

Manitoba Hydro	Coordinate System: UTM Zone 14N NAD83 Data Source: MB Hydro, ProvMB, NRCAN Date Created: July 23, 2014 Version: Draft 0 125 250 500 L I I Metres 1:10,000	Land Base	Points of Access* Proposed Access Point Major Stream Crossing Abandoned Rail Crossing Rail Crossing Transmission Line Crossing Proposed Access Route 'Labels correspond to BPIII Access Management Database 	ESS Features Water Water Crossing Water Groundwater	Consti E Draft: For Disc
-------------------	---	-----------	---	---	--------------------------------

Bipole III Transmission Project ruction Environmental Protection Plan Construction Section S2 Environmentally Sensitive Site Locations

cussion Purposes Only

Sec-Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone	Channel Width	Wet Width	Fish Habitat Class	Habitat Sensitivity
S2-S09	S2-Aqua- 109	Parker Drain	611290	5495282	14N	N/A	4m	Low	Marginal
S2-S09	S2-Aqua- 110	Unnamed Drain	611293	5495151	14N	N/A	N/A	None	None

Potential Effects:

Habitat loss and contamination from structure foundations & installations; increased erosion & sedimentation of streams; Damage to stream banks; Loss of riparian vegetation; Fish habitat disturbances and impeded fish movement; Rutting of floodplain

Specific Mitigation:

- Carry out construction activities on frozen ground to minimize surface damage, rutting and erosion
- Use existing trails, roads or cut lines whenever possible as access routes
- Identify and flag buffer areas prior to start of work
- Riparian Buffers shall be a minimum of 30m and increase in size based on slope of land entering waterway. Within these buffers shrub and herbaceous understory veg will be maintained along with trees that do not violate MH Veg Clearance Requirements.
- 7m no machine zone will restrict equipment in close proximity to the waterbody except at the trail crossing.
- Adhere to Department of Fisheries and Oceans (DFO) Operational Statements for Timing Windows, Temporary Stream Crossings, Ice Bridges and Snow Fills, and Overhead Line Construction

ESS Group: Groundwater

Sec-Seg ID	ESS ID	ESS Name	Location	Start	Stop	UTM Zone	Distance
S2-S08	S2-Aqua-200	Saline artesian areas	Site: 5 to 6	E-605565 N-5496688	E-611257 N-5496792	14N	5693m
S2-S09	S2-Aqua-200	Saline artesian areas	Site: 9 to 10	E-611257 N-5496792	E-611391 N-5490218	14N	6574m

Potential Effects:

Increase in salinity of soils and surface water in case of potential groundwater discharge to the surface; wetting the surficial environment (ground saturation); effect on local vegetation.

Specific Mitigation:

- Qualified driller with appropriate experience will be contracted to work in areas affected by artesian conditions.
- Emergency response plans for sealing/grouting and pumping will be implemented as required.
- Follow up inspections of installed foundations will be undertaken to monitor for excess moisture.

Version: DRAFT

Transmission Line Crossing

Proposed Access Route

*Labels correspond to BPIII Access Management Database

1

Metres

1:10,000

First Nation

Provincial Forest

Mining

Draft	For	Disc
Dian.	1 01	DISCI

Construction Section S2 Environmentally Sensitive Site Locations

cussion Purposes Only

Sec-Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone	Channel Width	Wet Width	Fish Habitat Class	Habitat Sensitivity
S2-S10	S2-Aqua- 111	Garber Drain	611387	5490553	14N	N/A	7m	Low	Marginal
S2-S10	S2-Aqua- 112	Garber Drain	611558	5490222	14N	N/A	4m	Low	Marginal

Potential Effects:

Habitat loss and contamination from structure foundations & installations; increased erosion & sedimentation of streams; Damage to stream banks; Loss of riparian vegetation; Fish habitat disturbances and impeded fish movement; Rutting of floodplain

Specific Mitigation:

- Carry out construction activities on frozen ground to minimize surface damage, rutting and erosion
- Use existing trails, roads or cut lines whenever possible as access routes
- Identify and flag buffer areas prior to start of work
- Riparian Buffers shall be a minimum of 30m and increase in size based on slope of land entering waterway. Within these buffers shrub and herbaceous understory veg will be maintained along with trees that do not violate MH Veg Clearance Requirements.
- 7m no machine zone will restrict equipment in close proximity to the waterbody except at the trail crossing.
- Adhere to Department of Fisheries and Oceans (DFO) Operational Statements for Timing Windows, Temporary Stream Crossings, Ice Bridges and Snow Fills, and Overhead Line Construction

ESS Group: Groundwater

Sec-Seg ID	ESS ID	ESS Name	Location	Start	Stop	UTM Zone	Distance
S2-S09	S2-Aqua-200	Saline artesian areas	Site: 9 to 10	E-611257 N-5496792	E-611391 N-5490218	14N	6574m
S2-S10	S2-Aqua-200	Saline artesian areas	Site: 11 to 12	E-611391 N-5490218	E-619944 N-5490397	14N	8554m

Potential Effects:

Increase in salinity of soils and surface water in case of potential groundwater discharge to the surface; wetting the surficial environment (ground saturation); effect on local vegetation.

Specific Mitigation:

- Qualified driller with appropriate experience will be contracted to work in areas affected by artesian conditions.
- Emergency response plans for sealing/grouting and pumping will be implemented as required.
- Follow up inspections of installed foundations will be undertaken to monitor for excess moisture.

Version: DRAFT

		MAP SHEET FULLY WITHIN THE	S2-AQUA-200 FEATURE	
or a		17 S2+Aqua-200		16
18	SW	SE	SW	
	NW	NE	NW	
NE				
NL				
CALLS 1				
	11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		WARTS AREA IN A A THE	
	and the plane and a second second	TWP007	A DECEMBER OF A	
7			- And	
				a finin
	A IN ALLER AND A			
And			SW	
	sw o 200			
SE				
NE 6	NW	NE 5	NW	4

Manitoba Hydro	Coordinate System: UTM Zone 14N NAD83 Data Source: MB Hydro, ProvMB, NRCAN Date Created: July 23, 2014 Version: Draft 0 125 250 500 Metres 1:10,000	Land Base Transmission Line Highway Major Road Local Road Railway (Operational) -+ Railway (Discontinued) First Nation Mining Provincial Forest Township/Range	Project Infrastructure ★ Angle Tower Locations ■ BPIII Final Preferred Route ● 66 m Right of Way ● Ground Electrode Line ● Proposed Converter Station	Points of Access* Proposed Access Point Major Stream Crossing Abandoned Rail Crossing Rail Crossing Transmission Line Crossing Proposed Access Route *Labels correspond to BPIII Access Management Database	ESS Features Water Coundwater	Constr E Draft: For Disc
-------------------	---	--	---	---	-------------------------------------	--------------------------------

Bipole III Transmission Project truction Environmental Protection Plan Construction Section S2 Environmentally Sensitive Site Locations

cussion Purposes Only

ESS Group: Groundwater

Sec-Seg ID	ESS ID	ESS Name	Location	Start	Stop	UTM Zone	Distance
S2-S10	S2-Aqua-200	Saline artesian areas	Site: 11 to 12	E-611391 N-5490218	E-619944 N-5490397	14N	8554m

Potential Effects:

Increase in salinity of soils and surface water in case of potential groundwater discharge to the surface; wetting the surficial environment (ground saturation); effect on local vegetation.

Specific Mitigation:

- Qualified driller with appropriate experience will be contracted to work in areas affected by artesian conditions.
- Emergency response plans for sealing/grouting and pumping will be implemented as required.
- Follow up inspections of installed foundations will be undertaken to monitor for excess moisture.

Version: DRAFT

Manitoba Hydro	Coordinate System: UTM Zone 14N NAD83 Data Source: MB Hydro, ProvMB, NRCAN Date Created: July 23, 2014 Version: Draft 0 125 250 500 Metres 1:10,000	Land Base ← Transmission Line Highway Major Road Local Road ← Railway (Operational) + Railway (Discontinued) First Nation Mining Provincial Forest 	Project Infrastructure ★ Angle Tower Locations ■ BPIII Final Preferred Route ■ 66 m Right of Way ■ Ground Electrode Line ■ Proposed Converter Station	Points of Access* Proposed Access Point Major Stream Crossing Abandoned Rail Crossing Rail Crossing Transmission Line Crossing Proposed Access Route 'Labels correspond to BPIII Access Management Database	ESS Features Water • Water Crossing Water Call Groundwater	Const Draft: For Dis
-------------------	---	---	---	---	--	-------------------------

Bipole III Transmission Project truction Environmental Protection Plan Construction Section S2 Environmentally Sensitive Site Locations

Sec-Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone	Channel Width	Wet Width	Fish Habitat Class	Habitat Sensitivity
S2-S10	S2-Aqua- 113	Unnamed Drain	616907	5490335	14N	N/A	3m	Low	Marginal
S2-S10	S2-Aqua- 114	Manness Drain	618051	5490359	14N	N/A	7m	Low	Marginal
S2-S10	S2-Aqua- 115	Roberts Drain	620518	5490417	14N	N/A	7m	Low	Marginal

Potential Effects:

Habitat loss and contamination from structure foundations & installations; increased erosion & sedimentation of streams; Damage to stream banks; Loss of riparian vegetation; Fish habitat disturbances and impeded fish movement; Rutting of floodplain

Specific Mitigation:

- Carry out construction activities on frozen ground to minimize surface damage, rutting and erosion
- Use existing trails, roads or cut lines whenever possible as access routes
- Identify and flag buffer areas prior to start of work
- Riparian Buffers shall be a minimum of 30m and increase in size based on slope of land entering waterway. Within these buffers shrub and herbaceous understory veg will be maintained along with trees that do not violate MH Veg Clearance Requirements.
- 7m no machine zone will restrict equipment in close proximity to the waterbody except at the trail crossing.
- Adhere to Department of Fisheries and Oceans (DFO) Operational Statements for Timing Windows, Temporary Stream Crossings, Ice Bridges and Snow Fills, and Overhead Line Construction

ESS Group: Groundwater

Sec-Seg ID	ESS ID	ESS Name	Location	Start	Stop	UTM Zone	Distance
S2-S10	S2-Aqua-200	Saline artesian areas	Site: 11 to 12	E-611391 N-5490218	E-619944 N-5490397	14N	8554m

Potential Effects:

Increase in salinity of soils and surface water in case of potential groundwater discharge to the surface; wetting the surficial environment (ground saturation); effect on local vegetation.

Specific Mitigation:

- Qualified driller with appropriate experience will be contracted to work in areas affected by artesian conditions.
- Emergency response plans for sealing/grouting and pumping will be implemented as required.
- Follow up inspections of installed foundations will be undertaken to monitor for excess moisture.

Version: DRAFT

12 12						
TWP RGE E1:	00077 30 1 M	s		SE		sv
NE		NW		NE	TV/P 007 R@E92 E1M	
13	SE	SW	18	SE		SW

Construction Section S2 Environmentally Sensitive Site Locations

Draft: For Discussion Purposes Only

Sec-Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone	Channel Width	Wet Width	Fish Habitat Class	Habitat Sensitivity
S2-S11	S2-Aqua- 116	Domain Drain	623839	5490470	14N	N/A	2m	Low	Marginal

Potential Effects:

Habitat loss and contamination from structure foundations & installations; increased erosion & sedimentation of streams; Damage to stream banks; Loss of riparian vegetation; Fish habitat disturbances and impeded fish movement; Rutting of floodplain

Specific Mitigation:

- Carry out construction activities on frozen ground to minimize surface damage, rutting and erosion
- Use existing trails, roads or cut lines whenever possible as access routes
- Identify and flag buffer areas prior to start of work
- Riparian Buffers shall be a minimum of 30m and increase in size based on slope of land entering waterway. Within these buffers shrub and herbaceous understory veg will be maintained along with trees that do not violate MH Veg Clearance Requirements.
- 7m no machine zone will restrict equipment in close proximity to the waterbody except at the trail crossing.
- Adhere to Department of Fisheries and Oceans (DFO) Operational Statements for Temporary Stream Crossings, Ice Bridges and Snow Fills, and Overhead Line Construction
- No instream work or fording from April 1 to June 30

Version: DRAFT

Manitoba Hydro	Coordinate System: UTM Zone 14N NAD83 Data Source: MB Hydro, ProvMB, NRCAN Date Created: July 23, 2014 Version: Draft 0 125 250 500 L I I I I I I Metres 1:10,000	Land Base Transmission Line Highway Major Road Local Road Railway (Operational) + Railway (Discontinued) First Nation Mining Provincial Forest Township/Range	Project Infrastructure ★ Angle Tower Locations ■ BPIII Final Preferred Route ■ 66 m Right of Way ■ Ground Electrode Line Proposed Converter Station	Points of Access* Proposed Access Point Major Stream Crossing Abandoned Rail Crossing Rail Crossing Transmission Line Crossing Proposed Access Route 'Labels correspond to BPIII Access Management Database	ESS Features Heritage Archaeological Water Water Crossing	Const Draft: For Di
-------------------	--	---	---	---	---	------------------------

Bipole III Transmission Project truction Environmental Protection Plan Construction Section S2 Environmentally Sensitive Site Locations

scussion Purposes Only

ESS Group: Archaeological

Sec-Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone
S2-S14	S2-Hert-100	Old creek bed east of current drain	628452	5490429	14N

Potential Effects:

Potential disturbance to heritage resources.

Specific Mitigation:

- Carry out construction activities on frozen or dry ground to minimize surface damage, rutting and erosion
- Identify and flag prior to start of work
- Conduct site investigation with Archaeologist post clearing and prior to construction
- Minimize surface disturbance around the site to the extent possible
- Inspect excavated materials or surface disturbance for heritage resources and report any finds to Environmental Inspector
- Implement additional mitigation from site investigation

ESS Group: Water Crossing

Sec- Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone	Channel Width	Wet Width	Fish Habitat Class	Habitat Sensitivity
S2-S14	S2-Aqua- 117	Unnamed Drain	624682	5490494	14N	N/A	N/A	None	None
S2-S14	S2-Aqua- 118	Unnamed Drain	626330	5490549	14N	N/A	N/A	Low	Marginal
S2-S14	S2-Aqua- 119	La Pointe Coulee	628394	5490443	14N	N/A	4m	Low	Marginal

Potential Effects:

Habitat loss and contamination from structure foundations & installations; increased erosion & sedimentation of streams; Damage to stream banks; Loss of riparian vegetation; Fish habitat disturbances and impeded fish movement; Rutting of floodplain

Specific Mitigation:

- Carry out construction activities on frozen ground to minimize surface damage, rutting and erosion
- Use existing trails, roads or cut lines whenever possible as access routes
- Identify and flag buffer areas prior to start of work
- Riparian Buffers shall be a minimum of 30m and increase in size based on slope of land entering waterway. Within these buffers shrub and herbaceous understory veg will be maintained along with trees that do not violate MH Veg Clearance Requirements.
- 7m no machine zone will restrict equipment in close proximity to the waterbody except at the trail crossing.
- Adhere to Department of Fisheries and Oceans (DFO) Operational Statements for Timing Windows, Temporary Stream Crossings, Ice Bridges and Snow Fills, and Overhead Line Construction

Version: DRAFT

Manitoba Hydro	Coordinate System: UTM Zone 14N NAD83 Data Source: MB Hydro, ProvMB, NRCAN Date Created: July 23, 2014 Version: Draft 0 125 250 500 Metres 1:10,000	Land Base Project Infrast	ructure Points of Access* er Locations Proposed Access Point Preferred Route Major Stream Crossing t of Way Abandoned Rail Crossing actrode Line Rail Crossing Station Transmission Line Crossing Proposed Access Route *Labels correspond to BPII Access Management Database Access Management Database	ESS Features Heritage Archaeological Cultural or Historic Water Water Crossing Wildlife Birds and Habitat Water Groundwater	Const Draft: For Disc

Bipole III Transmission Project ruction Environmental Protection Plan **Construction Section S2** Environmentally Sensitive Site Locations

cussion Purposes Only

ESS Group: Archaeological

Sec-Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone
S2-S15	S2-Hert-101	Potential Archaeological Site - Red River west shore	630003	5489915	14N
S2-S15	S2-Hert-102	Registered Archaeological Site	630019	5489897	14N
S2-S15	S2-Hert-103	Potential Archaeological Site - Red River east shore	630119	5489790	14N

Potential Effects:

Potential disturbance to heritage resources.

Specific Mitigation:

- Carry out construction activities on frozen or dry ground to minimize surface damage, rutting and erosion
- Identify and flag prior to start of work
- Conduct site investigation with Archaeologist post clearing and prior to construction
- Minimize surface disturbance around the site to the extent possible
- Inspect excavated materials or surface disturbance for heritage resources and report any finds to Environmental Inspector
- Implement additional mitigation from site investigation

ESS Group: Historic

Sec-Seg ID ESS ID		ESS Name	Easting	Northing	UTM Zone
S2-S15	S2-Hert-300	Heritage River (Red River)	630075	5489837	14N

Potential Effects:

Potential aesthetic concerns with presence to canoe route traffic; disruption from operational activities

Specific Mitigation:

- Carry out construction activities on frozen or dry ground to minimize surface damage, rutting and erosion
- Identify and flag prior to start of work
- Conduct site investigation with Archaeologist post clearing and prior to construction
- Minimize surface disturbance around the site to the extent possible
- Inspect excavated materials or surface disturbance for heritage resources and report any finds to Environmental Inspector
- Implement additional mitigation from site investigation

ESS Group: Water Crossing

Sec-Seg ID	ESS ID	ESS Name	Easting	Northing	UTM Zone	Channel Width	Wet Width	Fish Habitat Class	Habitat Sensitivity
S2-S15	S2-Aqua- 120	Red River	630071	5489841	14N	50m	N/A	High	Important

Potential Effects:

Habitat loss and contamination from structure foundations & installations; increased erosion & sedimentation of streams;

Damage to stream banks; Loss of riparian vegetation; Fish habitat disturbances and impeded fish movement; Rutting of floodplain

Specific Mitigation:

- Carry out construction activities on frozen ground to minimize surface damage, rutting and erosion Use existing trails, roads or cut lines whenever possible as access routes
- Identify and flag buffer areas prior to start of work
- Riparian Buffers shall be a minimum of 30m and increase in size based on slope of land entering waterway. Within these buffers shrub and herbaceous understory veg will be maintained along with trees that do not violate MH Veg Clearance Requirements.
- 7m no machine zone will restrict equipment in close proximity to the waterbody except at the trail crossing. • Adhere to Department of Fisheries and Oceans (DFO) Operational Statements for Temporary Stream Crossings, Ice
- Bridges and Snow Fills, and Overhead Line Construction
- No instream work or fording from September 15 to June 30

ESS Group: Birds and Habitat

Sec-Seg ID	ESS ID	ESS Name	Location	Start	Stop	UTM Zone	Distance
S2-S15	S2-Wild-100	Red River crossing	Site: L1 to L2	E-630036 N-5489875	E-630115 N-5489792	14N	113m

Potential Effects:

Higher risk of wire collision; risk of wire collision is localized to the right-of-way.

Specific Mitigation:

- Adhere to reduced risk timing windows for protection of birds (August 1- April 30)
- Maintain applicable setback during nesting and breeding timing window
- Conduct priority assessment for bird diverters and other measures prior to transmission line stringing
- Install bird diverters or other measures at high priority sites

ESS Group: Groundwater

Sec-Seg ID	ESS ID	ESS Name	Location	Start	Stop	UTM Zone	Distance
S2-S15	S2-Aqua-201	Saline artesian areas	Site: 13 to 14	E-632182 N-5489241	E-633123 N-5489008	14N	970m

Potential Effects:

Increase in salinity of soils and surface water in case of potential groundwater discharge to the surface; wetting the surficial environment (ground saturation); effect on local vegetation.

Specific Mitigation:

- Qualified driller with appropriate experience will be contracted to work in areas affected by artesian conditions.
- Emergency response plans for sealing/grouting and pumping will be implemented as required.
- Follow up inspections of installed foundations will be undertaken to monitor for excess moisture.

Version: DRAFT