

Soil Remediation and Verification Sampling Program 18 Main Street St. Eustache, Manitoba

> Business Development Bank of Canada Suite 200, 1655 Kenaston Boulevard Winnipeg, Manitoba R3P 2M4

> > Attention: Mr. Michael Selci

October 18, 2012

Pinchin File: 75695.002

Copyright © 2012 by Pinchin Environmental Ltd.

EXECUTIVE SUMMARY

Pinchin Environmental Ltd. ("Pinchin") was retained through an Authorization to Proceed signed by Mr. Michael Selci of Business Development Bank of Canada. ("Client") to conduct a soil remediation and verification sampling program at the property located at 18 Main Street, St. Eustache, Manitoba (hereafter referred to as the "Site").

The Site is developed with one single-storey residential dwelling ("Site Building A"), one singlestorey office building ("Site Building B"), two single-storey storage sheds ("Site Buildings C and G"), one single-storey garage ("Site Building D"), one single-storey aggregate storage building ("Site Building E") and one single-storey concrete batch plant building ("Site Building F") formerly occupied by R. Bergeron Ready-Mix Concrete Ltd., recently purchased by Tritec Concrete.

On May 16, 2012 Pinchin completed a Phase I ESA that identified hydrocarbon staining in the vicinity of the aboveground storage tanks ("ASTs") located on the south-central portion of the Site and hydrocarbon staining and oily water within a pit constructed with a pail within Site Building D. The result of the Phase I ESA was the recommendation that a Limited Soil Sampling Program be conducted.

The Limited Soil Sampling Program Report was completed by Pinchin on June 19, 2012. Six shallow boreholes were advanced to a maximum depth of 1.4 metres below ground surface ("mbgs"). Three boreholes located adjacent the ÀST pad had soil samples that were above the applicable Canadian Council of Ministers of the Environment ("CCME") guidelines for petroleum hydrocarbons ("PHC") in the F1 to F4 fraction ranges ("F1-F4").

At the Client's request, Pinchin was asked to collect soil verification samples during soil remediation. The scope of work included the removal of PHC impacted soil on the north, east and west sides located adjacent the concrete pad.

A Remedial Action Plan ("RAP") was submitted to Manitoba Conservation dated August 14, 2012 outlining the proposed work as described above. Manitoba Conservation issued a letter approving the RAP dated August 21, 2012.

A summary of activities and results of the soil remediation and verification soil sampling program conducted at the Site is noted below.

1. On September 11, 2012, Pinchin field personnel were on-Site to supervise the soil excavation by Tritec Concrete.

- 2. Pinchin field personnel completed a field screening and segregation program using visual, olfactory and organic vapour measurements recorded using a photo-ionization detector ("PID"). Soil verification samples were collected from the final excavation limits.
- 3. A U-shaped remediation area with a base 3 meters wide, measuring approximately 6 m long (north-south) by 9 m long (east-west) to a maximum depth of 0.95 mbgs was excavated around the former AST concrete pad. The excavation was adjacent the concrete pad on the north, west and east sides. No noticeable visual or olfactory observations of PHC impacts were noted by Pinchin in the soil samples assessed at the assumed final limits of the excavation.
- 4. Data collected during the excavation program indicated that the subsurface material at the Site generally consisted of various amounts of coarse gravel and clay fill. Native subsurface material underlying the fill material was observed to generally consist of black organic clay soil from 0.76 mbgs to the maximum excavation depth of 0.95 mbgs.
- 5. Based on Site specific information, the soil quality was compared to guidelines set forth in the Canadian Council of Ministers of the Environment ("CCME") "*Environmental Quality Guidelines*" accessed on-line September 2012 and the CCME "*Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil*" dated 2008. The applicable criteria for this area of the Site includes the most stringent criteria for residential land use, fine-grained and coarse grained surface soils, excluding protection of potable groundwater and aquatic life guidelines.
- 6. Soil samples from the final excavation limits were submitted for laboratory analysis for benzene, toluene, ethylbenzene and xylene ("BTEX") and PHCs F1-F4.
- 7. The results of the laboratory analysis indicated that the verification soil samples submitted for chemical analysis reported concentrations of all targeted parameters which satisfied the CCME guidelines for residential land use, fine-grained and coarse grained surface soils excluding protection of potable water and aquatic life.
- 8. A total of 78 tonnes of impacted soil was transported off-Site to the Mid-Canada Soil Treatment Facility in Ile de Chenes, Manitoba ("Mid-Canada") for disposal which is operated by Mid-Canada Environmental Services Ltd. The excavation was backfilled with gravel fill.

Based on the findings of this soil remediation and verification sampling program, it is Pinchin's opinion that no additional remediation work is required for the Site in relation to the findings of the Phase I ESA and Limited Soil Sampling Program.

This Executive Summary is subject to the same standard limitations as contained in the report and must be read in conjunction with the entire report.

TABLE OF CONTENTS

1.0	INTRODUCTION					
	1.1 Site Description1					
2.0	BACKGROUND					
	2.1 Scope of Work					
3.0	METHODOLOGY					
	3.1 Excavation Activities					
	3.2 Field Screening Samples					
	3.3 Verification Soil Sampling					
	3.4 QA/QC Protocols					
	3.5 Applicable Regulatory Standards					
4.0	RESULTS					
	4.1 Site Geology					
	4.2 Analytical Results					
	4.3 Soil Disposal7					
5.0	DISCUSSION					
6.0	DISCLAIMER					
7.0	CLOSURE					

APPENDICES

- Appendix I Figures
- Appendix II Summary Table
- Appendix III Remedial Action Plan
- Appendix IV Laboratory Certificates of Analyses

Figures

- Figure 1 Key Map
- Figure 2 Generalized Excavation Location Plan
- Figure 3 Soil Sample Location Plan

Tables

 Table 1
 Summary of Soil Analytical Results for Petroleum Hydrocarbon and BTEX

1.0 INTRODUCTION

Pinchin Environmental Ltd. ("Pinchin") was retained through an Authorization to Proceed signed by Mr. Michael Selci of Business Development Bank of Canada. ("Client") to conduct a Soil Remediation and Verification Sampling Program at the property located at 18 Main Street, St. Eustache, Manitoba (hereafter referred to as the ("Site").

1.1 Site Description

The Site is developed with one residential building and several commercial buildings and is occupied by Tritec Concrete. The Site is situated in an area consisting primarily of commercial land uses. As indicated on Figure 1, presented in Appendix I, the Site is located north of Main Street, approximately 700 metres west of Public Road #248 in St. Eustache, Manitoba.

2.0 BACKGROUND

On May 16, 2012, Pinchin completed a Phase I ESA that identified petroleum hydrocarbon staining in the vicinity of the aboveground storage tanks ("ASTs") located on the south-central portion of the Site and petroleum hydrocarbon ("PHC") staining and oily water within a pit constructed of a pail within Site Building D. Based on the findings of the Phase I ESA, Pinchin recommended that a Limited Soil Sampling Program be conducted.

A report titled "*Limited Soil Sampling Program, 18 Main Street, St, Eustache, Manitoba*' was prepared by Pinchin dated June 19, 2012 (the "*Limited Soil Sampling Program Report*"). As outlined in the *Limited Soil Sampling Program Report*, the details of which were reported under separate cover, six boreholes were advanced to a maximum depth of 1.4 metres below ground surface ("mbgs").

Based on observations made during the Limited Soil Sampling Program, the soil stratigraphy at the Site generally consisted of a layer of surficial fill material comprised of granular limestone to a depth of approximately 0.3 mbgs. Native subsurface materials underlying the fill material was observed to generally consist of black organic clay soil to a depth of approximately 0.6 mbgs, underlain by moderately silty clay to a maximum sampled depth of 1.4 mbgs

Based on the results of soil samples previously collected and submitted for laboratory analyses by Pinchin and presented in the *Limited Soil Sampling Program Report*, soil samples collected from three boreholes advanced adjacent the aboveground storage tank ("AST") pad had reported concentrations at concentrations above the Canadian Council of Ministers of the Environment ("CCME") guidelines for PHCs in the F1 to F4 fraction ranges ("F1-F4") presented in the CCME document entitled "*Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil*" 2008, hereafter referred to as the "*applicable CCME Guidelines*", as follows:

- Soil sample BH2 S1 exceeded the applicable guidelines for PHC (F2) (470 milligrams per kilogram ("mg/kg")) versus the applicable CCME Guideline of 150 mg/kg) and PHCs (F3) (360 mg/kgversus the applicable CCME Guideline of 300 mg/kg);
- Soil sample BH3 S1 exceeded the applicable guidelines for PHC (F2) (290 mg/kg versus the applicable CCME Guideline of 150 mg/kg); and
- Soil sample BH6 S1 exceeded the applicable guidelines for PHC (F2) (170 mg/kg versus. the applicable CCME Guideline of 150 mg/kg) and PHC (F3) (320 mg/kg versus the applicable CCME Guideline of 300 mg/kg).

Based on the findings presented in the *Limited Soil Sampling Program Report*, reported concentrations of PHC (F2 and/or F3) were noted in soils samples submitted for laboratory analysis from boreholes BH2, BH3, and BH6, which exceeded the applicable CCME Guidelines. These boreholes were located on the north, west and east sides of the AST pad, respectively.

2.1 Scope of Work

At the Client's request, Pinchin was retained to collect soil verification samples during the excavation around the concrete pad that occupies the fuel tanks. The scope of work proposed by Pinchin, outlined in the proposal dated August 14, 2012, submitted to, and authorized by the Client, included the development and submission of a remedial action plan ("RAP") to Manitoba Conservation. The impacted soil to be remediated is located adjacent the concrete refueling pad from surface to a depth of approximately 0.95 mbgs.

The RAP was submitted to Manitoba Conservation dated August 14, 2012. Manitoba Conservation issued a letter approving the RAP dated August 21, 2012.

In addition to excavation and off-Site disposal of PHC-impacted soils, the scope of work included verification soil sample collection, field observations/monitoring, laboratory analyses, a review of analytical data and report preparation.

3.0 METHODOLOGY

3.1 Excavation Activities

On September 11, 2012, Pinchin field personnel were on-Site to monitor the soil excavation, which was undertaken by Tritec Concrete.

Pinchin field personnel undertook a field screening and segregation program using visual, olfactory and organic vapour measurements recorded using a photo-ionization detector ("PID"). Once headspace vapour readings decreased to levels considered that, based on Pinchin's experience, would potentially indicate that known impacts had been adequately removed and no significant odours or staining were noted by Pinchin at the limits of the excavation, verification soil samples were collected for potential laboratory analyses.

The location of the excavation at the Site is depicted in Figure 2, in Appendix I. The excavation was completed along the north, west and east walls of the AST pad.

3.2 Field Screening Samples

Field screening was employed to assess the extent of the potential soil impacts in the vicinity of the previously noted soil impacts. Soil samples for field screening were placed in sealed plastic bags for approximately 15 minutes then screened for headspace organic vapour concentrations using the PID, which was calibrated to a known isobutylene standard.

At a minimum, the soil samples used for headspace organic vapour screening were collected at the following intervals:

- Divide each sidewall into a 2.5 m² grid pattern and the floor of the excavation into a 2.5 m² grid pattern;
- Based on headspace organic vapour screening results, collect one "worst case" soil sample from each grid unit for headspace vapour readings using the PID; and
- Additional headspace organic vapour screening samples were collected based on field observations, location, depth, soil type, texture, colour and odour.

The limits of the excavation were extended both vertically and laterally until the results of the field organic vapour screening program indicated that, based on Pinchin's experience, analytical results of soil samples submitted for would satisfy the applicable criteria.

Headspace organic vapour readings of soil samples collected from the excavation are depicted in Figure 3 presented in Appendix I.

3.3 Verification Soil Sampling

Pinchin field personnel monitored the excavation and subsequently collected verification soil samples from the limits of the excavation, in order to confirm, based on the results of laboratory analyses, that the residual soils at the limits of the excavation, met the applicable criteria. The frequency of verification soil samples submitted for laboratory analyses were conducted in accordance with the following table:

Floor Area (m ²)	Floor Samples	Sidewall Samples
<25	1	4
>25 - 50	2	4
<100	3	4
>100 - 250	3	5
>250 - 500	4	6
>500 - 750	4	7
>750-1,000	5	8

Additional samples were collected based on Pinchin's observations of the soil, impact patterns and organic vapour readings.

The total floor area of the excavation was approximately 45 m^2 . A total of 21 soil samples were collected. Approximate locations of these samples are depicted in Figure 3 presented in Appendix I. A total of nine "worst case" soil samples recovered from the final limits of the excavation (three from the base and one from each of the walls of the excavation), based on organic vapour headspace readings, as well as visual and/or olfactory observations, were submitted for laboratory chemical analysis.

Soil samples were delivered to Maxxam Analytics Inc. ("Maxxam") in Winnipeg, Manitoba for laboratory analysis. Maxxam is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. Formal chain of custody records of the sample submissions were maintained between Pinchin and Maxxam.

3.4 QA/QC Protocols

Quality assurance/quality control ("QA/QC") protocols were followed during excavation activities and verification soil sampling for the purpose of obtaining representative samples.

Field protocols that were employed included the following:

- Soil samples were extracted from the interior of the sampling device (where possible), rather than from areas in contact with the sampler walls to minimize the potential for cross-contamination;
- Placement of collected soil samples into laboratory-supplied glass sample jars;
- Dedicated and disposable NitrileTM gloves were used for all sample handling;
- Maintaining proper temperature and sample intregrity en route to the laboratory with acceptance from Maxxam; and
- Sample collection and handling procedures were performed in general accordance with the *CSA Standard* Z769-00 (*R2008*) and Manitoba Conservation's Guideline.

3.5 Applicable Regulatory Standards

Manitoba Conservation has adopted the CCME Guidelines as the regulatory criteria applicable to soil and groundwater conditions in Manitoba.

Analytical results of the soil samples are compared to guidelines set forth in the CCME "*Environmental Quality Guidelines*" accessed on-line September 2012 and the CCME "*Canada-Wide Standards for Petroleum Hydrocarbons in Soil*" dated 2008 (hereafter referred to as the "*CCME Environmental Quality Guidelines*").

The *CCME Environmental Quality Guidelines* have been developed using a risk-based approach. The application of the appropriate criteria, as determind in the *Limited Soil Sampling Program Report*, is dependent upon several Site-specific conditions including:

- The existing/proposed land use;
- The existing/potential groundwater use;
- Soil depth; and
- Soil texture.

The *CCME Environmental Quality Guidelines* are further subdivided into the following types of protection:

- Human health guidelines/check values; and
- Environmental health guidelines/check values.

Within each of these categories, several pathways are listed that describe how the contaminant of concern would come in contact with the receptor. If a pathway is not applicable to the Site or a specific area of the Site, then the corresponding guideline/check value is not applicable. If future use of the Site is modified, pathways that were not applicable can become applicable and need to be reassessed.

Site specific details for the evaluation of applicable pathways are as noted below.

- The Site has a residential dwelling located on-Site; therefore, residential land use guidelines are applicable to the Site;
- The soils on-Site comprise of coarse-grained granular fill and fine-grained clay soils based on visual observations made during the *Limited Soil Sampling Program*; therefore, guidelines for coarse-grained and fine-grained soils are applicable to the Site;
- Groundwater is non-potable and is not used for livestock watering; therefore, it is Pinchin's opinion that these pathways can be eliminated for the Site;
- Mill Creek is located adjacent the north portion of the Site; however, the area of impact is approximately 85m south of Mill Creek. As such, it is Pinchin's opinion that the aquatic life pathway can be eliminated as it is further than 10 m from Mill Creek; and
- Soil samples collected during this soil remediation and verification sampling program were "surface" (i.e., 1.5 mbgs); therefore, for the purpose of this report, surface soil criteria is cited.

Based on the above, the appropriate CCME Guidelines for the Site are:

• Residential land use, fine-grained and coarse grained surface soil, excluding protection of potable groundwater and aquatic life.

As such, all analytical results have been compared to these applicable CCME Guidelines.

If the future use of the Site changes, the applicable pathways should be re-evaluated.

4.0 **RESULTS**

4.1 Site Geology

Based on the soil samples recovered during the Limited Soil Sampling Program and excavation, the soil stratigraphy generally consists of fill material comprised of granular limestone up to 2 cm in diameter from surface to a depth of approximately 0.3 mbgs. Native subsurface material underlying the fill material was observed to generally consist of black organic clay soil to 0.6 mbgs, underlain by moderately silty clay to a maximum depth of the excavation, at 0.95 mbgs.

A "U-shaped" remediation area, with a base of approximately 3 m wide, measuring approximately 6 m long (north-south) by 9 m long (east-west) to a maximum excavation depth of 0.95 mbgs was excavated around the AST concrete pad. No visual or olfactory observations of PHC impacts were noted by Pinchin in the soil samples assessed at the assumed final limits of the excavation.

4.2 Analytical Results

The results of the laboratory analyses undertaken on the verification soil samples submitted for chemical analysis of benzene, toluene, ethylbenzene and xylene ("BTEX") and PHCs (F1 to F4), along with their applicable CCME Guidelines are summarized in Table 1 in Appendix II. The laboratory certificates of analyses are presented in Appendix IV.

The results of the laboratory analyses indicate that the reported concentrations satisfied the applicable CCME Guidelines.

4.3 Soil Disposal

A total of 78 tonnes of impacted soil was transported off-Site to MidCanada Environmental Services Ltd. ("MidCanada") for disposal. The excavation was backfilled with gravel from Tritec Concrete's own on-Site stockpile.

5.0 DISCUSSION

All reported concentrations in the soil samples submitted for analysis of BTEX and PHCs (F1-F4) satisfied the applicable CCME Guidelines.

Based on the findings of this soil remediation and verification sampling program, it is Pinchin's opinion that no additional remediation work is required for the Site in relation to the findings of the Phase I ESA and the Limited Soil Sampling Program.

6.0 **DISCLAIMER**

This soil remediation and verification sampling program was performed in order to mitigate the recognized environmental conditions at 18 Main Street, St. Eustahce, Manitoba ("Site"). The term 'recognized environmental condition' means the presence or likely presence of any hazardous substance on a property under conditions that indicate an existing release, past release, or a material threat of a release of a hazardous substance into structures on the property or into the ground, groundwater, or surface water of the property.

Conclusions derived are specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples have been analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

No soil remediation and verification sampling program can wholly eliminate uncertainty regarding the potential for recognized environmental conditions on the property. Performance of this soil remediation and verification sampling program to the standards established by Pinchin is intended to remediate and/or encapsulate areas outlined in the scope of work, but does not eliminate uncertainty regarding the potential for recognized environmental conditions on the property, and recognizes reasonable limits on time and cost.

This soil remediation and verification sampling program was performed in general compliance with currently acceptable practices for environmental site investigations, and specific Client requests, as applicable to this Site. This report was prepared for the exclusive use of Business Development Bank of Canada, subject to the conditions and limitations contained within the duly authorized workplan. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of the third parties. If additional parties require reliance on this report, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed.

Pinchin will not be responsible for any consequential or indirect damages. Pinchin will only be held liable for damages resulting from negligence of Pinchin. Pinchin will not be liable for any losses or damage if Client has failed, within a period of two (2) years following the date upon which the claim is discovered within the meaning of the *Manitoba Limitation of Actions Act RSM 1987*, to commence legal proceedings against Pinchin to recover such losses or damage.

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

7.0 CLOSURE

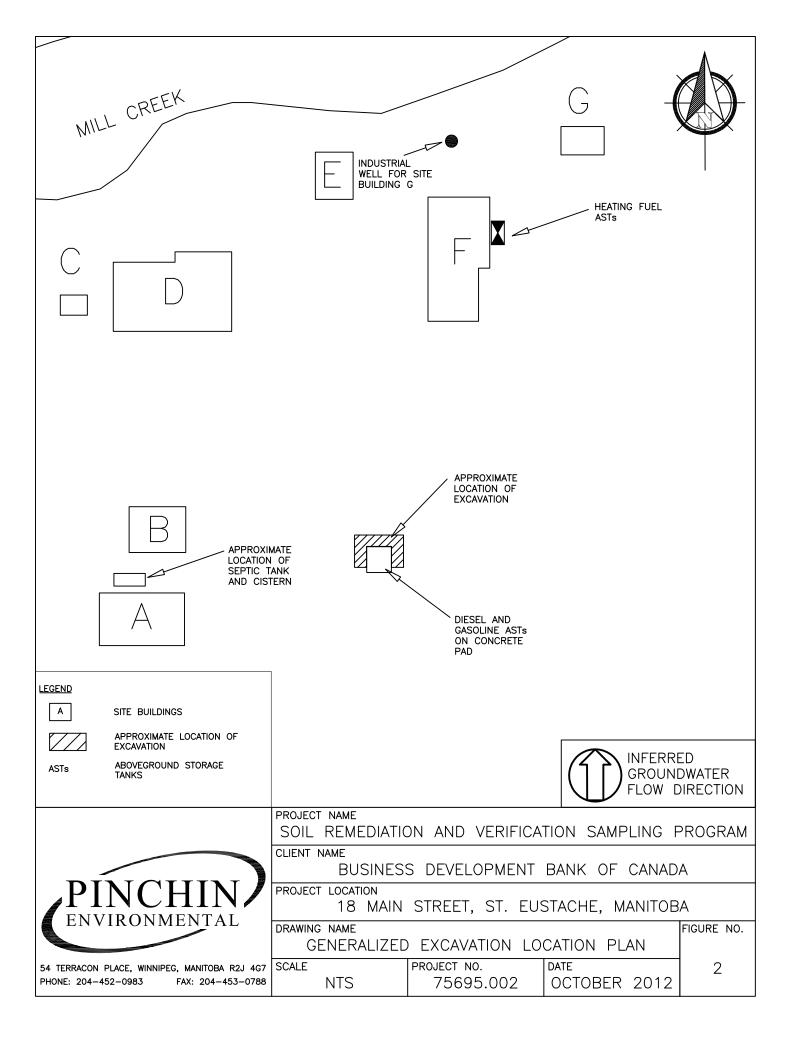
We trust this meets your requirements at this time. If you have any questions about the report, please contact the undersigned.

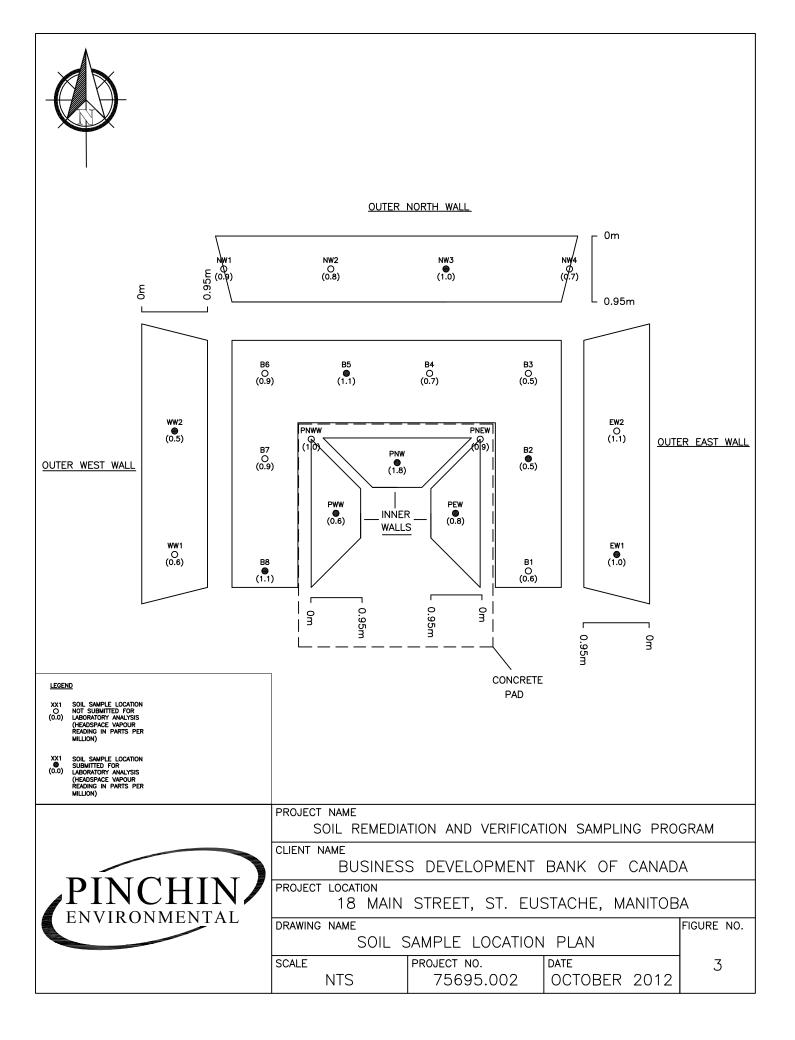
Yours truly,

PINCHIN ENVIRONMENTAL LTD.

per: Sean Mulvey, B.Sc. *Project Technologist* Environmental Due Diligence & Remediation <u>smulvey@pinchin.com</u>

per: Grant Eftoda, B.Sc. (Eng.) Operations Manager Environmental Due Diligence & Remediation geftoda@pinchin.com


75695.002 - 18 Main, St Eustache - Report - Soil Remediation - October 18, 2012


Sten B Robers

per: Steven B. Roberts, P.Geo. (ON) Senior Technical Manager Environmental Due Diligence and Remediation sroberts@pinchin.com

APPENDIX I FIGURES

APPENDIX II SUMMARY TABLE

Table 1 Summary of Soil Analytical Results for Petroleum Hydrocarbon and BTEX in Soil Soil Remediation and Verification Sampling Program 18 Main Street St. Eustache, Manitoba											
Sample Identification											
Parameter		B2	B5	B8	PEW	PNW	PWW	NW3	EW1	WW2	CCME Guidelines ^{a b}
		0.95 mbgs	0.95 mbgs	0.95 mbgs	0.76 mbgs						
	Benzene	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.21 ^a
ВЕТХ	Toluene	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	110 ^a
BE	Ethyl benzene	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	120 ^a
	Xylenes	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	65 ^a
	F1 (C6-C10)	<10	<10	<10	<10	<10	<10	<10	<10	<10	210 ^b
PHCs	F2 (C10-C16)	<20	<20	<20	69	<20	<20	<20	<20	<20	150 ^b
F	F3 (C16-C34)	<20	<20	29	430	<20	86	<20	<20	<20	1,300 ^b
	F4 (C34-C50)	<20	<20	<20	33	<20	<20	<20	<20	<20	5,600 ^b

Note:

All concentrations in milligrams per kilogram (mg/kg) or equivalent, unless otherwise noted

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes

PHCs = Petroleum Hydrocarbons

F1 = Carbon Fraction

< = indicates that the concentration is less than the laboratory's minimum detection limit</p>

B2 = indicates the sample was collected from base of excavation

• PEW = indicates the sample was collected from concrete pad east wall

• NW3 = indicates the sample was collected from the north outer wall of excavation

mbgs = meters below ground surface

• CCME = Canadian Council of the Ministers of the Environment

^a Referenced from the CCME Canadian Environmental Quality Guidelines, Accessed On-Line in September, 2012

• Value listed represents the most stringent criteria for residential land use, to either fined grained or coarse grained surface soils, excluding protection of groundwater and aquatic life

^b Referenced from the CCME Canada-Wide Standards for Petroleum Hydrocarbons in Soil, 2008

• Value listed represents the most stringent criteria for residential land use, to either fined grained or coarse grained surface soils, excluding protection of groundwater and aquatic life

Concentrations in BOLD print indicates concentration exceeds referenced guideline

APPENDIX III REMEDIAL ACTION PLAN

August 14, 2012

Manitoba Conservation 160-123 Main Street Winnipeg, Manitoba R3C 1A5

Attention: Warren Rospad

Re: Remedial Action Plan 18 Main Street, St. Eustache, Manitoba Pinchin File No.: 75695.002

Pinchin Environmental Ltd. ("Pinchin") is pleased to submit this Remedial Action Plan ("RAP") for the above noted Site for approval by Manitoba Conservation. The RAP is based on information obtained during a Limited Soil Sampling Program conducted by Pinchin.

BACKGROUND

The Site is developed with one single-storey residential dwelling, one single-storey office building, two single-storey storage sheds, one single-storey garage, one single-storey aggregate storage building and one single-storey concrete batch plant building occupied by R. Bergeron Ready-Mix Concrete Ltd.

A summary of the Limited Soil Sampling Program that was completed by Pinchin dated June 19, 2012 is noted below.

- The purpose of the Limited Soil Sampling Program was to address potential issues of environmental concern in the area of the hydrocarbon staining in the vicinity of the aboveground storage tanks ("ASTs") located on the south-central portion of the Site and hydrocarbon staining and oily water within a pit constructed with a pail within Site Building D.
- Pinchin completed the Limited Soil Sampling Program at the Site on May 29, 2012. The boreholes were advanced to a maximum depth of 1.4 metres below ground surface ("mbgs") using a hand auger.

- Based on the soil samples recovered during the borehole drilling program, the soil stratigraphy at the sample locations generally consists of fill material comprised of granular limestone up to 2 cm in diameter to a depth of 0.03 to 0.3 mbgs. Native subsurface material underlying the fill material was observed to generally consist of black organic clay soil to 0.6 mbgs followed by medium plastic clay to a maximum depth of 1.4 mbgs. A perched water table was observed in BH1 at surface.
- Based on Site specific information, the soil and groundwater quality was assessed based on the Canadian Council of Ministers of the Environment ("CCME") Guidelines for residential land use, coarse and fine grained surface soil, non-potable groundwater conditions, and the protection of aquatic live in the borehole closest to Mill Creek.
- Six "worse case" soil samples based on the results of field screening were submitted for laboratory analysis of a combination of benzene, toluene, ethylbenzene, and xylenes ("BTEX"), petroleum hydrocarbons ("PHCs") in the F1 to F4 fraction ranges ("F1-F4"), volatile organic compounds ("VOCs"), and polycyclic aromatic hydrocarbons ("PAHs").
- All reported concentrations in the soil samples submitted for analysis of BTEX, PHCs (F1-F4), VOCs and PAHs satisfied their respective CCME guidelines, with the following exceptions:
 - Soil sample BH2 S1 exceeded the CCME guidelines for PHCs (F2 and F3);
 - Soil sample BH3 S1 exceeded the CCME guidelines for PHCs (F2); and
 - Soil sample BH6 S2 exceeded the CCME guidelines for PHCs (F2 and F3).

The findings of the Limited Soil Sampling Program identified PHC-impacted soil at boreholes BH2, BH3 and BH6. As such, Pinchin recommended that a remedial excavation be completed in the vicinity of these boreholes.

Pinchin has since been retained to conduct soil excavation and verification soil sampling of the impacted soils noted above. The Pinchin Limited Soil Sampling Program has been appended to the RAP.

PROPOSED REMEDIATION

The extent of soil impacts have not been delineated. Pinchin proposes excavating known impacts and using field screening to determine excavation limits. Impacted soils will be transported to MidCanada's Soil Treatment Facility in Ile-des-Chenes, Manitoba for disposal.

Pinchin will conduct field screening of soil samples collected during the excavation for combustible vapour concentrations using a Photoionization Detector ("PID"). Based on visual observations and field screening, Pinchin will collect and submit confirmatory soil samples for BTEX and PHCs analysis upon completion of the excavation. The excavation will be backfilled with clean gravel. The work will be conducted according to Manitoba Conservation guidelines.

The laboratory analytical results for the confirmatory soil samples will be compared to the most current CCME "Environmental Quality Guidelines" and the most current CCME "Canada-Wide Standards for Petroleum Hydrocarbons in Soil". The criteria used for data comparison will be for residential land use (residence on-Site) excluding potable groundwater (municipal supply).

REPORTING

Pinchin will create a final remediation report outlining the work completed at the Site. The report will be inclusive of confirmatory soil sampling results. A copy of the final report will be provided to Manitoba Conservation.

CLOSURE

Thank you for your assistance in this matter. We await your approval of this RAP.

Yours truly,

Pinchin Environmental Ltd.

Prepared by:

per: Joanne Lanoie, M.Sc., B.Sc. *Environmental Scientist* Environmental Due Diligence & Remediation <u>jlanoie@pinchin.com</u> ^{75695.002 - 18 Main, St Eustache - RAP - August 14, 2012}

Attach.

Reviewed by:

per: Grant Eftoda, B.Sc. (Eng) Operations Manager Environmental Due Diligence & Remediation <u>geftoda@pinchin.com</u>

Limited Soil Sampling Program

18 Main Street

St. Eustache, Manitoba

Business Development Bank of Canada 1655 Kenaston Boulevard, Suite 200 Winnipeg, Manitoba R3P 2M4

Attention: Mr. Francis Methot

June 19, 2012

Pinchin File: 75695.001

© 2012 Pinchin Environmental Ltd.

EXECUTIVE SUMMARY

Pinchin Environmental Ltd. ("Pinchin") was retained through an Authorization to Proceed signed by Mr. Francis Methot of Business Development Bank of Canada ("Client") to conduct a Limited Soil Sampling Program of the property located at 18 Main Street, St. Eustache, Manitoba (hereafter referred to as the "Site").

The Site is developed with one single-storey residential dwelling ("Site Building A"), one singlestorey office building ("Site Building B"), two single-storey storage sheds ("Site Buildings C and G"), one single-storey garage ("Site Building D"), one single-storey aggregate storage building ("Site Building E") and one single-storey concrete batch plant building ("Site Building F") occupied by R. Bergeron Ready-Mix Concrete Ltd.

The purpose of this Limited Soil Sampling Program was to address potential issues of environmental concern in the area of the hydrocarbon staining in the vicinity of the aboveground storage tanks ("ASTs") located on the south-central portion of the Site and hydrocarbon staining and oily water within a pit constructed with a pail within Site Building D.

The Limited Soil Sampling Program was completed at the Site by Pinchin on May 29, 2012, and consisted of the advancement of six shallow boreholes.

Select "worst case" soil samples collected during the borehole drilling program were submitted for laboratory analysis of benzene, toluene, ethylbenzene, and xylenes ("BTEX"), petroleum hydrocarbons ("PHCs") in the F1 to F4 fraction ranges ("F1-F4"), volatile organic compounds ("VOCs"), and polycyclic aromatic hydrocarbons ("PAHs").

Soil samples submitted for analysis from boreholes BH2, BH3 and BH6 had concentrations of one or more PHC (F2-F3) parameters exceeding their applicable Canadian Council of Ministers of the Environment ("CCME") guidelines.

The findings of this Limited Soil Sampling Program identified PHC-impacted soil at boreholes BH2, BH3 and BH6. As such, it is Pinchin's recommendation that a remedial excavation be completed in the vicinity of these boreholes.

This Executive Summary is subject to the same standard limitations as contained in the report and must be read in conjunction with the entire report.

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
	1.1 Scope of Work	.1
2.0	METHODOLOGY	.2
	2.1 Borehole Investigation	.2
	2.2 Sampling and Laboratory Analysis	
	2.2.1 Soil	
	2.2.2 Analytical Laboratory	.2
	2.3 QA/QC Protocols	
	2.4 Site Condition Standards	
3.0	RESULTS	.5
	3.1 Site Geology and Hydrogeology	
	3.2 Soil Vapour Concentrations	
	3.3 Field Observations	
	3.4 Analytical	
	3.4.1 Soil	
4.0	FINDINGS AND CONCLUSIONS	.6
5.0	DISCLAIMER	.7
6.0	CLOSURE	.8

APPENDICES

Appendix I – Figures

Appendix II – Summary Tables

Appendix III - Laboratory Certificate of Analysis

FIGURES

Figure 1 – Key Map

Figure 2 – Borehole Location Plan

TABLE

Table 1 – Petroleum Hydrocarbon and BTEX Analysis for Soil

Table 2 – Volatile Organic Compound Analysis for Soil

Table 3 – Polycyclic Aromatic Hydrocarbons Analysis for Soil

1.0 INTRODUCTION

Pinchin Environmental Ltd. ("Pinchin") was retained through an Authorization to Proceed signed by Mr. Francis Methot of Business Development Bank of Canada ("Client") to conduct a Limited Soil Sampling Program of the property located at 18 Main Street, St. Eustache, Manitoba (hereafter referred to as the "Site").

The Site is developed with one single-storey residential dwelling ("Site Building A"), one singlestorey office building ("Site Building B"), two single-storey storage sheds ("Site Buildings C and G"), one single-storey garage ("Site Building D"), one single-storey aggregate storage building ("Site Building E") and one single-storey concrete batch plant building ("Site Building F") occupied by R. Bergeron Ready-Mix Concrete Ltd.

The purpose of this Limited Soil Sampling Program was to address potential issues of environmental concern in the area of the hydrocarbon staining in the vicinity of the aboveground storage tanks ("ASTs") located on the south-central portion of the Site and hydrocarbon staining and oily water within a pit constructed with a pail within Site Building D.

This Limited Soil Sampling Program was completed in general accordance with the Canadian Standards Association ("CSA") document entitled "*Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2008)*", dated 2000 and reaffirmed in 2008.

1.1 Scope of Work

The scope of work completed by Pinchin, as outlined in the Pinchin workplan entitled "*Limited Soil Sampling Workplan, 18 Main Street, St. Eustache, Manitoba*" submitted to the Client dated May 24, 2012, included the following:

- Manually collect six shallow soil samples from the subsurface at strategic locations adjacent the former ASTs;
- Submission of select "worst case" soil samples for laboratory analysis of benzene, toluene, ethylbenzene, and xylenes ("BTEX"), petroleum hydrocarbons ("PHCs") in the F1 to F4 fraction ranges ("F1-F4"), volatile organic compounds ("VOCs"), and polycyclic aromatic hydrocarbons ("PAHs");
- Comparison of the soil laboratory analytical results to the applicable regulatory criteria; and
- Preparation of a factual report (this report) detailing the findings of the Limited Soil Sampling Program and recommendations.

2.0 METHODOLOGY

The investigation methodology was conducted in general accordance with Manitoba Conservation's "*Guideline for Environmental Site Investigations in Manitoba*" dated 1998 (Revised 2002).

2.1 Borehole Investigation

Pinchin completed the borehole drilling program at the Site on May 29, 2012. The boreholes were advanced to a maximum depth of 1.4 metres below ground surface ("mbgs") using a hand auger.

Soil samples were collected at continuous intervals. Discrete soil samples were collected from the auger and containerized in laboratory-supplied glass sampling jars. Subsurface soil conditions were logged on-Site by Pinchin personnel at the time of drilling. Soil samples were examined for visual and olfactory evidence of impacts and a portion of each sample was analyzed in the field for petroleum-derived vapour concentrations in soil headspace using a photoionization detector ("PID").

The locations of the boreholes are shown on Figure 2 within Appendix I and a description of the subsurface stratigraphy encountered during the drilling program is documented in Section 3.1.

2.2 Sampling and Laboratory Analysis

2.2.1 Soil

One most apparent "worst case" soil sample, based on vapour concentrations as well as visual and/or olfactory considerations, recovered from each borehole was submitted for laboratory analysis of a combination of BTEX, PHCs (F1-F4), VOCs and/or PAHs.

The borehole locations are shown on Figure 2 within Appendix I.

2.2.2 Analytical Laboratory

All collected soil samples were delivered to Maxxam Analytics Inc. ("Maxxam") in Winnipeg, Manitoba. Maxxam is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation ("CALA"). Formal chain of custody records of the sample submissions were maintained between Pinchin and the staff at Maxxam.

2.3 QA/QC Protocols

Various quality assurance/quality control ("QA/QC") protocols were followed during the Limited Soil Sampling Program to ensure that representative samples were obtained and that representative analytical data were reported by the laboratory.

Field QA/QC protocols that were employed by Pinchin included the following:

- Soil samples were extracted from the interior of the sampling device (where possible), rather than from areas in contact with the sampler walls to minimize the potential for cross-contamination;
- Soil samples were placed in laboratory-supplied glass sample jars;
- All soil samples were placed in coolers on ice immediately upon collection, with appropriate sample temperatures maintained prior submission to the laboratory;
- Dedicated and disposable NitrileTM gloves were used for all sample handling;
- All non-dedicated monitoring and sampling equipment (i.e. hand auger) was cleaned before initial use and between uses to minimize the potential for cross-contamination; and
- Sample collection and handling procedures were performed in general accordance with the CSA Standard Z769-00 (R2008) and Manitoba Conservation's Guidelines.

Maxxam's internal laboratory QA/QC consisted of the analysis of laboratory duplicate, method blank, matrix spike and spiked blank samples, an evaluation of relative percent difference calculations for laboratory duplicate samples, and an evaluation of surrogate recoveries for the method blank, matrix spike and spiked blank samples.

2.4 Site Condition Standards

Manitoba Conservation has adopted the Canadian Council of Ministers of the Environment ("CCME") Guidelines as the regulatory criteria applicable to soil and groundwater conditions in Manitoba.

Analytical results of the soil samples are compared to guidelines set forth in the CCME *"Environmental Quality Guidelines"* Update 7.0 dated September 2007 and the CCME *"Canada-Wide Standards for Petroleum Hydrocarbons in Soil"* dated 2008.

The Environmental Quality Guidelines have been developed using a risk-based approach. The application of the appropriate criteria is dependent upon several Site-specific conditions including:

- The existing/proposed land use;
- The existing/potential groundwater use;
- Soil depth; and
- Soil texture.

Guidelines are further subdivided into the following types of protection:

- Human health guidelines/check values; and
- Environmental health guidelines/check values.

Within each of these categories, several pathways are listed that describe how the chemical in question would come in contact with the receptor. If a pathway is not applicable to the Site or a specific area of the Site, then the corresponding guideline/check value is not applicable. If future use of the Site is modified, pathways that were not applicable can become applicable and need to be reassessed.

Site specific details for the evaluation of applicable pathways are as noted below.

- The Site has a residential dwelling located on-Site; therefore residential land use guidelines are applicable to the Site.
- The soils on-Site comprise of coarse-grained granular fill and fine-grained clay soils; therefore guidelines for coarse-grained and fine-grained soils are applicable to the Site.
- Groundwater is non-potable and is not used for livestock watering; therefore these pathways can be eliminated for the Site.
- Mill Creek is located adjacent the north portion of the Site; therefore the aquatic life pathway is applicable to the borehole closest to Mill Creek.
- Soil samples collected during this Limited Soil Sampling Program were shallow (maximum 1.4 mbgs"); therefore for the purpose of this report surface soil criteria is cited.

Based on the above, the appropriate Site Condition Standards for the Site are:

• Residential land use, coarse and fine grained surface soil, non-potable groundwater conditions, protection of aquatic live in the borehole closest to Mill Creek.

As such, all analytical results have been compared to these applicable CCME guidelines.

3.0 **RESULTS**

3.1 Site Geology and Hydrogeology

Based on the soil samples recovered during the borehole drilling program, the soil stratigraphy at the drilling locations generally consists of fill material comprised of granular limestone up to 2 cm in diameter to a depth of 0.03 to 0.3 mbgs.

Native subsurface material underlying the fill material was observed to generally consist of black organic clay soil to 0.6 mbgs followed by medium plastic clay to a maximum depth of 1.4 mbgs.

A perched water table was observed in BH1 at surface.

3.2 Soil Vapour Concentrations

Vapour concentrations measured in the soil samples collected during the Limited Soil Sampling Program ranged from 0.7 parts per million by volume (" ppm_v ") to a maximum of 48.7 ppm_v in soil sample BH2 S1 collected at a depth of 0.3 mbgs in BH2.

3.3 Field Observations

No odours or staining were observed in the soil samples collected during the borehole drilling program with the exception of the soil collected from BH2 from 0.4 to 1.3 mbgs which exhibited a swamp like odour, and soil samples BH2 S1, BH3 S1 and BH 6 S1 collected at a depth of 0.25 to 0.4 mbgs which exhibited a PHC-like odour.

3.4 Analytical

3.4.1 Soil

As indicated in Table 1 within Appendix II, all reported concentrations of BTEX, PHCs (F1-F4), VOCs and PAHs in the soil samples submitted for analysis met the applicable guidelines, with the following exceptions:

- Soil sample BH2 S1 exceeded the applicable guidelines for PHCs (F2) (470 milligrams per kilogram ("mg/kg") vs. the applicable CCME guideline of 150 mg/kg) and PHCs (F3) (360 mg/kg vs. the applicable CCME guideline of 300 mg/kg);
- Soil sample BH3 S1 exceeded the applicable guidelines for PHCs (F2) (290 mg/kg vs. the applicable CCME guideline of 150 mg/kg); and

• Soil sample BH6 S1 exceeded the applicable guidelines for PHCs (F2) (170 mg/kg vs. the applicable CCME guideline of 150 mg/kg) and PHCs (F3) (320 mg/kg vs. the applicable CCME guideline of 300 mg/kg).

The laboratory Certificate of Analysis for the soil samples is provided in Appendix III.

4.0 FINDINGS AND CONCLUSIONS

Based on the work completed, a summary of the activities and findings of this Limited Soil Sampling Program are noted below.

- Pinchin completed the Limited Soil Sampling Program at the Site on May 29, 2012. The boreholes were advanced to a maximum depth of 1.4 mbgs using a hand auger.
- Based on the soil samples recovered during the borehole drilling program, the soil stratigraphy at the sample locations generally consists of fill material comprised of granular limestone up to 2 cm in diameter to a depth of 0.03 to 0.3 mbgs. Native subsurface material underlying the fill material was observed to generally consist of black organic clay soil to 0.6 mbgs followed by medium plastic clay to a maximum depth of 1.4 mbgs. A perched water table was observed in BH1 at surface.
- Based on Site specific information, the soil and groundwater quality was assessed based on the CCME Guidelines for residential land use, coarse and fine grained surface soil, non-potable groundwater conditions, and the protection of aquatic live in the borehole closest to Mill Creek.
- Six "worst case" soil samples based on the results of field screening were submitted for laboratory analysis of a combination of BTEX, PHCs (F1-F4), VOCs and PAHs.
- All reported concentrations in the soil samples submitted for analysis of BTEX, PHCs (F1-F4), VOCs and PAHs satisfied their respective CCME guidelines, with the following exceptions:
 - Soil sample BH2 S1 exceeded the CCME guidelines for PHCs (F2 and F3);
 - Soil sample BH3 S1 exceeded the CCME guidelines for PHCs (F2); and
 - Soil sample BH6 S2 exceeded the CCME guidelines for PHCs (F2 and F3).

The findings of this Limited Soil Sampling Program identified PHC-impacted soil at boreholes BH2, BH3 and BH6. As such, it is Pinchin's recommendation that a remedial excavation be completed in the vicinity of these boreholes.

5.0 **DISCLAIMER**

This Limited Soil Sampling Program was performed for Business Development Bank of Canada ("Client") in order to investigate potential environmental impacts at 18 Main Street, St. Eustache, Manitoba, Manitoba ("Site"). The term 'recognized environmental condition' means the presence or likely presence of any hazardous substance on a property under conditions that indicate an existing release, past release, or a material threat of a release of a hazardous substance into structures on the property or into the ground, groundwater, or surface water of the property. This Limited Soil Sampling Program does not quantify the extent of the extent of the current and/or recognized environmental condition or the cost of any remediation.

Conclusions derived are specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples have been analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions on a property. Performance of this Limited Soil Sampling Program to the standards established by Pinchin is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions on the Site, and recognizes reasonable limits on time and cost.

This Limited Soil Sampling Program was performed in general compliance with currently acceptable practices for environmental site investigations, and specific Client requests, as applicable to this Site.

This report was prepared for the exclusive use of Business Development Bank of Canada, subject to the conditions and limitations contained within the duly authorized work plan. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of the third parties. If additional parties require reliance on this report, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this report should not be construed as legal advice.

Pinchin will not be responsible for any consequential or indirect damages. Pinchin will only be held liable for damages resulting from the negligence of Pinchin. Pinchin will not be liable for any losses or damage if the Client has failed, within a period of two years following the date upon which the claim is discovered within the meaning of the Manitoba Limitation of Actions Act RSM 1987, to commence legal proceedings against Pinchin to recover such losses or damage.

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

6.0 CLOSURE

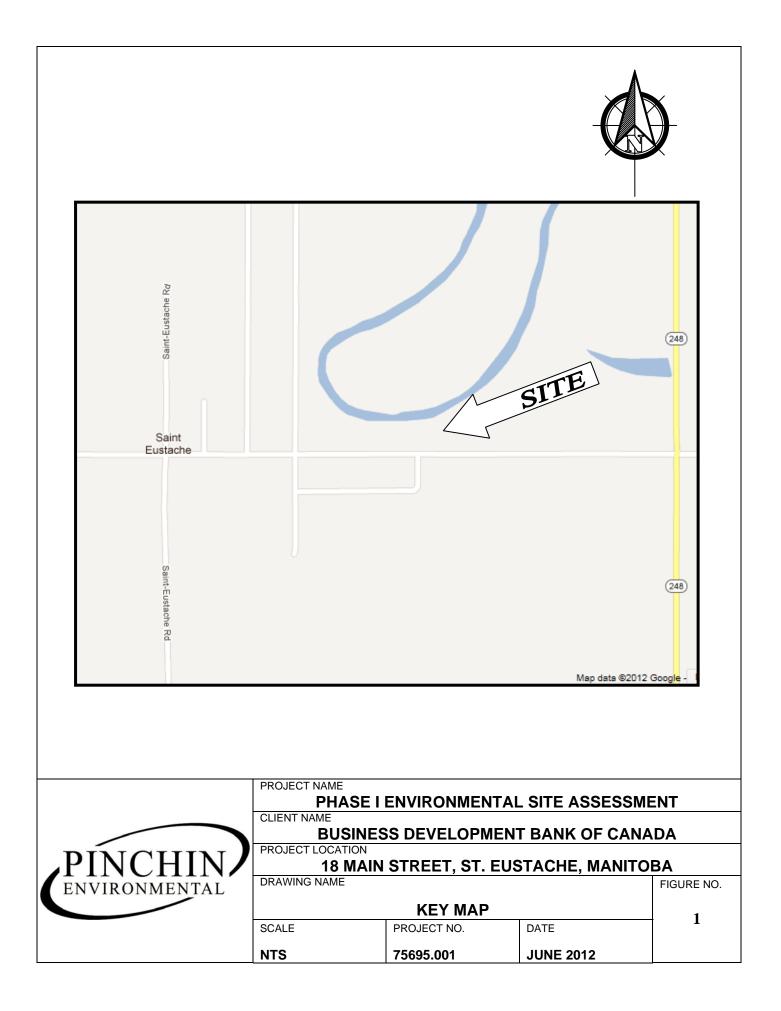
We trust that the foregoing information is satisfactory for your present requirements.

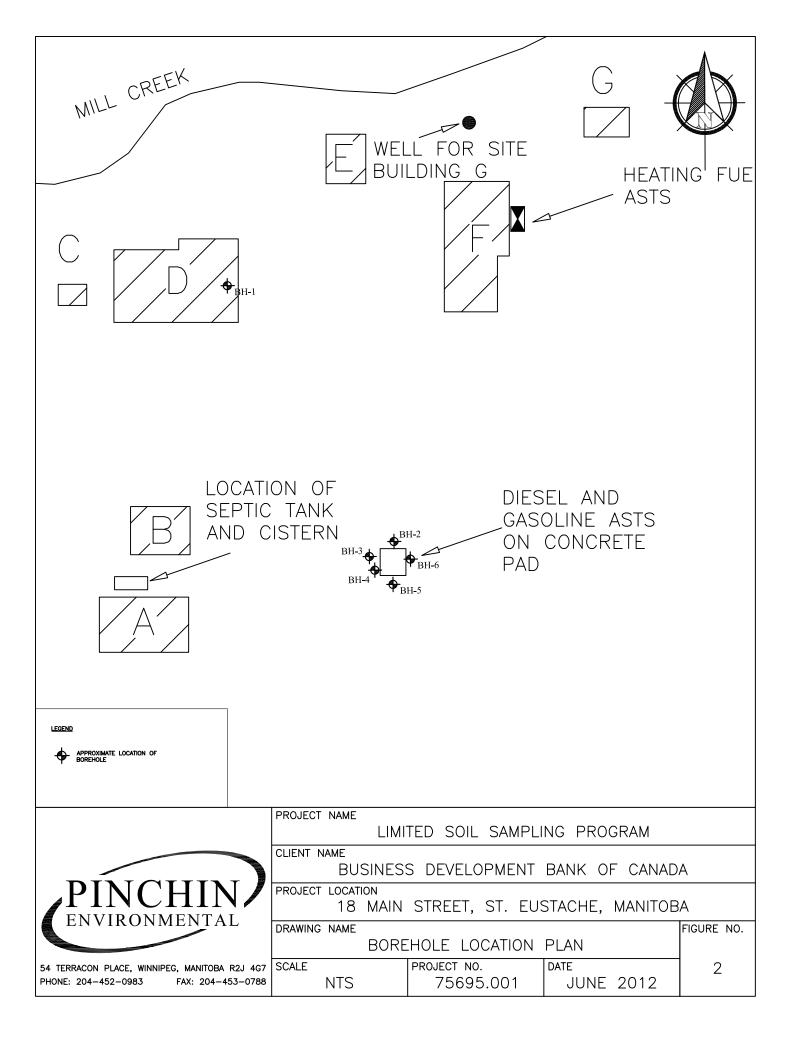
Should you have any questions about the report or require additional information, please contact the undersigned.

Yours truly,

PINCHIN ENVIRONMENTAL LTD.

ljanne Janoù


per: Joanne Lanoie, M.Sc., B.Sc. Environmental Scientist Environmental Due Diligence & Remediation jlanoie@pinchin.com


per: Grant Eftoda, B.Sc. (Eng)

per: Grant-Effoda, B.Sc. (Eng) *Operations Manager* Environmental Due Diligence & Remediation <u>geftoda@pinchin.com</u>

APPENDIX I

FIGURES

APPENDIX II

SUMMARY TABLES

					Table 1				
			Po		arbon and BTEX	Analysis for Soil			
			re	-	Soil Sampling Pr				
					18 Main Street	ogram			
				St. E	Eustache, Manito	ba			
				Sample	Number			1	
		BH1 S1	BH2 S1	BH3 S1	BH4 S1	BH5 S1	BH6 S1	CCME G	uidelines
	Parameter	0.5 mbgs	0.3 mbgs	0.4 mbgs	0.4 mbgs	0.4 mbgs	0.25 mbgs	Surfac	e Soils
		Fine	Coarse	Fine	Fine	Fine	Coarse	Coarse	Fine
	Benzene	< 0.0050	<0.0050	<0.0050	0.011	< 0.0050	< 0.0050	0.095 ^{a,c}	2.1 ^{a,c}
Ľ	Toluene	<0.020	<0.020	<0.020	0.1	<0.020	<0.020	0.1 ^{a,d} , 75 ^a	110 ^a
ветх	Ethyl benzene	<0.010	<0.010	<0.010	0.077	<0.010	<0.010	50 ^{a,d} , 55 ^a	120 ^a
	Xylenes	<0.040	<0.040	<0.040	0.55	<0.040	<0.040	14 ^a	230 ^a
	F1 (C6-C10)	<10	<10	<10	<10	<10	<10	30 ^b	210 ^b
s	F2 (C10-C16)	<20	470	290	<20	<20	170	150 ^b	150 ^b
PHCs	F3 (C16-C34)	<20	360	150	60	28	320	300 ^b	1,300 ^b
Р	F4 (C34-C50	23	<20	<20	35	<20	63	2,800 ^b	5,600 ^b
	F4G-SG	<500	N/A	N/A	<500	<500	<500	2,800 ^b	5,600 ^b
Note:	: All concentrations in	n norte nor million	or oquivalant unk	oc othorwice not	od				
	BTEX = Benzene, 1				eu				
	PHCs = Petroleum		cone, Aylene						
	<, indicates that the	•	ess than the labo	ratory's minimum	detection limit				
•	BH1 S1, 0.5 mbgs,	Fine; indicates the	e sample was coll	ected from boreho	ole 1, sample loca	ation 1, 0.5 metres	below ground sur	face and the soil wa	is fine-grained
	CCME = Canadian								
•	^a Referenced from to Value listed repre						on of potable grou	ndwater unless othe	rwise noted
•	^b Referenced from t	the CCME Canada	-Wide Standards	for Petroleum Hy	drocarbons in So	il, 2008			
	Value listed repres						n of potable groun	dwater	
•	^c The human healt	h guideline/check	value of 10 ⁻⁵ incre	emental risk has b	been referanced				
•	^d The environment	al health guideline	for groundwater	check (aquatic Lit	fe). Value only ap	plicable for BH1	(the closest boreho	ole to Mill Creek)	
•	Concentrations in E	BOLD print indicate	es concentration e	exceeds reference	ed guideline				

Volatile Organic Compound Analysis for Soil Limited Soil Sampling Program 18 Main Street St. Eustache, Manitoba									
	Sample Number								
Parameter	BH1 S1	CCME Guideline ^a							
	0.5 mbgs								
Chloromethane	<0.10	NG							
Vinyl chloride	<0.060	5							
Bromomethane	<0.30	NG							
Chloroethane	<0.10	NG							
Trichlorofluoromethane	<0.20	NG							
1,1-dichloroethene	<0.025	5							
Dichloromethane	<0.10	NG							
trans-1,2-dichloroethene	<0.025	5							
1,1-dichloroethane	<0.025	5							
cis-1,2-dichloroethene	<0.025	5							
Chloroform	<0.050	5							
1,1,1-trichloroethane	<0.025	5							
1,2-dichloroethane	<0.025	5							
Carbon tetrachloride	<0.025	5							
Methyl-tert-butylether (MTBE)	<0.10	NG							
1,2-dichloropropane	<0.025	5							
Trichloroethene	<0.0090	0.01							
Bromodichloromethane	<0.050	NG							
cis-1,3-dichloropropene	<0.050	5							
rans-1,3-dichloropropene	<0.050	5							
1,1,2-trichloroethane	<0.025	5							
Chlorodibromomethane	<0.050	NG							
Tetrachloroethene	<0.025	0.2							
Chlorobenzene	<0.025	2							
1,1,1,2-tetrachloroethane	<0.025	NG							
m & p-Xylene	<0.040	NG							
Bromoform	<0.050	NG							
Styrene	<0.030	5							
o-Xylene	<0.040	NG							
1,1,2,2-tetrachloroethane	<0.025	5							
1,2-dichlorobenzene	<0.025	1							
1,3-dichlorobenzene	<0.025	1							
1,4-dichlorobenzene	<0.025	1							

Note:

All concentrations in parts per million or equivalent unless otherwise noted

VOCs = Volatile Organic Compounds

NG; indicates that there is no guideline for corresponding parameter

<, indicates that the concentration is less than the laboratory's minimum detection limit

BH1 S1, 0.5 mbgs; indicates the sample was collected from borehole 1, sample location 1, 0.5 metres below ground surface

• CCME = Canadian Council of the Ministers of the Environment

^a Referenced from the CCME Canadian Environmental Quality Guidelines, Update 7.0, 2007

N/A = Not analyzed for

Concentrations in BOLD print indicates concentration exceeds referenced guideline

Table 3 Polycyclic Aromatic Hydrocarbons Analysis for Soil Limited Soil Sampling Program 18 Main Street St. Eustache, Manitoba									
	Sample Number								
Parameter	BH1 S1	CCME Guideline ^a							
	0.5 mbgs								
Benzo(a)Pyrene Equivalency	<0.10	5.3							
Naphthalene	<0.010	0.013							
2-Methylnaphthalene	<0.020	NG							
Acenaphthylene	<0.0050	320							
Acenaphthene	<0.0050	0.28							
Fluorene	<0.020	0.25							
Phenanthrene	<0.020	0.046							
Anthracene	<0.0040	2.5							
Fluoranthene	<0.020	15.4							
Pyrene	<0.020	7.7							
Benzo(a)anthracene	<0.020	1							
Chrysene	<0.020	6.2							
Benzo(b&j)fluoranthene	<0.020	1							
Benzo(k)fluoranthene	<0.020	1							
Benzo(a)pyrene	<0.020	0.6							
ndeno(1,2,3-cd)pyrene	<0.050	1							
Dibenz(a,h)anthracene	<0.050	1							
Benzo(g,h,i)perylene	<0.050	NG							
_ow Molecular Weight PAH`s	<0.020	NG							
High Molecular Weight PAH`s	<0.050	NG							
Total PAH	<0.050	NG							

Note:

- All concentrations in parts per million or equivalent unless otherwise noted
- PAHs = Polycyclic Aromatic Hydrocarbons
- NG; indicates that there is no guideline for corresponding parameter
- <, indicates that the concentration is less than the laboratory's minimum detection limit
- BH1 S1, 0.5 mbgs; indicates the sample was collected from borehole 1, sample location 1, 0.5 metres below ground surface
- CCME = Canadian Council of the Ministers of the Environment
- ^a Referenced from the CCME Canadian Environmental Soil Quality Guidelines for the Protection of Environmental and Human Health Polycyclic Aromatic Hydrocarbons, dated 2010 Value listed represents the criteria for residential properties
- Concentrations in **BOLD** print indicates concentration exceeds referenced guideline

APPENDIX III

LABORATORY CERTIFICATES OF ANALYSIS

Your Project #: 75695.001 Your C.O.C. #: N003609

Attention: Joanne Lanoie

Pinchin Environmental Winnipeg 54 Terracon Pl. Winnipeg, MB CANADA R2J 4G7

Report Date: 2012/06/08

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B245040

Received: 2012/05/31, 13:54

Sample Matrix: Soil # Samples Received: 6

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
BTEX/F1 by HS GC/MS (MeOH extract)	5	2012/06/01	2012/06/01 WINSOP-00054	EPA8260C/CCME PHCCWS
			WINSOP-00055	
Volatile F1-BTEX (1)	1	N/A	2012/06/05 BBY WI-00033	BC MOE Lab Method
CCME Hydrocarbons (F2-F4 in soil)	6	2012/06/01	2012/06/01 WINSOP-00056	CCME PHC-CWS
CCME Hydrocarbons (F4G in soil)	4	2012/06/01	2012/06/06	CCME PHC-CWS
Moisture	6	N/A	2012/06/04 WIN SOP-00060	Carter Method 51.2
PAH in Soil by GC/MS (SIM) - CCME (1)	1	2012/06/01	2012/06/06 BBY8SOP-00022	EPA 8270D
Benzo[a]pyrene Equivalency (1)	1	N/A	2012/06/07 BBY WI-00033	CCME Guidelines
Total LMW, HMW, Total PAH Calc (1)	1	N/A	2012/06/07 BBY WI-00033	BC MOE Lab Method
CCME F1 C6-C10 in Soil by GC/FID (1)	1	2012/06/04	2012/06/04 BBY8SOP-00012	EPA SW8260C
PSA Coarse/Fine (75 micron)	1	N/A	2012/05/31	
Grain Size (Coarse/Fine)	1	N/A	2012/06/05	
VOCs in Soil by HS GC/MS (1)	1	2012/06/01	2012/06/04 BBY8-SOP-0009	EPA 8260C

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Vancouver

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

JANELLE KOCHAN, B.Sc., Project Manager, Email: JKochan@maxxam.ca Phone# (204) 772-7276 Ext:2209

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 23

Success Through Science®

Maxxam Job #: B245040 Report Date: 2012/06/08 Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		DN9866	DN9867	DN9868	DN9869		
Sampling Date		2012/05/30	2012/05/30	2012/05/30	2012/05/30		
		13:00	13:00	13:00	13:00		
COC Number		N003609	N003609	N003609	N003609		
	UNITS	BH1 S1	BH2 S1	BH3 S1	BH4 S1	RDL	QC Batch
		-	-	-	-		
Calculated Parameters							
F1 (C6-C10) - BTEX	mg/kg	<10				10	5883553
Physical Properties							
Moisture	%	24	11	17	19	0.3	5885171
RDL = Reportable Detecti	on Limit		•	•		•	•

	UNITS	BH5 S1	BH6 S1	RDL	QC Batch
COC Number		N003609	N003609		
		13:00	17:00		
Sampling Date		2012/05/30	2012/05/30		
Maxxam ID		DN9870	DN9871		

Physical Properties					
Moisture	%	17	7.6	0.3	5885171
RDL = Reportable Detection	on Limit		•	•	

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		DN9866	DN9867	DN9868	DN9869		
Sampling Date		2012/05/30	2012/05/30	2012/05/30	2012/05/30		
		13:00	13:00	13:00	13:00		
COC Number		N003609	N003609	N003609	N003609		
	UNITS	BH1 S1	BH2 S1	BH3 S1	BH4 S1	RDL	QC Batch
Ext. Pet. Hydrocarbon							
F2 (C10-C16 Hydrocarbons)	mg/kg	<20	470	290	<20	20	5885170
F3 (C16-C34 Hydrocarbons)	mg/kg	<20	360	150	60	20	5885170
F4 (C34-C50 Hydrocarbons)	mg/kg	23	<20	<20	35	20	5885170
Reached Baseline at C50	mg/kg	No	Yes	Yes	No		5885170
F4G-SG (Heavy Hydrocarbons-Grav.)	mg/kg	<500			<500	500	5897777
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	86	82	76	92		5885170

RDL = Reportable Detection Limit

Maxxam ID		DN9870	DN9871		
Sampling Date		2012/05/30	2012/05/30		
		13:00	17:00		
COC Number		N003609	N003609		
	UNITS	BH5 S1	BH6 S1	RDL	QC Batch
					1
Ext. Pet. Hydrocarbon					
F2 (C10-C16 Hydrocarbons)	mg/kg	<20	170	20	5885170
F3 (C16-C34 Hydrocarbons)	mg/kg	28	320	20	5885170
F4 (C34-C50 Hydrocarbons)	mg/kg	<20	63	20	5885170
Reached Baseline at C50	mg/kg	No	No		5885170
F4G-SG (Heavy Hydrocarbons-Grav.)	mg/kg	<500	<500	500	5897777
Surrogate Recovery (%)					
O-TERPHENYL (sur.)	%	95	106		5885170
O-TERPHENYL (sur.) RDL = Reportable Detection Limit	%	95	106		588517

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

Maxxam ID		DN9866		
Sampling Date		2012/05/30		
COC Number		13:00 N003609	-	
	UNITS	BH1 S1	RDL	QC Batch
Calculated Parameters				
Index of Additive Cancer Risk(IARC)	N/A	0.31	0.10	5883554
Benzo[a]pyrene equivalency	N/A	<0.10	0.10	5883554
Polycyclic Aromatics		30.10		
Naphthalene	mg/kg	<0.010	0.010	5898699
2-Methylnaphthalene	mg/kg	<0.020	0.020	5898699
Acenaphthylene	mg/kg	<0.0050	0.0050	5898699
Acenaphthene	mg/kg	<0.0050	0.0050	5898699
Fluorene	mg/kg	<0.020	0.020	5898699
Phenanthrene	mg/kg	<0.020	0.020	5898699
Anthracene	mg/kg	<0.0040	0.0040	5898699
Fluoranthene	mg/kg	<0.020	0.020	5898699
Pyrene	mg/kg	<0.020	0.020	5898699
Benzo(a)anthracene	mg/kg	<0.020	0.020	5898699
Chrysene	mg/kg	<0.020	0.020	5898699
Benzo(b&j)fluoranthene	mg/kg	<0.020	0.020	5898699
Benzo(k)fluoranthene	mg/kg	<0.020	0.020	5898699
Benzo(a)pyrene	mg/kg	<0.020	0.020	5898699
Indeno(1,2,3-cd)pyrene	mg/kg	<0.050	0.050	5898699
Dibenz(a,h)anthracene	mg/kg	<0.050	0.050	5898699
Benzo(g,h,i)perylene	mg/kg	<0.050	0.050	5898699
Low Molecular Weight PAH`s	mg/kg	<0.020	0.020	5883162
High Molecular Weight PAH`s	mg/kg	<0.050	0.050	5883162
Total PAH	mg/kg	<0.050	0.050	5883162
Surrogate Recovery (%)				
D10-ANTHRACENE (sur.)	%	66		5898699
D8-ACENAPHTHYLENE (sur.)	%	67		5898699
D8-NAPHTHALENE (sur.)	%	79		5898699
TERPHENYL-D14 (sur.)	%	78		5898699
RDL = Reportable Detection Limit				

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

CUSTOM PARTICLE SIZE DISTRIBUTION (SOIL)

Maxxam ID		DN9867		
Sampling Date		2012/05/30		
		13:00		
COC Number		N003609		
	UNITS	BH2 S1	RDL	QC Batch
				-
Particle Size				
Sieve-%Coarse (>0.075mm)	%	79.96	0.01	5895006
Grain Size	N/A	COARSE		5883551
Sieve-%Fine (<0.075mm)	%	20.04	0.01	5895006
RDL = Reportable Detection L	-imit			

Success Through Science®

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

Maxxam ID		DN9867	DN9868	DN9869	DN9870		
Sampling Date		2012/05/30	2012/05/30	2012/05/30	2012/05/30		
		13:00	13:00	13:00	13:00		
COC Number		N003609	N003609	N003609	N003609		
	UNITS	BH2 S1	BH3 S1	BH4 S1	BH5 S1	RDL	QC Batch
Volatiles							
Benzene	mg/kg	<0.0050	<0.0050	0.011	<0.0050	0.0050	5885169
Toluene	mg/kg	<0.020	<0.020	0.10	<0.020	0.020	5885169
Ethylbenzene	mg/kg	<0.010	<0.010	0.077	<0.010	0.010	5885169
Xylenes (Total)	mg/kg	<0.040	<0.040	0.55	<0.040	0.040	5885169
m & p-Xylene	mg/kg	<0.040	<0.040	0.37	<0.040	0.040	5885169
o-Xylene	mg/kg	<0.020	<0.020	0.18	<0.020	0.020	5885169
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	<0.10	<0.10	0.10	5885169
F1 (C6-C10) - BTEX	mg/kg	<10	<10	<10	<10	10	5885169
(C6-C10)	mg/kg	<10	<10	<10	<10	10	5885169
Surrogate Recovery (%)							
4-BROMOFLUOROBENZENE (sur.)	%	101	100	102	100		5885169
D10-ETHYLBENZENE (sur.)	%	97	97	101	95		5885169
D4-1,2-DICHLOROETHANE (sur.)	%	101	99	99	102		5885169
	%	94	93	94	92		5885169

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

Maxxam ID		DN9871		
Sampling Date		2012/05/30		
		17:00		
COC Number		N003609		
	UNITS	BH6 S1	RDL	QC Batch
Volatiles				
Benzene	mg/kg	<0.0050	0.0050	5885169
Toluene	mg/kg	<0.020	0.020	5885169
Ethylbenzene	mg/kg	<0.010	0.010	5885169
Xylenes (Total)	mg/kg	<0.040	0.040	5885169
m & p-Xylene	mg/kg	<0.040	0.040	5885169
o-Xylene	mg/kg	<0.020	0.020	5885169
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	0.10	5885169
F1 (C6-C10) - BTEX	mg/kg	<10	10	5885169
(C6-C10)	mg/kg	<10	10	5885169
Surrogate Recovery (%)				
4-BROMOFLUOROBENZENE (sur.)	%	102		5885169
D10-ETHYLBENZENE (sur.)	%	90		5885169
D4-1,2-DICHLOROETHANE (sur.)	%	138		5885169
D8-TOLUENE (sur.)	%	80		5885169
RDL = Reportable Detection Limit				

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

Maxxam ID		DN9866		
Sampling Date		2012/05/30		
COC Number		13:00 N003609		
	UNITS	BH1 S1	RDL	QC Batch
			1	
Volatile Hydrocarbons				
(C6-C10)	mg/kg	<10	10	5889733
Volatiles				
Chloromethane	mg/kg	<0.10	0.10	5889699
Vinyl chloride	mg/kg	<0.060	0.060	5889699
Bromomethane	mg/kg	<0.30	0.30	5889699
Chloroethane	mg/kg	<0.10	0.10	5889699
Trichlorofluoromethane	mg/kg	<0.20	0.20	5889699
1,1-dichloroethene	mg/kg	<0.025	0.025	5889699
Dichloromethane	mg/kg	<0.10	0.10	5889699
trans-1,2-dichloroethene	mg/kg	<0.025	0.025	5889699
1,1-dichloroethane	mg/kg	<0.025	0.025	5889699
cis-1,2-dichloroethene	mg/kg	<0.025	0.025	5889699
Chloroform	mg/kg	<0.050	0.050	5889699
1,1,1-trichloroethane	mg/kg	<0.025	0.025	5889699
1,2-dichloroethane	mg/kg	<0.025	0.025	5889699
Carbon tetrachloride	mg/kg	<0.025	0.025	5889699
Benzene	mg/kg	<0.0050	0.0050	5889699
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	0.10	5889699
1,2-dichloropropane	mg/kg	<0.025	0.025	5889699
Trichloroethene	mg/kg	<0.0090	0.0090	5889699
Bromodichloromethane	mg/kg	<0.050	0.050	5889699
cis-1,3-dichloropropene	mg/kg	<0.050	0.050	5889699
trans-1,3-dichloropropene	mg/kg	<0.050	0.050	5889699
1,1,2-trichloroethane	mg/kg	<0.025	0.025	5889699
Toluene	mg/kg	<0.020	0.020	5889699
Chlorodibromomethane	mg/kg	<0.050	0.050	5889699
Tetrachloroethene	mg/kg	<0.025	0.025	5889699
Chlorobenzene	mg/kg	<0.025	0.025	5889699
1,1,1,2-tetrachloroethane	mg/kg	<0.025	0.025	5889699
Ethylbenzene	mg/kg	<0.010	0.010	5889699
m & p-Xylene	mg/kg	<0.040	0.040	5889699
Bromoform	mg/kg	<0.050	0.050	5889699
RDL = Reportable Detection Limit				

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

Maxxam ID		DN9866		
Sampling Date		2012/05/30		
		13:00		
COC Number		N003609		
	UNITS	BH1 S1	RDL	QC Batch
-				
Styrene	mg/kg	<0.030	0.030	5889699
o-Xylene	mg/kg	<0.040	0.040	5889699
Xylenes (Total)	mg/kg	<0.040	0.040	5889699
1,1,2,2-tetrachloroethane	mg/kg	<0.025	0.025	5889699
1,2-dichlorobenzene	mg/kg	<0.025	0.025	5889699
1,3-dichlorobenzene	mg/kg	<0.025	0.025	5889699
1,4-dichlorobenzene	mg/kg	<0.025	0.025	5889699
Surrogate Recovery (%)				
1,4-Difluorobenzene (sur.)	%	97		5889699
4-BROMOFLUOROBENZENE (sur.)	%	116		5889699
D10-ETHYLBENZENE (sur.)	%	120		5889699
D4-1,2-DICHLOROETHANE (sur.)	%	88		5889699

Success Through Science®

Pinchin Environmental Client Project #: 75695.001

Sampler Initials: JL

General Comments

Results relate only to the items tested.

Quality Assurance Report

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
5885169 HW4	Matrix Spike	4-BROMOFLUOROBENZENE (sur.)	2012/06/01		101	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2012/06/01		101	%	30 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2012/06/01		100	%	60 - 140
		D8-TOLUENE (sur.)	2012/06/01		92	%	60 - 140
		Benzene	2012/06/01		91	%	60 - 140
		Toluene	2012/06/01		85	%	60 - 140
		Ethylbenzene	2012/06/01		91	%	60 - 140
		m & p-Xylene	2012/06/01		90	%	60 - 140
		o-Xylene	2012/06/01		91	%	60 - 140
		Methyl-tert-butylether (MTBE)	2012/06/01		95	%	60 - 140
		(C6-C10)	2012/06/01		122	%	60 - 140
	Spiked Blank	4-BROMOFLUOROBENZENE (sur.)	2012/06/01		102	%	60 - 140
	Opined Diarin	D10-ETHYLBENZENE (sur.)	2012/06/01		99	%	30 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2012/06/01		99 91	%	60 - 140
			2012/06/01		95	%	60 - 140
		D8-TOLUENE (sur.)					
		Benzene	2012/06/01		85	%	60 - 140
		Toluene	2012/06/01		83	%	60 - 140
		Ethylbenzene	2012/06/01		91	%	60 - 140
		m & p-Xylene	2012/06/01		88	%	60 - 140
		o-Xylene	2012/06/01		88	%	60 - 140
		Methyl-tert-butylether (MTBE)	2012/06/01		85	%	60 - 140
		(C6-C10)	2012/06/01		113	%	60 - 140
	Method Blank	4-BROMOFLUOROBENZENE (sur.)	2012/06/01		101	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2012/06/01		100	%	30 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2012/06/01		90	%	60 - 140
		D8-TOLUENE (sur.)	2012/06/01		97	%	60 - 140
		Benzene	2012/06/01	<0.0050		mg/kg	
		Toluene	2012/06/01	<0.020		mg/kg	
		Ethylbenzene	2012/06/01	<0.010		mg/kg	
		Xylenes (Total)	2012/06/01	<0.040		mg/kg	
		m & p-Xylene	2012/06/01	<0.040		mg/kg	
		o-Xylene	2012/06/01	<0.020		mg/kg	
		Methyl-tert-butylether (MTBE)	2012/06/01	<0.10		mg/kg	
		F1 (C6-C10) - BTEX	2012/06/01	<10		mg/kg	
		(C6-C10)	2012/06/01	<10		mg/kg	
	RPD	Benzene	2012/06/01	NC		%	5
		Toluene	2012/06/01	NC		%	5
		Ethylbenzene	2012/06/01	NC		%	5
		Xylenes (Total)	2012/06/01	NC		%	5
		m & p-Xylene	2012/06/01	NC		%	5
		o-Xylene	2012/06/01	NC		%	50
		F1 (C6-C10) - BTEX	2012/06/01	NC		%	50
		(C6-C10)		NC		%	5
5885170 CD3	Matrix Spike	O-TERPHENYL (sur.)	2012/06/01	NC	86	%	50 - 130
5665170 CD3	Matrix Spike		2012/06/01				
		F2 (C10-C16 Hydrocarbons)	2012/06/01		98	%	50 - 13
		F3 (C16-C34 Hydrocarbons)	2012/06/01		104	%	50 - 13
	On the di Dhamb	F4 (C34-C50 Hydrocarbons)	2012/06/01		100	%	50 - 13
	Spiked Blank	O-TERPHENYL (sur.)	2012/06/01		90	%	50 - 13
		F2 (C10-C16 Hydrocarbons)	2012/06/01		98	%	80 - 12
		F3 (C16-C34 Hydrocarbons)	2012/06/01		105	%	80 - 12
		F4 (C34-C50 Hydrocarbons)	2012/06/01		100	%	80 - 12
	Method Blank	O-TERPHENYL (sur.)	2012/06/01		83	%	50 - 13
		F2 (C10-C16 Hydrocarbons)	2012/06/01	<20		mg/kg	
		F3 (C16-C34 Hydrocarbons)	2012/06/01	<20		mg/kg	
			2012/00/01	-=		ing/ing	

Quality Assurance Report (Continued)

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limit
5885170 CD3	RPD	F2 (C10-C16 Hydrocarbons)	2012/06/01	NC		%	5
		F3 (C16-C34 Hydrocarbons)	2012/06/01	NC		%	5
		F4 (C34-C50 Hydrocarbons)	2012/06/01	NC		%	5
5885171 CD3	Method Blank	Moisture	2012/06/04	<0.3		%	
	RPD [DN9866-01]	Moisture	2012/06/04	3.3		%	2
5889699 MM5	Matrix Spike	1,4-Difluorobenzene (sur.)	2012/06/04		106	%	70 - 13
	indian opino	4-BROMOFLUOROBENZENE (sur.)	2012/06/04		115	%	70 - 13
		D10-ETHYLBENZENE (sur.)	2012/06/04		114	%	50 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2012/06/04		99	%	70 - 13
		Chloromethane	2012/06/04		107	%	40 - 15
		Vinyl chloride	2012/06/04		66	%	40 - 15
					92		
		Bromomethane	2012/06/04			%	40 - 15
		Chloroethane	2012/06/04		104	%	40 - 15
		Trichlorofluoromethane	2012/06/04		145	%	40 - 15
		1,1-dichloroethene	2012/06/04		96	%	60 - 14
		Dichloromethane	2012/06/04		107	%	60 - 14
		trans-1,2-dichloroethene	2012/06/04		101	%	60 - 14
		1,1-dichloroethane	2012/06/04		95	%	60 - 14
		cis-1,2-dichloroethene	2012/06/04		100	%	60 - 14
		Chloroform	2012/06/04		96	%	60 - 14
		1,1,1-trichloroethane	2012/06/04		105	%	60 - 14
		1,2-dichloroethane	2012/06/04		105	%	60 - 14
		Carbon tetrachloride	2012/06/04		100	%	60 - 14
		Benzene	2012/06/04		103	%	60 - 14
		1,2-dichloropropane	2012/06/04		91	%	60 - 14
		Trichloroethene	2012/06/04		100	%	60 - 14
		Bromodichloromethane	2012/06/04		100	%	60 - 14
		cis-1,3-dichloropropene	2012/06/04		78	%	60 - 14
		trans-1,3-dichloropropene	2012/06/04		78	%	60 - 14
					78	%	
		1,1,2-trichloroethane	2012/06/04				60 - 14
		Toluene	2012/06/04		112	%	60 - 14
		Chlorodibromomethane	2012/06/04		98	%	60 - 14
		Tetrachloroethene	2012/06/04		110	%	60 - 14
		Chlorobenzene	2012/06/04		97	%	60 - 14
		1,1,1,2-tetrachloroethane	2012/06/04		94	%	60 - 14
		Ethylbenzene	2012/06/04		108	%	60 - 14
		m & p-Xylene	2012/06/04		151 (1)	%	60 - 14
		Bromoform	2012/06/04		102	%	60 - 14
		Styrene	2012/06/04		133	%	60 - 14
		o-Xylene	2012/06/04		98	%	60 - 14
		1,1,2,2-tetrachloroethane	2012/06/04		105	%	60 - 14
		1,2-dichlorobenzene	2012/06/04		93	%	60 - 14
		1,3-dichlorobenzene	2012/06/04		97	%	60 - 14
		1,4-dichlorobenzene	2012/06/04		98	%	60 - 14
	Spiked Blook	1,4-Difluorobenzene (sur.)	2012/06/03		101	%	70 - 13
	Spiked Blank	· · · · · · · · · · · · · · · · · · ·					70 - 13
		4-BROMOFLUOROBENZENE (sur.)	2012/06/03		110	%	
		D10-ETHYLBENZENE (sur.)	2012/06/03		101	%	50 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2012/06/03		96	%	70 - 13
		Chloromethane	2012/06/03		104	%	40 - 15
		Vinyl chloride	2012/06/03		70	%	40 - 15
		Bromomethane	2012/06/03		97	%	40 - 15
		Chloroethane	2012/06/03		104	%	40 - 15
		Trichlorofluoromethane	2012/06/03		134	%	40 - 15
		1,1-dichloroethene	2012/06/03		86	%	60 - 14
		Dichloromethane	2012/06/03		99	%	60 - 14

Quality Assurance Report (Continued)

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
5889699 MM5	Spiked Blank	trans-1,2-dichloroethene	2012/06/03		109	%	60 - 140
		1,1-dichloroethane	2012/06/03		107	%	60 - 140
		cis-1,2-dichloroethene	2012/06/03		101	%	60 - 140
		Chloroform	2012/06/03		96	%	60 - 140
		1,1,1-trichloroethane	2012/06/03		101	%	60 - 140
		1,2-dichloroethane	2012/06/03		97	%	60 - 140
		Carbon tetrachloride	2012/06/03		104	%	60 - 140
		Benzene	2012/06/03		100	%	60 - 140
		1,2-dichloropropane	2012/06/03		85	%	60 - 140
		Trichloroethene	2012/06/03		100	%	60 - 140
		Bromodichloromethane	2012/06/03		100	%	60 - 140
		cis-1,3-dichloropropene	2012/06/03		88	%	60 - 140
		trans-1,3-dichloropropene	2012/06/03		100	%	60 - 140
		1,1,2-trichloroethane	2012/06/03		74	%	60 - 140
		Toluene	2012/06/03		120	%	60 - 140
		Chlorodibromomethane	2012/06/03		95	%	60 - 140
		Tetrachloroethene	2012/06/03		114	%	60 - 140
		Chlorobenzene	2012/06/03		92	%	60 - 140
		1,1,1,2-tetrachloroethane	2012/06/03		89	%	60 - 140
		Ethylbenzene	2012/06/03		103	%	60 - 140
		m & p-Xylene	2012/06/03		143 (2)	%	60 - 140
		Bromoform	2012/06/03		99	%	60 - 140
		Styrene	2012/06/03		121	%	60 - 140
		o-Xylene	2012/06/03		92	%	60 - 140
		1,1,2,2-tetrachloroethane	2012/06/03		92 95	%	60 - 140
		1,2-dichlorobenzene	2012/06/03		99	%	60 - 140
		1,3-dichlorobenzene	2012/06/03		99	%	60 - 140
					92		
	Method Blank	1,4-dichlorobenzene	2012/06/03		92 103	% %	60 - 140 70 - 130
		1,4-Difluorobenzene (sur.)	2012/06/03				70 - 130 70 - 130
		4-BROMOFLUOROBENZENE (sur.)	2012/06/03		100	%	
		D10-ETHYLBENZENE (sur.)	2012/06/03		106	%	50 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2012/06/03	0.40	99	%	70 - 130
		Chloromethane	2012/06/03	<0.10		mg/kg	
		Vinyl chloride	2012/06/03	<0.060		mg/kg	
		Bromomethane	2012/06/03	< 0.30		mg/kg	
		Chloroethane	2012/06/03	<0.10		mg/kg	
		Trichlorofluoromethane	2012/06/03	<0.20		mg/kg	
		1,1-dichloroethene	2012/06/03	<0.025		mg/kg	
		Dichloromethane	2012/06/03	<0.10		mg/kg	
		trans-1,2-dichloroethene	2012/06/03	<0.025		mg/kg	
		1,1-dichloroethane	2012/06/03	<0.025		mg/kg	
		cis-1,2-dichloroethene	2012/06/03	<0.025		mg/kg	
		Chloroform	2012/06/03	<0.050		mg/kg	
		1,1,1-trichloroethane	2012/06/03	<0.025		mg/kg	
		1,2-dichloroethane	2012/06/03	<0.025		mg/kg	
		Carbon tetrachloride	2012/06/03	<0.025		mg/kg	
		Benzene	2012/06/03	<0.0050		mg/kg	
		Methyl-tert-butylether (MTBE)	2012/06/03	<0.10		mg/kg	
		1,2-dichloropropane	2012/06/03	<0.025		mg/kg	
		Trichloroethene	2012/06/03	<0.0090		mg/kg	
		Bromodichloromethane	2012/06/03	<0.050		mg/kg	
		cis-1,3-dichloropropene	2012/06/03	<0.050		mg/kg	
		trans-1,3-dichloropropene	2012/06/03	< 0.050		mg/kg	
		1,1,2-trichloroethane	2012/06/03	< 0.025		mg/kg	
		Toluene	2012/06/03	< 0.020		mg/kg	
						5.5	

Quality Assurance Report (Continued)

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
5889699 MM5	Method Blank	Chlorodibromomethane	2012/06/03	< 0.050	/	mg/kg	
		Tetrachloroethene	2012/06/03	< 0.025		mg/kg	
		Chlorobenzene	2012/06/03	< 0.025		mg/kg	
		1,1,1,2-tetrachloroethane	2012/06/03	<0.025		mg/kg	
		Ethylbenzene	2012/06/03	< 0.010		mg/kg	
		m & p-Xylene	2012/06/03	< 0.040		mg/kg	
		Bromoform	2012/06/03	< 0.050		mg/kg	
		Styrene	2012/06/03	< 0.030		mg/kg	
		o-Xylene	2012/06/03	< 0.040		mg/kg	
		Xylenes (Total)	2012/06/03	< 0.040		mg/kg	
		1,1,2,2-tetrachloroethane	2012/06/03	< 0.025		mg/kg	
		1,2-dichlorobenzene	2012/06/03	< 0.025		mg/kg	
		1,3-dichlorobenzene	2012/06/03	< 0.025		mg/kg	
		1,4-dichlorobenzene	2012/06/03	< 0.025		mg/kg	
	RPD	Chloromethane	2012/06/04	NC		%	40
		Vinyl chloride	2012/06/04	NC		%	40
		Bromomethane	2012/06/04	NC		%	40
		Chloroethane	2012/06/04	NC		%	40
		Trichlorofluoromethane	2012/06/04	NC		%	40
		1,1-dichloroethene	2012/06/04	NC		%	40
		Dichloromethane	2012/06/04	NC		%	40
		trans-1,2-dichloroethene	2012/06/04	NC		%	40
		1,1-dichloroethane	2012/06/04	NC		%	40
		cis-1,2-dichloroethene	2012/06/04	NC		%	40
		Chloroform	2012/06/04	NC		%	40
		1,1,1-trichloroethane	2012/06/04	NC		%	40
		1,2-dichloroethane	2012/06/04	NC		%	40
		Carbon tetrachloride	2012/06/04	NC		%	40
		Benzene	2012/06/04	NC		%	40
		Methyl-tert-butylether (MTBE)	2012/06/04	NC		%	40
		1,2-dichloropropane	2012/06/04	NC		%	40
		Trichloroethene	2012/06/04	NC		%	40
		Bromodichloromethane	2012/06/04	NC		%	40
		cis-1,3-dichloropropene	2012/06/04	NC		%	40
		trans-1,3-dichloropropene	2012/06/04	NC		%	40
		1,1,2-trichloroethane	2012/06/04	NC		%	40
		Toluene	2012/06/04	NC		%	40
		Chlorodibromomethane	2012/06/04	NC		%	40
		Tetrachloroethene	2012/06/04	NC		%	40
		Chlorobenzene	2012/06/04	NC		%	40
		1,1,1,2-tetrachloroethane	2012/06/04	NC		%	40
		Ethylbenzene	2012/06/04	NC		%	40
		m & p-Xylene	2012/06/04	NC		%	40
		Bromoform	2012/06/04	NC		%	40
		Styrene	2012/06/04	NC		%	40
		o-Xylene	2012/06/04	NC		%	40
		Xylenes (Total)	2012/06/04	NC		%	40
		1,1,2,2-tetrachloroethane	2012/06/04	NC		%	40
		1,2-dichlorobenzene	2012/06/04	NC		%	40
		1,3-dichlorobenzene	2012/06/04	NC		%	40
		1,4-dichlorobenzene	2012/06/04	NC		%	40
5889733 MM5	QC Standard	(C6-C10)	2012/06/03	NO	85	%	60 - 140
0000700 101010	Method Blank	(C6-C10)	2012/06/03	<10	00	/o mg/kg	00 - 140
5897777 CD3	Spiked Blank	F4G-SG (Heavy Hydrocarbons-Grav.)	2012/06/06	<10	93	тту/ку %	70 - 130
555111 605	Method Blank	F4G-SG (Heavy Hydrocarbons-Grav.)	2012/06/06	<500	93	mg/kg	70 - 130
	Mothou Dialik		2012/00/00	~000		iiig/kg	

Quality Assurance Report (Continued)

Maxxam Job Number: NB245040

QA/QC			Date				
Batch Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value	Recovery	UNITS	QC Limit
5898699 JP1	Spiked Blank	D10-ANTHRACENE (sur.)	2012/06/07	value	102	%	60 - 130
5050055 51 1	Opined Diarin	DI-ACENAPHTHYLENE (sur.)	2012/06/07		102	%	50 - 130
		D8-NAPHTHALENE (sur.)	2012/06/07		99	%	50 - 130
		TERPHENYL-D14 (sur.)	2012/06/07		99 110	%	60 - 13
		Naphthalene			85	%	
		•	2012/06/07				50 - 13
		2-Methylnaphthalene	2012/06/07		88	% %	50 - 13
		Acenaphthylene	2012/06/07		87		50 - 13
		Acenaphthene	2012/06/07		90	%	50 - 13
		Fluorene	2012/06/07		89	%	50 - 13
		Phenanthrene	2012/06/07		84	%	60 - 13
		Anthracene	2012/06/07		89	%	60 - 13
	Fluoranthene	2012/06/07		97	%	60 - 13	
		Pyrene	2012/06/07		98	%	60 - 13
		Benzo(a)anthracene	2012/06/07		70	%	60 - 13
		Chrysene	2012/06/07		85	%	60 - 13
	Benzo(b&j)fluoranthene	2012/06/07		86	%	60 - 13	
		Benzo(k)fluoranthene	2012/06/07		84	%	60 - 13
		Benzo(a)pyrene	2012/06/07		89	%	60 - 13
		Indeno(1,2,3-cd)pyrene	2012/06/07		79	%	60 - 13
		Dibenz(a,h)anthracene	2012/06/07		86	%	60 - 13
		Benzo(g,h,i)perylene	2012/06/07		79	%	60 - 13
	Method Blank	D10-ANTHRACENE (sur.)	2012/06/06		77	%	60 - 13
		D8-ACENAPHTHYLENE (sur.)	2012/06/06		75	%	50 - 13
		D8-NAPHTHALENE (sur.)	2012/06/06		81	%	50 - 13
		TERPHENYL-D14 (sur.)	2012/06/06		82	%	60 - 13
		Naphthalene	2012/06/06	<0.010		mg/kg	
		2-Methylnaphthalene	2012/06/06	<0.020		mg/kg	
		Acenaphthylene	2012/06/06	< 0.0050		mg/kg	
		Acenaphthene	2012/06/06	< 0.0050		mg/kg	
		Fluorene	2012/06/06	<0.020		mg/kg	
		Phenanthrene	2012/06/06	<0.020		mg/kg	
		Anthracene	2012/06/06	< 0.0040		mg/kg	
		Fluoranthene	2012/06/06	<0.020		mg/kg	
		Pyrene	2012/06/06	<0.020		mg/kg	
		Benzo(a)anthracene	2012/06/06	<0.020		mg/kg	
		Chrysene	2012/06/06	<0.020		mg/kg	
		Benzo(b&j)fluoranthene	2012/06/06	<0.020		mg/kg	
		Benzo(k)fluoranthene	2012/06/06	<0.020		mg/kg	
		Benzo(a)pyrene	2012/06/06	<0.020		mg/kg	
		Indeno(1,2,3-cd)pyrene	2012/06/06	<0.020 <0.050			
						mg/kg	
		Dibenz(a,h)anthracene	2012/06/06	< 0.050		mg/kg	
		Benzo(g,h,i)perylene	2012/06/06	<0.050		mg/kg	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) LCS outside acceptance criteria (10% of analytes failure allowed)

Validation Signature Page

Maxxam Job #: B245040

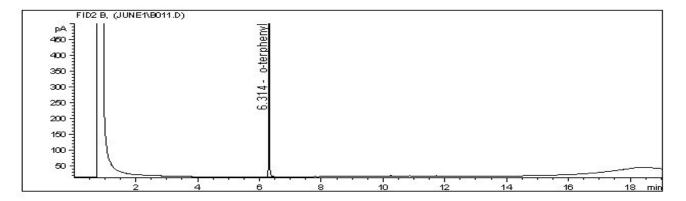
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

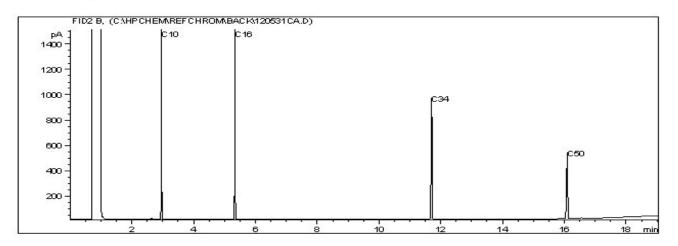
Anelyton

ANDY LUX Data Validation Coordinator

ERIN SANTOS, Dip., Laboratory Coordinator, Laboratory Coordinator

HUA WO, Organics Supervisor


Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


Maxxam Job #: B245040 Maxxam Sample: DN9866 Pinchin Environmental Client Project #: 75695.001

Client ID: BH1 S1

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

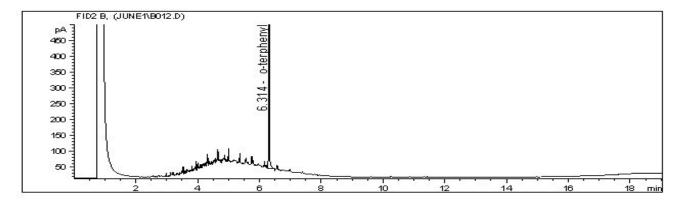
Carbon Range Distribution - Reference Chromatogram

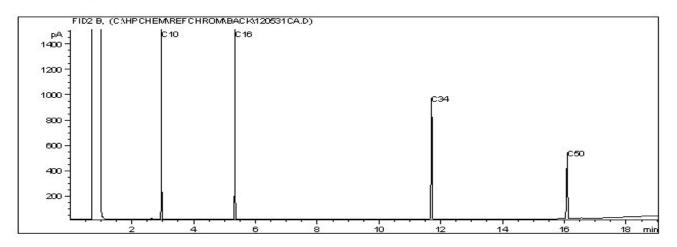
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	3 	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 18 of 23


Maxxam Job #: B245040 Maxxam Sample: DN9867 Pinchin Environmental Client Project #: 75695.001

Client ID: BH2 S1

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

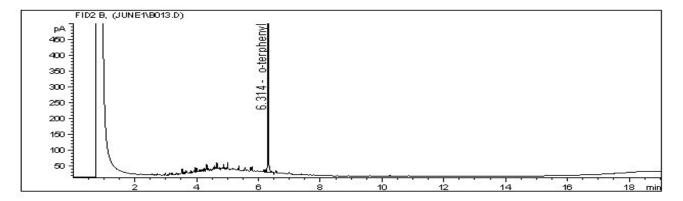
Carbon Range Distribution - Reference Chromatogram

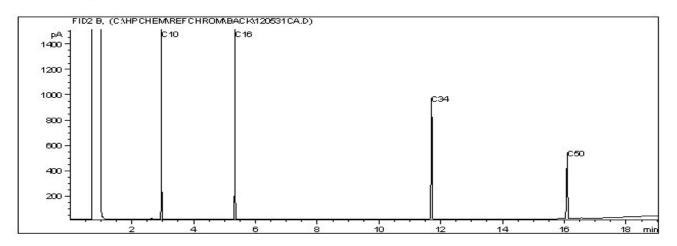
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	100	C12	Diesel:	C8	-	C22
Varsol:	C8		C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 19 of 23


Maxxam Job #: B245040 Maxxam Sample: DN9868 Pinchin Environmental Client Project #: 75695.001

Client ID: BH3 S1

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

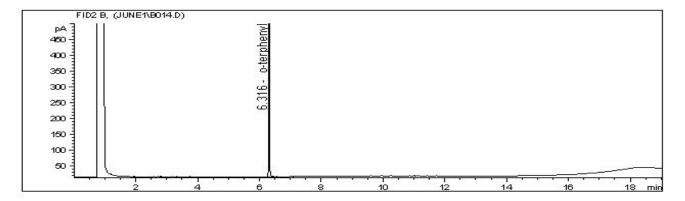
Carbon Range Distribution - Reference Chromatogram

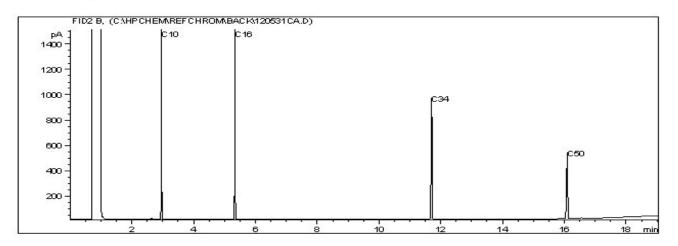
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel: C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils: C2O	_	C40
Kerosene:	C7	3 	C16	Crude Oils: C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 20 of 23


Maxxam Job #: B245040 Maxxam Sample: DN9869 Pinchin Environmental Client Project #: 75695.001

Client ID: BH4 S1

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

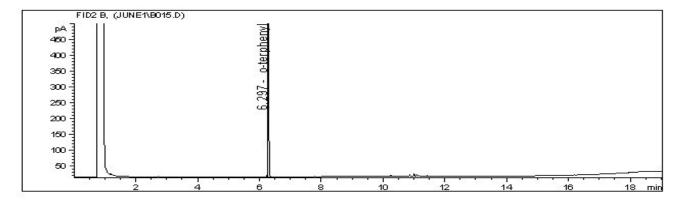
Carbon Range Distribution - Reference Chromatogram

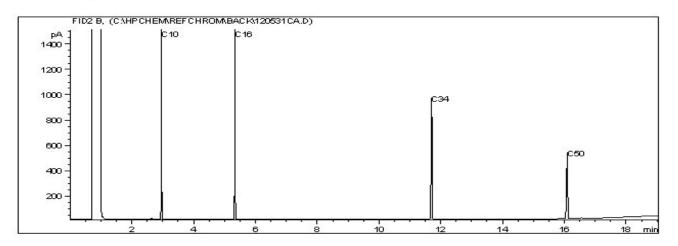
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	100	C12	Diesel:	C8	-	C22
Varsol:	C8		C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 21 of 23


Maxxam Job #: B245040 Maxxam Sample: DN9870 Pinchin Environmental Client Project #: 75695.001

Client ID: BH5 S1

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

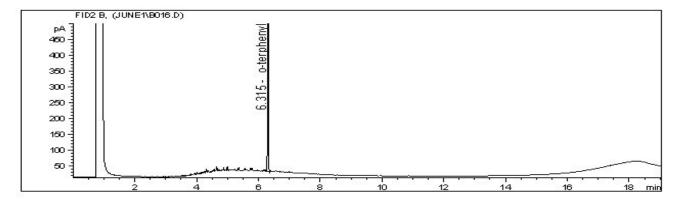
Carbon Range Distribution - Reference Chromatogram

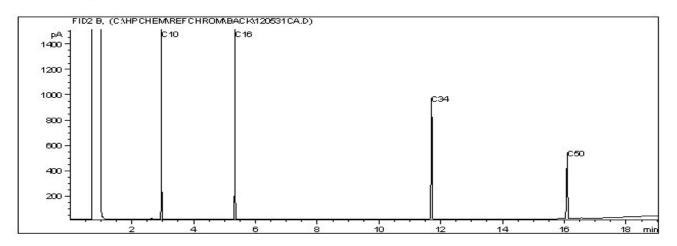
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	3 	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 22 of 23


Report Date: 2012/06/08 Maxxam Job #: B245040 Maxxam Sample: DN9871 Pinchin Environmental Client Project #: 75695.001

Client ID: BH6 S1

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	3 	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Page 23 of 23

Conservation and Water Stewardship Environmental Compliance and Enforcement 123 Main Street, Suite 160 Winnipeg, Manitoba R3C 1A5 T 204-945-7100 F 204-948-2338 www.manitoba.ca

August 21, 2012

Pinchin Environmental 54 Terracon Place Winnipeg, MB R2J 4G7

Dear Ms. Joanne Lanoie,

Re: Remedial Action Plan, 18 Main Street, St. Eustache, Manitoba, Pinchin File No: 75695.002

This will acknowledge receipt of the Remedial Action Plan for the above noted property, dated August 14, 2012, prepared by Pinchin Environmental.

The Remedial Action Plan states:

- Impacted soil from the area surrounding the aboveground storage tanks will be removed from the site and transported to MidCanada Soil Recycling Facility in Ile des Chenes, Manitoba.
- The target remediation criteria will likely be those for a Residential Land Use, excluding potable groundwater pathway.
- Representative soil samples will be collected from the limits of the final excavation and sent for laboratory analysis.
- > Clean imported fill material will be used to backfill the excavation.

It is the position of Manitoba Conservation that the remediation at 18 Main Street, St. Eustache, Manitoba be undertaken as described above. A Summary Report documenting the remediation should be submitted to this office for review at the completion of this work.

It should be noted that the position of Manitoba Conservation as stated in this letter is based on the information provided to this office by Pinchin Environmental and relates only to the matters within the scope of the investigation conducted by Pinchin Environmental.

Sincerely,

Warren Rospad, B.Sc. District Supervisor / Environment Officer Contaminated Sites / Petroleum Storage Programs

File:

APPENDIX IV LABORATORY CERTIFICATES OF ANALYSES

Your Project #: 75695.002 Your C.O.C. #: N004044

Attention: SEAN MULVEY

Pinchin Environmental Winnipeg 54 Terracon PI. Winnipeg, MB CANADA R2J 4G7

Report Date: 2012/09/19

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B281497 Received: 2012/09/12, 14:00

Sample Matrix: Soil # Samples Received: 9

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
BTEX/F1 by HS GC/MS (MeOH extract)	9	2012/09/14	2012/09/18 WINSOP-00054	EPA8260C/CCME PHCCWS
			WINSOP-00055	
CCME Hydrocarbons (F2-F4 in soil)	9	2012/09/14	2012/09/18 WINSOP-00056	CCME PHC-CWS
Moisture	9	N/A	2012/09/17 WIN SOP-00060	Carter Method 51.2

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Janelle Kochan, B.Sc., Project Manager, Email: JKochan@maxxam.ca Phone# (204) 772-7276 Ext:2209

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 21

Pinchin Environmental Client Project #: 75695.002

RESULTS OF CHEMICAL ANALYSES OF SOIL

										_
Maxxam ID		EL0838	EL083	39 El	_0840	EL0841	E	EL0842		
Sampling Date		2012/09/11	2012/09/	11 2012	/09/11	2012/09/11	201	2/09/11		
		09:45	09:55	10):05	10:15	1	0:25		
COC Number		N004044	N00404	4 N00	4044	N004044	NC	04044		
	UNITS	B2	B5	E	38	PEW		PNW	RDL	QC Batch
Physical Properties										
Moisture	%	25	25	2	27	5.2		5.7	0.3	6167454
RDL = Reportable Det	ection Lim	nit							-	
Maxxam ID		EL	_0843	EL0844	ELC	0845	EL0846			
O server l'as a D s	1 -	1 0040	100/44	0040/00/44	0040/0		040/00/44	1 1		

IVIAXXAIII ID		EL0043	EL0044	EL0045	EL0040		
Sampling Date		2012/09/11	2012/09/11	2012/09/11	2012/09/11		
		10:35	10:45	10:55	11:05		
COC Number		N004044	N004044	N004044	N004044		
	UNITS	PWW	NW3	EW1	WW2	RDL	QC Batch
							-
Physical Properties							
Moisture	%	25	25	27	27	0.3	6167454
RDL = Reportable Det	ection Lim	nit		,			

Pinchin Environmental Client Project #: 75695.002

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		EL0838	EL0839	EL0840	EL0841		
Sampling Date		2012/09/11	2012/09/11	2012/09/11	2012/09/11		
		09:45	09:55	10:05	10:15		
COC Number	UNITS	N004044 B2	N004044 B5	N004044 B8	N004044	RDL	OC Detab
	UNITS	BZ	80	88	PEW	RDL	QC Batch
Ext. Pet. Hydrocarbon							
F2 (C10-C16 Hydrocarbons)	mg/kg	<20	<20	<20	69	20	6167453
F3 (C16-C34 Hydrocarbons)	mg/kg	<20	<20	29	430	20	6167453
F4 (C34-C50 Hydrocarbons)	mg/kg	<20	<20	<20	33	20	6167453
Reached Baseline at C50	mg/kg	Yes	Yes	Yes	Yes		6167453
Surrogate Recovery (%)							
O-TERPHENYL (sur.)	%	89	89	98	86		6167453
RDL = Reportable Detection I		EI 0842	EL 0843	EL 0844	EL 0845		
· .							
Maxxam ID		EL0842	EL0843	EL0844	EL0845		
·		2012/09/11	2012/09/11	2012/09/11	2012/09/11		
Maxxam ID Sampling Date		2012/09/11 10:25	2012/09/11 10:35	2012/09/11 10:45	2012/09/11 10:55		
Maxxam ID Sampling Date		2012/09/11 10:25 N004044	2012/09/11 10:35 N004044	2012/09/11 10:45 N004044	2012/09/11 10:55 N004044		
Maxxam ID Sampling Date	UNITS	2012/09/11 10:25	2012/09/11 10:35	2012/09/11 10:45	2012/09/11 10:55	RDL	QC Batch
Maxxam ID Sampling Date COC Number	UNITS	2012/09/11 10:25 N004044	2012/09/11 10:35 N004044	2012/09/11 10:45 N004044	2012/09/11 10:55 N004044	RDL	QC Batch
Maxxam ID Sampling Date COC Number Ext. Pet. Hydrocarbon	UNITS mg/kg	2012/09/11 10:25 N004044	2012/09/11 10:35 N004044	2012/09/11 10:45 N004044	2012/09/11 10:55 N004044	RDL	QC Batch
Maxxam ID Sampling Date COC Number Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons)		2012/09/11 10:25 N004044 PNW	2012/09/11 10:35 N004044 PWW	2012/09/11 10:45 N004044 NW3	2012/09/11 10:55 N004044 EW1		
Maxxam ID Sampling Date COC Number Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) F3 (C16-C34 Hydrocarbons)	mg/kg	2012/09/11 10:25 N004044 PNW <20	2012/09/11 10:35 N004044 PWW <20	2012/09/11 10:45 N004044 NW3 <20	2012/09/11 10:55 N004044 EW1 <20	20	6167453
Maxxam ID Sampling Date COC Number Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) F3 (C16-C34 Hydrocarbons) F4 (C34-C50 Hydrocarbons)	mg/kg mg/kg	2012/09/11 10:25 N004044 PNW <20 <20	2012/09/11 10:35 N004044 PWW <20 86	2012/09/11 10:45 N004044 NW3 <20 <20	2012/09/11 10:55 N004044 EW1 <20 <20	20 20	6167453 6167453
Maxxam ID Sampling Date COC Number Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) F3 (C16-C34 Hydrocarbons) F4 (C34-C50 Hydrocarbons) Reached Baseline at C50	mg/kg mg/kg mg/kg	2012/09/11 10:25 N004044 PNW <20 <20 <20 <20	2012/09/11 10:35 N004044 PWW <20 86 <20	2012/09/11 10:45 N004044 NW3 <20 <20 <20 <20	2012/09/11 10:55 N004044 EW1 <20 <20 <20 <20	20 20	6167453 6167453 6167453
Maxxam ID	mg/kg mg/kg mg/kg	2012/09/11 10:25 N004044 PNW <20 <20 <20 <20	2012/09/11 10:35 N004044 PWW <20 86 <20	2012/09/11 10:45 N004044 NW3 <20 <20 <20 <20	2012/09/11 10:55 N004044 EW1 <20 <20 <20 <20	20 20	6167453 6167453 6167453 6167453
Maxxam ID Sampling Date COC Number Ext. Pet. Hydrocarbon F2 (C10-C16 Hydrocarbons) F3 (C16-C34 Hydrocarbons) F4 (C34-C50 Hydrocarbons) Reached Baseline at C50 Surrogate Recovery (%)	mg/kg mg/kg mg/kg mg/kg %	2012/09/11 10:25 N004044 PNW <20 <20 <20 <20 Yes	2012/09/11 10:35 N004044 PWW <20	2012/09/11 10:45 N004044 NW3 <20	2012/09/11 10:55 N004044 EW1 <20 <20 <20 <20 Yes	20 20	6167453 6167453 6167453

Pinchin Environmental Client Project #: 75695.002

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		EL0846		
Sampling Date		2012/09/11		
		11:05		
COC Number		N004044		
	UNITS	WW2	RDL	QC Batch
Ext. Pet. Hydrocarbon				
F2 (C10-C16 Hydrocarbons)	mg/kg	<20	20	6167453
F3 (C16-C34 Hydrocarbons)	mg/kg	<20	20	6167453
F4 (C34-C50 Hydrocarbons)	mg/kg	<20	20	6167453
Reached Baseline at C50	mg/kg	Yes		6167453
Surrogate Recovery (%)				
O-TERPHENYL (sur.)	%	79		6167453
RDL = Reportable Detection I	_imit		1	

Success Through Science®

Pinchin Environmental Client Project #: 75695.002

Maxxam ID		EL0838	EL0839	EL0840	EL0841		
Sampling Date		2012/09/11	2012/09/11	2012/09/11	2012/09/11		
		09:45	09:55	10:05	10:15		
COC Number		N004044	N004044	N004044	N004044		
	UNITS	B2	B5	B8	PEW	RDL	QC Batch
Volatiles							
Benzene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6167447
Toluene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	6167447
Ethylbenzene	mg/kg	<0.010	<0.010	<0.010	<0.010	0.010	6167447
Xylenes (Total)	mg/kg	<0.040	<0.040	<0.040	<0.040	0.040	6167447
m & p-Xylene	mg/kg	<0.040	<0.040	<0.040	<0.040	0.040	6167447
o-Xylene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	6167447
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	<0.10	<0.10	0.10	6167447
F1 (C6-C10) - BTEX	mg/kg	<10	<10	<10	<10	10	6167447
(C6-C10)	mg/kg	<10	<10	<10	<10	10	6167447
Surrogate Recovery (%)							
4-BROMOFLUOROBENZENE (sur.)	%	100	101	102	100		6167447
D10-ETHYLBENZENE (sur.)	%	122	123	119	117		6167447
D4-1,2-DICHLOROETHANE (sur.)	%	114	112	133	119		6167447
D8-TOLUENE (sur.)	%	94	95	91	93		6167447

Success Through Science®

Pinchin Environmental Client Project #: 75695.002

Maxxam ID		EL0842	EL0843	EL0844	EL0845		
Sampling Date		2012/09/11	2012/09/11	2012/09/11	2012/09/11		
		10:25	10:35	10:45	10:55		
COC Number		N004044	N004044	N004044	N004044		
	UNITS	PNW	PWW	NW3	EW1	RDL	QC Batch
Volatiles							
Benzene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6167447
Toluene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	6167447
Ethylbenzene	mg/kg	<0.010	<0.010	<0.010	<0.010	0.010	6167447
Xylenes (Total)	mg/kg	<0.040	<0.040	<0.040	<0.040	0.040	6167447
m & p-Xylene	mg/kg	<0.040	<0.040	<0.040	<0.040	0.040	6167447
o-Xylene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.020	6167447
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	<0.10	<0.10	<0.10	0.10	6167447
F1 (C6-C10) - BTEX	mg/kg	<10	<10	<10	<10	10	6167447
(C6-C10)	mg/kg	<10	<10	<10	<10	10	6167447
Surrogate Recovery (%)							
4-BROMOFLUOROBENZENE (sur.)	%	102	102	101	102		6167447
D10-ETHYLBENZENE (sur.)	%	115	102	102	99		6167447
D4-1,2-DICHLOROETHANE (sur.)	%	139	100	97	102		6167447
D8-TOLUENE (sur.)	%	89	99	99	98		6167447

Maxxam Job #: B281497 Report Date: 2012/09/19 Pinchin Environmental Client Project #: 75695.002

Maxxam ID		EL0846		
Sampling Date		2012/09/11		
		11:05		
COC Number		N004044		
	UNITS	WW2	RDL	QC Batch
Volatiles				
Benzene	mg/kg	<0.0050	0.0050	6167447
Toluene	mg/kg	<0.020	0.020	6167447
Ethylbenzene	mg/kg	<0.010	0.010	6167447
Xylenes (Total)	mg/kg	<0.040	0.040	6167447
m & p-Xylene	mg/kg	<0.040	0.040	6167447
o-Xylene	mg/kg	<0.020	0.020	6167447
Methyl-tert-butylether (MTBE)	mg/kg	<0.10	0.10	6167447
F1 (C6-C10) - BTEX	mg/kg	<10	10	6167447
(C6-C10)	mg/kg	<10	10	6167447
Surrogate Recovery (%)				
4-BROMOFLUOROBENZENE (sur.)	%	100		6167447
D10-ETHYLBENZENE (sur.)	%	105		6167447
D4-1,2-DICHLOROETHANE (sur.)	%	99		6167447
D8-TOLUENE (sur.)	%	98		6167447

VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam Job #: B281497 Report Date: 2012/09/19 Pinchin Environmental Client Project #: 75695.002

General Comments

Results relate only to the items tested.

Pinchin Environmental Attention: SEAN MULVEY Client Project #: 75695.002 P.O. #: Site Location:

Quality Assurance Report

Maxxam Job Number: NB281497

Datab			Date				
Batch Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
6167447 HW4	Matrix Spike		yyyy/iiiii/dd	Value	Receivery	<u>onno</u>	QU LIIIII
	[EL0839-01]	4-BROMOFLUOROBENZENE (sur.)	2012/09/18		102	%	60 - 140
		D10-ETHYLBENZENE (sur.)	2012/09/18		127	%	30 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2012/09/18		106	%	60 - 140
		D8-TOLUENE (sur.)	2012/09/18		96	%	60 - 140
		Benzene	2012/09/18		125	%	60 - 14
		Toluene	2012/09/18		117	%	60 - 14
		Ethylbenzene	2012/09/18		115	%	60 - 14
		m & p-Xylene	2012/09/18		104	%	60 - 14
		o-Xylene	2012/09/18		107	%	60 - 14
		Methyl-tert-butylether (MTBE)	2012/09/18		115	%	60 - 14
		(C6-C10)	2012/09/18		135	%	60 - 14
	Spiked Blank	4-BROMOFLUOROBENZENE (sur.)	2012/09/18		102	%	60 - 14
		D10-ETHYLBENZENE (sur.)	2012/09/18		112	%	30 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2012/09/18		122	%	60 - 14
		D8-TOLUENE (sur.)	2012/09/18		93	%	60 - 14
		Benzene	2012/09/18		122	%	60 - 14
		Toluene	2012/09/18		107	%	60 - 14
		Ethylbenzene	2012/09/18		103	%	60 - 14
		m & p-Xylene	2012/09/18		94	%	60 - 14
		o-Xylene	2012/09/18		99	%	60 - 14
		Methyl-tert-butylether (MTBE)	2012/09/18		123	%	60 - 14
		(C6-C10)	2012/09/18		95	%	60 - 14
	Method Blank	4-BROMOFLUOROBENZENE (sur.)	2012/09/18		101	%	60 - 14
		D10-ETHYLBENZENE (sur.)	2012/09/18		116	%	30 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2012/09/18		112	%	60 - 14
		D8-TOLUENE (sur.)	2012/09/18		96	%	60 - 14
		Benzene	2012/09/18	<0.0050		mg/kg	
		Toluene	2012/09/18	<0.020		mg/kg	
		Ethylbenzene	2012/09/18	<0.010		mg/kg	
		Xylenes (Total)	2012/09/18	<0.040		mg/kg	
		m & p-Xylene	2012/09/18	<0.040		mg/kg	
		o-Xylene	2012/09/18	< 0.020		mg/kg	
		Methyl-tert-butylether (MTBE)	2012/09/18	<0.10		mg/kg	
		F1 (C6-C10) - BTEX	2012/09/18	<10		mg/kg	
		(C6-C10)	2012/09/18	<10		mg/kg	
	RPD [EL0838-01]	Benzene	2012/09/18	NC		%	5
		Toluene	2012/09/18	NC		%	5
		Ethylbenzene	2012/09/18	NC		%	5
		Xylenes (Total)	2012/09/18	NC		%	5
		m & p-Xylene	2012/09/18	NC		%	5
		o-Xylene	2012/09/18	NC		%	5
		Methyl-tert-butylether (MTBE)	2012/09/18	NC		%	N/
		F1 (C6-C10) - BTEX	2012/09/18	NC		%	5
		(C6-C10)	2012/09/18	NC		%	5
6167453 HW4	Matrix Spike	. ,					
	[EL0839-01]	O-TERPHENYL (sur.)	2012/09/18		95	%	50 - 13
		F2 (C10-C16 Hydrocarbons)	2012/09/18		118	%	50 - 13
		F3 (C16-C34 Hydrocarbons)	2012/09/18		122	%	50 - 13
		F4 (C34-C50 Hydrocarbons)	2012/09/18		113	%	50 - 13
	Spiked Blank	O-TERPHENYL (sur.)	2012/09/18		82	%	50 - 13
		F2 (C10-C16 Hydrocarbons)	2012/09/18		99	%	80 - 12
		F3 (C16-C34 Hydrocarbons)	2012/09/18		101	%	80 - 12
		F4 (C34-C50 Hydrocarbons)	2012/09/18		91	%	80 - 12
	Method Blank	O-TERPHENYL (sur.)	2012/09/18		66	%	50 - 13
			2012/03/10		00	70	

Pinchin Environmental Attention: SEAN MULVEY Client Project #: 75695.002 P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: NB281497

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	UNITS	QC Limits
6167453 HW4	Method Blank	F2 (C10-C16 Hydrocarbons)	2012/09/18	<20		mg/kg	
		F3 (C16-C34 Hydrocarbons)	2012/09/18	<20		mg/kg	
		F4 (C34-C50 Hydrocarbons)	2012/09/18	<20		mg/kg	
	RPD [EL0838-01]	F2 (C10-C16 Hydrocarbons)	2012/09/18	NC		%	50
		F3 (C16-C34 Hydrocarbons)	2012/09/18	NC		%	50
		F4 (C34-C50 Hydrocarbons)	2012/09/18	NC		%	50
6167454 ML8	Method Blank	Moisture	2012/09/17	<0.3		%	
	RPD [EL0840-01]	Moisture	2012/09/17	0.4		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

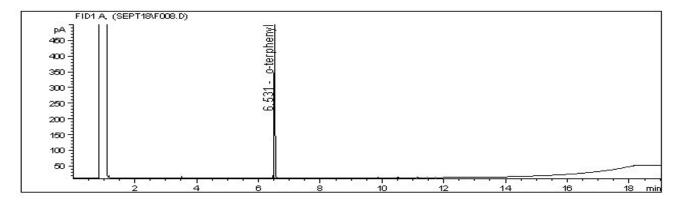
Validation Signature Page

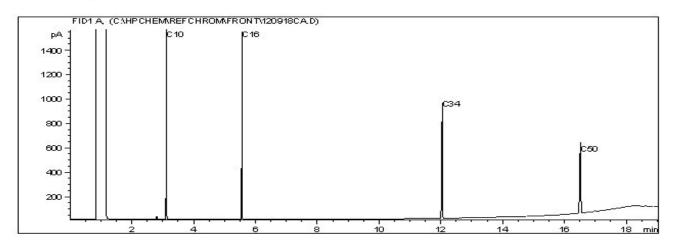
Maxxam Job #: B281497

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

112 _____

Hua Wo, Organics Supervisor


Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


Pinchin Environmental Client Project #: 75695.002

Client ID: B2

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

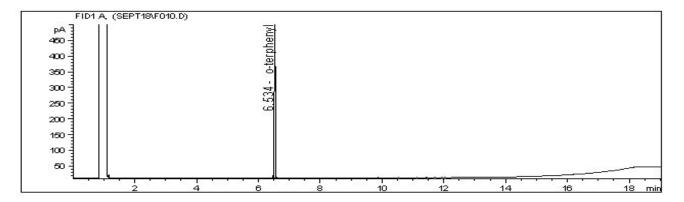
Carbon Range Distribution - Reference Chromatogram

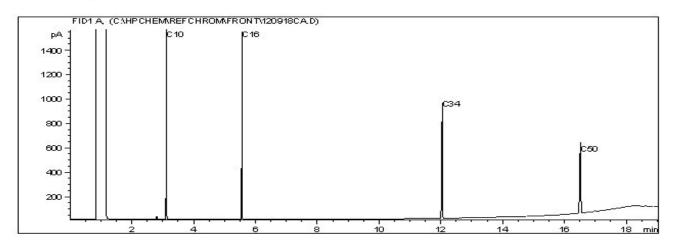
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	-	C12	Diesel:	С8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	СЗ	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 13 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: B5

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

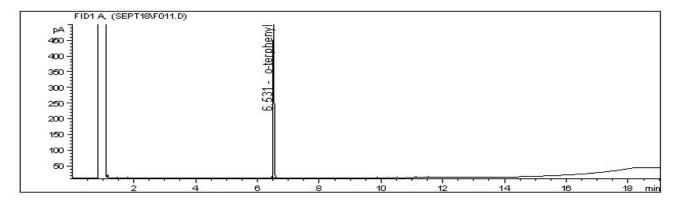
Carbon Range Distribution - Reference Chromatogram

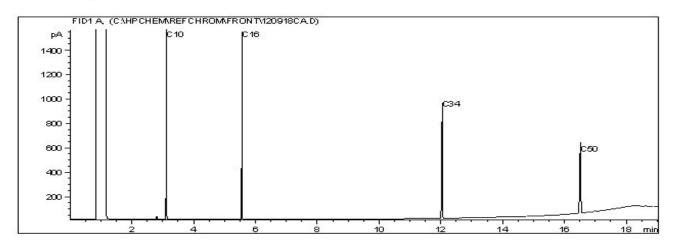
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	3 	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 14 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: B8

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

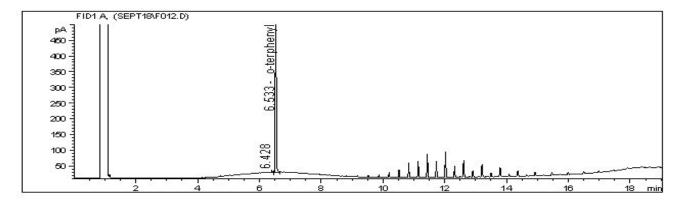
Carbon Range Distribution - Reference Chromatogram

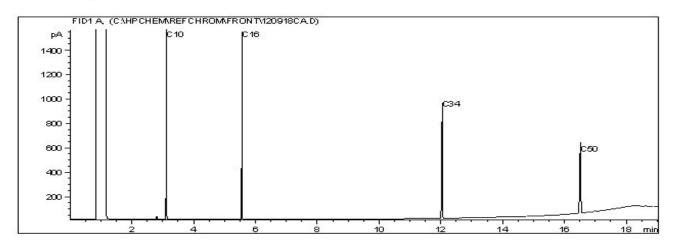
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	-	C12	Diesel:	C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 15 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: PEW

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

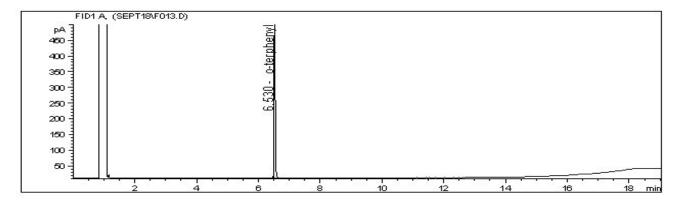
Carbon Range Distribution - Reference Chromatogram

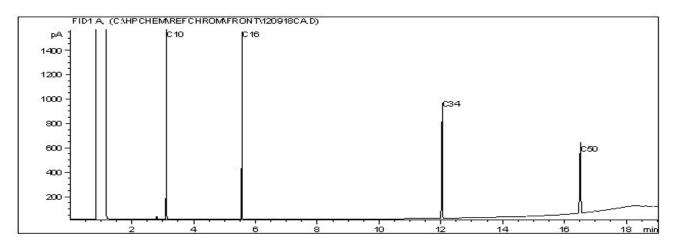
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8		C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 16 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: PNW

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

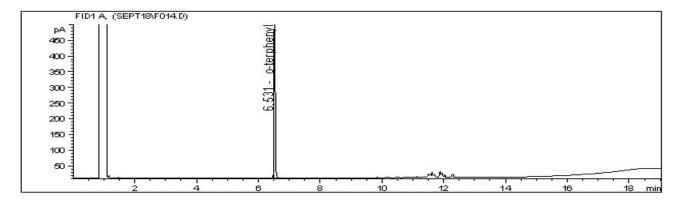
Carbon Range Distribution - Reference Chromatogram

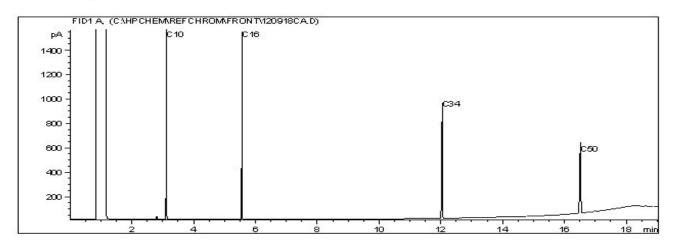
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8		C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 17 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: PWW

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

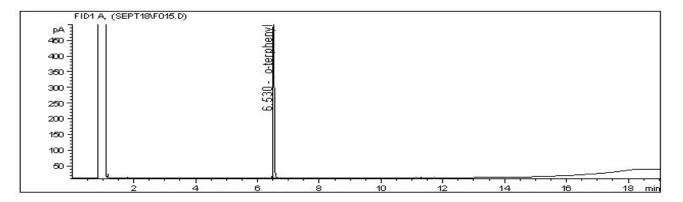
Carbon Range Distribution - Reference Chromatogram

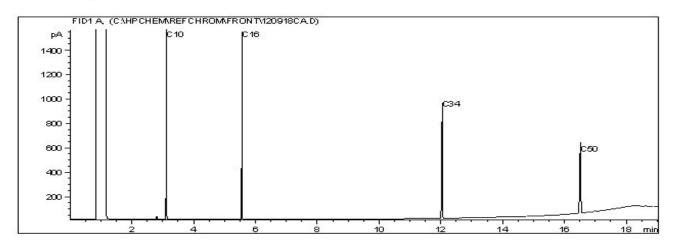
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8		C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 18 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: NW3

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

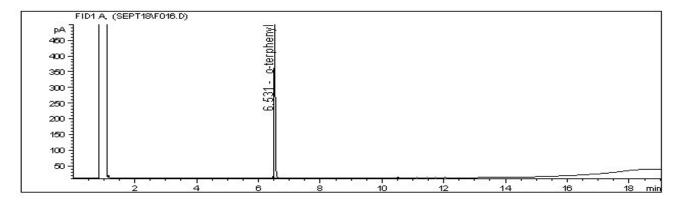
Carbon Range Distribution - Reference Chromatogram

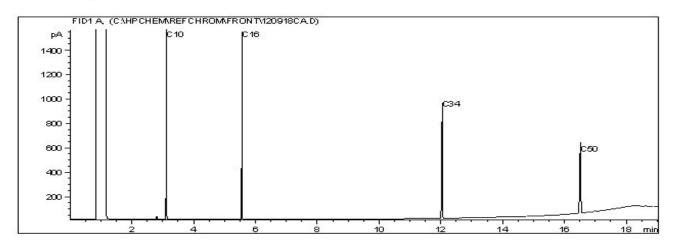
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	-	C12	Diesel:	С8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	-	C16	Crude Oils:	СЗ	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 19 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: EW1

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

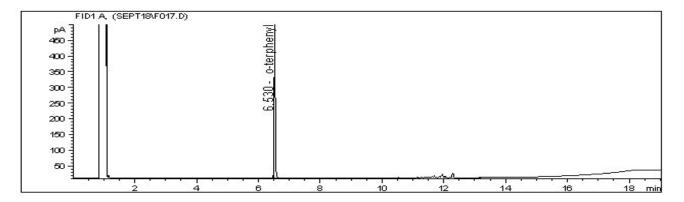
Carbon Range Distribution - Reference Chromatogram

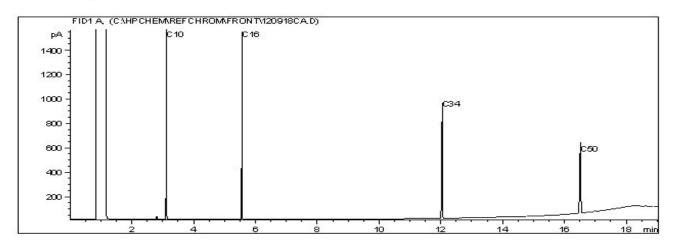
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	3 	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Page 20 of 21


Pinchin Environmental Client Project #: 75695.002

Client ID: WW2

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline:	C4	1	C12	Diesel:	C8	-	C22
Varsol:	C8	_	C12	Lubricating Oils:	C20	_	C40
Kerosene:	C7	3 	C16	Crude Oils:	C3	-	C60+

Page 1 of 1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Page 21 of 21