APPENDIX B

Borehole Logs

Dillon Consulting Ltd. 1558 Willson Place Winnipeg, Manitoba R3T 0Y4 Telephone: 204-453-2301

г													
	Client: N	Manitoba Water Services Board (MWSB)	Project: Wawanesa Lagoon Functional Design										
	Project	No.: <u>13-8212-6000-01</u>	Loca	ation: SE	E1/4	25-7-17W (S	See Site	Plar	1)				
	_	Co.: Paddock Drilling		-		Solid Stem							
L	Supervi	sed by: Rob Buenaventura	Date	Started	d: _	4/22/14	Date C	omp				22/	<u> </u>
	Depth		Lithology					_		amp		-	Depth
	Scale	Stratigraphic Description	응	Depth		Notes		hoc	βqι	alue	% :	(ppn LEL)	Scale
	(m)		吉	(m)				Method	Number	N Value	Rec	VOC (ppm or %LEL)	(m)
ŀ		TOPSOIL, 125 mm thick, black	711/					_	_				
		SILTY CLAY, brown, medium plastic, moist,		0.127									
	0.5	and silt											-0.5
		- below 0.5 m, medium to low plastic, moist,											
	4.0	firm											4.0
	1.0							-00-					- 1.0
								W.	S1				
	1.5												−1.5
	2.0-												-2.0
								m	S2		*		0.5
	2.5	CLAY, brown, high to medium plastic, firm,		2.438									-2.5
		with silt, some sand sizes, trace gravel sizes											
	3.0			2040				W.	S3				-3.0
		SILTY SAND, brown, fine grained, wet, with silt, some clay		3.048					33				
	3.5	Siit, Soitie Clay						m	S4				-3.5
	3.5			3.6576									3.5
		SILTY CLAY, brown, stiff, medium plastic, and silt, with sand sizes, some gravel sizes		3.0376									
	4.0	and sitt, with saind sizes, some graver sizes											−4.0
		- below 4.6m, firm											
	4.5							000					-4.5
								Sep.	S5				
	- O												- 0
	5.0												− 5.0
/9/14													
DT 6	5.5												-5.5
TE.G								2002	S6				
MPLA	6.0							17	30				-6.0
N TE	0.0	END OF TESTHOLE, water seepage	1/3/3/3/	6.1									0.0
ILLO		observed at 6.1 m below grade and											
PJ		measured in hole sloughing at 3.7 m below grade											
ILB.G		grado											
ESA N		- testhole remained opened from 9:30 am											
WANE		to 12:23 pm with measured water at 2.58 m below grade											
WA		bolow grade											
N BH		- testhole backfilled with two (2) bags of											
DILLON BH WAWANESA NLB.GPJ DILLON TEMPLATE.GDT 6/9/14		bentonite pellets and followed by auger cuttings to grade											
Z _	Z Water	r found LITHOLOGY [] Topsoil			Silt / C	Clav	SAMPL	E	W.	Gr/	ab Sar	nnle	
	.,,	SYMBOLS VIIII OLIVI					TYP	Ē		GI	au Jai	hic	

Silty Sand

Clay

TH2

-	Manitoba Water Services Board (MWSB)	Project: Wawanesa Lagoon Functional Design Location: SE1/4 25-7-17W (See Site Plan)										
-	No.: <u>13-8212-6000-01</u> Co.: Paddock Drilling						rian)				
_	ised by: Rob Buenaventura		ing Meth Started		Solid Stem 4/22/14	Date C	`omn	loto	q٠	1/	22/1	1
	noca by. INOD Duchaventura		Jane	u	7/44/14	Date C) 		u. amp		<i></i>	
Depth Scale (m)	Stratigraphic Description	Lithology	Depth (m)		Notes		Method	Number _o	N Value		VOC (ppm or %LEL)	Dept Scal (m)
	TOPSOIL, 230 mm thick, black	71 1/2	<u>.</u>									
0.5	SILTY CLAY, brown, medium plastic, moist to dry, and silt		0.229									-0.5
1.0-	- below						WW.	0.1				-1.0
1.5-							W.	S1				1.5
2.0-												-2.0
2.5-							ann,	S2				-2.5
3.0-												-3.0
3.5-	SILTY SAND, brown, fine grained, moist to		3.658									-3.5
4.0	wet, with silt, some clay		4 267				nn,	S3				-4.0
4.5—	SILTY CLAY, brown, medium plastic, moist, stiff, and silt, with sand sizes, some gravel sizes		4.267									-4.5
	END OF TESTHOLE, no water seepage observed after drilling and measured in hole sloughing at 4.1 m below grade											
	- testhole remained opened from 9:55 am to 12:18 pm with measured water at 3.59 m below grade											
	- testhole backfilled with two (2) bags of bentonite pellets and followed by auger cuttings to grade											
	er found LITHOLOGY [자호자] Topsoil					SAMPL						

Client: Manitoba Water Services Board (MWSB) Project: Wawanesa Lagoon Functional Design Project No.: 13-8212-6000-01 Location: SE1/4 25-7-17W (See Site Plan) Drilling Co.: Paddock Drilling Drilling Method: Solid Stem Auger Date Started: Supervised by: Rob Buenaventura 4/22/14 Date Completed: 4/22/14 Sample Lithology Depth Depth N Value (ppm LEL) Number Method % Scale Depth **Notes** Scale Stratigraphic Description Rec. VOC ((m) (m) (m) TOPSOIL, 150 mm thick, black 0.152 SILTY CLAY, brown, medium plastic, moist, and silt 0.5 0.5 Sul S1 - below 1.2 m, high plastic, moist, stiff, some sand sizes, trace gravel sizes 1.0--1.0 - below 1.5 m, some gravel sizes W. S2 1.5 -1.5 S3 2.0 -2.0 2.5 -2.5 3.0 3.0 S4 3.353 SILTY SAND, brown, fine grained, wet, with 3.5 3.5 silt, some clay SILTY CLAY, brown, medium plastic, moist, 3.81 4.0 4.0 stiff, with sand sizes, trace gravel sizes S5 4.5 4.5 4.6 END OF TESTHOLE, no water seepage observed after drilling and measured in hole sloughing at 4.1 m below grade - testhole remained opened from 10:15 am to 12:15 pm and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger cuttings to grade

DILLON BH WAWANESA NLB.GPJ DILLON TEMPLATE.GDT 6/9/14

Project No.: 13-8212-6000-01

Drilling Co.: Paddock Drilling

Client: Manitoba Water Services Board (MWSB)

Project: Wawanesa Lagoon Functional Design
Location: SE1/4 25-7-17W (See Site Plan)

Drilling Method: Solid Stem Auger

Supervised by: Rob Buenaventura Date Started: 4/22/14 Date Completed: 4/22/14

Depth		_ ≥				S	amp	<u>le</u>		Depth
Scale (m)	Stratigraphic Description	Lithology	Depth (m)	Notes	Method	Number	N Value	Rec %	VOC (ppm or %LEL)	Scale (m)
	TOPSOIL, 125 mm thick, black	VVVV	0.127							
0.5-	SILTY CLAY, brown, medium plastic, moist, and silt		0.127							-0.5
1.0-	- below 0.9 m, some sand sizes, some gravel sizes									- 1.0
	- below 2.3 m, occasional silt lenses				M	S1				
1.5-										—1.5
2.0-										-2.0
2.5-					ans.	S2				-2.5
3.0-										-3.0
3.5-	SILTY SAND, brown, fine grained, moist to dry, with silt, some clay	<u> </u>	3.353							-3.5
4.0-	CILTY CLAY brown modium plactic moist		4.115		W.	S3				-4.0
4.5-	SILTY CLAY, brown, medium plastic, moist, stiff, with sand sizes, trace gravel sizes									−4.5
	END OF TESTHOLE, no water seepage		4.6							

END OF TESTHOLE, no water seepage and sloughing observed after drilling

- testhole remained opened from 10:32 am to 12:13 pm and remained dry of water seepage

 testhole backfilled with two (2) bags of bentonite pellets and followed by auger cuttings to grade

DILLON BH WAWANESA NLB.GPJ DILLON TEMPLATE.GDT 6/9/14

Dillon Consulting Ltd. 1558 Willson Place Winnipeg, Manitoba R3T 0Y4 Telephone: 204-453-2301

	Project	Client: Manitoba Water Services Board (MWSB) Project No.: 13-8212-6000-01 Drilling Co.: Paddock Drilling					esa Lagoon F 25-7-17W (S				n			
	_	Co.: Paddock Drilling ised by: Rob Buenaventura				g Metho Started:	Solid Stem 4/22/14	Auger Date C	omp	lete	d:	4/	/22/	14
•	Depth Scale (m)	Stratigraphic Description		Lithology		Depth (m)	Notes		Method	Number	amp N Value	Rec % alc	VOC (ppm or %LEL)	Depth Scale (m)
ı		TOPSOIL, 150 mm thick, black		<u> </u>		0.450			_	_	_			
	0.5	SILTY CLAY, brown, medium plastic, moist, with sand sizes				0.152			Sun's	S1	-			-0.5
	1.0-	- below 0.8 m, some sand sizes, trace gravel sizes, occasional gypsum and oxide inclusions												—1.0
	1.5—	SILTY SAND, brown, fine grained, dry to moist, with silt, some clay, some gravel				1.524								 1.5
	2.0	sizes							SUN	S2				-2.0
	2.5-								7	52	_			-2.5
	3.0	CLAYEY SILT, brown, medium plastic, dry				3.048								-3.0
	3.5-	to moist, with sand sizes, travel gravel sizes												-3.5
	4.0								SUN.	S3	- -	*		- 4.0
	4.5-													-4.5
		END OF TESTHOLE, no water seepage or sloughing observed after drilling				4.6								
3DT 6/9/14		- testhole remained opened from 10:50 am to 12:07 pm and remained dry of water seepage												
DILLON BH WAWANESA NLB.GPJ DILLON TEMPLATE.GDT 6/9/14		 testhole backfilled with two (2) bags of bentonite pellets and followed by auger cuttings to grade 												
3.GPJ DILLOI														
/ANESA NLB														
NAW HBNC														
DILL														

TH6

Client: Manitoba Water Services Board (MWSB) Project: Wawanesa Lagoon Functional Design Project No.: 13-8212-6000-01 Location: SE1/4 25-7-17W (See Site Plan) Drilling Co.: Paddock Drilling Drilling Method: Solid Stem Auger Supervised by: Rob Buenaventura Date Started: 4/22/14 Date Completed: 4/22/14 Sample Lithology Depth Depth Number N Value (ppm LEL) Method % Scale Depth **Notes** Scale Stratigraphic Description Rec. VOC ((m) (m) (m) 7115. 711 TOPSOIL, 230 mm thick, black 0.229 SILTY CLAY, brown, medium plastic, moist, and silt, firm 0.5 0.5 - below 1.2 m, high plastic, with silt, stiff 1.0 -1.0 - below 3.1 m, medium plastic, and silt, 6MZ some sand sizes, some grave sizes 1.5 -1.5 S2 2.0 -2.02.5 -2.5 S3 3.0 3.0 3.5 3.5 M S4 4.0 4.0 SILTY SAND, brown, fine grained, wet, with 4.115 silt, some clay 4.5-4.5 END OF TESTHOLE, water seepage 4.6 observed at 4.6 m below grade and measured in hole sloughing at 4.1 m below grade - testhole remained opened from 11:11 am to 12:02 pm with measured water at 3.23 m below grade - testhole backfilled with two (2) bags of bentonite pellets and followed by auger cuttings to grade

DILLON BH WAWANESA NLB.GPJ DILLON TEMPLATE.GDT 6/9/14

TH7

Scale (m) Stratigraphic Description Stratigraphic Description Depth (m) Notes Stratigraphic Description Object (m) Object (_	Manitoba Water Services Board (MWSB)	Project: Wawanesa Lagoon Functional Design										
Depth Stratigraphic Description Depth Notes Sample Depth Scale Stratigraphic Description Depth Notes Depth Notes Depth Depth Notes Depth Depth Notes Depth Depth Notes Depth Depth Depth Notes Depth Dep	-					•		Plar	ו)				
Stratigraphic Description Scale (m) Stratigraphic Description Stratigraphic Description O.5- TOPSOIL, 150 mm thick, black SILTY CLAY, brown, medium plastic, moist, stiff, and silt, some sand sizes, trace gravel sizes - below 3.1 m, some gravel sizes - below 3.7 m, occasional oxide includes 1.5- 2.0- 2.5- 3.0- 4.5- END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger								`omr	loto	۸.		12211	1
Scale (m) Stratigraphic Description Stratigraphic Description TOPSOIL, 150 mm thick, black SILTY CLAY, brown, medium plastic, moist, stiff, and silt, some sand sizes, trace gravel sizes - below 3.1 m, some gravel sizes - below 3.7 m, occasional oxide includes 1.5- 2.0- 2.5- 3.0- 3.5- 4.0- 4.5- END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pelletts and followed by auger		sed by. Rob Buerlaveritura	_	Startet	J	4/22/14	Date	OHIL				1221	
TOPSOIL, 150 mm thick, black SILTY CLAY, brown, medium plastic, moist, stiff, and silt, some sand sizes, trace gravel sizes - below 3.1 m, some gravel sizes - below 3.7 m, occasional oxide includes 1.5- 2.0- 2.5- 3.0- 3.5- 4.0- END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole remained or backfilled with two (2) bags of bentonite pellets and followed by auger	Depth Scale (m)	Stratigraphic Description		(m)		Notes		Method				VOC (ppm or %LEL)	Depth Scale (m)
SILTY prown, medium plastic, moist, stiff, and silt, some sand sizes, trace gravel sizes - below 3.1 m, some gravel sizes - below 3.7 m, occasional oxide includes 1.5- 2.0- 2.5- 3.0- 3.5- 4.0- END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger			711/1/11/	4 1									
- below 3.7 m, occasional oxide includes 1.5 - 2.0 - 2.5 -	0.5-	stiff, and silt, some sand sizes, trace gravel		0.152									-0.5
2.0 - 2.0 2.5 - 2.5 3.0 - 3.0 3.5 - 3.5 4.0 - 4.5 - 4.5 END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	1.0-	•											-1.0
2.5- 3.0- 3.5- 4.0- 4.5- END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	1.5-	- below 3.7 m, occasional oxide includes											-1.5
3.5 4.0 END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	2.0-												-2.0
3.5— 4.0— 4.5— END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	2.5-												-2.5
4.0— 4.5— END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	3.0-												-3.0
END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	3.5-												-3.5
END OF TESTHOLE, no water seepage to sloughing observed after drilling - testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	4.0-												-4.0
- testhole remained opened from 11:23 am to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger	4.5-	END OF TESTHOLE, no water seepage to		4.6									−4.5
to 11:59 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger													
bentonite pellets and followed by auger		to 11:59 am and remained dry of water											
		bentonite pellets and followed by auger											

Client: Manitoba Water Services Board (MWSB) Project: Wawanesa Lagoon Functional Design Project No.: 13-8212-6000-01 Location: SE1/4 25-7-17W (See Site Plan) Drilling Co.: Paddock Drilling Drilling Method: Solid Stem Auger Date Started: 4/22/14 Supervised by: Rob Buenaventura Date Completed: 4/22/14 Sample Lithology Depth Depth Number N Value (ppm LEL) Method % Scale Depth **Notes** Scale Stratigraphic Description Rec. (m) VOC (F (m) (m) 71 1 V TOPSOIL, 230 mm thick, black 0.229 SILTY CLAY, brown, medium plastic, moist, stiff, and silt, some sand sizes, some gravel 0.5 0.5 sizes M S1 - below 4.0 m, very stiff to stiff, occasional 1.0 -1.0 oxide inclusions, occasional silt lenses 1.5 -1.52.0 -2.0 EMB-S2 2.5 -2.5 S3 3.0 3.0 3.5 3.5 4.0 4.0 4.5 4.5 5.0 -5.0 5.5 5.5 6.0 6.0 6.1 END OF TESTHOLE, no water seepage or sloughing observed after drilling - testhole remained opened from 11:47 am to 11:54 am and remained dry of water seepage - testhole backfilled with two (2) bags of bentonite pellets and followed by auger cuttings to grade

DILLON BH WAWANESA NLB.GPJ DILLON TEMPLATE.GDT 6/9/14

APPENDIX C

Soils Analysis Results

Stantec Consulting Ltd. 199 Henlow Bay, Winnipeg MB R3Y 1G4

May 14, 2014 File: 123311175

Attention: Rob Buenaventura
Dillon Consulting Limited
1558 Wilson Place
Winnipeg, MB R3T 0Y4

Dear Rob,

Reference: Wawanesa Wastewater Treatment Study

Soil samples were submitted to our laboratory on April 23, 2014. The following tests were conducted on selected soil samples.

- Water content (ASTM D2216)
- Particle-Size Analysis (ASTM D422)
- Liquid limit (multi point), plastic limit, and plasticity index (ASTM D4318)
- Hydraulic conductivity (ASTM D5084)

We appreciate the opportunity to assist you in this project. Please call if you have any questions regarding this report.

Regards,

STANTEC CONSULTING LTD.

Jason Thompson, C.E.T.

Associate - Manager, Materials Testing Services

Phone: (204) 928-4004 Fax: (204) 488-6947

Jason.Thompson@stantec.com

Attachment: Table 1 - Water Content Test Data

Table 2 - Particle Size, Atterberg Limits and Hydraulic Conductivity Test Data

3x - Atterberg Limit Test Report,5x - Particle Size Analysis Test Report2x - Hydraulic Conductivity Test Report

Reference: Wawanesa Wastewater Treatment Study

TABLE 1
WATER CONTENT TEST DATA

WATER CONTENT TECT DATA											
Sample ID	Sample depth (ft.)	Water Content (%)									
TH1- S2	7.5	16.4									
TH3 – S2	5	22.7									
TH3 – S6	5 - 7	21.3									
TH5 – S3	13	13.1									
TH6 – S1	4	20.8									

TABLE 2
PARTICLE SIZE ,ATTERBERG LIMIT AND HYDRAULIC
CONDUCTIVITY TEST DATA

			P	tterberg I	Limits						
				Sand (%)							
Sample ID	Sample Depth (ft.)	Gravel (%) 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt (%) <0.075 to 0.002 mm	Clay (%) <0.005 mm	Liquid Limit	Plastic Limit	Plasticity Index	Hydraulic Conductivity " k ₂₀ " (cm/s)
TH1-S2	7.5	3.5	3.0	5.3	19.2	40.1	28.9	34	15	19	NT
TH3-S2	5	1.7	0.5	3.7	8.4	36.3	49.4	44	18	26	NT
TH3-S3	5-7	1.3	1.5	5.1	10.6	42.1	39.4	33	16	17	2.1 x 10 ⁻⁷
TH5-S3	13	2.1	3.7	11.5	31.4	34.2	17.1	24	15	9	NT
TH6-S1	4	1.1	0.3	0.5	3.3	63.9	30.9	38	19	19	NT
TH6-S2	5-7			NT				NT			9.1 x 10 ⁻⁹

Notes

- 1. A high speed stirring device was used for 1 minute to disperse the test sample for particle size analysis
- 2. Atterberg limits conducted in accordance with ASTM D4318 Method B (single-point liquid limit)
- 3. The soil samples were air-dried during sample preparation for Atterberg limits and particle size analysis
- 4. NT denotes not tested

without the knowledge of STANTEC.

Atterberg Limits

Dillon Consulting Limited Client:

Project Name: Wawanesa Wastewater Treatment Study

Project No: 123311175 Date Received: April 23, 2014

April 30, 2014

Nestor Abarca Tested By:

Date Tested:

presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be held liable, for the use of this report by any other party, with or

LABORATORY

199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

ason Thompson, C.E.T.

Reviewed By:

Sample:			Sample:						
TH3-S	2 @ 5'		TH5 -	S3 @ 13']				
LIC	UID		LI	QUID					
1	2	Trial No.	1	2]				
24	23	Number of Blows	26	26	60 —				
425	478	Container Number	401	473					
44.13	45.42	Wt. Sample (wet+tare)(g)	38.77	43.40					
38.82	39.51	Wt. Sample (dry+tare)(g)	35.23	39.69	50				
26.73	26.06	Wt. Tare (g)	20.55	24.31					
12.1	13.5	Wt. Dry Soil (g)	14.7	15.4					
5.3	5.9	Wt. Water (g)	3.5	3.7				// CH //	
43.9%	43.9%	Water Content (%)	24.1%	24.1%	40 —			// CH//	
43.7%	43.5%	Corrected Water Content (%)	24.2%	24.2%]				
PLA	STIC		PL	ASTIC]				
1	2	Trial No.	1	2	PLASTICITY INDEX				
494	489	Container Number	535	459	≧ 30 +				
32.63	37.77	Wt. Sample (wet+tare)(g)	47.73	49.12	l É l	TH3-	S2 @ 5		
31.05	36.05	Wt. Sample (dry+tare)(g)	44.76	46.01	일	1110			
22.32	26.66	Wt. Tare (g)	24.65	24.98	S 20				
8.7	9.4	Wt. Dry Soil (g)	20.1	21.0] 20				
1.6	1.7	Wt. Water (g)	3.0	3.1	_		CL/	МН	
18.1%	18.3%	Water Content (%)	14.8%	14.8%]			"""	
AVERAG	E VALUES		AVERA	ge values	10 🗕		45 -C3 @ 13'		
1	2		1	2]		4 5 -S3 @ 13'		
LL	44		LL	24		CL-ML			
PL	18		PL	15					
PI	26		PI	9	0 +				
CLASSIF	ICATION		CLASS	IFICATION	C CERTIFIED BY	20	40	60	80 100
	test results constit	utes a testing service only. Engineerin	•	or evaluation of the t	Canadian Council of Independent of Endographic Council of Independent of Endographic Council of Endographic Counci		LIQUII	LIMIT	Barra

Atterberg Limits

Client: Dillon Consulting Limited

Project Name: Wawanesa Wastewater Treatment Study

Project No: 123311175

Date Received: April 23, 2014 Date Tested: April 25, 2014

Larry Presado Tested By:

LABORATORY

199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

Sample:			Cample	rested by.		
	S1 @ 4'	, ,	Sample:	S2 @ 7.5'	1	
	ΣUID			QUID		
1	2	Trial No.	1	2	60	
26	27	Number of Blows	24	25		
429	471	Container Number	434	411		
34.14	31.78	Wt. Sample (wet+tare)(g)	36.31	30.27		
31.35	29.27	Wt. Sample (dry+tare)(g)	33.48	27.87	50	
24.09	22.69	Wt. Tare (g)	25.15	20.76		
7.3	6.6	Wt. Dry Soil (g)	8.3	7.1		
2.8	2.5	Wt. Water (g)	2.8	2.4	CH /	
38.4%	38.1%	Water Content (%)	34.0%	33.8%	40	
38.6%	38.5%	Corrected Water Content (%)	33.8%	33.8%		
PLA	STIC		PL	ASTIC] * // //	
1	2	Trial No.	1	2	30 TH6 - S1 @4 TH1 - S2 @ 7.5'	
510	486	Container Number	518	442	Z 30	
35.61	37.6	Wt. Sample (wet+tare)(g)	33.52	31.5		
33.93	35.57	Wt. Sample (dry+tare)(g)	32.36	30.14		
25.33	25.11	Wt. Tare (g)	24.71	21.15	5 20 T // 5 9.4 9	
8.6	10.5	Wt. Dry Soil (g)	7.7	9.0	TH6 - S1/@4 11/1 -\\$2 @ 7.5'	
1.7	2.0	Wt. Water (g)	1.2	1.4	- MH	
19.5%	19.4%	Water Content (%)	15.2%	15.1%]	
AVERAG	E VALUES		AVERA	ge values	10	
1	2		1	2	ML	
LL	38		LL	34	CL-ML	
PL	19		PL	15		
PI	19		PI	19	0	
CLASSIF	ICATION		CLASS	IFICATION	0 20 40 60 80	100
	test results constit	utes a testing service only. Engineerin		or evaluation of the te	LIQUID LIMIT Consultan Council of Independent Laboratorics For specific tests as itself on www.ccil.com est results is provided only on written request. The data	
	is for the sole use o				liable, for the use of this report by any other party, with or Reviewed By: Jason Thompson, C.E.	.Т.

Atterberg Limits

Client: Dillon Consulting Limited

Project Name: Wawanesa Wastewater Treatment Study

Project No: 123311175 Date Received: April 23, 2014

April 30, 2014

Nestor Abarca Tested By:

Date Tested:

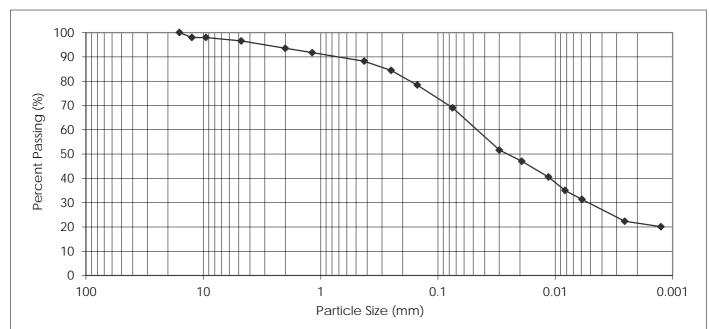
LABORATORY

199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

Sample:			Sample:					
TH3-S3 @	@ 5' to 7']						
LIQ	ΩUID		LI	QUID	1			
1	2	Trial No.	1	2]			
23	22	Number of Blows			60			
404	523	Container Number						
35.98	40.59	Wt. Sample (wet+tare)(g)						
31.45	36.16	Wt. Sample (dry+tare)(g)			50			
17.57	22.53	Wt. Tare (g)						
13.9	13.6	Wt. Dry Soil (g)						
4.5	4.4	Wt. Water (g)						CH /
32.6%	32.5%	Water Content (%)			40			
32.3%	32.0%	Corrected Water Content (%)						
PLA	STIC		PL	ASTIC	×			
1	2	Trial No.	1	2	PLASTICITY INDEX			
534	497	Container Number			₹ 30			
37.58	38.32	Wt. Sample (wet+tare)(g)			<u>E</u>			
35.91	36.48	Wt. Sample (dry+tare)(g)			은			
25.34	24.92	Wt. Tare (g)			S 20			
10.6	11.6	Wt. Dry Soil (g)			7 20	TH3-S3 @ 5' 16		
1.7	1.8	Wt. Water (g)			_	7' //	CL	MH
15.8%	15.9%	Water Content (%)						
AVERAG	SE VALUES		AVERA	ge values	10			
1	2	_	1	2			/ ML	
LL	33		LL			CL-ML		
PL	16		PL					
PI	17	_	PI		0	0		<u> </u>
CLASSIF	ICATION		CLASS	IFICATION	CERTIFIED BY	0 20	40	60 80 100
				PLASTIC	Canadian Council of For specific tests at	Independent Laboratories listed on www.ccil.com	LIQUID LIN	AIT Mayor
	is for the sole use o	utes a testing service only. Engineering the client stipulated above. STANTE					Reviewed By:	Jason Thompson, C.E.T.

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

Dillon Consulting Ltd 1558 Wilson Place Winnipeg, Manitoba R3T 0Y4 PROJECT: Wawanesa Wastewater

Treatment Study

Attention: Rob Buenaventura PROJECT NO.: 123311175

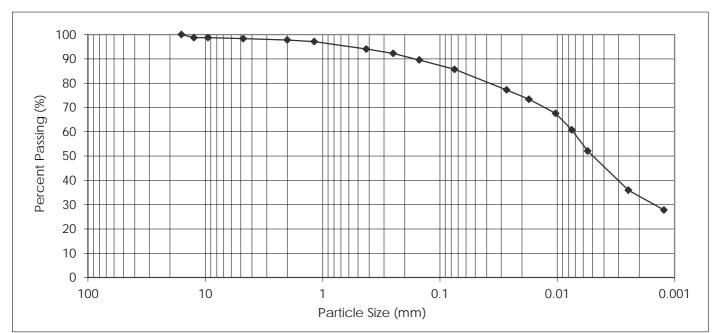
SAMPLED BY: Client DATE RECEIVED: April 23, 2014 SAMPLE ID: TH1-S2 @ 7.5' TESTED BY: Larry Presado

PARTICLE	PERCENT		PART	ICLE	PERCENT
SIZE	PASSING		SIZ	Έ	PASSING
37.50 mm	100.0	1	1.18	mm	91.7
25.00 mm	100.0		0.425	mm	88.2
19.00 mm	100.0		0.250	mm	84.4
16.00 mm	100.0		0.150	mm	78.4
12.50 mm	98.0		0.075	mm	69.0
9.50 mm	98.0		0.005	mm	28.9
4.75 mm	96.5		0.002	mm	21.4
2.00 mm	93.5		0.001	mm	NT*
	Sand, %				
Gravel, %			Silt, %	Clay, %	Colloids, %

NT* Sample not tested for colloids

May 6, 2014 REVIEWED BY Jason Thompson, C.E.T.

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

Dillon Consulting Ltd. 1558 Wilson Place Winnipeg, Manitoba R3T 0Y4 PROJECT: Wawanesa Wastewater

Treatment Study

Attention: Rob Buenaventura PROJECT NO.: 123311175

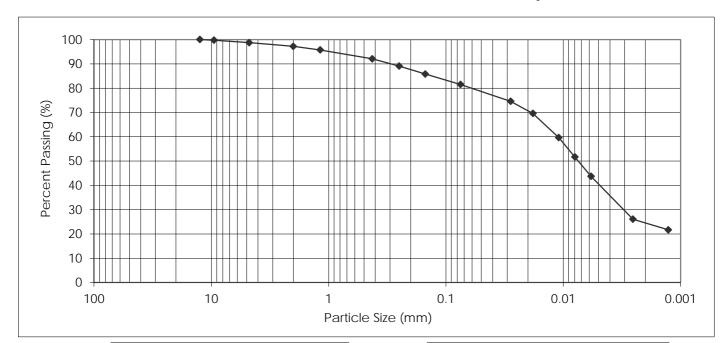
SAMPLED BY: Client DATE RECEIVED: April 23, 2014 SAMPLE ID: TH3-S2 @ 5' TESTED BY: Larry Presado

PART	TICLE	PERCENT		PART	ICLE	PERCENT
SIZ	ΖE	PASSING		SIZ	Έ	PASSING
37.50	mm	100.0		1.18	mm	97.1
25.00	mm	100.0		0.425	mm	94.1
19.00	mm	100.0		0.250	mm	92.2
16.00	mm	100.0		0.150	mm	89.5
12.50	mm	98.7		0.075	mm	85.7
9.50	mm	98.7		0.005	mm	49.4
4.75	mm	98.3		0.002	mm	32.8
2.00	mm	97.8		0.001	mm	NT*
		Sand, %				
Gravel, %	Coarse	Medium	Fine	Silt, %	Clay, %	Colloids, %

NT* Sample not tested for colloids

May 5, 2014 REVIEWED BY: Jason Thompson, C.E.T.

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

Dillon Consulting Ltd. 1558 Wilson Place Winnipeg, Manitoba R3T 0Y4 PROJECT: Wawanesa Wastewater

Treatment Study

Attention: Rob Buenaventura PROJECT NO.: 123311175

SAMPLED BY: Client DATE RECEIVED: April 23, 2014 SAMPLE ID: TH3 - S3 @ 5' to 7' TESTED BY: Larry Presado

PARTICLE		PERCENT		PARTICLE		PERCENT
SIZ	ZE	PASSING		SIZE		PASSING
37.50	mm	100.0		1.18	mm	95.7
25.00	mm	100.0		0.425 mm		92.1
19.00	mm	100.0	0.250 mm		89.1	
16.00 mm		100.0	0.150 mm		85.8	
12.50 mm		100.0		0.075 mm		81.5
9.50 mm		99.8	0.005 mm		39.4	
4.75	mm	98.7	0.002 mm		24.2	
2.00 mm		97.2		0.001 mm		NT*
		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.005 mm	Clay, % <0.005 mm	Colloids, % < 0.001 mm

1.3 1.5 5.1

NT* Sample not tested for colloids

May 6, 2014 REVIEWED BY: Jason Thompson, C.E.T.

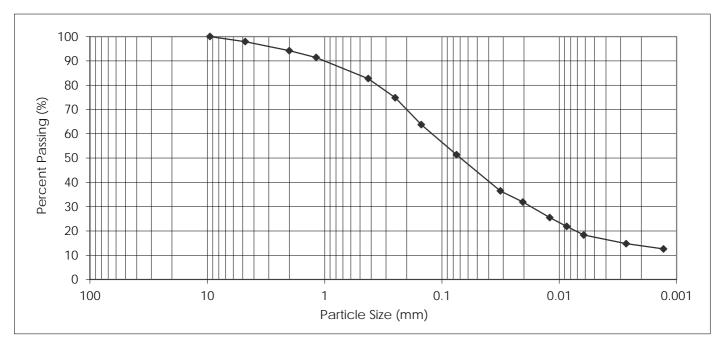
10.6

42.1

39.4

NT*

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

Dillon Consulting Ltd. 1558 Wilson Place Winnipeg, Manitoba R3T 0Y4 PROJECT: Wawanesa Wastewater

Treatment Study

Attention: Rob Buenaventura PROJECT NO.: 123311175

SAMPLED BY: Client DATE RECEIVED: April 23, 2014 SAMPLE ID: TH5- S3 @ 13' TESTED BY: Larry Presado

PARTICLE	PERCENT		PARTICLE	PERCENT
SIZE	PASSING		SIZE	PASSING
37.50 mm	100.0]	1.18 mm	91.4
25.00 mm	100.0		0.425 mm	82.7
19.00 mm	100.0		0.250 mm	74.8
16.00 mm	100.0		0.150 mm	63.8
12.50 mm	100.0		0.075 mm	51.3
9.50 mm	100.0		0.005 mm	17.1
4.75 mm	97.9		0.002 mm	13.7
2.00 mm	94.2		0.001 mm	NT*
				

0 10		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.005 mm	Clay, % <0.005 mm	Colloids, % < 0.001 mm
2.1	3.7	11.5	31.4	34.2	17.1	NT*

NT* Sample not tested for colloids

May 5, 2014

REVIEWED BY: Jason Thompson, C.E.T.

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

Dillon Consulting Ltd. 1558 Wilson Place Winnipeg, Manitoba R3T 0Y4 PROJECT: Wawanesa Wastewater

Treatment Study

Attention: Rob Buenaventura PROJECT NO.: 123311175

SAMPLED BY: Client DATE RECEIVED: April 23, 2014 SAMPLE ID: TH6- S1 @ 4' TESTED BY: Larry Presado

		•		
PARTICLE	PERCENT		PARTICLE	PERCENT
SIZE	PASSING		SIZE	
37.50 mm	100.0		1.18 mm	98.5
25.00 mm	100.0		0.425 mm	98.1
19.00 mm	100.0		0.250 mm	97.5
16.00 mm	100.0		0.150 mm	96.5
12.50 mm	100.0		0.075 mm	94.8
9.50 mm	99.2		0.005 mm	30.9
4.75 mm	98.9		0.002 mm	23.9
2.00 mm	98.6		0.001 mm	NT*

		Sand, %					
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.005 mm	Clay, % <0.005 mm	Colloids, % < 0.001 mm	
1.1	0.3	0.5	3.3	63.9	30.9	NT*	

NT* Sample not tested for colloids

May 5, 2014

REVIEWED BY. Jason Thompson, C.E.T.

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

HYDRAULIC CONDUCTIVITY ASTM D5084

Dillon Consulting Limited 1558 Wilson Place Winnipeg, Manitoba R3T 0Y4 PROJECT: Wawanessa

Wastewater

Treatment Study

Attention: Rob Buenaventura PROJECT NO.: 123311175

SAMPLE I.D.: TH3-S3 @ 1.5 to 2.1 m

SOIL DESCRIPTION: tan, dense, moist, low plasticity silt till with some clay

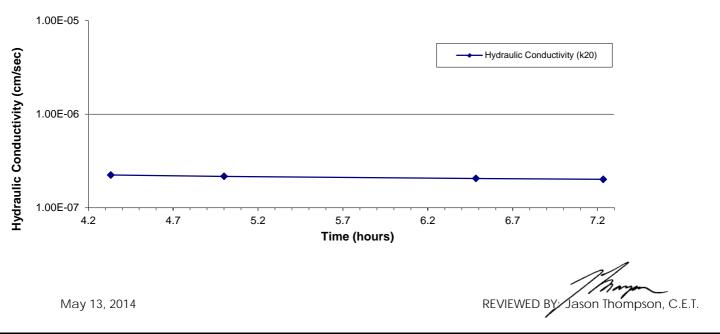
some fine to coarse sand, trace fine gravel

DATE TESTED: April 25 to May 6, 2014

CONFINING PRESSURE (kPa): 137.9

EFFECTIVE SATURATION STRESS (kPa): 34.5

ASSUMED SPECIFIC GRAVITY: 2.71


HYDRAULIC GRADIENT: 18.9

TYPE OF PERMEANT LIQUID: De-aired Water

HYDRAULIC CONDUCTIVITY, "k" (cm/s): 2.3E-07

HYDRAULIC CONDUCTIVITY, "k₂₀" (cm/s): 2.1E-07

	Height (mm)	Diameter (mm)	Wet Mass (g)	Dry Density (g/cm³)	Water Content (%)	Saturation (%)
Initial Reading	79.5	72.5	665.0	1.787	13.5	70.8
Final Reading	78.5	72.5	672.6	1.721	20.6	97.3

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

HYDRAULIC CONDUCTIVITY ASTM D5084

REVIEWED BY: Jason Thompson, C.E.T.

Dillon Consulting Limited 1558 Wilson Place Winnipeg, Manitoba R3T 0Y4 PROJECT: Wawanessa

Wastewater

Treatment Study

Attention: Rob Buenaventura PROJECT NO.: 123311175

SAMPLE I.D.: TH6-S2 @ 1.5 to 2.1 m

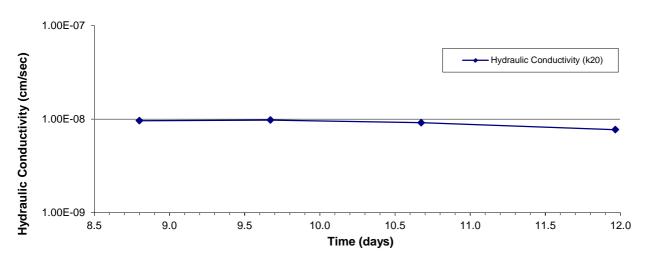
SOIL DESCRIPTION: tan, dense, moist, low plasticity silt till with some clay

trace silt and trace fine to coarse gravel

DATE TESTED: April 25 to May 7, 2014

CONFINING PRESSURE (kPa): 137.9

EFFECTIVE SATURATION STRESS (kPa): 34.5


ASSUMED SPECIFIC GRAVITY: 2.71

HYDRAULIC GRADIENT: 18.8

TYPE OF PERMEANT LIQUID: De-aired Water

HYDRAULIC CONDUCTIVITY, "k" (cm/s): 9.7E-09
HYDRAULIC CONDUCTIVITY, "k₂₀" (cm/s): 9.1E-09

	Height (mm)	Diameter (mm)	Wet Mass (g)	Dry Density (g/cm³)	Water Content (%)	Saturation (%)
Initial Reading	79.5	71.9	652.4	1.638	23.4	96.8
Final Reading	79.0	72.1	659.1	1.638	24.9	103.1

Note: Sample was compacted into 70 mm mold using the compactive effort outlined in standard test method ASTM D698, Method C prior to tyling

May 13, 2014

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

APPENDIX D

Selected Site Photographs

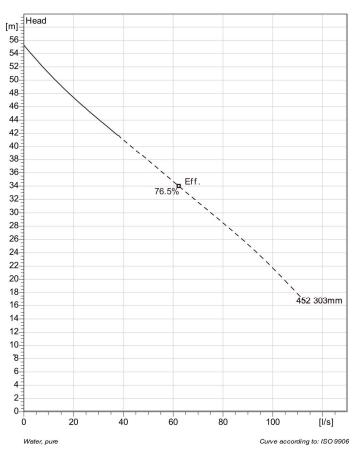
Existing sewage lift station location

Existing wastewater treatment building

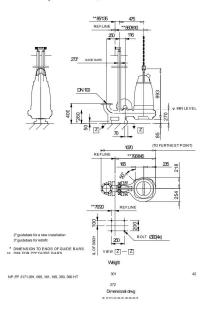
Commercial Street west of PR 340 looking east

Lagoon site access along Commercial Street looking east

Lagoon site - view from NW to SE corners


Existing drainage feature east of lagoon discharge location

APPENDIX E


Pump Data Sheet

Technical specification

Installation: P - Semi permanent, Wet

Note: Picture might not correspond to the current configuration.

General
Patented self cleaning semi-open channel impeller, ideal for pumping in most waste water applications. Possible to be upgraded with Guide-pin® for even better clogging resistance. Modular based design with high adaptation grade.

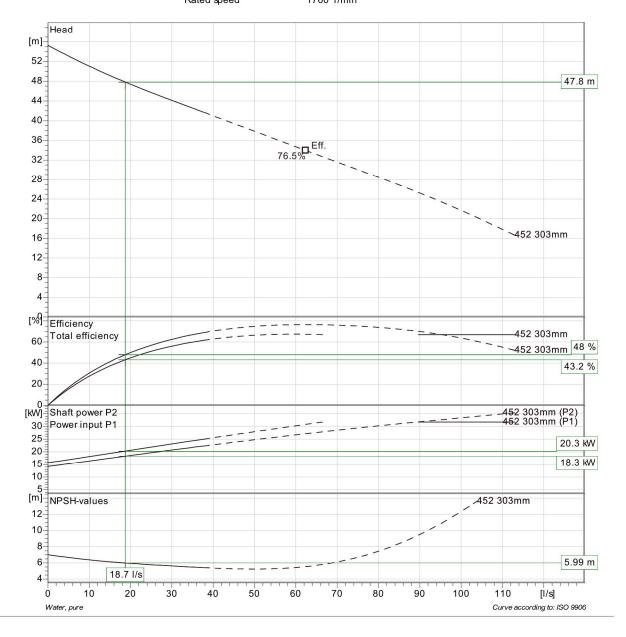
Pump	
Impeller material	Grey cast Iron
Outlet width	100 mm
Suction Flange Diameter	100 mm
Impeller diameter	303 mm
Number of blades	2

Motor	
Motor # Stator v ariant Frequency Rated v oltage Number of poles Phases Rated power Rated current Starting current	N3171.181 25-17-4AA-W 30hp 6 60 Hz 600 V 4 3~ 22.4 kW 29 A 194 A
Rated speed	1760 1/min
Power factor 1/1 Load 3/4 Load 1/2 Load	0.84 0.79 0.67
Efficiency	
1/1 Load 3/4 Load 1/2 Load	89.0 % 90.0 % 90.0 %

Configuration

Project	Project ID	Created by	Created on	Last update
			2014-05-27	

Performance curve

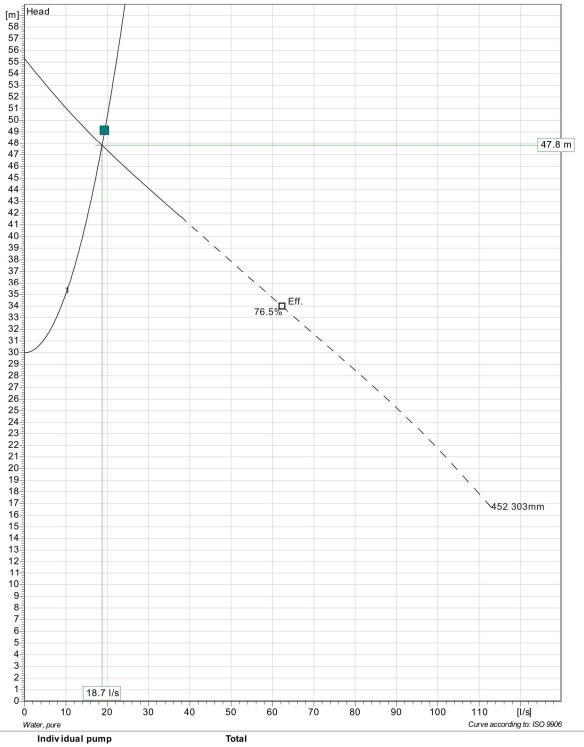

Pump

Outlet width 100 mm Suction Flange Diameter 100 mm Impeller diameter 303 mm Number of blades 2

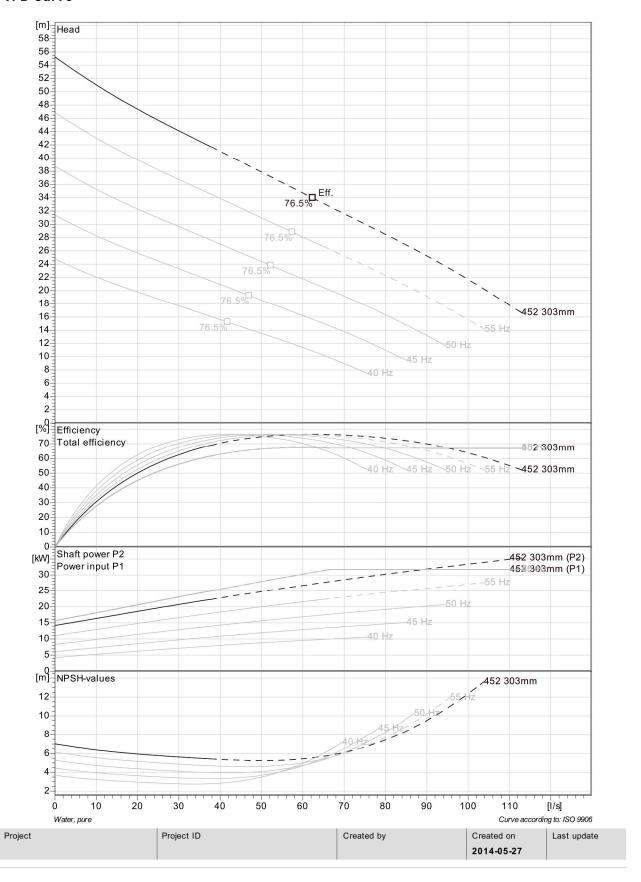
Motor

Motor# N3171.181 25-17-4AA-W 30hp Power factor 0.84 Stator variant 1/1 Load 60 Hz 600 V Frequency Rated voltage Number of poles 3/4 Load 0.79 1/2 Load 0.67 4 3~ Phases
Rated power
Rated current
Starting current
Rated speed Efficiency 22.4 kW 29 A 194 A 89.0 % 1/1 Load 3/4 Load 90.0 % 90.0 % 1/2 Load 1760 1/min

FLYGT

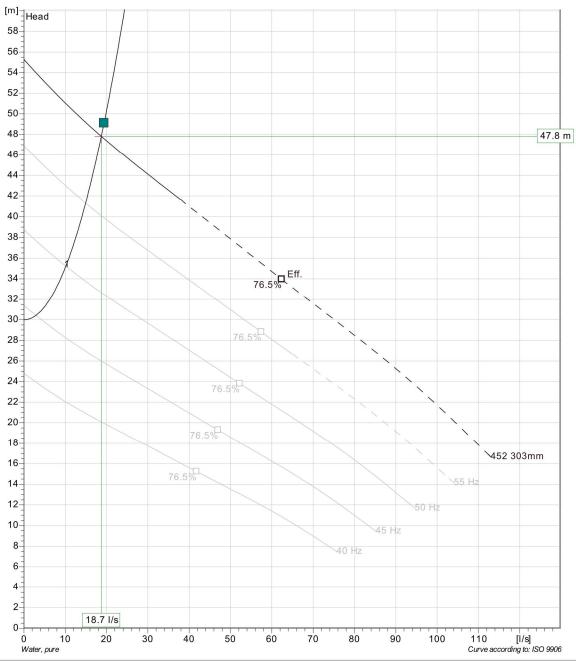


Duty Analysis

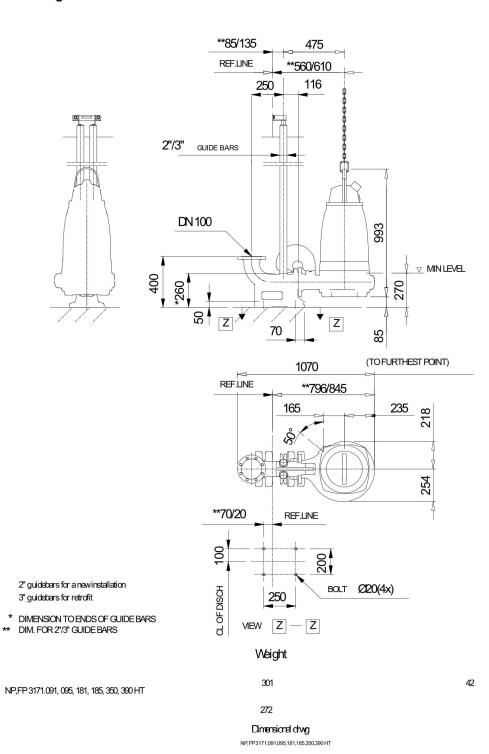

Pumps running		•						Specific	
/System	Flow	Head	Shaft power	Flow	Head	Shaft power	Hyd eff.	energy	NPSHre
1	18.7 l/s	47.8 m	18.3 kW	18.7 l/s	47.8 m	18.3 kW	48 %	0.301 kWh/m³	5.99 m

Project	Project ID	Created by	Created on	Last update
			2014-05-27	

NP 3171 HT 3~ 452 VFD Curve

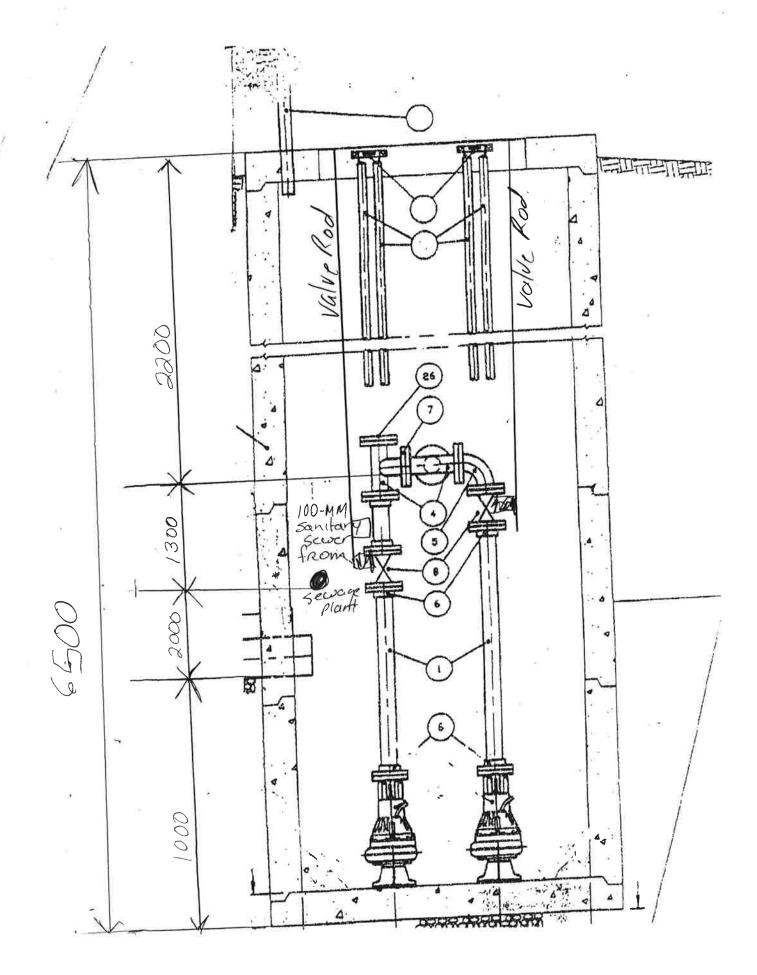


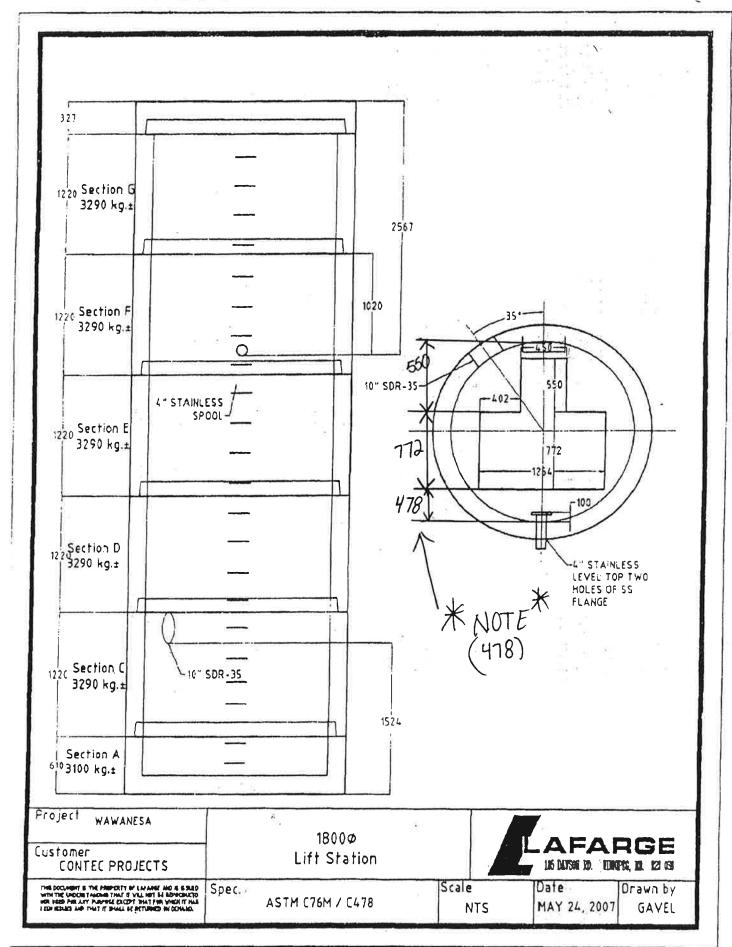
VFD Analysis


	Individual pump			Total						
Pumps running /System	Frequency	Flow	Head	Shaft power	Flow	Head	Shaft power	Hyd eff.	Specific energy	NPSHre
1 1 1 1	60 Hz 55 Hz 50 Hz 45 Hz 40 Hz	18.7 l/s 14.9 l/s 10.1 l/s 2.93 l/s	47.8 m 41.3 m 35.2 m 30.4 m	18.3 kW 13.9 kW 9.89 kW 6.44 kW	18.7 l/s 14.9 l/s 10.1 l/s 2.93 l/s	47.8 m 41.3 m 35.2 m 30.4 m	18.3 kW 13.9 kW 9.89 kW 6.44 kW	48 % 43.7 % 35.5 % 13.6 %	0.301 kWh/m³ 0.36 kWh/m³ 0.497 kWh/m³ 1.56 kWh/m³	5.99 m 5.34 m 4.72 m 4.29 m

Project	Project ID	Created by	Created on	Last update
			2014-05-27	

Dimensional drawing





Project	Project ID	Created by	Created on	Last update
			2014-05-27	

APPENDIX F

Existing Lift Station Drawings

