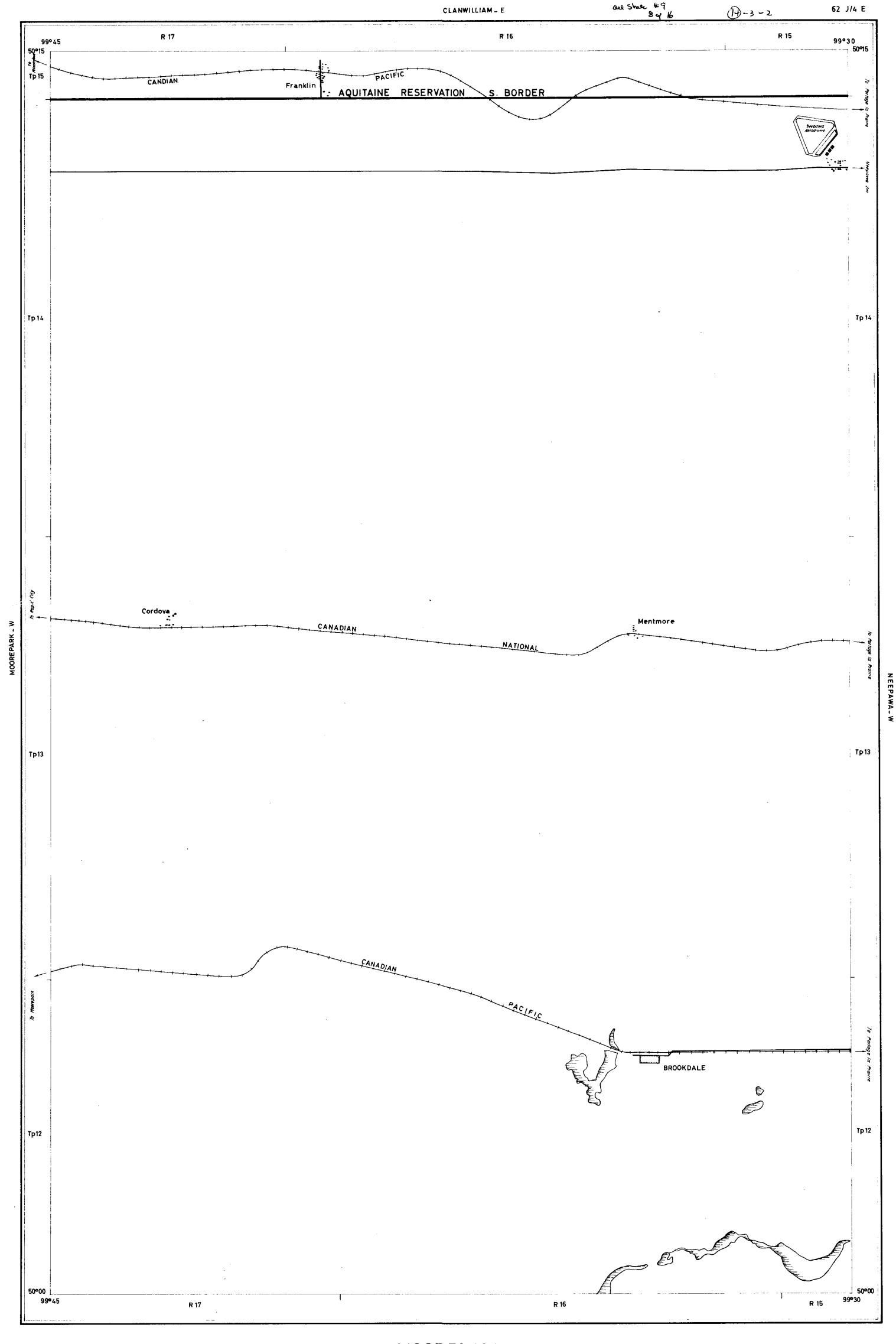
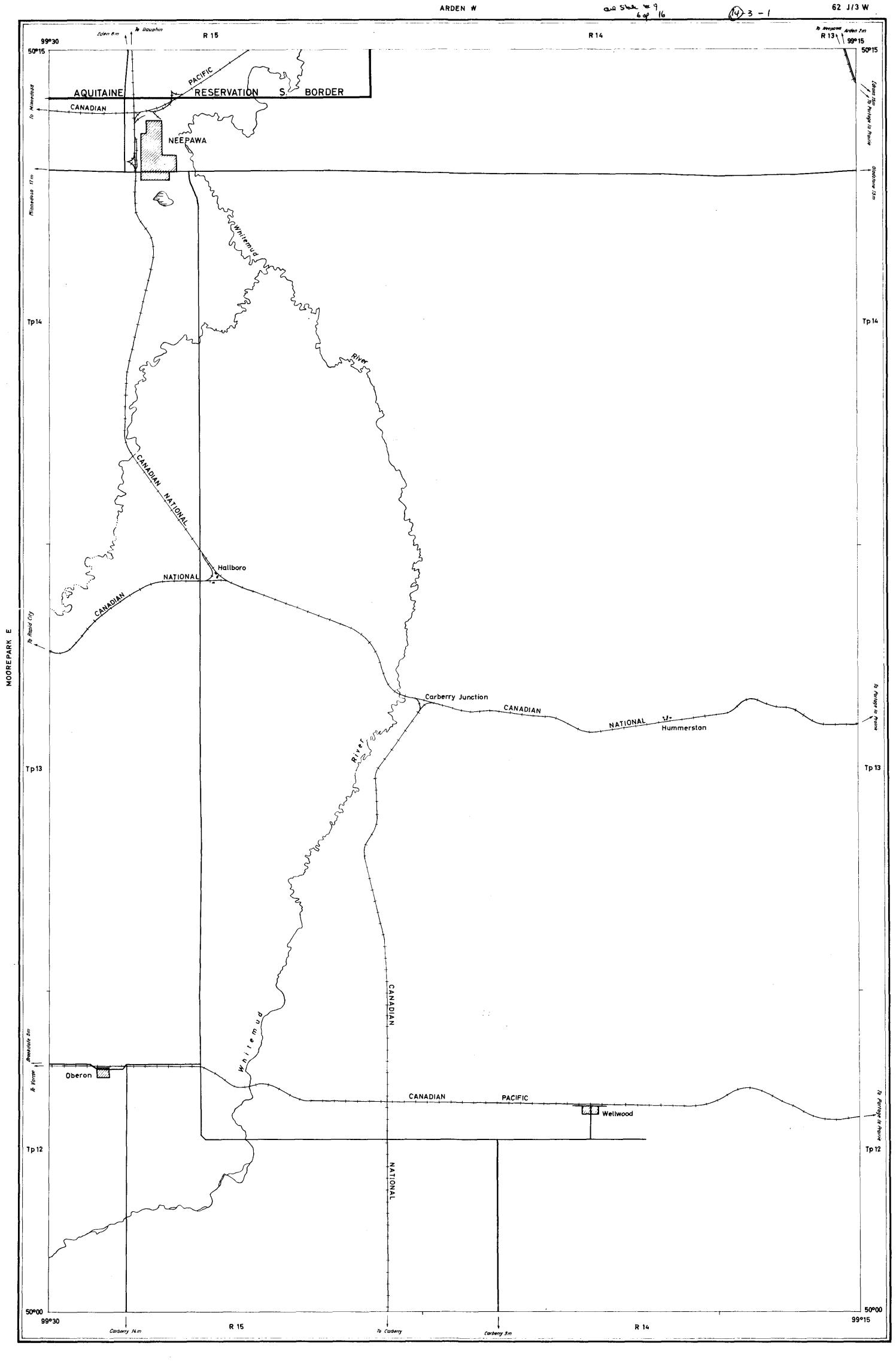
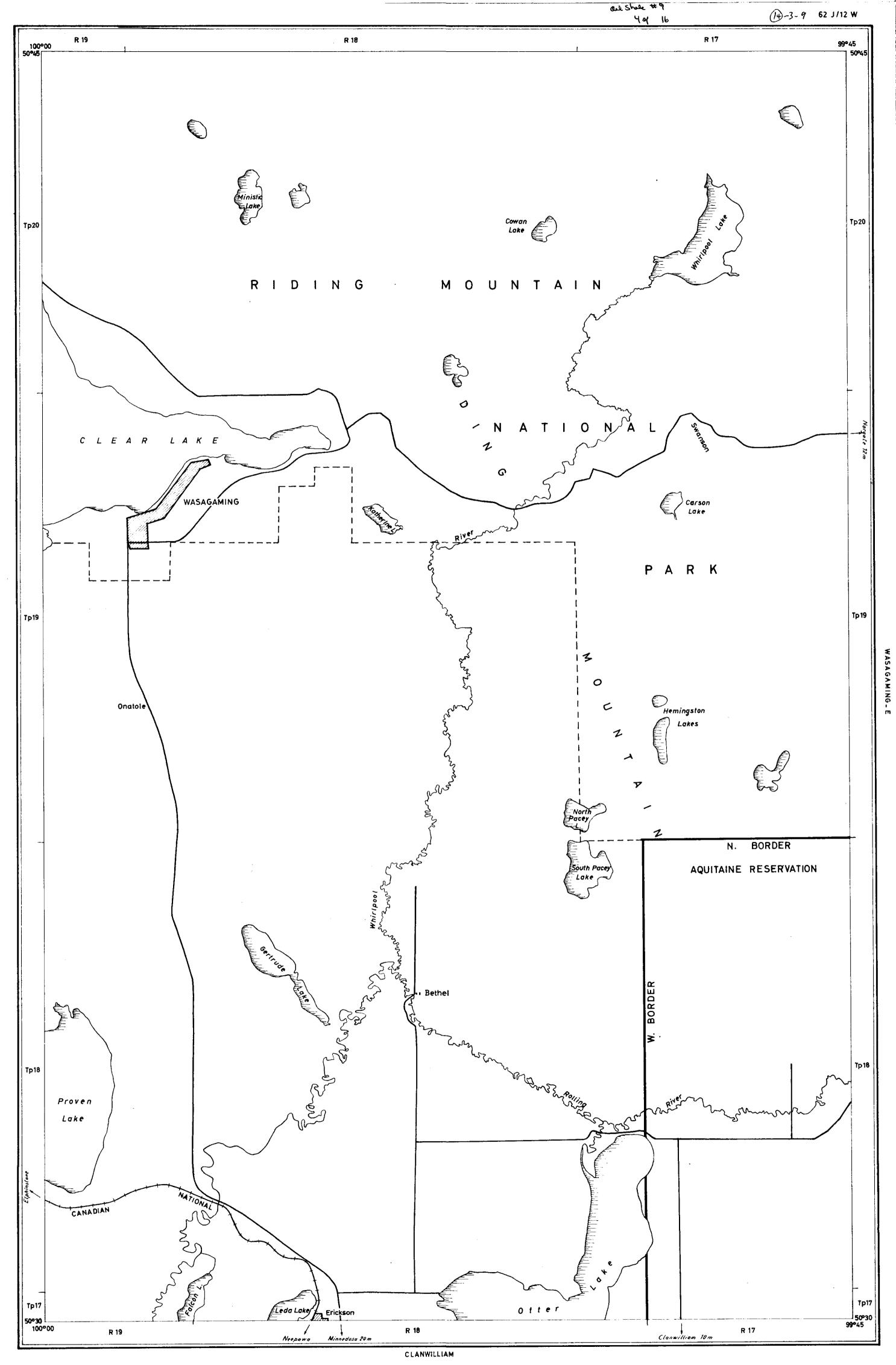
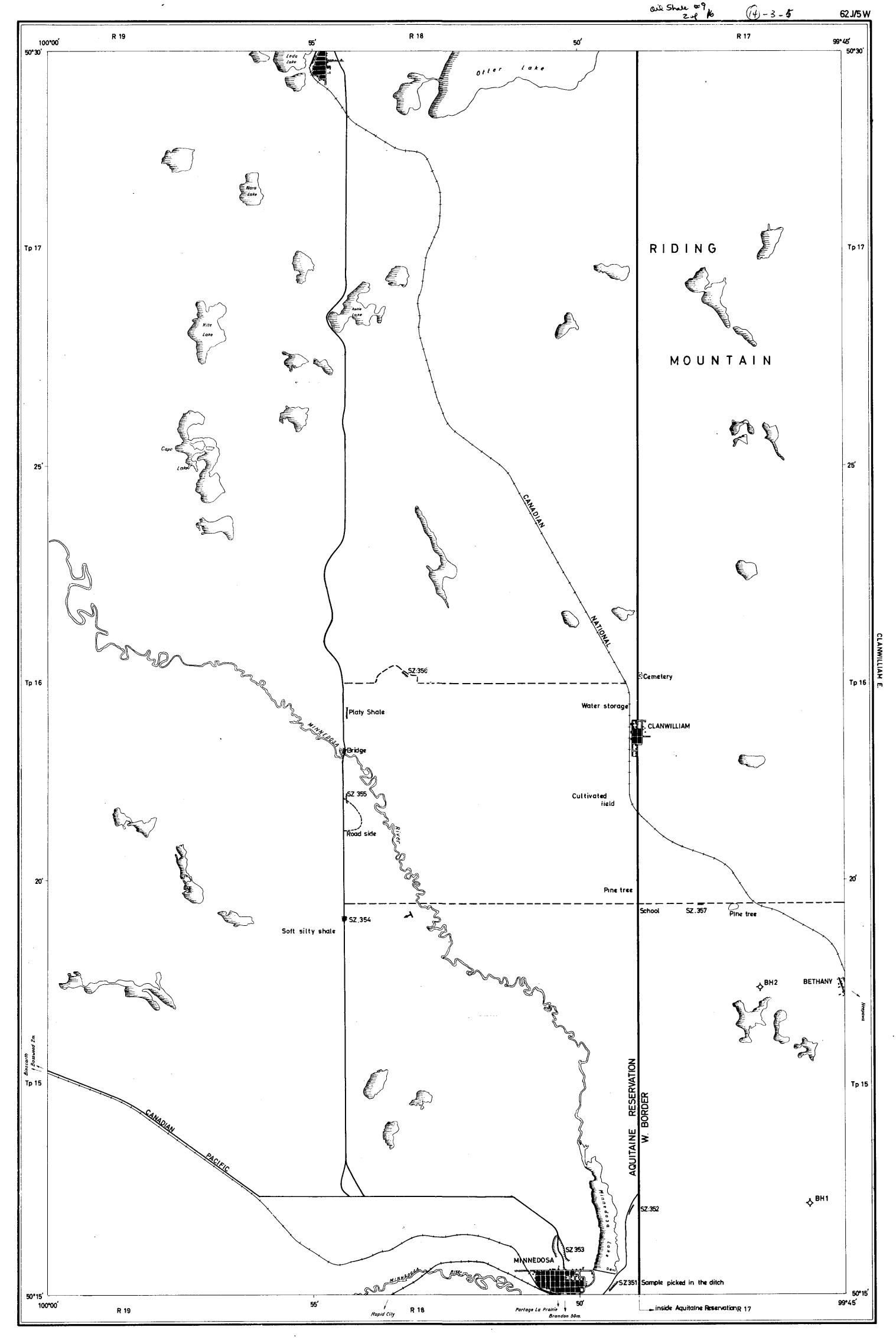

62 J/14 W

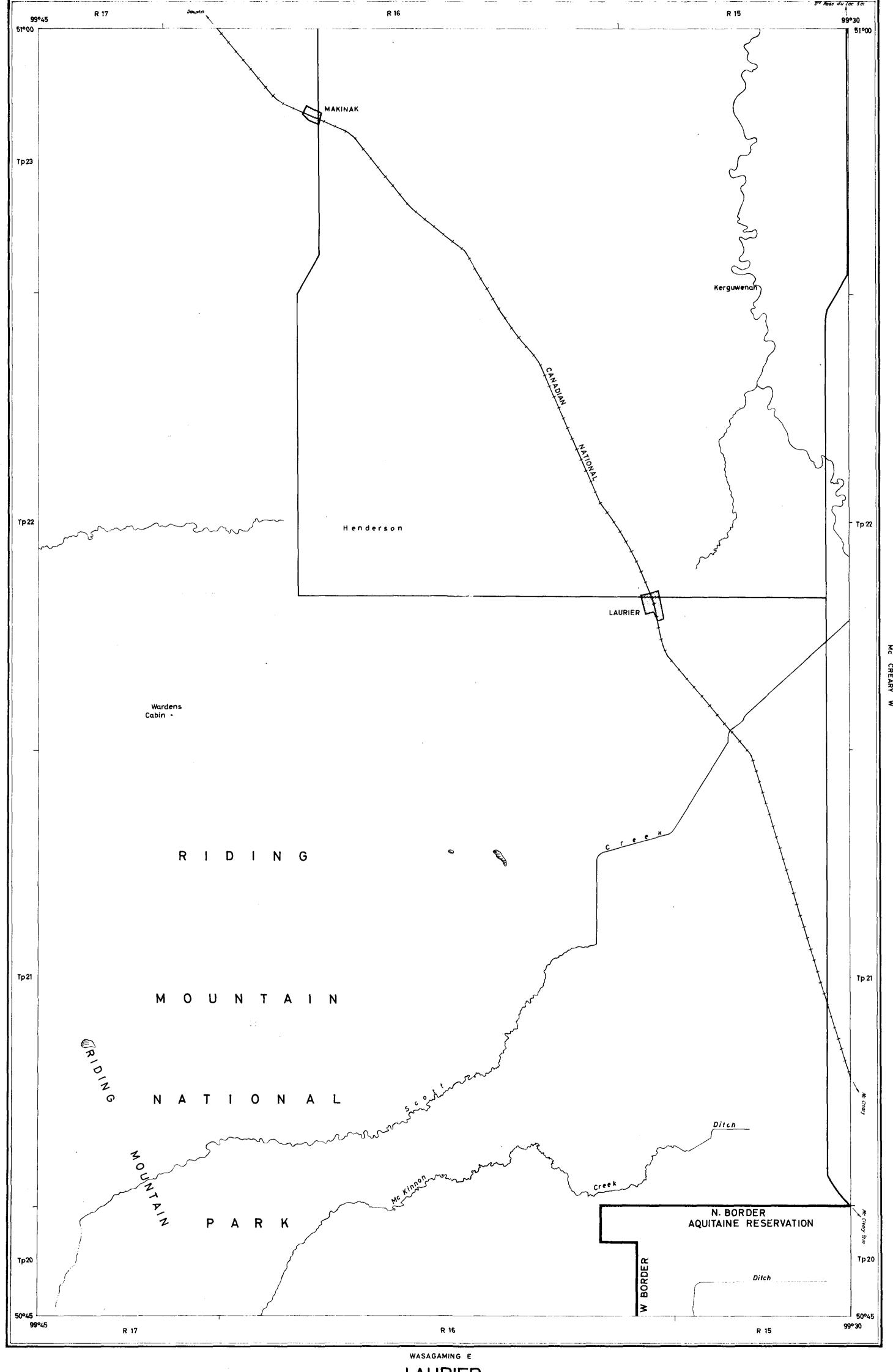

Mc CREARY MANITOBA

ECHELLE 1: 50 000



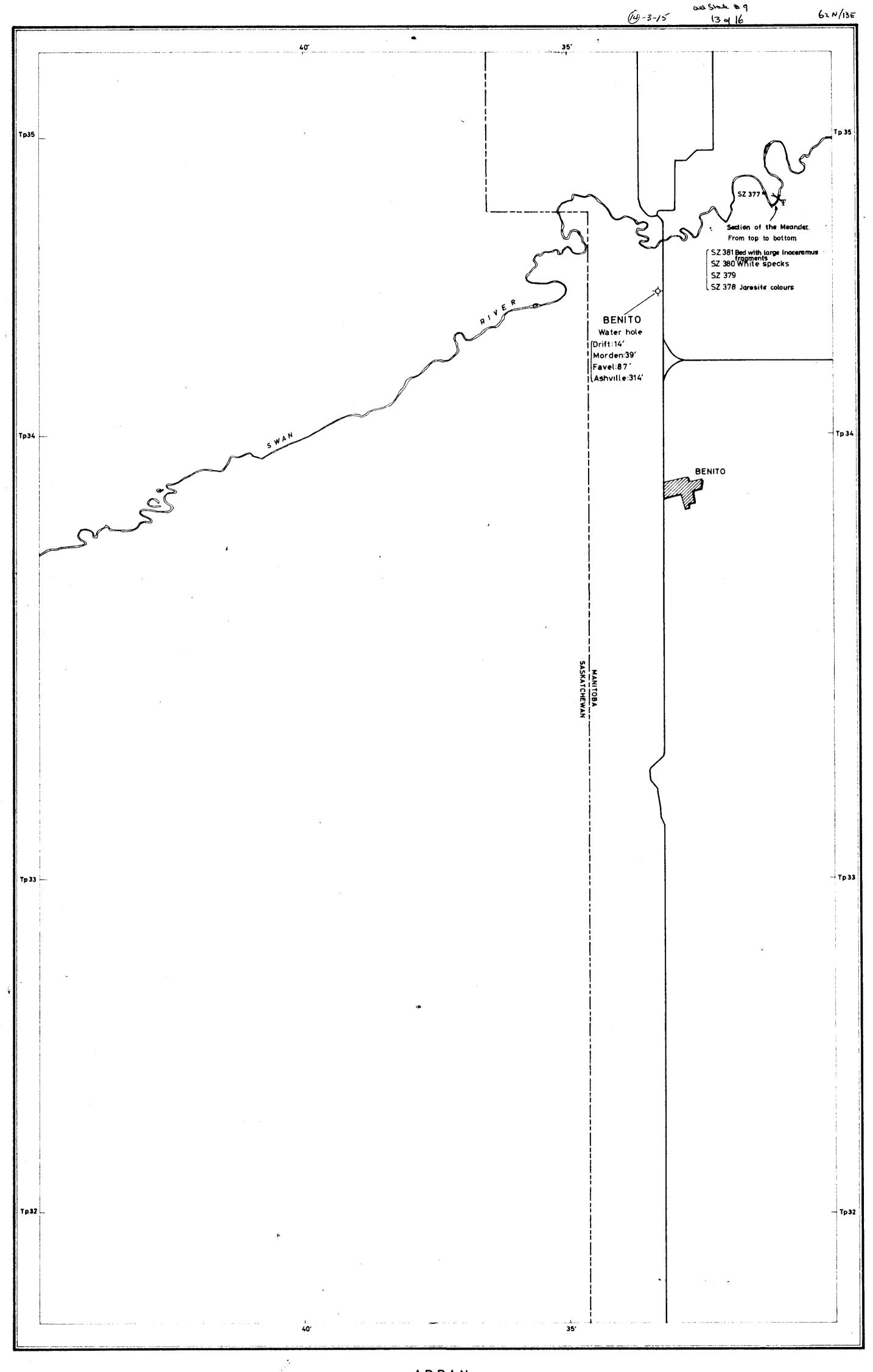

WHITEWATER, LAKE MANITOBA





WASAGAMING MANITOBA

CLANWILLIAM MANITOBA



14-3-10

62 J/13 E

LAURIER MANITOBA

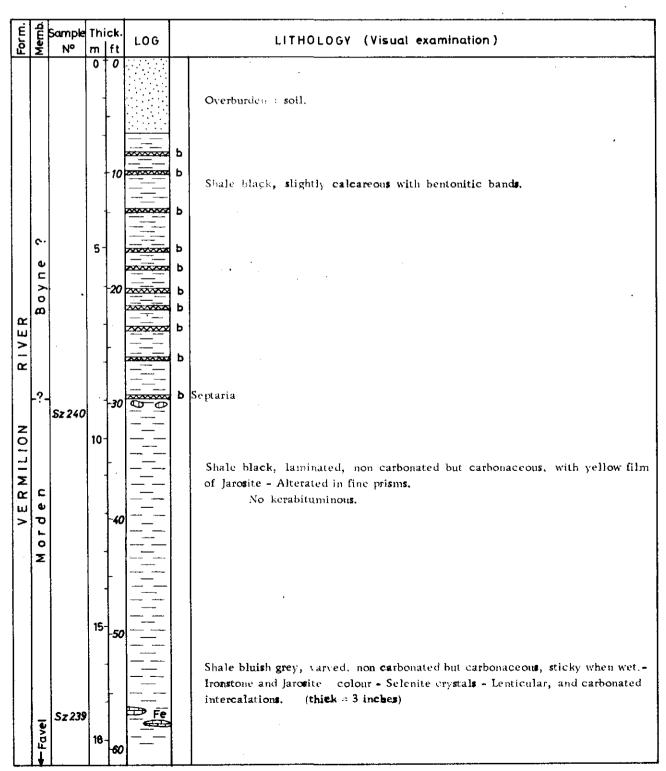
ECHELLE 1:50 000

ARRAN
SASKATCHEWAN MANITOBA

all Shale #9

OIL SHALE MANITOBA

OUTSIDE OF AQUITAINE RESERVATION Nº9


- B.I.7 -

SECTION OF THE MEANDER OF THE VERMILION RIVER

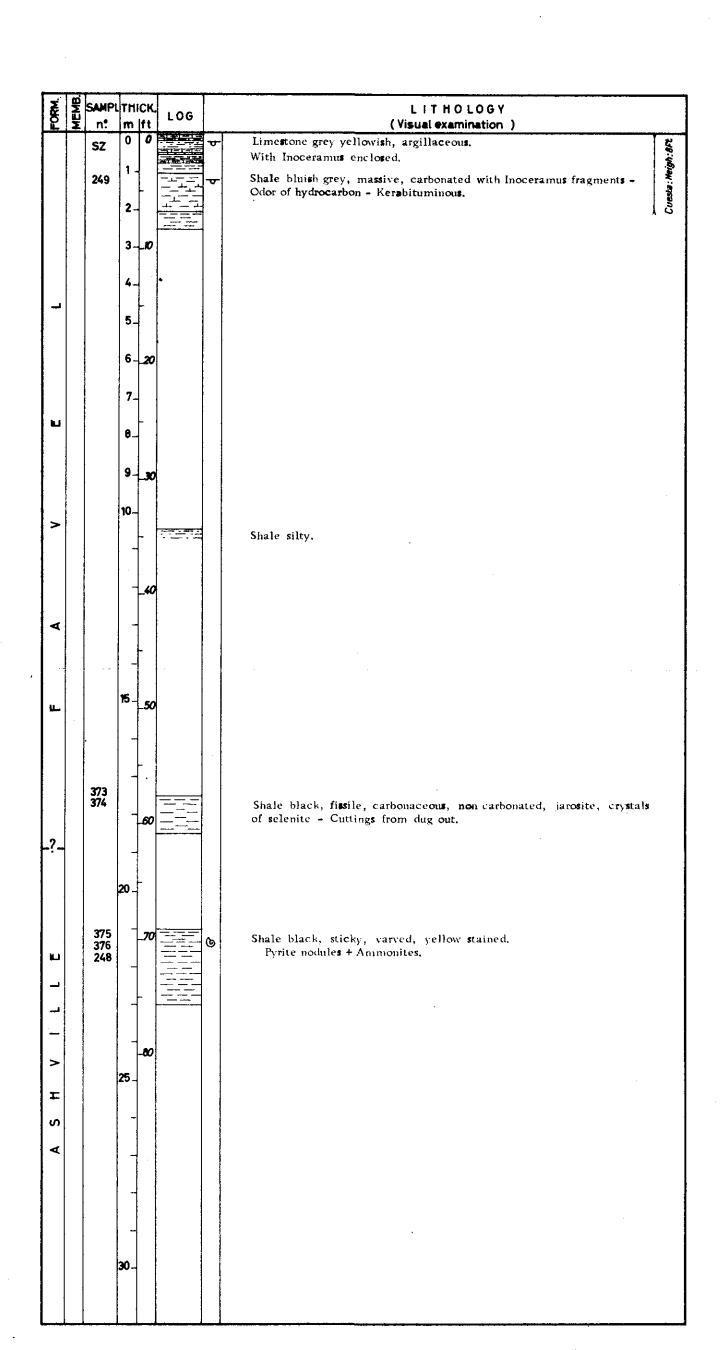
S_W Corner of Lsd 15_Sec 23_Twp23_Rge 20 WPM

Sheet DAUPHIN.E.

Scale 1/100

b= bentonite.

OIL SHALE MANITOBA


INSIDE AQUITAINE RESERVATION Nº9

-_A.C.C.8 - A.C.C.6 -

SECTION 2 miles SOUTH OF KELWOOD

Sheet GLENELLA. W.

Scale: 1/100

OIL SHALE MANITOBA

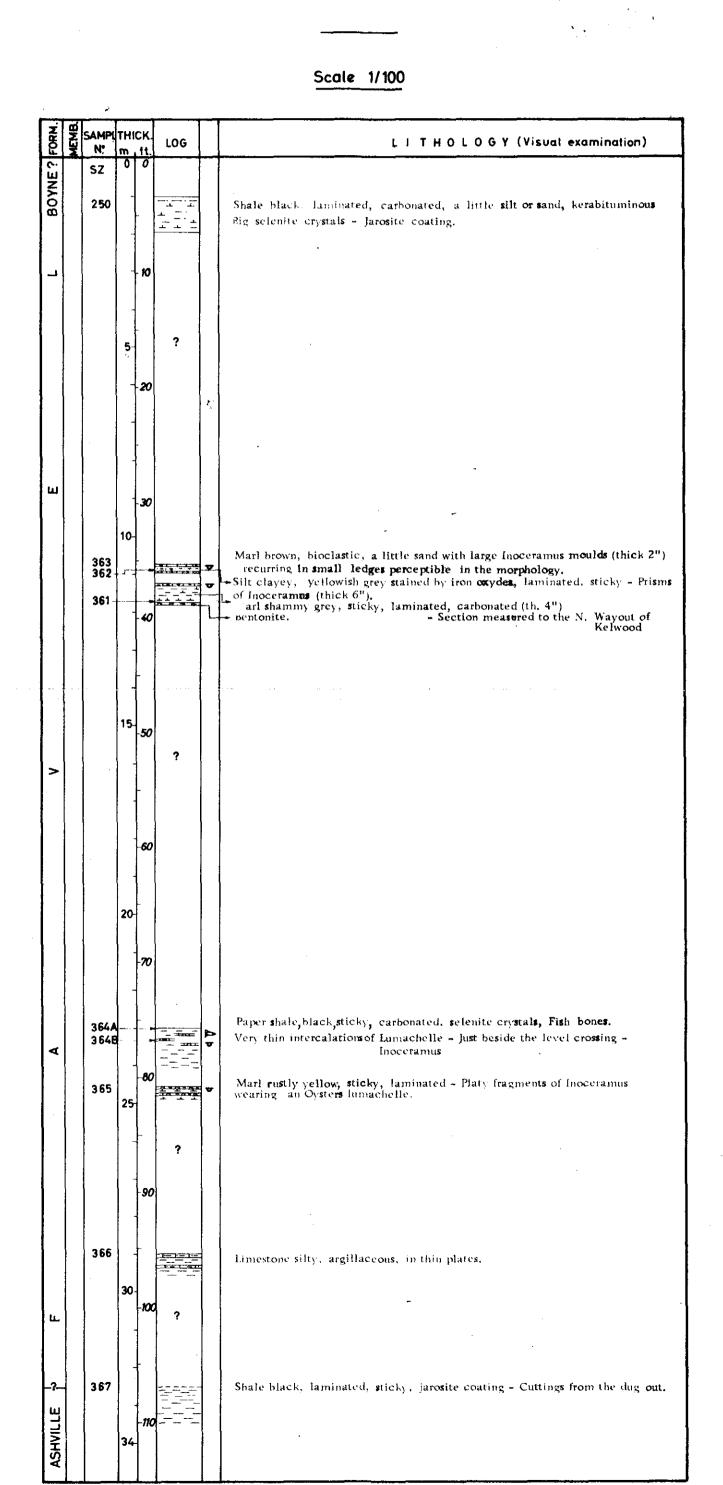
OUTSIDE OF AQUITAINE RESERVATION Nº9

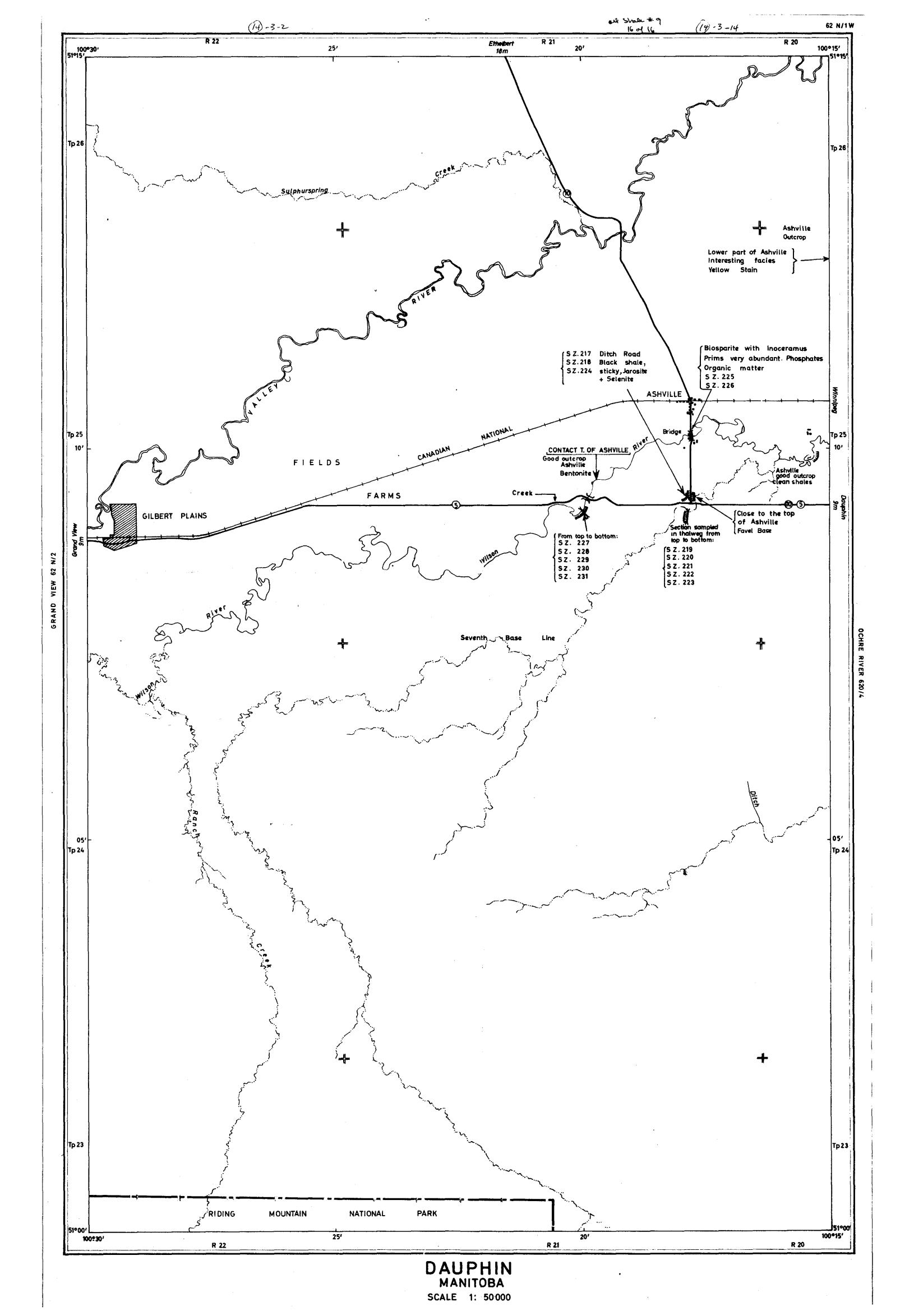
- B.II.1 -

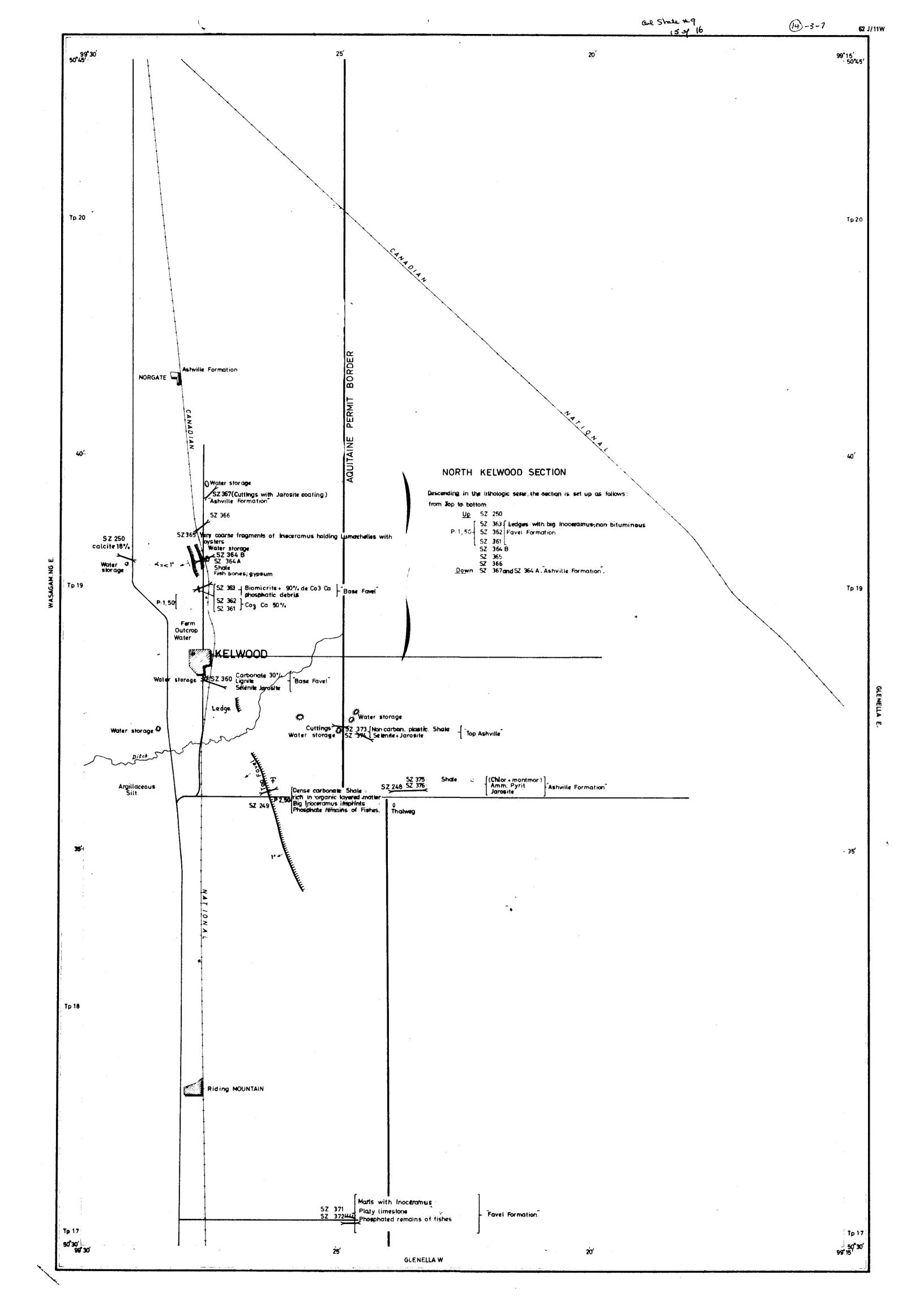
SWAN RIVER SECTION IN THE BOTTOM OF THE CREEK Approx. center of Lsd 1_Sec 3_Twp 35_Rge 29 WPM Sheet ARRAN. E.

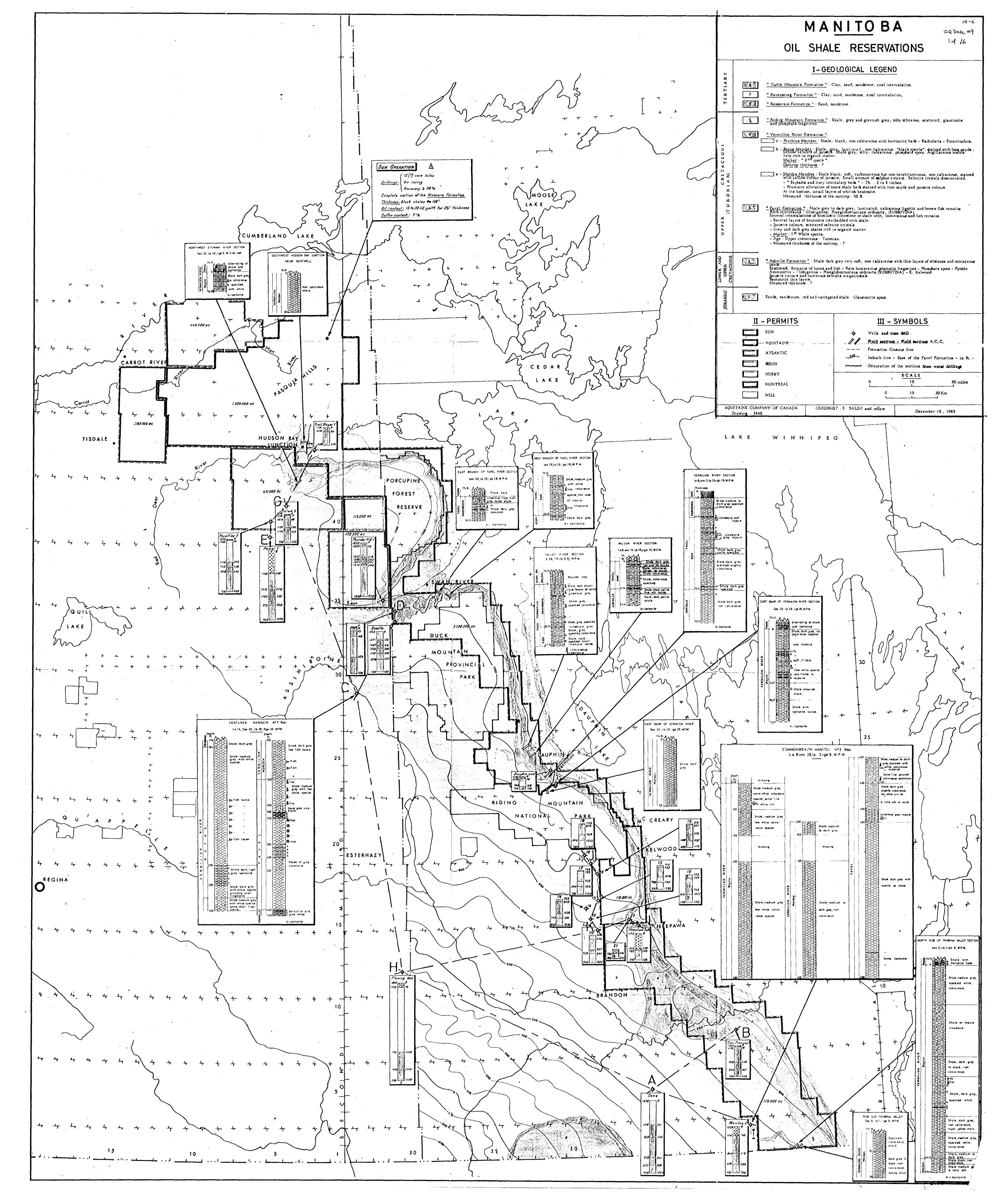
Scale 1/100

FORM.	EMB	Sample N°	THI	CK.	LOG		LITHOLOGY (Visual examination)
<u>E</u>	2		E O		e Se egap se sa	\rightarrow	(Troub Examination)
		S Z	U				
			1 -				Overburden.
				5			Drift.
_			-				
ı			:		- Fe		Shale black, carbonated with fine orthorombic prisms.
			-	10	FE		
W		381	'	~			Limestone dark gre; argiffaceous - rectangular massive slabs - rich in
			_			♥	Inoceranus - abundant organic matter.
				-15		$ \cdot $	
>			5-	, ,		ь	Limestone grey, argillaceous, maroon debris and white specks, light odor of
		380	,				oil, rich in organic matter.
				20		ਯ	, , , , , , , , , , , , , , , , , , , ,
<		379		2			White hentonite with limonitic spats,
		373			72222	ь	Shale black, carbonated, hard - Yellow coating.
		378	-	1			
ட			_	-25			
1			8 -				
1.							b bentonite.
1							•
1							


OIL SHALE MANITOBA


INSIDE OF AQUITAINE RESERVATION Nº9


- A. C. C. 7 -


OF KELWOOD VILLAGE

Sheet GLENELLA. W.

(4) (D)

C A N A D A

OIL STAIR AMMITOBA

AQJITATHE RESERVATION 11. 9

1 - Study from old Notes about oil shales

OIL SHALE MANITOBA

Aquitaine Reservation no 9 and Neighbouring Area

-1-1-

1 - STUDY FROM OLD NOTES ABOUT OIL SHALES

-1-1-

I - LOCATION OF THE PROBLEM -

Looking North from the U.S. Border in a direction N 20° "
towards Porcupine Forest (separating Saskat. from hanitoba) one observes a
crest line hovering about 1000' above the Hanitoba plain strewn with numerous
lakes.

From a geological view point these hills are formed from top to foot by layers formerly called "Pierre and Niobrara Formation" (1), but since 1930 (2) the following terminology was given to them:

		- Riging Mountain Formation
	(- Vermilion River Formation (Pembina Member
	((Boyne Lember
Niobrara Formation	((I orden Nember
	(- Favel Formation Assimiboine
		- Ashville Formation

^{(1) -} J.B. TYRRELL and D.B. DOWLING - Report on Horthwestern Lamitoba with portions of the adjacent districts of Assimboine and Saskatchewan - Geol. Survey of Canada - 1892.

⁻ Wm Mc HINES - The Basins of Nelson and Churchill Rivers - Geol. Survey of Canada - Nem. 30. 1913

^{(2) -} KIRK S.R. - Cretaceous Stratigraphy of the Manitoba Escarpment - Geol. Surv. Canada - Sum. Rept. 1929, pt. B, p. 117 - 1930.

•

According to Paleontological surveys an "upper Cretaceous" age may be attributed to this aggregate.

From 1900 to 1921, the existence of layers of Kerabituminous shales called for attention. These shales evidenced in sections of the various valleys cutting through the above mentionned formations.

In 1913 (1), quoting Hc HINES, reports the existence in Saskatchewan of kerabituminous clusters 120' thick at the Northern end of Porcupine Forest - Manitoba.

In 1914 A. hc LEAN (2) mentions the presence of carbonaceous shale (in the Valley River - Gilbert Plains area) and calls attention on the existence of kerogene shale producing oil -by pyrolisis in the Pembina mountains Manitoba.

In 1921, S.C. ELIS (3) publishes a paper on the Cretaceous Shales of Manitoba, he gives a good description of the different types of shale encountered, of their alteration, of the minerals tied up with them (namely Pyrites) which explain the spontaneous combustion of certain outcrops.

A table of various analysis in appendix to this work shows that a number of samples of outcrops have an oil content up to 9 U.S. gal/t with water content of frequently 15 U.S. gal/ton.

The same year A.A. SWINDERTON published data on tests carried out on oil shales of Canada by the Fuel Testing Laboratory. A number of samples originated from the Niobrana Formation in Manitoba and showed oil content of 15 U.S. gal/t.

^{(1) -} MALCOIM V. - Oil and Gas prospects of the Northwest provinces of Canada - G.S.C. Nemoir 27.E. 1913.

^{(2) -} hac LEAN A. - Pembina Mountain - Manitoba - Report on N.W. Manitoba - Part E. Annual Report, G.S.C. Vol. V, p. 86.

^{(5) -} S.C. ELLS - Cretaceous Shales of Manitoba and Saskatchewan, their economic value - Mines Branch - Dept. of Mines.

To conclude, a rapid examination of former publications, suggests in Famitoba, extending on 450 kms between Porcupine to NW and Pembina Hountains to the S.E., marine formations of upper Cretaceous age with interbedded layers of carbonaceous and bituminous shales which, if buried enough to be free from alteration, could eventually be an objective.

II - CHOICE OF AQUITAINE PERMIT - ENVIRONMENT - PROGNOSTICS -

Following interest aroused by oil shales in Manitoba, Aquitaine Company of Canada bid in 1964 for an area of 118.000 acres the permit was granted on the 23d.9.1964.

As regards environment this area extends on topographic sheets scale 1/50.000 listed below: IAURIER E, Mc. GREARY V., WASAGAMING V. and E., CLAN. ILLIAM W. and E., ARDEN W., LOOREPARK and NEEPAWA V. and is limited to the North by Sun Company Reservations, to the South by Atlantic. All these permits are astrice a string of outcrops to allow an easy investigation of oil shales and eventually a surface or shallow underground development.

Potential objectives are made up of base of Vermilion, Favel and eventually top of Ashville.

Thickness expected are determined by reference to sections provided by near by holes and would be:

a - Around Sw Corner of permit

Hole nº 20 (1) shows:

Vermilion Formation

: 227 ft Thick

Favel

: 70 ft

•••/

^{(1), (2), (3):} cf. E. SALINI: OIL SHALE RESERVATION

b - Middle k. border of Permit

Hole no 15 (2) shows :

Vermilion Formation: 163 ft Thick

Favel : 97 ft -

c - N.W. Corner of Permit

Hole no 17 (3) shows:

Vermilion Formation: 165 ft Thick

Favel : 83 ft -

As regards the Morden, base of Vermilion formation, its thickness is expected to be between 30° and 45°.

According to base of Favel isobaths, the thickness of capping masses formed of silty and siliceous shales of the Riding Fountain formation would be of 600' at the SW corner, 913 ft for the middle of the western border and 769 ft for the NW corner of permit

The reconnaissance of potential objectives even on the western border of our permit can thus be achieved by boring holes to a maximum depth of 1000.

January 27. 1966

F. TORTOCHAUX

OIL SHALE RESERVATION Nº 9

Geological Study on the Oil Shale

Riding Mountain, Favel, Vermilion and Ashville Formations

-:-:-:-

SUMMARY

-1-1-1-

- 1 Study from old Notes about oil shale
- 2 General Geological map of Manitoba from compiled-data Interpretative Sections from water_drilling
- 3 Field Notes
- 4 a) Lithologic Examination of the field samples
 - b) Geochemical Examination
 - c) Fisher Analysis Results
- 5 Final Estimation Drilling program

Pau, January 28, 1966

C L N A D A

the state attraction of the state of the sta

-

CIL TAKE MANITOPA

QUITALY: PTSURVITION NO 9

- 2 General Geological Map of Manitoba from compiled data
 - Interpretative Sections from water drillings

OIL SHALE MANITOBA

AQUITAINE RESERVATION N° 9

NOTES ON THE MAP OF THE RESERVATIONS

This map shows

- the areas for which various Companies have obtained Oil Shale Reservations
- outcrops of kerabituminous formations and surrounding formations
- base of Favel Formation isobaths -lower limit of kerabituminous formations-
- the location of a few sections and wells as described in Bibliography or provided by A C C

Main results

This map shows a rather important regional thickening of all members of the Vermilion River Formation towards the South-East end of the map. It seems that this thickening may be extended in the U S A

The kerabituminous formations are located in the "Niobrara Formation" referred to by old authors that is to say from the higher member of Favel Formation up to the Boyne member of Vermilion River Formation—as defined actually—

According to the same authors, oil content tests carried out on surface samples, showed a rather more favorable kerabituminous facies from the Vermilion River towards the North and more significantly in the Pasquia Hills, part of the actual Sun Reservation

In this location, a recent exploratory survey carried out by this Company evidenced the presence at slight depths, in the unalterated areas, of oil contents of about 15 to 20 gals per ton

It seems at the moment that the areas of interest for the exploration of oil shales, would be located in the whereabouts of the Sun Reservation, and near enough to the Vermilion River and Favel Formation outcrops, to avoid a too important sterile overlap

In these areas, notwithstanding an important decrease in thickness, the kerabituminous beds still retains a power of interest

As regards the area South of Vermilion River, we possess no data concerning oil contents of these formations which further North attracted our attention

It should be of interest to obtain information, for this part of the basin where Favel and Vermilion River Formations show both important thickness

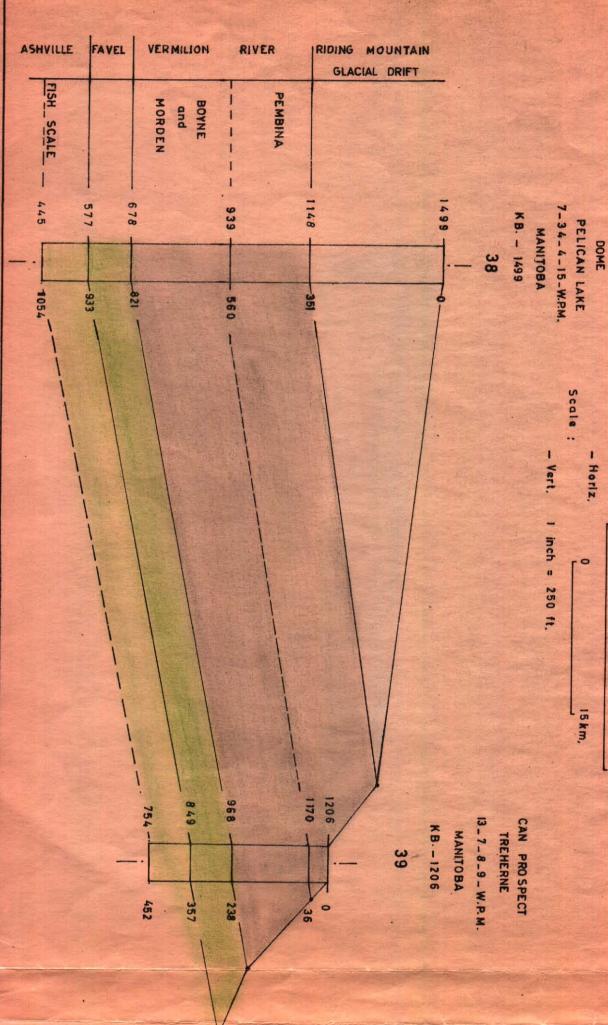
E SALINI

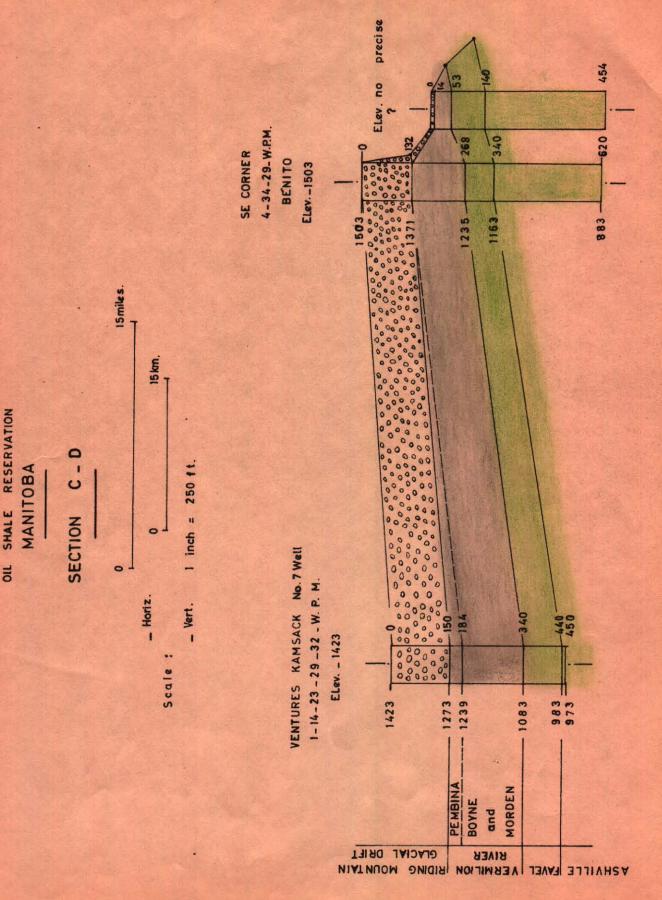
Notwithstanding the important thickness of kerabituminous formations South of Vermilion River, it cannot be expected to find here high grade of oil content

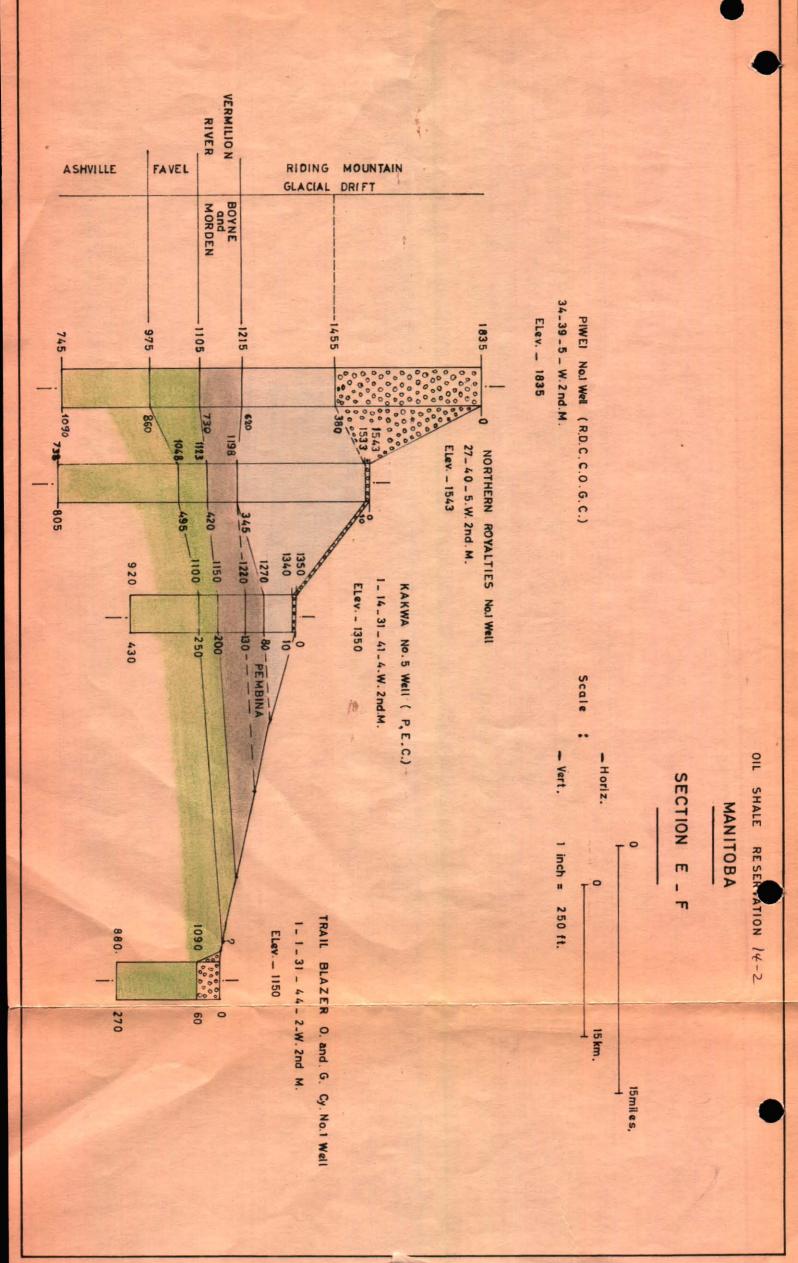
In fact, a field survey carried out during 1965 by AQUITAINE showed for surface samples an oil content of \$\infty\$8 gals/Ton These results are comparable to those mentioned by the old authors for the Vermilion River Area

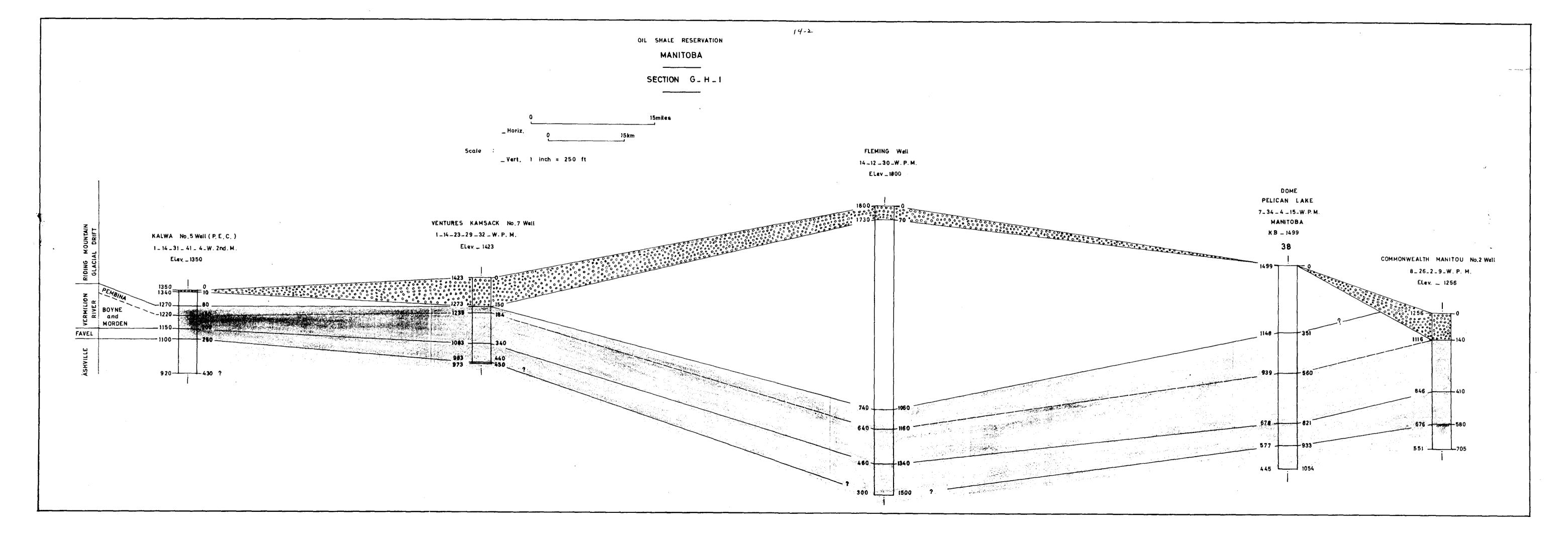
On the other hand, according to information recently received, the average oil content of oil shales encountered by ATLANTIC when drilling their South Manitoba Permit, is lower than 11 gals/Ton, the thickness of the overburden being 250' and more

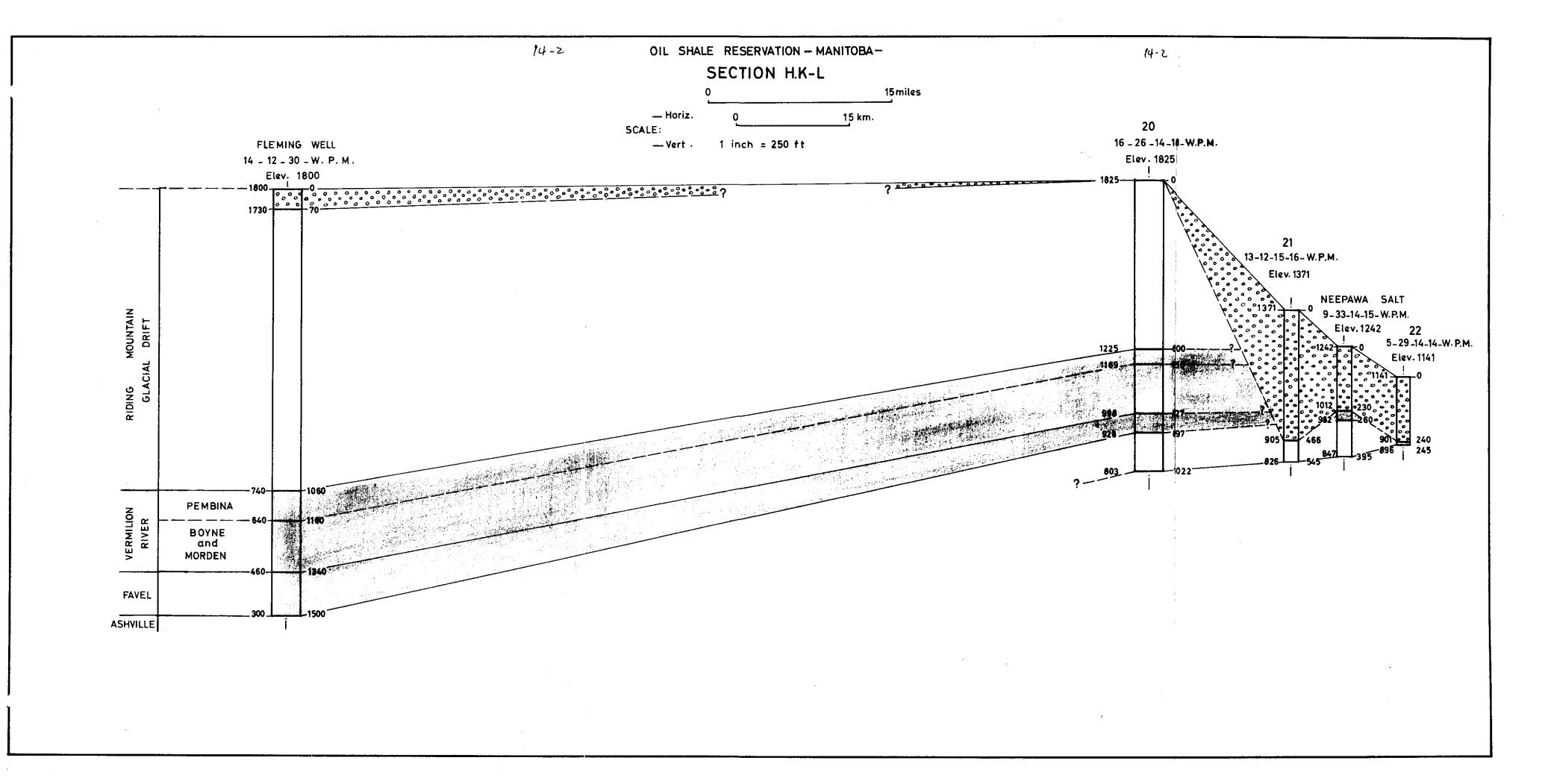
These above data tend to reduce the interest in the kerabituminous shales South of Vermilion River


Nevertheless before giving up this area, it would be convenient to await the results of tests to be made on unalterated samples collected in depth by a campaign of holes drilled inside AQUITAINE's permit


January 5th, 1966


SECTION A - B


15 miles.



CANADA

OIL SHALE MANITOBA

AQUITAINE RESERVATION Nº 9

3 - Field Notes

CONTENTS

(14) -(3) 3-1 p 1 to 5 FIELD NOTES (14) -(3) 3-2 p 1 to 4 LIST OF SAMPLES (14) -(3) 3-3 p 1 to 15 INDEX TO THE SAMPLES + HI TO PARTICLE Y

(10) -(3) 3-4 pl to10 STUDY OF THE SAMPLES

(1) - 3-1 to 3-15 150 COO MAPS RESURVATION ARE

(14)(3) 3-3#1

CANADA

OIL SHALE MANITOBA

AQUITAINE RESERVATION N° 9

•

INDEX OF THE SAMPLES TAKEN DURING THE FIELD TRIPS

A/ Inside the reservation or in the close vicinity

/ A C C 1 / Vicinity of Minnedosa - Sheet Clanwilliam W

N 0 N 0	Location of outcrops	No Location of outcrops Lithology (visual examination) Formation of outcrops		Examination ordered	
=				- X 7 01	
sz 351	East Minnedosa village - Edge of road - South of Lake	Shale silty, greenish grey, splin- tered, hard, non carbonated Limonitic traces - Spots of nyrite		Clays examination	
22 352	North of Minnedosa dam - East edge of road ditch at 1 km from the preceding	Shale silty, greenish grey, non carbonated, hard, cracky - Brown traces		As above	
 SZ 353 	Road bend North way-out of Minnedosa to Erikson	Shale sılty, greenish grey, hard, iron coating		As above H	
SZ 354	Thalweg between Minnedosa village and crossing of Minnedosa valley	Shale sulty, greenush grey, a luttle softer than the precedung - Foliated weathering		Washing Clays examination X Rays Thin sections	
			"j 61 13 13 14 61 61 14 14	1	

Section W E through the Southern part of the permit from Minnedosa to the Rossburn Junction-Sheets Clanwilliam W , Clanwilliam E , Arden W

	Examination ordered	Clays examination X Rays	Clays examination X Rays Picking Washing	Clays examination X Rays Thin sections	As above	Thin sections	Clays examination X Rays
	Formation						Vermilion plain
lam E , Arden W	Nc I location of outcrops Lithology (visual examination) Formation to C R P	Shale finely silty, dark green-grey, foliated weathering, non carbonated	Shale silty, hard, dark green-grey, ovoid or platy shaped, non carbonated - Marine sediments - Covered with overburden	Shale dark green-grey, siliceous, hard and cracky plates - fragments involved in sandy eluvial deposits	Shale dark green-grey, silty, hard and cracky plates - Fragments in- volved in sandy eluvial deposits	Shale sılıceous, greenısh-grey -	Black shale finely foliated, soft- Probably to the top of Vermilion River Formation
Craiminain w, Claimilliam E, Arden w	location of outcrops	Crossing of Minnedosa Road and Thalweg	E W Section from Minnedosa valley - Clanwilliam Eden	Same as S E Clanvilliam Section along Railway Ditch outcrop	North of the track Same section near Clarks- ville school	On the Plateau N E of Bethany	Same as section East-West Blac Picked up in water storage Prob cuttings - Going down East- Rive ward
 	N	558 28 H	H BT 6	# SZ 357	sz 358	# SZ 244	# SZ 359

>-3 3

len W ~ Clanwilliam E	
	'n border of Houncatt Arene
	ACC 3 / Section from Birnie to Elk Ranch - Wester

	11			Examination ordered
	Location of outcrops	Lithology (visual examination)	Formation	to CRP
2				
SZ 245 SZ 246 SZ 246	Birnie – Elk Ranch road ditch East of Elk Ranch – Bunch of 50 meters	Shale dark green Shale light grey, siliceous, hard and cracky plates - non carbonated		Clays examination X Rays Determination Lithologic study Clays examination X Rays Thin sections
SZ 247	Elk Ranch Road - Top of second Cuesta	Shale light grey, siliceous, platy		Clays examination X Rays Thin sections
			1 11 2 11 11 11 11 11 11 11 11	

nvıllıam E
318
Sheet
1
Polonia Hillock
Polonia
n of]
C C 4 / Section
1
7 C C /

W /	A C C 4 DECETOR OF			
i 1 1	# 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Examination ordered . J.
	Location of outcrops	Lithology (visual examination)	Formation	Ttor CRP
===	East Polonia - 800 meters	Silt argillaceous, hard, cracky	Rıdıng Mountain	Clays examination
i SZ 369	from road bank			Thin sections
<u></u>		Shale silty, siliceous, hard		As above
1 27 370	Folonia Section	Iron concretions, platy - Fresh		-
27 -		sample		- - -
== ==		TROUM THE BUTTER AND THE THE BUTTER AND THE BUTTER	1	
:	. 1			

& ´

ACC5/Section of Riding Village - Sheet Glenella W

° Z	Location of outcrops	Lithology (visual examination) Formation for C R P	Formation	to CRP
\$Z 371	3 miles S E of Riding Mountain	Shale carbonated, yellow colored by iron oxyde, soft, sticky	Fave 1	Determination Clays examination
SZ 372	S E Riding Mountain	Calcastic till intercalations - incerans Calcareous intercalation brown bloclastic, in yellowish-brown		X Rays Determination (Mthology study
		clays		Clays examination X Rays

from top to bottom Section 2 miles South of Kelwood - Sheet Glenella W ACC 6

		,是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		
°N	Location of outcrops	Lithology (visual examination)	Formation	Examination ordered :
SZ 249	Inoceramus ledge in ditch S E of Kelwood	Shale bluish-grey, carbonated vith fragments - Odor of Hydro-carbon - Bituminous	Favel	Determination Lithologic study Clays examination
SZ 375	3 miles E Kelwood road	Shale black, sticky , Pyritic ammonites		Picking Thin sections Clays examination X Rays - Picking Washing
928 339	As above	Pyritic ammonites and pyritic nodules		Clays examination X Rays Thin sections
# S7 248	Section WE-SE Kelwood, near small bridge	Shale black, plastic, non carbo- nated, varved, yellow stained	Ashville (?)	Clays examination X Rays Picking - Washing
1 1 1 1			1 1 1	

3-3 4

7 Section in the Northern vicinity of village - Sheet Glenella W from top to bottom - 5 -

°N	Location of outcrops	ops Lithology (visual examination) Formation Examination ordered to C R P	Formation	Examination ordered to C R P	
SZ 250	Farm between Kelwood and Nor-gate - W Dug water road, in plain	Shale black, granular, carbonated, odor of hydrocarbon - Big selenite crystals on the surface - Jarosite coating - Bituminous	Top Ashville or Favel Boyne Member ?	Clays examination X Rays Thin sections	
SZ 363	Section North way-out of Kelwood, on about 1,5 meter - Road bank	Marl bioclastic, sandy - brown with large Inoceramus moulds - Th = 5 cm recurring in small ledges perceptible in the morphology	Base of Favel	Determination Lithologic study Clays examination X Rays Thin sections	, *
sz 362	Same section (underneath)	Sit clayey-calcareous - yellowish grey-colored by iron oxydes - Foliated, soft - Prisms of Inoceramus - Th. = 15 cm - Gradational transition		Clays examination X Rays Picking Washing	
sz 361	Same section (bottom)	Marl shammy grey, plastic, layered, varves of some mm, car- bonated		As above	
SZ 364 B	Edge of Railway - North of Kelwood	Intercalations of Lumachelles Fragments of Inoceramus	Downward, in succession, Base of Favel	Clays examination X Rays Pıckıng	
5Z 364 A	Edge of Railway - North of Kelwood - Water storage cuttings	Paper shale black, selenite crystals, soft, carbonated - Very thin intercalation of Lumachelles - Fish bones	Base of Favel	Clays examınatıon X Rays	
SZ 365	Track N S Kelwood Norgate	Marl rusty yellow, plastic, banded, beds and fragments of Inoceramus wearing an oysters- Lumachelle	Favel	Determination Lithologic study Clays examination X Rays Picking	
					>-3

	Determination Lithologic study Clays examination X Rays - Thin sections	Clays examination X Rays - Picking Washing
		Ashville 'same as W Dauphın ====================================
	Limestone silty - argillaceous in fine plates	Shale black, non carbonated, same as W X Rays - Picking I Dauphin Washing III
	Same as above going downward in the section - 1,5 mile South of Norgate near the Farm, in the ditch	South of Norgate - Limite of Sha sz 367 the carriageable track - In Nater storage cuttings Jar
=-	998 ZS	SZ 367

	Ĕ
	tom
	ot
	۵,
	τo
	ď
	from top
	Ē
	r
	44
	ł
	a a
	E
	Ξ
	7
	D
	ò
	š
	Kel
	¥
	5
	_
	Œ
	from the S E
	ĕ
	4
	Ξ
	Ö
	ú
	ection
	1
	ct
	9
ı	~
	_
	00
	٥
I	<u> </u>
	_
I	A
	•

	Location of outcrops	N° Location of outcrops Lithology (visual examination) Formation		Examination ordered
09E ZS 3	South way-out of Kelwood - Water storage cuttings	Shale black, soft, paper shale carbonated - Lignite debris - Selenite crystals - Jarosite and sulphur?	Base of Favel	Clays examination X Rays Thin sections
SZ 373	2 miles S E of Kelwood dug-out in plain	Shale, argillaceous, carbona- ceous, black, plastic folia Jarosite - Crystals of Gypsum - non carbonated		Clays examination X Rays Picking Washing
87 374	Same as above	Selenite crystals		Clays examination X Rays

B/ Outside of the Reservation

 C_3

These samples have been taken outside of the Reservation in order to check the beds hidden by overburden inside

I - W and S W Area of Dauphin

ditch Ashville Road near the intersection with Gilbert Plains Roads (Lsd 1 - Sec 14 - Twp 25 - Rge - W P M) - from top to bottom $-\frac{W}{21}$

o Z	Location of outcrops	N° Location of outcrops Lithology (visual examination) Formation Examination ordered ' " to CRP	Formation	Examination ordered ' Lord R P Lord R P
SZ 217	Crossing of Ashville and Gilbert Plains roads - Manitoba	Shale black - hematized on the surface - Inoceramus shells prismatic debris - Gypsum surfaced, yellow jarosite and native sulphur	Ashvılle '	Clays examination X Rays Wishing
SZ 218	Bottom of preceding - 1,5 meter below	Shale black - yellow vugs of Gypsum - Prisms of Inoceramus		Clays examination X Rays Picking
SZ 224	Edge of Gilbert Plains roads in ditch	Broclastic Limestone - Luma- chelles - Iron - Pelecypoda - Inoceramus - Fish remains brown, abundant - Globigerines	Favel ?	Determination Lithologic study Clays examination X Rays - Thin sections

of Ashville Gilbert Plains Roads - intersection - Lsd 16 - Section along the Thalweg located S Twp 25 - Rge 21 W P M 7

	-=-=		=====	-=-=-	-=-=	- =-=-
6	8	Clays examination X Rays	Determination	Clays examination X Rays - Picking	Clays examination X Rays - Picking	Washing
		Ashville	=		E	11 11 11
		Shale black, smooth surface sticky carbonated spots	Shale black, Laminated with 11- monitic bands - Odor of hydrocar-	bon - White specks - Calcareous -	Paper shale brown grey, light - Yellow coating, Micro-	** = = = = = = = = = = = = = = = = = =
		As above	As above		Bottom of same section	
		SZ 221	SZ 222		SZ 223	-=-

- Wilson River bridge on Ashville Road (Lsd 13, Sec 13, Twp 25 - Rge 21 W P M)

	Location of outcrops	rops Lithology (visual examination) Formation Examination ordered	Formation	Examination ordered
SZ 225	Near Wilson River Bridge	Shale grey, laminated, silty, non carbonated	Close to	Clays examination X Rays - Picking
SZ 226	As above - Ashville Road	Carbonated intercalation, micro- crystalline - Bioclastic in black shales sequence	=	Washing Determination Lithologic study Clays examination

1

$\widehat{\Xi}$
<u>р</u> ц
3
7
Q)
RS
ŀ
25
, d
<u>≯</u>
1
10
ěc
4

S
5
ad
8
us
ro T
F
r T
рe
11
뙤
S
ver
RI
Ę
SC
Νİ
a)
t,
Эę
- Meander of the Wilson Rive
ıde
ear
Σ
.+
7

ł		***************************************		\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
C Z	Cr	Lithology (visual examination)	Formation	Examination ordered to C R P
SZ 227	Bridge Gilbert Plains River - Wilson River	Shale black carbonated, fragments of Inoceramus, Globigerines, fish remains - Numerous white specks, carbonated from 0,1 to 5 mm - Calcite - Iron oxyde	Transition Ashville - Favel	Clays examination X Rays Picking
SZ 228	Same as above going downward	Shale black, carbonated, fish remains, white specks		Clays examination X Rays - Thin sections
SZ 229	Same section - 2 meters lower	Shale black, carbonited, Inoceramus - Fish remains, white specks	Base Favel	As above
SZ 230	Same section - 4 meters lower	Shale dark grey, carbonated, fragments of Inoceramus - Brown fish remains, numerous organic fragments - Rare Iron and white specks - Thick bedding		Determination Lithologic study Clays examination X Rays Picking Washing
SZ 231	Same section in Wilson River Cliff	Shale black, carbonated, white specks - Very thin banding of argillaceous and ferruginous bentonite, rich in kerogene	Typıcal Favel	Clays examination X Rays Thin sections

3 - Twp 25 - Rge 20 W P M border of Lsd 4 - Sec 5 - Ditch along the track S of Spruce Creek - W

L-=-=-	<u></u>
Examination ordered	Clays examination X Rays @loksmg ^v - Washing
Formation	Ashvılle
Lithology (visual examination) Formation Shale, dark brown, yellow jaro- Ashville Clays examination site coating, bentonitic, bi- X Rays tuminous @loksng - Washing	
N° Location of outcrops	SZ 232 Crossing Spruce Creek, after SI "Drive Inn" - Ditch ti
	sz 232

Σ 35 - Twp 23 - Rge 20 W P Corner of Lsd 3 - Sec I N E 6 - Meander of Vermilion River - Sheet Dauphin E from top to bottom

° N	Location of outcrops	Lithology (visual examination)	Formation	Examination ordered to too C R P
SZ 233	Vermilion River - S W Meander of Spruce Creek	Shale brownish and rusty, limonitic coating, finely varved, carbonated	Gradational zone of Favel	Clays examination X Rays Picking - Washing
SZ 234	1,20 meter lower than preceding same section	Shale black thin bedded, plastic carbonated, odor of hydrocarbon, Selenite - Thickness = 1,50 meter		Clays examination Picking Washing
SZ 235	Going downward in same section Top of calcareous bed	Black shale, non carbonated, fragments of Inoceramus - Foliated weathering		Clays examination Picking Washing
SZ 236	Same Meander section - Base of carbonated bed - 0,80 meter thick	Limestone, crystalline, bloclastic brown-red fish remains - The shales become more carbonated - Numerous Pelecypoda beds		Determination Lithologic study Clays examination X Rays Thin sections
• ••}				<i>3-</i> 3 ΙΣ

- 11	Clays examination X Rays Picking	Clays examination X Rays - Picking Washing	
*	Shale dark grey, carbonated, white fragments of bivalves, banding of kaolinite - White specks - Fish remains - Thickness = 2 meters	Shale silty, black, cracky, carbonated, granular weathering - White specks	
	Same section under 236	Extreme base of section 233	·
,	SZ 237	SZ 238	

	7 - Meander of the Vermilion River	S	sd 15 - Sec.	- S W Corner of Lsd 15 - Sec. 23 - Twp, 23 - Rge 20 W P l
	N° Location of outcrops L1	thology (visual examination)	Formation	Examination ordered the tor C R P
SZ 240	Vermillon River Meander - Same as SZ 239 Higher than Septaria level South Dauphin Sheet - South of Footbridge - S E Kelwood - In Vermillon River - Appearing thickness = 52 ft	Shale black, foliated, yellow pel- Vermilion licule of Jarosite - non carbonated formation carbonaceous Shale bluish grey, varved, plastic when wet, jarosite and limonitic colours -, non carbonated but carbonaceous - Septaria beds - Selenite crystals	Vermilion formation Morden Mbr	Clays examination (1) X Rays Picking - Washing (1) X Rays Picking.
				

ડ ફે ફે

٠ ي

- 12 -

o N	Location of outcrops	outcrops Lithology (visual examination) Formation Examination ordered to C R P	Formation	Examination ordered
SZ 243	Vermilion Meander - North of Riding Mountain National Park border - Outcrop lower than	Shale grey silty, jarosite star ned., very foliated, non carbo- nated,	Vermilion F Pembina	Clays examination X Rays
	Farm, 45st above Cattle-park river	Radiolaria and Foraminifera	Riding Mountain ?	10
SZ 242	Same section, appearing thick- ness 9 ft	Paper shale grey - Film of limonite, jarosite		Clays examination
		and small crystals of selenite Small faults N W - Beds non carbonated - Black specks	•	Picking Washing
SZ 241	Same section	Shale grey silty, carbonated, - Odor of hydrocar- bon, small white specks - Fish remains	Vermillon Fm, Boyne Mbr	Determination Lithologic study Clays examination X Rays
		Thin sections		Thin sections

9 - In the bottom of the Creek - Sheet Dauphin E

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
° Z	Location outcrops	Lithology (visual examination)	Formation	Examination ordered
SZ 243 bis	In Vermilion River	Carbonated argillaceous beds, Slab alteration- White specks		Clays examination X Rays

II - Swan River Area in the bottom of the creek Sheet Arran E - Approx center of Lsd 1, Sec 3, Twp 35, Rge 29 W P M

1 - Section Swan River Meander, from top to bottom

N N N N N N N N N N N N N N N N N N N	N° Location of outcrops	Lithology (visual examination) Formation Examination ordered #	Formation	Examination ordered H
,	Swan River - South Thunder	Limestone, argillaceous, dark	Top Favel	Determination
SZ 381	Hill - Meander section -	grey, rectangular massive slabs	•	Lithologic study
	117 CKIIESS - 1 2 11	, rich in Inoceramus, abundant organic matter		Clays examination X Rays
·				Thin sections
	Same going downward	Limestone argillaceous grey,		Determination
086 28		maroon debris and white specks,		Lithologic study
,		light odor of oil, rich in		X Rays - f
		organic matter		Thin sections
	non	White bentonite with	Favel	Clays examination
SZ 379	Thickness = 50 cm	limonitic spots (the bentonite		X Rays
- 		is due to reworked volcanic		=- \ \
- 		ashes)		Washing
	an	Shale black, carbonated, hard		As above
27 378	Thickness = 70 cm	Yellow coating		
		;		
		\$P\$\$P\$有一位,在1915年中,他们是有一种,在1915年中,他们是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		

~ Ē

(14)-(3)

CANADA

OII SHALE MANIJOBA

AQUITAINE RESERVATION N° 9

STUDY OF THE SAMPLES TAKEN DURING THE FIELD TRIPS

Ref Request n° 102 - 103

A/ Inside the reservation or in the close vicinity

/ A C C 1 / Vicinity of Minnedosa - Sheet Clanvilliam W

	▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀▗▀					
II II II N°	(cological Sample Description	formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton		
SZ 351	Snale, greenish grey, silty, flaky, hard, non carbonated Spots of pyrite - Phosphate - Rusted glau-conite	Riding Mourtain		not made		
SZ 352	Shale as above -cracky- Brown traces - Phosphate - Mica - Glauconite	11		91 1 		
SZ 353	Shale as above - flinty fracture - Iron coating Phosphate	t1		19 II II II		
i SZ 354	Shale as above - but a little less hard - Phosphate - Glauconite - Iaminated foliation	"		11		

N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Jon
SZ 355	Shale, dark green grey, finely silty Non carbonated - Phosphate - Laminated foliation	Riding Mountain		not made
SZ 356	Shale green-grey, silty, hard, platy or ovoid - Non carbonated - Phosphate covered with sandy overburden	"		11 III
SZ 357	Shale dark green-grey - siliceous - hard and cracky plates - Fragments involved in sandy eluvial deposit - Phosphate - Glauconite - Brownish macrospores	11		17 H H H 11 H H H
SZ 359	Shale dark green, silty, hard and cracky plates - Frigments involved in sandy eluvial deposit - Phosphate - Brown macrospores - Rusted glauconite	11		
52 244	Shale siliceous, greenish grev - Glau- conite	ŧī		: :: :: :: :: :: :: :: :: :: :: :: :: :
SZ 359	Black shale, finely foliated, carbonated	7		2,54

/ A C C 3 / Section from Birnie to Elk Ranch - Western border of Mountain Riding - Sheets Arden W - Clanwilliam P

N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton
SZ 245	Shale dark green - Possibility of Jaro- site and Phosphate occurence	Riding Mountain		not made
SZ 246	Shale light grey, cryptocristalline, with very fine quartz, hard and cracky plates - Non carbonated, rich in organic matter - Rare phosphated fragments - Radiolarite (?)	11		H 1
S7 247	Shale light grey, siliceous, platy Clay with phosphate content - Glauconite	,,		;

/ A (C '4 / Section of Poloria Hillock - Sleet Clauwilliam E

N ~	Geologicai Sampie Descritio.	For ation	Are MF Mournama Microfactes	Oi' cone to JS (il'Ton
SZ 369	Silt argillaceous, 'arc, crock, - Bromspores - Glauconite	Riding Mountain		ηο t π≎σe ∣
SZ 370	Shale silty, pard, platy - Tron con- cretions - Nica	ti		tra

/ A C C 5 / Section of Riding Village - Sheet Glenella W

		[======================================			
	<i>l</i> / °	Ceological Sample Description	formation	Age MF Microfauna f Microfacies	Oil contert
	SZ 371	Shale, soft, yellow colored by iron oxyde - bioclastic banded - Inoceramus	Favel	Turopian (f)	not made
3 7 1 1 1 1 1 1	S7 372	Brown limestone intercalation, bioclastic intercalated in yellowish brown, soft shale	1 1	11	1) [1] 1 1] 1 1] 1 1] 1 2) 2

/ A C C 6 / Section 2 miles South of Kelwood - Sheet Glenella W from top to bottom

II I I No	Geological Sample Description	Formation	A _B c MI Microfauna f Microfacies	Oll contenti US Gal/Ton
SZ 249	Shale brown, carbonated - Prisms of Inoceramus - Abundant Globigerines Odor of hydrocarbor - "Big Globige-rines" (Praeglobetrure in a ordinaria Subbotina)	Γa√el	Turomian MF	6,76
SZ 375	Shale black, flaky - Pvritic ammo- nite - Megaspores - Small arenaceous foraminifera	Ashville		traces #
SZ 376	As above - Pyrilic nodule	11		
SZ 248	Shale black, plastic, non carbonated, varved, yellow pellicule - 20 % of quartz - Rare megaspores and small Arenaceous			0,8

Section in the Northern vicinity of vi tage - Sheet Glenella k from top

N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton
SZ 250	Share black, grinular, carbonated, odor of hydrocarbon - Jarosite coating and selenite crystals	Ashville ?	Turonian (f)	11,95
SZ 363	Limestone brown, bioclastic, sandy, large Inoceramus mould - Thickness = 5 cm recurring in small ledges perceptible in the morphology	Favel	\$1	
SZ 362	Marl, yellowish grey, silty, folia- ted, soft, Inoceramus prims - Abun- dant Globigerines - Th = 15 cm "Big Clobigerines"- (Praeglobotrun- cana ordinaria subbotina)	11	Turonian (Mr)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
SZ 361	Marl shammy grey, soft, layered - Varves of some mm, carbonated - Inoceramus prims - Fish remains (Vertebras, teet:, plates) "Big Globigerines"	11	11	
SZ 364 P	Marl with abundant prims of Inoce- ramus - Phosphated remains (teeth, bones, fishes) Globigerines - "Big Globigerines" (Praeglobotruncana ordinaria Subbotina)	11	11	
SZ 364 A	Paper shale black, carbonated, selenite crystals - Intercalation very thin of Lumachelles - Fish bones	Ashville		6,16
SZ 365	Marl rusty yellow, soft, banded, abundant Inoceramus prisms	Favel	Turonian (f)	6 1 1 1
SZ 366	Silty limestone with poecilitic cement - Glauconite, phosphated fragments - Rare remains of Inoceramus - Pyrite - Epidote	ė1		7 H 1 H 1 H 1 H
SZ 367	Shale black, non carbonated, soft plates of some mm thick - Jarosite coating - Inoceramus prisms "Big Globigerines" (Praeglobotruncana ordinaria Supbotina)	19	Turonian (MF)	2,14

/ A C C 8 / Section from the S E to Kelwood village from top to botton

ક્ ڪ

			========
Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal, Fon
Paper shale, black, soft, carbonaceous Lignite debris - Possibility of Jarosi- te - Rare quartz - Glauconite	Favel		2,69
Shale black, carbonaceous, carbonated - Plastic folia - Possibility of gypsum and Jaro _{site}	11		1,2
Selenite crystals	н		11
	Paper shale, black, soft, carbonaceous Lignite debris - Possibility of Jarosi- te - Rare quartz - Glauconite Shale black, carbonaceous, carbonated - Plastic folia - Possibility of gypsum and Jarosite	Paper shale, black, soft, carbonaceous Lignite debris - Possibility of Jarosite - Rare quartz - Glauconite Shale black, carbonaceous, carbonated - Plastic folia - Possibility of gypsum and Jarosite	Paper shale, black, soft, carbonaceous Lignite debris - Possibility of Jarosite - Rare quartz - Glauconite Shale black, carbonaceous, carbonated - Plastic folia - Possibility of gypsum and Jarosite

,

B/ Outside of the Reservation

These samples have been taken outside of the Reservation in order to check the beds hidden by overburden inside the Permit

I - W and S W Area of Dauphin

1 - W ditch Ashville Road near the intersection with Gilbert Plains Road (Lsd 1 - Sec 14 - Twp 25 - Rge 21 - W P M) - from top to bottom

	·=_=_=_=_=============================	~F-==========		
II N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton
SZ 217	Shale black, limonitic surface, with Inoceramus shells - Possibility of Jarosite and Gypsum - 20 % of quartz	Transition Ashville Favel		3,03
3 SZ 218	Shale black, Inoceramus prisms, vugs filled with Jarosite - Gypsum - 20 % of quartz	н	?	0 1
SZ 224	Bioclastic limestone - Inoceramus prisms - Shell fragments of big Pele- cypoda - Phosphated fragments -	11	Turonian (f)	 H
_=-=-=================================	 	1		1

2 - Section along the Thalweg located S of Ashville Gilbert Plains Roads intersection - Lsd 16 - Sec 11 - Twp 25 - Rge 21 W P M -

,, ===================================	*******			
I N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton
SZ 219	Shale black, more or less dense, platy Carbonated spots - Bones remains - Mica - 20 % of quartz - Megaspores - Teeth and fish remains	Transition Ashville Favel		5,36
SZ 220	Shale black, silty - slightly calca- reous - Content Inoceramus prisms Pyritic Megaspores - Teeth and fish remains - Pyrite - Chalcopyrite	17		8,04
SZ 221	Shale black, plastic, smooth surface - Carbonated spots (calcite) Possibility of gypsum and Jarosite - 20 % of quartz	Ashville		6,8
SZ 222	Shale black, laminated with limonitic lands - White spots (calcareous) Fish remains - Possibility of Jarosite and Gypsum - 20 % of quartz "Big Globigerines" (Praeglobotruncana Ordinaria Subbotina)	11	Turonian (MF)	4,02

11	<u>.</u>	I	}	l I	l
	3Z 223	Paper shale light grey brown - Yellow coat - Microcrystals of Selenite - Possibility of gypsum and Jarosite - 20 % quartz	Ashville	Turonian (MF)	1,34

3 - Wilson river bridge on Ashville Road (Lsd 13, Sec 13, Twp 25, Rge 21 W P M)

N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content
SZ 225	Shale grey, laminated, silty, non carbonated - Megaspores - Small Arenaceous	Ashville		O 1
SZ 226	Black shale with carbonated interca- lation , microcrystalline, bioclastic	11	Turonian (f)	? R

4 - Meander of the Wilson River S E Gilbert Plains Road (Lsd 14 - Sec 10 - Twp 25 - Rge 21 W P M)

u========			*_=_=_=_= 	-=-=-=-
N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton
# SZ 227	Shale black, carbonated, micaceous, Inoceramus fragments, Globigerines Fish remains - Phosphated fragments Rare quartz - "Big Globigerines" (Praeglobotruncana ordinaria Subbotina)	Favel	Turonian (MT)	5,76
SZ 228	Shale black, carbonated - Fish remains Globigerines - Rare quartz	11	" (f)	6,7
SZ 229	Shale black - carbonated - Inoceramus Fish remains - Globigerines - Rare quartz	11	t1 t1	6,7
SZ 230	Shale dark grey - Carbonaceous - mi- caceous in thick beds - rich in Inoceramus - Fish remains and organic matter - Globigerines - Rare quartz "Big Globigerines" (Praeglobotruncana ordinaria Subbotina)	11	(MF X f)	4,55
SZ 231	Shale black, carbonated - Globigerines Very thin bending of argillaceous and ferruginous bentonite - Rare quartz	11	Turonian (f)	2 ,87

5 - Ditch along the track S of Spruce Creek - W border of Lsd 4 - Sec 3 - Twp 25 - Rge 20 W P M

N °	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton
ISZ 232	Shale dark brown, bentonitic, yellow Jarosite coating	Ashvılle		 7

6 - Meander of Vermilion River - Sheet Dauphin E - N E Corner of Lsd 3 - Sec 35 Tvp 23 - Rge 20 W P M - From top to bottom

	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Cil/Ton
t SZ 233 	Shale brownish and rusty, limonitic coating, finely varved, slightly carbonated - 10 % quartz - Teeth and fish remains	Favel		3,48
SZ 234	Shale black thin bedded, plastic, slightly carbonated - 10 % quartz - Hydrocarbon odor - Selenite - Prismatic Inoceramus - Teeth and fish remains	11		8,31 H
SZ 235	Shale black, slightly carbonated, fragments of Inoceramus, flaky - Teeth and fish remains	11		7,37
SZ 236	Limestone crystalline, bioclastic, fish remains brown-red - Numerous Pelecypoda beds	u	Turonian (f)	11 11 11 11 11
SZ 237	Shale brown, carbonated, abundant prismatic Inoceramus, and numerous pnosphated debris - Kaolinite lamination-"Big Globigerines" (Praeglobotruncana ordinaria Subbotira)	"	" (MF)	**************************************
SZ 238	Shale silty, black, slightly carbonated - granular weathering - White spots - 10 % guartz - Teeth and fish remains - Prismatic Inoceramus - "Big Globigerines"	*1	" (MT)	7,63

7 - Meander of the Vermilion River - Sheet Dauphin E - S W Corner of Lsd 15 - Sec 23 - Twp 23 - Rge 20 W P M

	N °	Geological Sample Description	Formation	Age Mr Microfauna f Microfacies	Oil content
SZ	240	Shale black-foliated - carbonaceous Non carbonated - Possibility of Jarosite	Vermilion (Morden member)		O (S = 3,5 %)
SZ	239	Shale bluish-grey varved, non carbonated - Medium-bedded - Septaria intercalation - Pins of Selenite - 20 % quartz - Possibility of Jarosite	n		(S = 6,2 %)

€5

8 - Meander of the Vermilion River - Sheet White Water Lake - Approx center of Lsd 4, Sec 23, Tup 23, Rge 20 W P M - from top to bottom

N°	Geological Sample Description	Formation	MF Microfauna f Microfacies	Oil content US Gal/Ton
SZ 243	Shale brownish-grey, silty, very foliated, carbonated, conchoidal fracture - Foraminifera and Radio-laria - Possibility of Jarosite - Prismatic Inoceramus - "Big Globigerines"	Vermilion River	Turonian (MF)	0,52
SZ 242 SZ 242 	Paper shale grey - non carbonated Limonitic colour - Black spots - Possibility of Jarosite - Selenite crystals	Vermilion River (Boyne member)		0,52
SZ 241	Shale grey - carbonated - silty - Conchoidal fracture - White spots Phosphated debris - Rich in organic matter - Odor of hydrocar- bon	n		3,61

9 - In the bottom of the Creek - Sheet Dauphin E

<i>J</i>				
11 N ,	Ceological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content US Gal/Ton
SZ 24 SZ 24 b1s	2100 961466	River	Turonian (f)	7,5
i_=_=_=	,,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-	.=. = <u>-</u> =-=-=-=-=-=	.== =	11

II - Swan River Area in the bottom of the creek Sheet Arran E - Approx center of Lsd 1, Sec 3, Twp 35, Rge 29 W P M

1 - Section Swan River Meander, from top to bottom

		=_=_=	_=_====================================	
N°	Geological Sample Description	Formation	Age MF Microfauna f Microfacies	Oil content
SZ 381	limestone argillaceous dark grey, rectangular slabs, massive ((uesta) Rich in Inoceramus - Abundant organic matter - "Big Globigerines" (Praeglobotruncina ordinaria Subbotina)	Fave1	Tironian (f) MF	10,4
SZ 380	Limestone argillaceous, grey, maroon,debris and white spots Rich in organic mitter - Odor of oil - Inoceramus - Globigerines - Gumbelines - Phosphate and spores	11	Turoniam (f)	7,77
SZ 379	level of white Bentonite and limo- nite spots (the bentonite is due to reworked volcanic ash)	11		
SZ 378	Shale black, carbonated, hard - yellow coat - Gypsum - Pyrite - Prismatic Inoceramus - "Big Globigerines"	н	Turonian (MF)	2,01 s
==_:	<u> </u>	! 	L=_=_=_=	

CANADA

OIL SHALE MANITOBA

AQUITAINE RESERVATION N° 9

3 - FIELD NOTES

I - TIMING

The study of the outcrops inside the Area of the Aquitaine Reservation n° 9 has been made during two field trips. In addition, some sections have been checked along the walls of the rejuvenated meanders of the creeks

- 1 May 13 17, 1965 Geological team Borocco Tortochaux
 - a) Inside the Aquitaine Reservation

Section WE 5 miles from the Southern border of the Permit - Ref ACC 2

b) Outside the Aquitaine Reservation

Parts of sections concerning the beds of the Ashville, Favel and Vermilion Formations following the creeks - SW of Dauphin - Ref BI 1, 2, 3, 4, 5, 6, 7, 8, 9

- 2 May 27 June 1, 1965 Geological team Bonafoux Tortochaux
 - a) Inside the Aquitaine Reservation
 - Examination of the exposures and picking of samples in the following areas Minnedosa, Polonia, Elk Ranch and Kelwood - Ref ACC 1, ACC 3, ACC 4, ACC 5, ACC 6, ACC 7, ACC 8

\$ ° E

- On the jobsite, preparation of a drilling program to evaluate the bituminous objectives

b) Outside the Reservation

Examination and sampling of a section of the Favel Formation - Location Valley of the Swan River - Ref BII 1

II - MAIN RESULTS

The notes made during these two trips may be summarized as follows

1) Very little significant exposures inside the Aquitaine Reservation

The overlaying siliceous shale of the Riding Mountain Formation hidentirely the different strata of the Vermilion formation. The trench of the creeks has never reached the Boyne Member, neither the Morden. Member nor the top of the Favel

In the Northern part of the Permit -Kelwood vicinity- the ledge of the carbonated shales bearing Inoceramus -Favel Formation- appears in the landscape. The surrounding formations show very little outcrops. Only the cuttings from the dug out may be sampled and studied - Ref. Sect. ACC 7, ACC 8 and ACC 6. In spite of the weathered cap and of forests, the layers of the Riding Mountain Formation are easier for sampling. However, it is not of any interest since it is located at the top of kerabituminous objective.

2) To the North of the Aquitaine Reservation, the meanders of the creeks cutting through the Riding Mountain Formation have exposed certain beds of the Vermilion, Favel and Ashville Formations However, the thickness of these sections exceed scarcely 60 ft. These exposures are composed of banks hard, isolated, between which the correlations are uneasy. It is difficult to establish a continuous vertical log with these erratic data

3) Lithologic characteristics of the Formations encountered

From the top to the bottom, the following sequences appear

Riding Mountain Formation light grey shale, silty and siliceous, chavable in thin slates

/

Vermilion Formation

Pembina Member Shale dark grey to black, non calcareous, with numerous bentonitic intercalations near the bottom

Boyne Member Shale dark grey, laminated, more or less carbonated, marine deposit - Black specks - Thin bands of bentonite - O < thick < 1 ft R T D WICKENDEN mentions, in some place "petro-liferous shale" In the creek of Vermilion River, the shales seem very poor in oil content

Morden Member Shale black, speckled white, fish remains, carbonaceous, sulphur content, Septaria bands and limy intercalations -Thick 2 to 3 inches, jarosite, iron oxyde - Bentonitic cluster

Favel Formation shale grey to dark grey, laminated, carbonated, speckled with white - Cluster of hard beds of marine limestone bearing Inoceramus (ledge) near the top - 5" < thick < 3 ft - Fish remains brown red, selenitic crystals, lignitic rare fragments - Bentonitic bands - Carbonated shales, with white spots, are usually kerabituminous

Ashville Formation Shale grey, plastic, silty, micas and fine sandy bands, generally non carbonated though it is possible to find some thin platy calcareous beds <1" Rare fragments of Inoceramus - Gypsum, jarosite - Some shale beds of small thickness, at the top of the Ashville, seem to be kerabituminous

The dip of these formations is at low angles -Probably \langle 1 grade

III - LABORATORY ANALYSÍS

The samples picked during the field trips have been sent to the Research Center of SNPA in Pau (France)

Some studies, mentioned in the attached index, have been required from these laboratories, in order to state more precisely the lithologic nature of the formations and the age of the microfauna contained in the samples

Pau, January 28, 1966

CANADA

OIL SHALE MANITOBA

AQUITAINE RESERVATION N 9

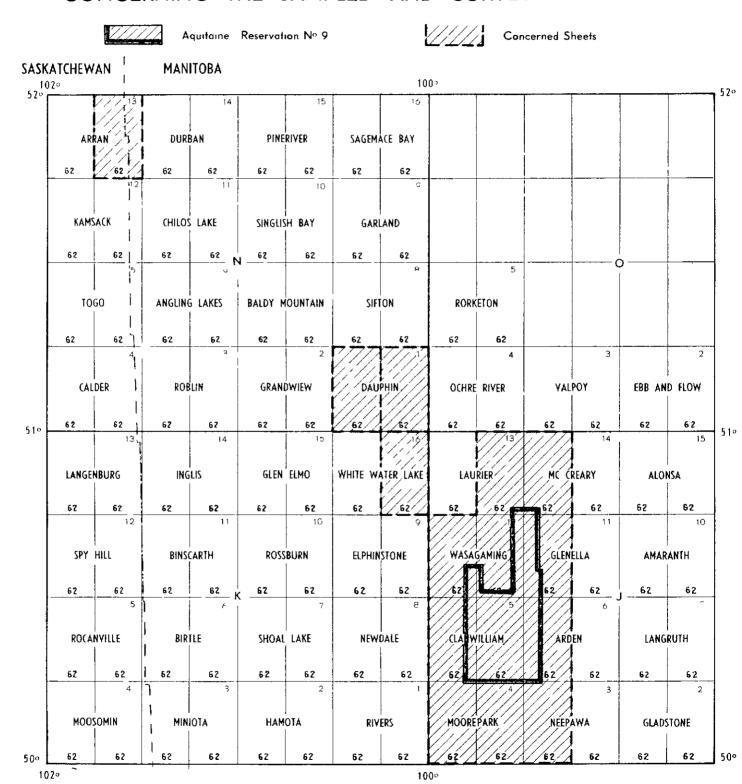
INDEX MAP SHOWING LOCATIONS OF SAMPLES, DRILLING PROGRAM AND ORIENTATION OF FIELD SECTIONS

SCALE 1/50 000e

- A Inside AQUITAINE Reservation n° 9
- B Outside of AQUITAINE Reservation Sheets Dauphin and Arran

Symbols

Location of the Field Section


Proposed Coredrills

SZ 240 Field Sample

CANADA

OIL SHALE MANITOBA

INDEX MAP OF SHEETS 1 50 000 CONCERNING THE SAMPLED AND SURVEYED AREAS

(14) f3

CANADA

OIL SHALES MANITOBA

AQUITAINE RESERVATION N° 9

List of samples taken during the field trips

A/ /Inside the Reservation or in the close vicinity /

1 - Vicinity of Minnedosa sheet Clanwilliam W

SZ 351

SZ 352

SZ 353

SZ 354

2 - Section W.E. through the Southern part of the Permit, from Minnedosa to the N of Rossburn Junction

Sheets (Clanwilliam W E (Arden W

SZ 355

SZ 356

SZ 357

SZ 358

SZ 244

SZ 359

3 - Section from Birnie to Elk Ranch - Western Border of Mountain Riding

Sheets (Arden W (Clanwilliam E

SZ 245

SZ 246

SZ 247

- 1

4 - Section of Polonia Hillock - Sheet Clan William E.

From W to E

SZ 369

SZ 370

5 - Section S E of Riding Village - Sheet Glenella W

SZ 371

SZ 372

6 - Section 2 miles South of Kelwood - Sheet Glenella W

From top to bottom

SZ 249

SZ 375

SZ 376

SZ 248

7 - Section in the Northern vicinity of Kelwood Village - Sheet Glenella W

From top to bottom

SZ 250

SZ 363

SZ 362

SZ 361

SZ 364 B

SZ 364 A

SZ 365

SZ 366

SZ 367

8 - Section from the S E to Kelwood Village

From top to bottom

SZ 360

SZ 373

SZ 374

./

B/ /Outside of the Reservation/

These samples have been taken outside of the Reservation in order to check the beds hidden by overburden inside the Permit

- W and S W Area of Dauphin

1 - W ditch Ashville Road near the intersection with Gilbert Plains Road

Lsd 1 - Sec. 14 - Twp 25 - Rge 21 W PM

From top to bottom

SZ 217

SZ 218

SZ 224

2 - Section along the thalweg located S of Ashville - Gilbert Plains roads intersection

Lsd 16 - Sec 11 - Twp 25 - Rge 21 W PM

From top to bottom

SZ 219

SZ 220

SZ 221

SZ 222

SZ 223

3 - Wilson River bridge on Ashville Road Lsd 13 - Sec 13 - Twp 25 - Rge 21 W PM

SZ 225

SZ 226

4 - Meander of the Wilson River - S.E Gilbert Plains Road - Lsd 14 - Sec 10 - Twp 25 - Rge 21 W PM

From top to bottom

SZ 227

SZ 228

SZ 229

SZ 230

SZ 231

5 - Ditch along the Track - S of Spruce Creek - W border of Lsd 4 - Sec 3 - Twp 25 - Rge 20

SZ 232

6 - Meander of the Vermilion River - Sheet Dauphin E - N.E. corner - Lsd 3 - Sec 35 - Twp 23 - Rge 20 W PM From top to bottom

SZ 233

SZ 234

SZ 235

SZ 236

SZ 237

SZ 238

7 - Meander of the Vermilion River - Sheet Dauphin E - S W. corner of Lsd 15 -Sec 23 - Twp 23 - Rge 20 W PM

From top to bottom

SZ 240

SZ 239

8 - Meander of the Vermilion River - Sheet White Water Lake E Approx center of Lsd 4 - Sec 23 - Twp 23 - Rge 20 W PM

From top to bottom

SZ 243

SZ 242

SZ 241

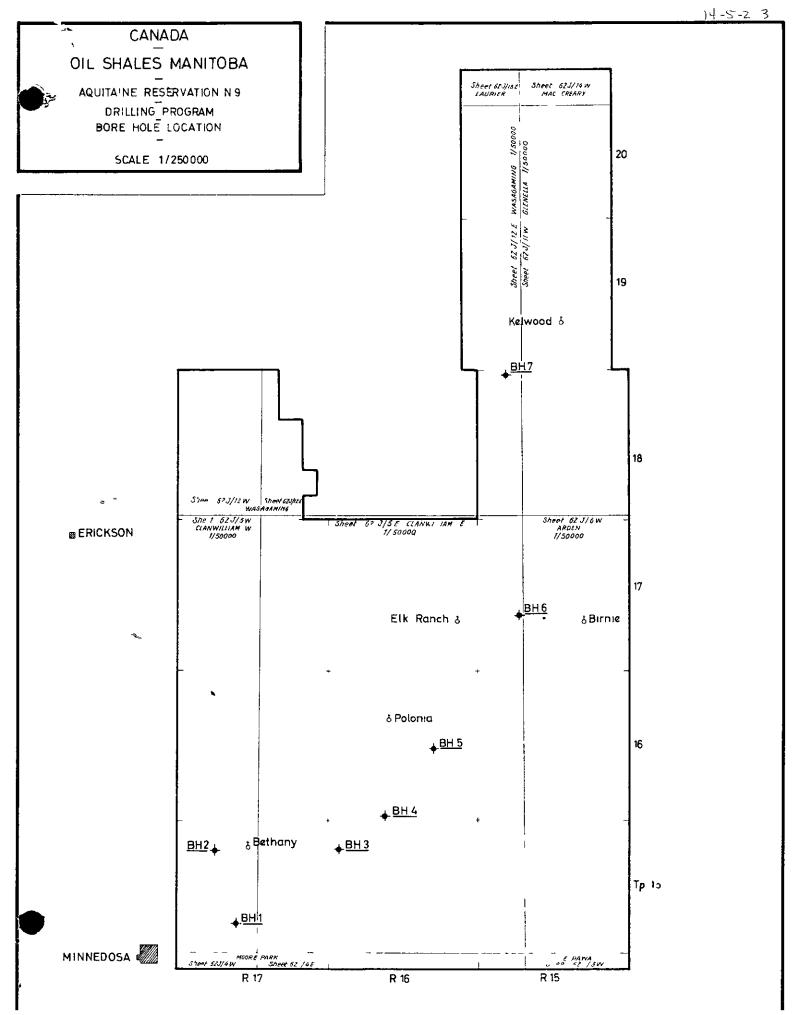
9 - In the bottom of the Creek - Sheet Dauphin E

SZ 243 bis

- Swan River Area - In the bottom of the Creek - Sheet Arran E.

Approx center of Isd 1 - Sec. 3 - Twp 35 - Rge 29 - W P M Section Swan River Meander, from top to bottom

SZ 381


SZ 380

SZ 379

SZ 378

December 17, 1965

TORTOCHAUX

=	=-=-=-=	<u> </u>	<u> </u>
	Spudding level - Siliceous silt "Riding Mountain Formation" Ground elevation 1835' Priority 3	Spudding level - Siliceous silt "Riding Mountain Formation" Ground elevation 1450' Priority 2	/50 000
	<pre>< 830' - (Base Favel)</pre>	<pre></pre> <pre>(Base Fave1)</pre>	< 195 ' (Base Favel)
_	2,50 miles SE of Polonia Sheet 1/50 000 - Clanwilliam E - 62 J/5 E - Lsd 14 - Sec 14 - Twp 16 - Rge 16 W P M	Between Birnie and Elk Ranch Sheet 1/50 000e - Clanwilliam E - 62 J/5 E - Lsd 2 - Sec 17 - Twp 17 - Rge 15 W P M	"BH 7 SW Kelwood - Sheet 1/50 000 Wasagaming E - 62 J/12 E - Lsd 13 - Sec 32 - Twp 18 Rge 15 W P M - E Border - Cuesta of the Riding Mountain Formation
	BH 5	ВН 6	BH 7
_	Manitoba Reservation n°9	=======================================	

Conclusions

The planning herewith calls for the following conclusions

In case reconnaissance of AQUITAINE Reservation were decided, it would be recommended to drill three test holes BH 7, BH 6, BH 5 for a total of 1425 ft

According to the results, another 3460 ft would be drilled on the locations BH 1, BH 2, BH 3, BH 4 for a total of 4885 ft of which 1425' in first priority and the eventual remainder

December 28, 1965

Q-5-2+-

CANADA

OIL SHALE MANITOBA

AQUITAINE RESERVATION Nº 9

OIL SHALES DRILLING PROGRAM

₩=-=·				(H) -5-2 T	,
Province Symbol Location Depth in the kerabit Specific data	Spudding level - Siliceous silt "Riding Mountain Formation" Ground elevation 1825' Priority 4	Spudding level - Siliceous silt "Riding Mountain Formation" Ground elevation 1855' Priority	Spudding level - Siliceous silt "Riding Mountain Formation" Ground elevation 1875' Priority	Spudding level - Siliceous silt "Riding Mountain Formation" Ground elevation 1775'	
Thickness of the kerabit	2010	c	~		
Objective Depth in	K 890' (Base Favel)	<pre></pre>	<pre></pre>	<pre></pre>	
	Cross section WE - SW corner of Permit - 3,50 miles NE of Minnedosa - Sheet 1/50 000 - Clanwilliam W - 62 J/5 W - Lsd 14 - S 9 - Twp 15 - Rge 17 W P M	Cross section WE towards N 5 miles NE of Minnedosa - Sheet 1/50 000 - Clanwilliam W - 62 J/5 W - Lsd 15 - Sec 29 - Twp 15 - Rge 17 - W P M	Cross section WE towards E 1,30 mile W of Bethany Sheet 1/50 000 - Clanwilliam E - 62 J/5 E - Lsd 14 - Sec 30 - Twp 15 - Rge 16 W P M	Cross Section towards NE, S Polonia - Sheet 1/50,000 Clanwilliam E - 62 J/5 E - Lsd 3 - Sec 4 - Twp 16 - Rge 16 W P M	
Symbol	Вн 1	ВН 2	ВН 3	ВН 4	
Province	Manıtoba Reservatıon n° 9	Ξ	=	=	

5) Relation between Carbonate rates and kerogene content:

The specialed shale dark-grey coloured and the carbonated suchy intercalation seem to be the most favourable horizons for bearing herogene to the exception of pure bioclastic marine limestone.

4) ige .

The samples picked up on the Vermilion Formation, the Favel Formation the top of Ashville Formation and on which the studies have been carried out may be located in the Upper Cretaceous - Turonian. The identification of Tracglobotruncana oldinaria - Subbotina observed on the thin sections is determinant regarding the chronostratigraphy.

II - DRILLING PROGRAY

The Kerabituminous beds of the Vermilion and Favel Formitions are generally hidden by overburden and soils. In the creeks, the rejuvalation of the meanders gives sometimes small exposures, 20-30 ft thick. But these outcrops are unfortunately isolated and make uneasy their location in a vertical stratigraphic column.

de recommand a drilling program including 7 core holes for clecking the possibility of Ferantuminous beds. Each hole may start in the silty and siliceous shales of the countain Riding Formation, that overlay the bituminous objective. The purpose of the drilling campaign is to obtain representative core samples of the lover members of the Vermilion Formation, the Favel Formation and the top of the "shalle Formation. Locations and Characteristics of those holes are mentioned on the phates and maps accompanying the report. The locations of bore holes have been chosen on the crown rights area.

Pau, January 26, 1966

countern licing Formation

Silty and siliceous snale no oil content

Jermilion Diver Formation

loyre caber

Some shaly bands with white specks are slightly herabituminous in the creek of Vermilion River.

0,52 (011 Content (3.61 US Gal/ton.

.orden emper

The section of the meander sampled in the Vermilion River is rich in carbo income ratter. The yield of sulphur obtained reaches 6 ...

Pavel Formation

In spite of the low oil value obtained from field samples, in Aquitaine Reservation area, this formation appears as the best objective. The shales specified with white have commonly a high content in organic matter.

The average of the oil yield made on the samples picked up on the weathered outcrops reaches 6 US Gal/ton with same picks of 10 Us Gal/t. The vater content of the field samples is 30 US Gal/t. With a maximum of 72 US Gal/ton

saville Formation

na, be considered Kerabituminous. The average oil Fisher (ssay comes, around 5 U. Gal/ton.

2) Inosph_ted debris and Fish Penains Content:

The bods of the Favel Formation, that include several intercalitions of marine lirestone with Inocerames, display frequent bands rich in fish remains and phosphated debris

The state of the s

CAHADA

OLL GIALS MAJITOBA

MODIFATED RESERVATION 40 9

-1-1-1-

5 - FIMAL DETILATION - DRILLING PROGRAM

-:-:-:-

I - FULL ESTI AMTION

The studies carried out on the oil snales inside and outside the Reservation $n^{\rm c}$ 9 bring to the following conclusions:

() Oil yield: - Water and Sulphur Content:

The best oil grade checked on the field samples has liven 11,72 US Gal/ton. It concerns the sample numbered S2 250, a little weathered, picked up on the cuttings from a dug out located to 2 miles - N. . of elecci . ilis bituminous shale is made by a clay rich in organic matter sith pyrite Forminifera and phosphated debris content. According to lithologic facies, this cample may be located in the upper beds of the Favel. Due to the argillaceous sandy overburden, no precision may be brought on the sequence and the thickness of that kerapituminous isolated material.

The different results of the oil analysis made on the samples picked up in the equitaine Peservation and in the vicinity may be therefore connected with the formations:

C WADA

OIL SHALL LAHITOBA

ATUIC III RESERVATION Nº 9 and Neighbouring Area

Oil content Evaluation by Fisher Assays

Process.

Fisher uses, an accordance with the directions preconised in the 1.1. no 4477 of the US Burnot of lines.

Results

The oil contents are measured on the dry comples.

The results are expressed:

011

: U3 Gal and liters/metric tor

Intor

US Gal /metric ton and > in weight

Sulpour : 5 in weight.

	CIL	Content	ATAR	COLITE T	27.70
Somple Nº	1/t	US_Gal./t.)- -	US Gal./t.	CC TITT
The third and right fant blan type god time you man yng a gotte 'n yw'n yd awd yw'	L. II'SIDE TIE	RESERVATION.			
				tern part of the action - Sheets	
SZ 559	9,4	2,54	5,5	14,5	
	ACC6		I South of Kel p to bottor	 wood - Sheet Glo	onella .
SZ 249 - Favel	27,	6,76	1,25	3,,,	
52 375 - Dahwile \$2 248 - Walnute	Iraces	Traces	27,5	72,75	
\$2 248 - hulsaly	ر	0,8	25,)	66,9	
					/

.==:= "= = = = = = = = = = = = = = = = =	OIL	COULTE	LANR	COLUMN T	CILIUR
SAITI Nº	1/t.	us Gāl./t.	4	uS Gel.∕t.	30.5 213
Cambo - Cian Gaba Galay Wall darky ben'n twen farmancia guain abey at an great directly an					
		ion in the northealland!	er vicinity of	elwood viller	toord - e
	Prop	top to bottom		410 and 410 an	
32 250 Awel 32 264 A SZ 267 - anh w	4,6	11,95	J , 9	10,5	7,16 on th
9Z >64 A	ر۔	6,15	11,75	21,1	- Loil
SZ 367 Carlina	ප	2,14	17,5	46,3	
		top to bottom	to Kelwood vill	[Lage 	
3Z 360 Z	7 , 0	2 , 09	7,25	19,2	
32 360 Z SZ 373 Farel	4,5	1,2	24 , 5	64,8	
- Angele de de la companya de la com					
1	B - CURSINE	OF THE RESLEVATE	<u>01</u>		
	and 5, are	a of Daupain			
,	1) - <u>· Dito</u>	h Asaville Road	near the into	rsection with Gi	locrt lains
	Rord I	heet Douphin / 3	Lsd 1 - Sec. 14	! - Twp 25 - 3ce	21 - 1 In
83 217 Z solvollo	11,52	05,05	13,9	37	
SZ 218 /	0	0	16,7	44,4	
	?) - <u>sectio</u>	n along the thal	mer located S	of mahvolles - G	ilbērt lins
	<u> Polos</u> Rge I1	<u> littraletion - C</u> - WP	nost Daughin J	- Ind 16 - See	1, – 30 25
		op to bottom		1	
	?O	1 = 16	4 . 1	35	
SZ 219 >	, ,	5,36	4,ر1	1 2	1
SZ 2:9	ن، 0ر	8,04	17,4	29,3	1
SZ 219 SZ 200 Cabirla	,0 ?2 , 5	<u> </u>	1	i	
32 220 (hahirlite 82 222 (hahirlite	ر 2ء , 5 15	8,04 6,8 4,02	11,3 12,9 11,2	29,8 24,1 29,8	
52 220 (hahirlite	رو ک و رې	8 , 04 6 , 2	11,3 12,9	25,8 24,1	
52 220 (habrille 52 222 (52 22)	ر کوری ان ان ان ان ان ان	8,04 6,8 4,02	11,3 12,9 11,2 14,6	29,8 24,1 29,8 23,6	<u>n</u> - Isd 15
32 220 (hahirlite 82 222 (hahirlite	ر کوری ان ان ان ان ان ان	8,04 6,8 4,02 1,74	11,3 12,9 11,2 14,6	29,8 24,1 29,8 23,6	<u>n.</u> - Isd 15
52 220 (habrille 52 222 (52 22))0 7),5 13 3 2) - <u>ilson</u> 200. 1	8,04 6,2 4,02 1,,4 Priver bridge on 7 - Twp 25 - Rge	11,3 12,9 11,2 14,6 Ashville_Post	29,8 29,8 29,6 - I - I Dought	<u>n</u> - Isd 15
SZ 220 (habirilia SZ 222) SC 22))0 7),5 13 3 2) - <u>ilson</u> 200. 1	8,04 6,2 4,02 1,,4 Priver bridge on 7 - Twp 25 - Rge	11,3 12,9 11,2 14,6 Ashville_Post	29,8 29,8 29,6 - I - I Dought	n - Isd 15

			-		
	CIL	COLTINIT		COUTAIT	AIPITA Onlin
SATE IIO	1/t.	JS Gal./t.	5-	US Gal./t.	0 1,
	4) - <u>I candor</u>	of the Wilson R	ever - SE Gilbo	ert Ilains Ross	l - Troet
	Daugnin	/ - Lsd 14 - Sec	3. 10 - Twp 25	- Rge 21 - √P	
[] G7 22 7 5	21 E	E 76	. 0	50.4	
SZ 22 7 7	21 , 5	5 , 76	1,,9	39,4	
SZ 229 Farel		6 , 7	8,2	21,7	
SZ 229 \\ SZ 250	25 1 7	6 , 7	10,4	27,5	
Y /	17	4,55	9,5	25 , 1	
SZ 2,1 J	7	2,87	7,4	19,5	
•	6) `aandam	of the Vermilie	n Pitton - Sho	l at Doumban Z-F	i Flormor of
, ,	Lsd 3 -	Sec. 5 - Twp 2) - Roe 20 - WI	Pî	1
	From to	p to bottom	1	1	
SZ 233 } SZ 224 Josel SZ 235	13	5,48	1,9	5	
SZ 234 Javel	ر ا	8,51	18,4	4E,6	
SZ 255	27,5	7, 35	5,9	15,6	
§ SZ 238	28,5	7,63	15,6	41,5	
	7) - <u>'eander</u>	of the Vermilio	on Rivor - Shoo	ot Dauphin E -	S-4 Corner of
V		- Sec. 23 - Twp	23 - Rge 20 -	VPI	1
,	From co	p co boccom			
SZ 240 -	0	0	20,5	60,8	3,5, on the
SZ 240 7 Monden 3Z 259					rook
32 259)	0	0	ر,10	27,2	6,2 "
1 () 9		i	ŀ	i	i
1	8) - <u>conde</u>	or of the Vermili of Lad 4 - Sec.	ton River - She	eet White Water - Res 20 - JPu	r Lose E: 'pprox.
		op to pottom	 		1
1 7		1			
3Z 243 - 7	2	0,53	6,4	16,9	
SS 242 } runden	2	0,53	4,55	12	
92 241	13,5	61 ور	2,95	7,8	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6)			1	
	9) - <u>In the</u>	bottom of the C	reok Thect	9cuphin ⊆	
7 SZ 243 bis - 7	28	7,5	5	5,3	S,70 on the oil
¥	.	•	•	•	1 ./

₽ ~

•

SAPPLE NO	OIL 1/t.	US Gal./t.	7, 2 -R	CCIM AT US Gal./t.	CO T
SZ 381 7 SZ 380 SZ 378	Such Raver Are In the Lotton Sec.) - Turp 3 59 29 7,5	of the creek - 5 - Rge 29 - T 10,4 7,77 2,01	Speet Arran 3 - 17 9,35 2,6 16,4	Approx. cent 24,7 6,8 43,4	or of Tod 1 - 7,20 on the or 6,7 " "

N.B. - The low only yield did not permit the onl donaity measurement, usually made with a pydrometer

From. - . "CCIA and B. IAISHAT

MINERALOGY SZ SAMPLES_CANADA _ MANITOBA

_1		2	3	4		5		6	7		8	9	10	11	12	13	<u>14</u>	15	16	17	18	19	20	21	22	23	24	25	26	27.	_24	29	30	31	32	33	34	
	N	RDER UMBER		SAMPLE							QUARTZ	CALCITE	DOLOMITE	SELENITE	FELDSPAR	JAROSITE	ILLITE fontmorillonik	ILLITE	CHLORITE	MONTMO- RILLONITE	Phosphate K_Ca_AI hydrate	PHOSPHATE																
1 1	2 3 4	5 6 7 8	9 10	1 2 3	4 5	6 :	7 8	9 20	1 2	3 4	5 6	7 8	9 30	1 2	3 4	5 6	1 .2	9 40			5 6	7 8	9 50	1 2	3 4	5 6	7 8	9 60	1 2	3 4	5 6	7 8	9 78	1 2	3 4	5 6	7 6 9	20
	24	5050		160		-					5	32				¥	trac		*	X XX																		
				361							9	44							V	хX											-							
		2		362							1	67	,																					-				
						+++			+ +	+	1	91					*	-		XX						+					-				+-		- 	
	-			363		+ + .					1	,					*-			XX			 							-			-	-			-1	П
-	1++	H	1	364	7	+			+ + +		- 1	51	;				. ¥	-	*	XX										- + -	-				-			
	1	5		364		+	+			 		53	+ +		 	-	¥		*	XX	-											-		-	-	1		
		6	-	365			+	+- ·			1	74	-	-			-			λX	-	·								- +	-			-				Н
-	1	7	1	366		-	-				3.8	37				-	4			××			 		-						 				-			
	1	6	1 +	367		+ +	1			· 	31	18		 - -		X	*		ХX	хх	- +									,						 		
		1 9		368						-		92								χ×χ																		
	24	5060		369							7									X A X		k																
				370							11									ΧΧΧ		×	•		-													
				371					* *		3	6.8	:										* ; • <i>•</i>										-					
		,		3 2 2		•	† 1	1	+ + ·• i .	***					+			· · · · ·	XX						+	- +			├ - 				+ +			†		
	1 .		† † †	410			1			•		1.0			+ -		 		X,X.	XX							. + -									++		
-	- 		1 : :	373				{	• • •	•	30			X		Ж	1	+	XX.	XX					+		+							. .	-	+		<u> </u>
	+++	,		3 7 4	-	+	+ -	-			<u> P</u>	<u> </u>	Ŀ.	- -			ļ	. ∤		<u> </u>							4					- 4 -		 		-		
		- 6		375		* +	+	• {		-	1.9		‡ •		· •	• •-	Υ.		x ,x.	ΧX	÷ -						 	∔		÷		+		- 1 -	+	1	-	
}		·	ļ	376	-+-	+ +	.			,			421	te.		ļ	*		赵	ΛX	· .						: - 				- + -			·		‡		
-	1 + +	8		377		• • •	. [· [. ,	. [. ,2	6.5	, ,					:		хих	jx		;				· ·		+					:		4 +		
	 	9	ļ.,	3.78				.			. 7	3.2								1 X X .	Д.		+ +														1 -	
	24.	5 0 7 o		-3,79		:	.				.4	6.8				, ,	p/	sen	<i>t</i>								; 			;		1	***************************************					¥
1 :	1	1		3.80								nda	SAA	Pe.						×κ																		18 A
				221			.				,	¥ /									:						i							:				

	1	2	3	4	5	6	7	88	9	10	11	12_	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	2 i	29	30	31	32	33	34	
		ORDER NUMBER		SAMPLE				QUARTZ	CALCITE	DOLOMITE	SELENITE	FELDSPAR	JAROSITE	4 ILLITE Mortmorillonite	ILLITE	CELORITE	MONTMO- RILLONITE	Prosphate K-Ca-Ai	PHOSPHATE																
	1 2	3 4 5 6 7 1	9 10	1 2 3	4 5 6 7	9 20	1 2 3 4	5 6	7 8	9 30	1 2	3 4	5 6	7 -	9 40	1 2	3 4	5 6	7 8	9 90	1 2	3 0	\$ 6	7 8	9 60	1 2	3 4	5 6	7 8	9 70	1 3	3 4	5 6 7	6 9 9	4
		24500	6	9/7	representation of the second			از ایم					×	x		X	ху								300										
			Z	9 18				, ,					-																					1	1
ł	-+-	1		2/8		+++	++-	16			×	- + -	*	¥		¥	XX	1	-						-				- + -		-		+ +-	╂┼┼	-
}			8	214		444		25	3			1	ļ	χ			. xx									-		:				_			
			9	821				26	1					*		*	.хк.	,										,							
		245010	,					30	2							1							+					- +						1	1
			1 +	331		111			- 3	+				I Y	<u> </u>	¥	XX				+	-	-	l 		+ + -	-			-		-		╂┼┼	1
-	-		4	222	┡╅╁	111		19			. ∔	_		¥		×	XX.		-						+ -				-	· .	ļ : :	-	 	\blacksquare	_
			2	223				19			1	ì		¥			XX.														: :	11.13			
			2	224					74																								,]
						1 1 1	+++	}	1.7	1	- +			k i			XX.	+		+	+							+	- +					 	1
1	-	4	4	225		-	+ + +	18							*	¥x	ļ.,		-		-				ļ.,	+	-					-	┨╌┼╌┼	-
-	-			226	F. 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4			1	74					<u>k</u>		<u>.</u>	ХX									┆ ┝╌╋╴╼	- 4 -								
1			<u>s</u>	227				6	38	f			i	*		طوالا 	K K K			-		114										,	,		-
ſ								٠,		1		* † * † 	· + =	¥				+ +								***		+1		+ +	-		† †	1	1
ł	+		7	228		1 1		3	60			- +		*	-	4	XXX	*					+	- : 		+ + -	+	-		- 4				╂┿┼	-
	+	8	4	229		1 1	- +	2	74	-				k		14	YKY	×							; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					, ,		1			
			9	230					67					ابر		ų	X X X							; ;	1			:				:			
		245020		921				9	, ,						+		^^^		. 3				÷					}		1]
		44 2 0 40		231		1 1	+ +-		67			- +		- <u>*</u>		,	K.K.K.			- + -			, ,				1				g-4 -	+		 	1
+	+	4	+ +	332		1 + 1		16				-	*		rece	*	×××					-	+ +	· · · · · · · · · · · · · · · · · · ·	•									$\blacksquare + \downarrow$	-
				233				14	17					1200		XX	¥		! !									-							
		4		234			1 1	13	1 1	1						:		1					, ,		'	:									
Ī			1 1 1			1 1			1	7		İ		- 1	<u> </u>	4 3	\$	•		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				·- +-··	• 🛊				-+	+		- • ·	+ +-+-		1
-	+-		1 1	235		}	-+ + + -	4.14	: b			- ;		¥	. ,	XX.	¥							+	•	+	+ -				- - -	÷	+ +	1 ++	-
-	\bot	5		236	- + + + +			1	91	.			,	. Ir	.	, X X	¥.						1	. ,						,			- + -		_
		6		237					41	. [ł				X,X	•	:)	-		:					;		-		1			¥.
ſ			1 : 1	238			**************************************	- 1				.	:					- 				1								j					4
-	+-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1			1 1		H A	sen		•	1	‡ . ;	"	+ +	XX	×	- +	+ +	+	; ;	+ 1						1			4	<u> </u>		1 +	- 5
L		8	7	239				15	1				y	الد		i i	XX						-	. !			i								Ţ

MINERALOGY SZ SAMPLES_CANADA_ MANITOBA

1 2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	24	27	20	29	30	31	32	33		34
ORDER NUMBER	SAMPLE NUMBER				QUARTZ	CALCITE	DOLOMITE	SELENITE	FELDSPAR	JAROSITE	ILLITE Iontmortionite	ILLITE	CHLORITE	MONTMO	Phosphate X.Ca. All hydrate	PHOSPHATE																9 80
1 2 3 4 5 6 7 8 9 1	0 1 2 3	4 5 6 7 8	9 20	1 2 3 4	5 6	7 8	9 30	1 2	3 4	5 6	7 3	9 40	1 2	3 4	3 6	7 8	9 50	1 2	3 4	5 6	7 8	9 60	1 2	3 4	5 6	7 8	9 70	1 3	3 4	5 6	4•	9 00
9	240				25					×	*		*	ХX																		
245030	24-1					28					Inou		k	XXX																		
	2 4 2				18					-	4			XXX]]																	
2	2 4 3										//																				1	
1	243				A H	53								XXX								*										
					6	- 4 - 4						ML	Sen	XXX	+ -																1	
5	044		1						+,			7/2	S CP					+			+-		-		!		 		 		1	
	245		1		10					+			 	XXX		*															†	
6	846		1		5									XXX		*															T	
7	247		╂╫┨		/ 3					-			+-	XXX	-	*			-						-		-		+-		+	
8	248		╂┼┨		21						Hyac		*	XX	+	$\frac{1}{1}$	-		-					-		f +	H		+		+	
	249		╂┼┨]]]	63				-			*	ХX			-	-					lacksquare	-	-	}-	-	lacksquare	╂-┼-		╁	 - -
345040	250				8	18				×			*	XX.		-		-				-		-		-			-		1	
			1							-	-		-	-	-			- -	-				-	-				-	-			
	-																	-									-		-		-	
245041	3 5 1				5									XXX												 	-				1	
2	352				8									XXX									<u> </u>						-			
3	353				12									XXX									 									
4	354				7									X X X																		
5	355				10									X X X																		
6	356				12									XXX																		
7	357				10									XXX																		4
g	358				10									XXX																		679 A 86PA
9	359					hse	,4												·					1								1

S. N. P. A.

DIVISION 1 10 100.

E/SB - nº 66/1 10

Pau, January 19 - 1966

CAHADA

OIL TIME LANITOBA

_ JIT HI REST 'VATION Nº 9 and Neighbouring Area

lithological Examination and Determination of Field samples -upper Cretacoous age.

Request nº 102 23.8.1965

From . R. ELLOY and J. AUBIRT C.P.F. PAU

· - LITTOLOGICAL DUTLEY HE TION

I - Riding : ountain Formation -

SC 246 - Clay rich in organic matter; rare phosphatic debris and some Radiolaria ? detrital - Quartz: rare (Size 50 #)

II - Vermilion River Formation -

Boyne member - SZ 241 : Clay rich in organic matter, phosphatic cebrus.

III - Avel Formation -

a) Gradationnal zone : Ashville - Favel :

53 236 - Vermilion River

Brosparite with poikillitic-texture, very rich in Inoceramus prisms, fibrous fragments of lamellibranchs and phosphatic debris (wahllite) belonging to fish (ossicles).

SZ >71 - 372: Biomicrites similar to the above out untrout sparitic cement.

Inoceranus prisms

Fibrous mollase tests

Thosphates (fish) and abundant organic matter.

b) Favel base .

S', 56, Bromscrite similar to the above but with large Clobegorina. Phosphated debris are still present (no detrital).

SZ 365 - Very large Inoceramus debris.

3% 200 - Marl - Very rich in organic matter with .

Inocorarus prims

Globigerina - Gumbolina

Phosphated Debris - Spots of organic matter.

AB. — It must be noted that the "white specks" refered to in the report, tally with the Globigerina whose charbers are filled generally by a calcute monocrystal standing out on the dark organio-cla, background of the rock. In these bituminous clays, the carbonated fraction is found exclusively in the organisms.

c) Mear Achville top .

SZ 226 - Blosparite almost with debris of Inoceramus.

Some fragments of fibrous tests of lamellibranchs.

Very abundant phosphates - Organic matter.

d) Favel :

3

SC 224 - comparable in every respect to SZ 226

.2 249 - Clay laminated - very rich in organic matter Gumbelina Clobigerina - Inoceramus.

Phosphated fish debris.

32 381 - Swan River section.

Smaller clay, ever phosphated with the same white specks due to Globigerina and more generally to limy organic debris.

IV - Ashville Formation -

5. 566 - Sandy linestone with poikillitic cement, and langular quartz; glauconite, Thosphatic debris.

Rare: Inoceramus fragments.

V - Drift semple - Salurian age -

SI 568 - Talestone - (Sparite recrystallised, calibrated grain size, around 75 #) hetamorphic.

1 PM - Samples SZ 243 bis (ref. : J. STEV/UK'S work on clay) and CZ 241 are identical.

Both are clay rich in microfauna with phosphatic debris (Gumbelina and Globigarina).

54 366 differs from all other samples regarding its detrital and glaucomitic character. Inoceramus prisms and phosphates being over present.

GHTTRAL CONCHUSION - Almost all of these samples can be classified under two leading facies:

1) - Broclastic linestone more or less sparritic with occasionally very abundant Inoceranus prisms, fibrous test, debris of large lamellibranchs, phosphated debris of fishes, sometimes when the limestone detaless detrital some globigarina appear.

These samples belong to the Favel, to its base, to the themseltion zone and are numbered 34 224 - 225 - 265 - 365 - 371.

2) - The organo-clayey factes is mainly a foraminifora factes (Linge Globigerina, Gumbelina causing the white spots observed on the rock). The Inocerarus prisms are scarce whilst phosphated course and organic matter abund.

Thus are samples no SZ 200 - 249 - 381 which belong also to the Favel or to its base.

3) - SZ 241 is conspicuous by the presence of very fine detrital material, the extraordinary abundance of organic matter and the absence of foraminifera. It belongs to the Boyne Fember of Verilian Pornation.

SZ 246 - belongs to the 'contain Riding Formation. It is a crypto cristalline clay with rare phosphated debris, Regiolaria and some very fine quarts.

SZ 366 - Sandy limectone with polkillitic colorto coment and Glauconite. Phosphated matter and scarce Inoceramus prians - Pyrite Epidote.

ashville Formation.

U - KPALETERA -

General Rewrit - 8 of the 13 samples examined contain large size Globigerina (= Proclobotrineans organiza (SUBBOTEMA) a Frontan character.

Dotailed Txariration .

77 16 Tyroup and very scarce phosphoted learns (scale)

__________ : Very clicatly icaccous shale, and phosplate, deuris,

Tarje Closigerina abundant at this level.

JUN IAN.

13-7 · (Dio mish spotted (Miccoeous shile

Inocerarus_ rroms

minalit Traeglobotruncuna ordinario (SIPPOPLE)

"a bolina sp. sc rce.

C. 10 Same as above Less clear

53 25/: Brown stale, amendant Inocoramus prisms and Pierous of outphated debris.

Fraeglobetruncana oruicaria frequent.

55 245: Brown chale, agglutined foraminifera among which:

Bathysiphon sp

? Trochammina sp.

Vory rare Traeglobotruncana ordinaria. (JUBTOTI .)

25 249 Brown shale with Inoccramus Prisms
Admident Praeglobotruncana ordinaria (SURBUTLI)
Gurbelina sp.

ال آرز الله المراجعة الله المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة الم

3. 356 : 10 Foraminifera.

52 362: Shale with abundant Inocerams prisms.

Abundant Praeglobotruncana ordinaria (JUN CTI')

Medbergella sp.

Gumbolina sp.

32 964: Shale with abunuant Inocerams prists, prosphated debris (fish teeth and bones).

Treggent Traeglobotruncana ordinaria (SUBBOTL)

Hostigerinella aff. simplex.

Cumbelina sp.

SZ 365 : Abundant Inocerarus prisms.

52 JC1 : Inoceramus prisma.

foundant Praeglobotrumeuna ordineria (XIXIIIA).

0

0 0

S. W. F. L.
DIVISION TAPLE? TICE
E/SB - nº 66/141

16

P.U., JAHUARI 19 - 1966

C 7 7,

OIL SELL LAUTOBA

AOUTHING POSERVATION TO 9 and Forgroouring area

Object. Study on the clays of kerabituminous beds and enclosing formations - Upper Tretaceous age.

Poguest nº 10) ray 23, 1965

From . . . J. ALVAUX and ..G. DARLOT.

PIDICLOUT IN TOR ATTOM -

, 2'6 - 27 - sarts 10;

p osphate (as in 5...25)- reade quartz content for this formation: 40 1

J L HIGH PIVER FOR TION -

- lorson re cer
- 33 29 340 Quartz 20 , Jarosite possible Chlorite $\overline{50}$ $\overline{7}$ outcorrllo ate 60 , about 10 illite routnorillomite.
 - Boyre order :
- SZ 241 242 Quartz 15 % Calcute disappears: 50 present in nº 31 341 and none in nº 32 243 but here jarosite possible.

Chlorito 15 / traces of mixed layer illite - nonthorillomite ontholillomite predominant.

P I FOR TION -

60).

Clay minerals: Trices of calculte, 10 to 20 1111te-montmorillonite, 90 % montmorillonite. Presence of a mineral in SZ 228 and 229 which is a hydrated phosphate of K. Ca. Al.

- ST 200 to 238. Average quartz content 10 ρ - Average. Limestone (10 calcite), becoming very abundant in n° SZ 236 (90 ρ) and less abundant in SZ 237 (40%).

Chlorite 50/50, Traces of mixed-layer illite-montmorillomite.

5Z 249 : highly carbonated : 60 ° cilcite - poor in quartz 5 °.
Clay components : colorite, montmorillonite

illite - montmorillonite.

SZ 560: Jarosite possible with 5 / Quartz and 30 % calcite.

Clay components: redominant enterite and nontherillomite slight mixed-layer illite - Lo therillomite contents.

beas - 3_ 36, culcite above 50 . Quartz 10 alternating highly colcareous

Cloute of to 0, make layer allate - nontmorallonate 10, to

ET 371 - 76 - martz 10 . Forces commencing by a cartonated bed: 63 , colorte for 51 571 - 72 into gramm and jarosite possible , presence of syrice in 51 576.

Chlorite 40 %, montmorillonite with traces of the in.ed-layer illite - montmorillonite.

52 577 - 581 - (martz 5; calcute 65 53 580 undosable.

Montmorillomite and presence of uneral: hydrated phosphate of K, Ja, M. 02 225 and 229 are identical to above.

WINTID FOR TION -

sert. Jarosite possible. Jarosite being a double sulfate of I and Fe.

Clay macrals chlorite 25 mixed-layer illite nontmornllomite 25 - montmornllomite 50 .

63 248 : wrrts 20 .

la, er illite - nontmorillonite.

Jarosite possible.

Calorite 3) , rontrorillon to 7) , trace of the miled-layer illite- optorillor to.

Su jo7 : 1 rtz j0 clicate 10 Jarosite possible.

Colorate 40%, the remainder, mused-layer allate-postsocial care root orallogate.

.../...

Samples lacking criterae for their classification.

S_ 221 to 246 . Pavel o Fear ashville Top.

Quartz (weak) Average 10 %. Important calcareous beds (75 Calcite) except for SZ 225.

Clay minerals . 10 to 15 chlorite, mixed-layer illite - montmorillonite (20 to 25 J), main component . montmorillonite.

52 2)2 : Ashville.

Quartz 10 . Jarosite present.

Colorite 20 - montmorillonite 80 %, illite (traces?)

37 243 and 243 bis . Vermilion or Riding countain?

Quartz 10 5 Jarosite possible

Enricment in Caroonates : calcite 50 - Rich in montmorillonite,

slight truce of chlorite and of the mixed-layer i'lite - montmorillomite.

SZ 245 : Pormation as above.

Quartz 10 7 - Predominant montmorillonite; presence of a phosphate.

<u>S7. 368 - 369 - 370</u> : Silarian - Drift's overlap.

Quartz 10 , in SZ 569 and 370 - Calcareous bed : 10 - in nº SZ 568 Clay Linerals · Predominant montmorillonite with a phosphate.

CANADA

OIL SHALE MANITOBA

AQUITAINE RESERVATION N° 9

GEOCHEMICAI EXAMINATION - CONCLUSIONS

Ref Request no 103 of May 23th, 1965

The deposit conditions of these bituminous peds can only be connected with an euxenic and reducing environment

This brings to mind, but on a larger scale, the deposit conditions of the "Kupferschiefer"

One can thus imagine a shallow basin, partly and periodically cut from the sea

In this pre-basin, water was constantly renewed by ingression of sea waters carrying with them their fauna and flora

The reducing environment of this basin developing an unfavorable medium for the marine biotopes, these are rapidly destroyed

It is normal that under such conditions, an adapted biotopes should thrive on the remnants of the original marine biotopes. Thus the accumulation of organic matter finds here an extremely favorable environment

In such a reducing environment, kaolinite is ever present (neoformation) It should be traced (even in small percentages) in the argillaceous stage along with sea clay (interstratified illite, montmorillonite, chlorite)

In all the samples examined, we have <u>never</u> encountered any kaolinite Consequently, an actual pedological action may be contemplated

This action reaching the surface sections would bring about a hydrolysis of philosilicates, the enrichment in silica and sesquioxydes, determining the formation of an excess of montmorillonite and of illitemontmorillonite

During this action, the sulphides shift to sulphates (gypsum - porosity) and iron oxydes may be generated

This should also entail organic matter to go into solution, in the form mamely of a silico-organic complex, with wash-away losses, especially when the subjacent is not clayed. In the same way, part of the organic matter may oxydize and thus be lost

It may therefore be expected that the content in organic matter and consequently the oil output of these formations will be higher than at the surface provided an overlay of 20 or 30 m protects them from the effects of pedogenesis

J STEVAUX
Geochemistry - CRP/SNPA
Pau

CANADA

OIL SHALE MANITOBA

OUTSIDE OF AQUITAINE RESERVATION Nº9

- B.I.8 -

SECTION OF THE MEANDER OF THE VERMILION RIVER

Approx. center of Lsd4-Sec 23-Twp23-Rge 20 W PM

Sheet WHITE WATER LAKE.E.

Scale 1/100

_						
Form.	Memb.	Sample N°	Thi m	ck.	LOG	LITHOLOGY (Visual examination)
		SZ 243	0	0	 - - - - - - -	Shale grev, silty, non carbonated, very fissile; Jarosite stained,
			1 -	05		
			2 -			
			3-	10		
			4-			
			5-	-15		
		. :	6 -	20		·
œ	نی		7-		·	
RIVE	0	:		25	2	
R	n bi		8-			
	P		9-	30		
NOI			10-			ı
RMILION			11-	35		
VER			12-	40		
			13-	\		
			14-	45		· ·
	- ? -		15-			
		242		50	- Fe -	Paper shale grey, non carbonated - "black specks" - Film of limonite, jarosite, and small crystals of selenite.
	Boyne		16-			
	Во	241	17-		<u> </u>	Shale grey, silty, carbonated - odor of hydrocarbon - small white specks - Fish remains.
			18-	-60		

CANADA

OIL SHALE MANITOBA

OUTSIDE OF AQUITAINE RESERVATION Nº9

. - B. 1. 6 -

SECTION OF THE MEANDER OF THE VERMILION RIVER

N.E Corner of Lsd 3. Sec 35_Twp 23_Rg 20 W P M

Sheet DAUPHIN. E.

<u>Scale 1/100</u>

-	ام	~1	- .			
Form	Mem	Sample N°	m Thi	ck. ft	LOG	LITHOLOGY (Visual examination)
		S Z 233	0 1 - 2 -	- 5	0. 0 + 1	Drift. Shale brownish and rusty, carbonated, limonitic coating, finely varved. Shale black, thin lamination , carbonated, sticky, odor of .
EL		234 235 236	3~	-10 -15	+ [-]	Shale black, non carbonated, foliated weathering + Fragments of Inoceramus. Limestone, crystalline, bioclastic, brown - red fish remains.
FAVE		237	5~ 6~	-20	Fe Fe	b Shale dark grey, carbonated, white fragments of bivalves, bands of kaolinite - white specks - Fish remains.
		238	7- 8-	-25		b Base = Shale black, silty, cracky, carbonated, white specks, granular weathering.
						b = bentonite