere aux Marais NR Chris	Environment Canada	ТМ	XN231		

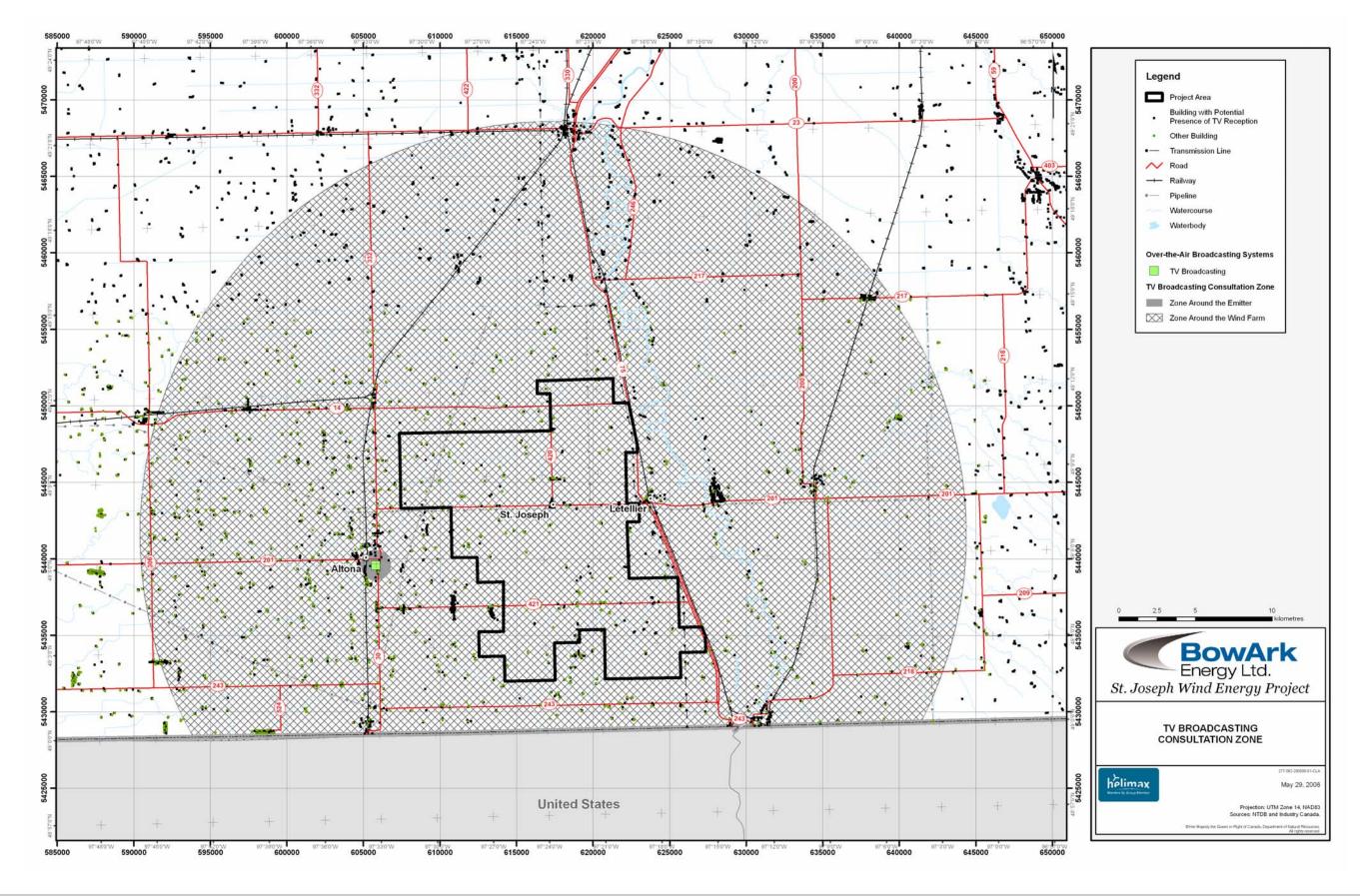

Table B-4: Land Mobile and Fixed Radio Systems with Consultation Zones Overlapping Project Layout

Tx Frequency [MHz]	Latitude [ddmmss] (NAD83)	Longitude [ddmmss] (NAD83)	Station Location	Licensee Name	ITU	Call Sign	Azimut	Distance [m]
457.0125	490851	973052	Altona, Manitoba- NE 21 2 2 W	Henry G. Stoesz	FB	XNT383	279.43	9.67
467.8375	491005	971931	Ste Agath, MB	Associated Protein	ML			
154.445	490842	973129	Rosenfeld, Manitoba-NW	Jake Heppner	FB	XOB223		
170.31	490717	972106	Lettelier, MB SE14-2-1W	Guy Damphousse	FB	VFP938	119.95	2.66
462.4125	490432	972216	Halbstadt, MB	Scott and Kim Frie	FB	XKQ974		
453.025	490225	971823	Letellier, MB - NE18-1-2E	Ian Forrester OBO Forrester Farms	FB	CIH762	151.53	11.77

Тх	Latitude	Longitude	Station	Licensee Name	ITU	Call Sign	Azimut	Distance
Frequency [MHz]	[ddmmss] (NAD83)	[ddmmss] (NAD83)	Location					[m]
869	491042	972829	Rosenfeld	MTS Allstream Inc. Attn: Chief Tech. Info. Officer	FB	92901402	307.01	8.32
1930	490831	972608	W0633-RM OF Montcalm MB NW Quarter	Rogers Wireless Inc.	FB	92901349	284.17	3.92


Table B-5: Cellular Type Network Systems with Consultation Zones Overlapping with Turbine Positions

APPENDIX C RADIOCOMMUNICATION SYSTEMS – REGIONAL MAP


Radiocommunication, Radar and Seismoacoustic Systems Impact Assessment – St. Joseph Wind Energy Project, Manitoba Private and Confidential

APPENDIX D RADIOCOMMUNICATION SYSTEMS – PROJECT AREA MAP

Radiocommunication, Radar and Seismoacoustic Systems Impact Assessment – St. Joseph Wind Energy Project, Manitoba Private and Confidential

APPENDIX E TV BROADCASTING CONSULTATION ZONE

Radiocommunication, Radar and Seismoacoustic Systems Impact Assessment – St. Joseph Wind Energy Project, Manitoba Private and Confidential