## by W. D. McRitchie

McRitchie, W.D. 1989: Ground scintillometer reconnaissance of the Eden Lake aegirine-augite monzonite; In Manitoba Energy and Mines, Minerals Division, Report of Field Activities, 1989.

#### BACKGROUND

Routine geological mapping in 1978 and 1979 of the Lynn Lake region identified a 15 km<sup>2</sup> body of aegirine-augite-bearing monzonite and quartz monzonite between Eden and Kwaskwaypichikun lakes (Cameron, 1988) Coincident high levels of potassium, equivalent uranium and equivalent thorium are evident in airborne gamma ray spectrometer surveys of the region (Geological Survey of Canada 1977) and anomalously high uranium and fluoride in lake waters, and uranium in lake sediments were detected in the 1988 MDA geochemical sampling program by the Geological Survey of Canada (Schmitt *et al.*, 1989). The geochemical anomalies encompass a 40 km east-west and 20 km north-south area between Eden Lake and the Churchill River with a smaller tin anomaly (in lake sediment) over the Kwaskwaypichikun Bay region in the west.

Detailed sampling by McRitchie in 1988 confirmed the alkaline miaskitic chemical and mineralogical character of the intrusion and encountered elevated light rare earth elements (Table GS-1-1) in an allanite-bearing cognate zone of pyroxene enrichment on the eastern shoulder of the main ridges south of Kwaskwaypichikun Bay. Follow-up laboratory tests demonstrated elevated levels of radioactivity in the REEenriched samples (1400 cps) and accordingly it was decided to mount a ground scintillometer reconnaissance over the region in an attempt to locate extensions to the zone discovered in 1988, as well as other possible occurrences.

Additional objectives were to provide a ground-based radiometric signature for the intrusion and to delineate the occurrence and nature of anomalously high radioactive zones that could be correlated with the concurrent airborne gamma ray survey of the intrusion being conducted by the GSC as part of its new EXTECH program. The results of this survey (flown at an altitude of 350 m on 1000 m line spacings) are likely to identify other anomalously high areas that will be targeted for ground spectrometer and scintillometer studies in 1990.

## CURRENT WORK

The principal objectives set for 1989 were:

- To search for extensions to the REE-enriched zone encountered in 1988; and
- To obtain representative radioactive measurements for the Eden Lake monzonite that could be correlated with the subsequent airborne survey.

The initial plan was to obtain scintillometer readings on a 200 m grid encompassing the eastern ridge of the main Eden Lake outcrop belt and the intervening ill-exposed ground east to Kwaskwaypichikun Lake (Fig. GS-1-1). This approach was soon abandoned once it was found that most anomalies on the ridge were associated with point-sources or narrow zones, and that thick drift cover east of the ridge muted most of the scintillometer responses from this region. Accordingly, efforts were concentrated over the well exposed high ground, and a skeletal network of

traverses was conducted with emphasis given to (east-west) profiles that would maximize the likelihood of intersecting the 024° trending REE and "uranium" enriched zones. Additional measurements were also taken over possible extensions to the monzonite east of Kwaskwaypichikun Bay (Fig. GS-1-1).

A Scintrex Broadband gamma-ray scintillometer model BGS-1SL (with a 1.5" x 1.5" thallium activated sodium iodide crystal) was used in conducting the survey. Background readings were taken each day from a boat over water depths exceeding 1 m. Spot measurements were taken on 78 stations in the 20 000 m traverse network both at waist level and on the ground. In most instances these were complemented by sweeps over open outcrop in the immediate vicinity of each station (Fig. GS-1-1) along with notation of spot highs between traverse stations. Sixteen measurements were also taken on shoreline outcrops of neighbouring granitic units for regional comparison.

#### RESULTS

Scintillometer readings from the alkaline intrusion are organized into four subareas corresponding to the west, central and east ridges of the main outcrop belt south of Kwaskwaypichikun Bay, and the region north of Kwaskwaypichikun Lake. Measurements taken on shoreline outcrops of the outlying granitic rocks are listed separately (Table GS-1-2). Data presented in Tables GS-1-1, and GS-1-2 are to read in conjunction with Figure GS-1-1.

Daily background readings ranged from 25-30 cps. Noticeable drop-off in counts per second were noted over all overburden areas, especially in wet open swamps where source rocks are presumably covered by thick overburden.

Waist-level and on-the-ground measurements differ markedly over hot-spots and along zones of strong radioactivity however little or no contrast was noted for background readings taken in areas of open outcrop. A thin veneer of soil or clay (10-20 cm) was found to cause a moderate falloff in readings taken at waist level.

Monzonite outcrops in all three ridges consistently give readings of 150-300 cps with the greater proportion being near the upper level of this range. This is consistently higher than readings obtained from the outlying granitic phases which range from 100-150 cps.

No systematic regional differences between one ridge and another were noted in the course of the present skeletal coverage, hot-spots tending to be clustered locally in all three outcrop areas. The northern end of the western ridge gives slightly lower readings (150-250 cps).

Anomalously high responses were obtained in association with the following features:

- Extremely localized (1200-6000 cps) hot-spots (10-20 cm) corresponding to individual or clustered radioactive minerals.
- Local hot-spots (1000-4000 cps) corresponding with (30 cm- 1.5 m) fractures exhibiting splayed terminations.

|   |        | T/ | ABLE  | GS-  | 1-1 | EDEN   | LAKEN  | IONZONI | TE   |     |
|---|--------|----|-------|------|-----|--------|--------|---------|------|-----|
| 1 | (Zones | of | eleva | ated | RE  | E from | region | between | Eden | and |

| Kwaskwaypichikun lakes) |           |           |          |           |           |           |           |           |      |           |           |
|-------------------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|------|-----------|-----------|
| Sample<br>description   | SC<br>PPM | TH<br>PPM | U<br>PPM | LA<br>PPM | CE<br>PPM | ND<br>PPM | SM<br>PPM | EU<br>PPM | TB   | YB<br>PPM | LU<br>PPM |
|                         |           |           |          |           |           |           |           |           |      |           | 2         |
| 04-89-31-1              | 2.9       | 3500      | 1180     | 13700     | 36500     | 20700     | 3060      | 600       | 180  | 54        | 21        |
| 04-89-08-1              | 2.9       | 1800      | 880      | 17700     | 45900     | 22900     | 3300      | 680       | 180  | 68        | 16        |
| 04-89-084C              | 1.9       | 2100      | 1400     | 13800     | 39600     | 24300     | 3150      | 670       | 180  | 27        | 14        |
| 04-88-06-5              | 2.47      | 775       | 690      | 12100     | 15000     | 6140      | 1840      | 247       | 65.9 | 55.5      | 5.13      |
| 04-88-00-5(2)*          | -         | -         | 369      | 7180      | 12700     | 5530      | 1070      | 161       | 97.8 | 40.0      | 4.77      |
| *Check analysis         |           |           |          |           |           |           |           |           |      |           |           |



Figure GS-1-1:

Ground scintillometer reconnaissance of Eden Lake monzonite

- 3.300-024° azimuth zones, (1200-7000 cps varying along strike but consistently high) 6-40 m long and 5-20 cm thick containing elevated levels of brown, glassy allanite and possible uranophane, as well as prominent concentrations of coarse grained (up to 1.5 cm) pyroxene segregations in layers and lenses these may also have an associated over-printing foliation.
- Discordant fine grained, buff coloured layers (2-6 cm thick, and up to 5 m long); no observed offset in associated host phases.
- 5.11-20 m zone of elevated readings (400-1500 cps) in association with shallow dipping complex of aplite, pegmatite, syenite.
- 6.024° azimuth, 5 m wide, 150 m + long zone of finer grained syenite with prominent rusty weathering (readings from 400- 1600 cps).

Most occurrences with elevated readings exhibit a prominent rusty weathering, that is associated with oxidized pyrite mineralization. Forty of the features were "hot spots" of limited lateral extent, four constituted pyroxene and allanite-enriched zones ranging in length from 1.5 to 40 m with cps 2500-7000, and three were 3 m, 5 x 150 m and 11 x 25 m zones of moderately elevated readings ranging from 400-500, 400-800, and 400-1500 cps, respectively.

Analytical and microscope studies are currently in progress to determine the mineralogy and chemistry of the anomalous zones.

Although the current work has confirmed the unique chemistry and mineralogy of the Eden Lake intrusion (Fig. GS-1-2) as well as the existence of elevated levels of high REE (Table GS-1-1) and uranium, none of the observed anomalies appear of economic significance. Subsequent follow-up work will be limited to an evaluation of new targets resulting from the more regional airborne gamma ray surveys conducted by the GSC.

|                  |                                  | MONZONITE - EAST RIDGE |                |              |                                |                      |
|------------------|----------------------------------|------------------------|----------------|--------------|--------------------------------|----------------------|
| STATION #        | OUTCROP/NON-OUTCROP/<br>BOULDERS | WAIST                  | GROUND         | SCINTILLOMET | ER READINGS cp<br>SPOT HIGH(S) | S<br>ZONES L/READING |
|                  |                                  |                        |                |              |                                |                      |
| 1                | N                                | 75                     | 90             | -            | -                              | -                    |
| 1-2              | N                                | -                      | <u>-</u>       | 90           |                                | -                    |
| 2                | B                                | 80                     | 90             |              | <u>_</u>                       |                      |
| 2-4              | N                                | -                      | -              | 80           | -                              |                      |
|                  | В                                | 100                    | 110            | -            | -                              |                      |
| 3-4              | N                                | -                      | -              | 90           | - 3                            | -                    |
| 4                | В                                | 120                    | 120            | -            | -                              | -                    |
| 4-5              | N                                | •                      | 5 <b></b>      | •            | -                              |                      |
| 5                | В                                | 100                    | 120            |              | -                              | -                    |
| 5-6              | N                                |                        |                |              | <u>_</u>                       |                      |
| 6                | B                                | 110                    | 120            |              | -                              | <u> </u>             |
| 6-7              | N                                | •                      | • 7            |              | -                              |                      |
| 7                | В                                | 120                    | 120            |              | 2                              |                      |
| 7-8              | 0                                | -                      | -              | 200-220      | •                              |                      |
| 8                | 0                                | 180                    | 220            | 200-260      |                                | 40 m/7000            |
| 8-9              | 0                                | -                      |                | 200-400      | 1400                           | 30 m/3000            |
| 9                | В                                | 150                    | 150            |              | 1500                           |                      |
| 9-10             | 0                                | -                      |                | 230-250      | 1200                           |                      |
| 10               | N                                | 160                    | 160            | •            |                                | - 1937<br>- 1937     |
| 10-11            | N                                |                        | -              | 120-130      |                                | <b>_</b>             |
| 11               | 0                                | 150                    | 200            |              |                                |                      |
| 11-12            | N                                | -                      | -              | 70-100       |                                |                      |
| 12               | 0                                | 250                    | 250            |              | -                              |                      |
| 12-13            | N                                | -                      | 2              | 80           | -                              |                      |
| 13               | N                                | 50                     | 50             | -            |                                |                      |
| 13-14            | N                                |                        |                | 70           | -                              | _                    |
| 14               | N                                | 80                     | 80             | · •          | -                              |                      |
| 14-15            | N                                | -                      | -              |              | -                              | · · ·                |
| - 15             | 0                                | 250                    | 400            | -            | 800-1500                       |                      |
| 15-16            | N                                | -                      | -              | -            |                                | - 19 X               |
| 16               | N                                | 60                     | 60             | -            | -                              |                      |
| 16-17            | N                                | -                      |                | -            |                                |                      |
| 17               | 0                                | 170                    | 250            |              |                                |                      |
| 17-18            | 0                                | <u>_</u>               |                | 150-220      |                                |                      |
| 18               | 0                                | 220                    | 220            |              | 1400-1700                      |                      |
| 18-19            | 0                                | -                      | -              | 200-250      |                                | -                    |
| 19               | 0                                | 250                    | 280            |              |                                |                      |
| 19-20            | N                                | -                      |                | -            |                                |                      |
| 20               | 0                                | 200 -                  | 220            |              |                                | -                    |
| 20-21            | 0                                | -                      | -              | -            |                                | -                    |
| 21               | 0                                | 200                    | 220            | •            | -                              | -                    |
| 21-22            | O/N                              | -                      | 7 <b>2</b> 0 3 | -            |                                |                      |
| 22               | 0                                | 160                    | 220            | -            |                                |                      |
| 22-23            | 0                                |                        | -              | -            | -                              |                      |
| 23               | 0                                | 150                    | 150            | -            | -                              |                      |
| 23-24            | N/B                              | -                      |                | -            |                                |                      |
| 24               | N                                | 100                    | 100            | -            |                                |                      |
| *Background 25 d | COS                              |                        | 200 KTR 701    |              | (C)                            |                      |

# TABLE GS-1-2 IONZONITE - EAST RIDGE

9

| MONZONITE - CENTRAL RIDGE |                      |       |               |                |                |                 |  |  |  |  |
|---------------------------|----------------------|-------|---------------|----------------|----------------|-----------------|--|--|--|--|
|                           | OUTCROP/NON-OUTCROP/ | -     | SCINTILLOMETE | ER READINGS op | S .            | TONED L DEADING |  |  |  |  |
| STATION #                 | BOULDERS             | WAIST | GROUND        | RANGE          | SPOT HIGH(S)   | ZONES LIREADING |  |  |  |  |
|                           | 22                   |       |               |                | *              | 11 A. 19        |  |  |  |  |
| Shore                     | N                    | 70    | •             |                | •              | •               |  |  |  |  |
| 25                        | N                    | 100   | -             | -              | •              |                 |  |  |  |  |
| 25-26                     | N                    | •     |               |                |                | •               |  |  |  |  |
| 26                        | в                    | 140   | 140           | -              | 36 <b>-</b>    | •               |  |  |  |  |
| 26-27                     | В                    |       | -             |                | •<br>•         | -               |  |  |  |  |
| 27                        | В                    | 120   | 120           | -              | -              | -               |  |  |  |  |
| 27-28                     |                      |       | -             | •              | •              |                 |  |  |  |  |
| 28                        | 0                    | 150   | 150           | -              |                | •               |  |  |  |  |
| 28-29                     | 0                    |       | -             | 150-170        | -              |                 |  |  |  |  |
| 30                        | 0                    | 150   | 150           |                | 250            |                 |  |  |  |  |
| 30-31                     | N                    | -     |               | •              |                | 1.5 m/2500      |  |  |  |  |
| 31                        | 0                    | 150   | 150           |                | 2500           | 1.5 11/2500     |  |  |  |  |
| 31-32                     | 0                    |       |               | 200-220        | -              | -               |  |  |  |  |
| 32                        | 0                    | 250   | 400           | -              | -              |                 |  |  |  |  |
| 32-33                     | 0                    | -     | -             | 200-300        | -              | 160 m/400-800   |  |  |  |  |
| 33                        | 0                    | 250   | 280           | 470.050        | 1000/3000/4000 | 150 11/400-000  |  |  |  |  |
| 33-34                     | 0                    |       |               | 170-250        | 1000/1000/3000 |                 |  |  |  |  |
| 34                        | 0                    | 160   | 220           | •              | ·              |                 |  |  |  |  |
| 34-35                     | N                    | -     | -             | •              |                |                 |  |  |  |  |
| 35                        | . 0                  | 150   | 250           | 150 200        |                |                 |  |  |  |  |
| 35-36                     | 0                    |       | -             | 150-200        | -              |                 |  |  |  |  |
| 36                        | 0                    | 150   | 200           | +=0.200        |                | -               |  |  |  |  |
| 36-37                     | 0                    | -     | -             | 150-200        |                |                 |  |  |  |  |
| 37                        | U                    | 200   | 200           | -              |                |                 |  |  |  |  |
| 37-38                     | N                    | -     | -             | •              |                | _               |  |  |  |  |
| 38                        | 0                    | 170   | 170           | 150 200        | •              |                 |  |  |  |  |
| 38-39                     | 0                    | -     | -             | 150-200        |                |                 |  |  |  |  |
| 39                        | 0                    | 200   | 200           | 150 200        | 6000/2500      | -               |  |  |  |  |
| 39-40                     | U                    | -     | -             | 150-200        | 0000/2000      |                 |  |  |  |  |
| 40                        | 0                    | 200   | 230           | 170-220        | -              | -               |  |  |  |  |
| 40-41                     | 0                    | 100   | -             | 170-220        | -              |                 |  |  |  |  |
| 41                        | 0                    | 190   | 220           |                | 1700           | -               |  |  |  |  |
| 41-42                     | 0                    | -     | 200           |                |                |                 |  |  |  |  |
| 42                        | U                    | 150   | 200           | 200-250        | 1000           |                 |  |  |  |  |
| 42-43                     | U                    | 050   | 250           | 200-200        | -              |                 |  |  |  |  |
| 43                        | U O                  | 250   | 250           | 200            |                | •               |  |  |  |  |
| 43-44                     | 0                    | 200   | 310           | 200/-          | 1500           | -               |  |  |  |  |
| 44                        | 0                    | 200   | 310           | 250-300        | -              | -               |  |  |  |  |
| 44-45                     | 0                    | 200   | 200           | 200-400        | 600/2000       | 2               |  |  |  |  |
| 45                        | 0                    | 200   | 200           | -              | -              |                 |  |  |  |  |
| 45-46                     | 0                    | 220   | 230           | 200-300        | -              |                 |  |  |  |  |
| 46                        | 0                    | 230   | 200           | 250-300        | 2500           |                 |  |  |  |  |
| 46-47                     | 0                    | 200   | 350           | 300-500        | 3500/2000      | -               |  |  |  |  |
| 47                        | 0                    | 300   |               | 250-300        | -              | -               |  |  |  |  |
| 47-48                     | 0                    | 230   | 230           | -              | 600/6000       |                 |  |  |  |  |
| 48                        | 0/N                  | 200   | 200           | 350            | •              |                 |  |  |  |  |
| 48-49                     |                      | 400   | 400           | 400-600        | 2500           | 11x35m/400-1    |  |  |  |  |
| 9                         | 0                    | -100  |               |                | 04 TO CLOPED 0 | 500             |  |  |  |  |
| 40.50                     | 0                    |       |               | 250-300        |                |                 |  |  |  |  |
| 49-50                     | 0                    | 250   | 270           | 400-500        | -              |                 |  |  |  |  |
| 50                        | 0                    | 200   | 2.70          |                |                |                 |  |  |  |  |

|           |                      | MONZONIT     | E - WEST RIDGE |              |                 |                 |
|-----------|----------------------|--------------|----------------|--------------|-----------------|-----------------|
|           | OUTCROP/NON-OUTCROP/ |              |                | SCINTILLOMET | TER READINGS cp | s               |
| STATION # | BOULDERS             | WAIST        | GROUND         | RANGE        | SPOT HIGH(S)    | ZONES L/READING |
| 51        | Ν                    | 120          | 120            | -            | _               | -               |
| 51.52     | N                    | 120          | 120            |              | -               |                 |
| 52        | Ö                    | 150          | 150            |              | 1500            |                 |
| 52.53     | õ                    | 170          | -              | _            | 1000            |                 |
| 53        | õ                    | 170          | 200            |              | <u>.</u>        | 6 m/4000        |
| 53.54     | õ                    |              | 200            | 150-200      | -               | -               |
| 54        | 0                    | 150          | 180            |              |                 | 3M/400-500      |
| 54-55     | Ő                    | -            | -              | 150-200      |                 |                 |
| 55        | õ                    | 150          | 200            | 150-200      |                 | -               |
| 55-56     | õ                    | -            | -              | 150-200      | -               |                 |
| 56        | õ                    | 160          | 250            |              | 1600/7000       |                 |
| 56.57     | õ                    | -            | -              | 200-250      | 1200            |                 |
| 57        | õ                    | 200          | 250            | 400          | 1200            | -               |
| 57-58     | õ                    |              |                | 150-200      | -               |                 |
| 58        | õ                    | 150          | 200            | 250-300      | 1200            |                 |
| 58.59     | ő                    |              |                | 200-250      | 1200            | _               |
| 59        | õ                    | 200          | 250            | 180-230      | 2               | -               |
| 59-60     | õ                    | LUU          | 200            | 200-250      |                 |                 |
| 60        | ŏ                    | 200          | 250.           | 200-200      | $q_{ij}$        |                 |
| 60-61     | 0                    | 200          | 200-           | 200+         | 21<br>21        |                 |
| 61        | õ                    | 200          | 200            | 180-250      | -<br>           |                 |
| 61-62     | õ                    | 200          | 200            | 170-250      |                 |                 |
| 62        | õ                    | 200          | 200            | 200-250      |                 |                 |
| 62.63     | ŏ                    | 200          | 200            | 200-250      |                 |                 |
| 3         | Ö                    | 200          | 200            | 200,250      | -               |                 |
| 63-64     | 0                    | 200          | 240            | 200-250      | 3000            | -               |
| 64        | 0                    | 240          | 240            | 150,200      | 1900/4000/4000  |                 |
| 64-65     | õ                    | 240          | 240            | 200-250      | 2000/4000       | i.              |
| 65        | õ                    | 200          | 200            | 200-250      | 2900            | •               |
| 65 66     | 0                    | 200          | 200            | 200.250      |                 | •               |
| 66        | 0                    | 200          | 200            | 200-250      | -               | -               |
| 66.67     | 0                    | 200          | 200            |              | 1. <b>-</b> .   | •               |
| 67        | 0                    | 150          | 150            | Ī            | •               | •               |
| 67 69     | 0                    | 150          | 150            |              | •               | •               |
| 07-08     | 0                    | -            | -              | 200          | •               |                 |
| 00        | 0                    | 200          | 200            | -            | 29 - 19         | •               |
| 60-09     | 0                    |              | -              | 450,000      | 1. <b>.</b>     |                 |
| 09        | 0                    | 150          | 180            | 150-200      |                 |                 |
| 29-70     | 0                    | -            |                | 150-200      | ) •             | •               |
| 70        | 0                    | 180          | 180            |              | 5. <b>*</b>     |                 |
| 70-71     | 0                    |              | -              | 400.000      | -               | •               |
| /1        | 0                    | 150          | 150            | 150-200      | 1400            |                 |
| /1-52     | 0                    | 8 <b>-</b> 5 | -              | 100-150      |                 | 1               |
| 12        | 0                    | -            | 160-200        | -            |                 | •               |
| 86        | 0                    |              | 140-200        |              |                 | •               |

|           |                      | OTHER GF | IANITIC ROCKS |               |              |                 |
|-----------|----------------------|----------|---------------|---------------|--------------|-----------------|
|           | OUTCROP/NON-OUTCROP/ |          | SCINTILLOMETE | R READINGS cp | os           |                 |
| STATION # | BOULDERS             | WAIST    | GROUND        | RANGE         | SPOT HIGH(S) | ZONES L/READING |
|           | -                    |          |               |               |              |                 |
| 73        | 0                    | -        | 100-200       | -             | -            | -               |
| 74        | 0                    | -        | 100-150       | -             |              | -               |
| 75        | 0                    | -        | 100-140       | <b>2</b>      | -            | -               |
| 76        | 0                    | -        | 140-160       | -             | •            |                 |
| 77        | 0                    | -        | 120-140       |               |              | •               |
| 78        | 0                    | -        | 100-120       | -             | -            | -               |
| 79        | 0                    | •        | 90-110        | -             | 2.50         |                 |
| 80        | 0                    | •        | 120-160       | 200           | -            | <u>16</u>       |
| 81        | 0                    | -        | 100-130       | 160-170       | •            | -               |
| 82        | 0                    | -        | 110-140       | 170           | -            | -               |
| 83        | 0                    |          | 80-110        | 150           | -            | -               |
| 84        | 0                    | •        | 120-140       | -             |              | -               |
| 85        | 0                    |          | 120-160       | 200           | 12           |                 |

## MONZONITE - KWASKWAYPICHIKUN-NORTH

|         |     |               |          |         | N.           |  |
|---------|-----|---------------|----------|---------|--------------|--|
| 100     | 0   | 100           | 170      | · · ·   |              |  |
| 101     | 0   | 150           | 250      | 250-300 | -            |  |
| 102     | 0   | 100           | 200      | 300     | -            |  |
| 103     | 0   | 100           | 150      |         | -            |  |
| 103-104 | N   | ( <b>a</b> .) | <u> </u> | 110     | -            |  |
| 104     | N   | 90            | 90       | •       | -            |  |
| 104-105 | · N |               |          | 90-120  | -            |  |
| 105     | N   | 80            | 80       |         | 8 <u>0</u> 0 |  |
| 105-106 | N   | •             | -        | 120-180 | -            |  |
| 106     | N   | -             |          |         |              |  |
| 106-107 | N   | -             | -        | 170-190 |              |  |
| 107     | 0   | 150           | 150      | 150-250 | 1700         |  |
| 107-102 | N   |               | -        | 140-150 |              |  |
|         |     |               |          |         |              |  |



Figure GS-1-2:

Modal analyses (plagioclase/quartz/potassium feldspar) from Eden Lake monzonite

## REFERENCES

Cameron, H.D.M.

1988: Geology of the Eden Lake area; Manitoba Energy and Mines, Geological Services Branch Report GR84-2,18 p.

-

McRitchie, W.D.

1988: Alkaline intrusions of the Churchill Province: Eden Lake (64C/9) and Brezden Lake (64C/4); In Manitoba Energy and Mines, Minerals Division, Report of Field Activities 1988, p. 5-11.

Schmitt, H.R., Hornbrook, E.H. and Friske, P.W.B.

1989: Geochemical results and interpretations of a lake sediment and water survey in the Lynn Lake-Leaf Rapids region, northern Manitoba; Geological Survey of Canada Open File 1959.

Geological Survey of Canada

1977: Uranium Reconnaissance Program, Map 3564G.