Appendix C.

Water Quality Summary Results

Lake St. Martin Emergency Relief Channel Monitoring and Development of Habitat Compensation Volume 3 - Water Quality

REPORT

Prepared for Manitoba Infrastructure and Transportation · February 2016 North/South Consultants Inc. · 83 Scurfield Blvd. · Winnipeg, MB · R3Y 1G4 KGS Group · 865 Waverley St. · Winnipeg, MB · R3T 5P4

Lake St. Martin Emergency Relief Channel Monitoring and Development of Habitat Compensation

2011-2015

Volume 3 – Water Quality

A Draft Report Prepared for

Manitoba Infrastructure and Transportation

By:

North/South Consultants Inc. and KGS Group

February 2016

North/South Consultants Inc. 83 Scurfield Blvd. Winnipeg, MB R3Y 1G4 Tel: (204) 284-3366 Fax: (204) 477-4173 Web: www.nscons.ca KGS Group 865 Waverley St. Winnipeg, MB R3T 5P4 Tel: (204) 896-1209 Fax: (204) 896-0754 Web: <u>www.kgsgroup.com</u>

EXECUTIVE SUMMARY

Widespread record flooding throughout southern Manitoba during 2011 led to water levels in Lake Manitoba and Lake St. Martin that were several feet higher than desirable, resulting in significant damage to hundreds of properties, restricted road access to several communities, and long-term evacuation of four First Nations communities in the vicinity of Lake St. Martin. As part of emergency relief measures, the Province of Manitoba, through Manitoba Infrastructure and Transportation (MIT), constructed the Lake St. Martin Emergency Outlet Channel System, which is comprised of two emergency channels. The Reach 1 Emergency Outlet Channel (Reach 1) begins at the northeast shore of the north basin of Lake St. Martin and extends approximately 6 km to the bog area surrounding Big Buffalo Lake. Water from Reach 1 inundates the bog area and then follows the natural Buffalo Creek Drainage System until flowing into the lower Dauphin River and ultimately into Sturgeon Bay. Water began to flow through Reach 1 on November 1, 2011 and the channel was operated until November 21, 2012.

Computer models of potential water levels at the mouth of the Dauphin River indicated that there was a significant risk of major flooding of the Dauphin River communities in spring 2012. Consequently, a second channel (Reach 3 Emergency Channel; Reach 3) was constructed during winter 2012. Reach 3 was designed to divert excess flow from Reach 1 and Buffalo Creek and away from the lower Dauphin River. It was determined that operation of Reach 3 prior to the spring break up, in combination with the construction of dikes along the banks of the Dauphin River, should substantially reduce the risk of flooding for the Dauphin River communities.

Due to extremely mild winter conditions in 2011/2012, ice effects on both Reach 1 and the Dauphin River were much less severe than forecasted. With the continuous extreme mild conditions, updated flood forecasts indicated that the estimated discharge in the lower Dauphin River during ice break up would be well below the capacity of the Dauphin River community dikes. Consequently, the proposed operation of Reach 3 was no longer required.

Heavy precipitation during winter 2013/2014 and spring 2014 again elevated water levels in Lake Manitoba and Lake St. Martin, prompting MIT to re-open Reach 1 at the beginning of July 2014. The channel was re-opened in two stages. The first occurred during in July 2014 when approximately 35 m of the berm closing Reach 1 was removed. The second stage occurred in November 2014, when an additional 10 m of the closure berm were removed to allow additional flow into the channel. Flow into Reach 1 was halted in late August 2015.

Collectively, construction and operation of Reach 1, as well as construction of Reach 3, are referred to hereafter as "the Project".

Concurrent with construction of Reach 1 in summer 2011, MIT initiated studies and monitoring to help describe and assess environmental effects arising from the Project. These included studies to document changes to the physical environment (*e.g.*, measurement of water flow through Reach 1 and the

i

Dauphin River; sedimentation and erosion studies) and possible subsequent effects to the biological environment (*e.g.*, possible change to fish community in Buffalo Creek). Environmental studies began in August 2011 and continued until September 2015.

This report provides an overview of the water quality monitoring programs including a summary of Project related effects to water quality in Lake St. Martin, the Buffalo Creek watershed, the lower Dauphin River, and Sturgeon Bay. This report also compiles all the raw data collected for the Project from September 2011 to September 2015.

Lake St. Martin

During dredging related to construction activities in October. 2011, total suspended solids (TSS) in the vicinity of the Reach 1 inlet exceeded the 30 day Manitoba Water Quality Standards Objectives and Guidelines (MWQSOGs)/ Canadian Council of Ministers for the Environment (CCME) long-term PAL (average of 5 mg/L above background), and periodically exceeded the 1-day MWQSOGs/CCME short-term PAL (25 mg/L above background).

There was no linkage to operation of Reach 1 and effects to water quality in Lake St. Martin.

Reach 1 and the Buffalo Creek Watershed

The water quality of the Buffalo Creek watershed changed as water from Lake St. Martin was introduced and then withheld from the system. During operation, conductivity, total dissolved solids (TDS), and hardness increased substantially, pH increased slightly, and colour decreased. The reverse took place during closure. During operation and closure, TDS exceeded the aesthetic objective for drinking water (\leq 500 mg/L) and was well below this objective during the Flood.

Dissolved oxygen (DO) concentrations below the PAL guidelines for cool and cold-water species were observed throughout the watershed during each phase of the Project and during baseline, particularly in winter. At the onset of 2014/2015 Operation, DO temporarily (for 1-10 days depending upon location) decreased below PAL guidelines throughout the watershed (this was not observed in 2011). This change in DO may be attributable to the Project, or it may be due to seasonal changes that are coincident with the timing of operation. Baseline data are too limited to determine if the changes to DO that were observed in the Buffalo Creek watershed can be attributed to the Project.

Baseline TSS concentrations in Buffalo Creek were low (< 2-6 mg/L). At the onset of operation in both 2011 and 2014, TSS increased in the Buffalo Creek watershed, ranging from 10-60 mg/L and from 3.2-180 mg/L, respectively. The magnitude of the increase at the downstream end of Buffalo Creek was three times greater in 2014 than in 2011. During 2011/2012 Closure, TSS was high in the spring and remained higher than baseline at the downstream end of Buffalo Creek. Similarly, TSS concentrations increased slightly following closure activities in 2015. After 02 November 2011, TSS was consistently higher at the downstream end of Buffalo Creek than at the upstream end of the creek, this was not observed during baseline. At the onset of operation in both 2011 and 2014, TSS exceeded the 1-day MWQSOGs/CCME short-term PAL throughout the watershed for more than a day. Exceedances of this

guideline occurred at varying locations within the watershed on 04, 07, 17 and 25 November in 2011, and from 03 to 11 July in 2014. Additionally, during operation, TSS was frequently above the 30 day MWQSOGs/CCME long-term PAL throughout the watershed and, during 2011/2012 Closure, consistently exceeded the 30-day MWQSOGs/CCME long-term PAL at the downstream end of Buffalo Creek.

At the onset of operation in 2011 and 2014, total phosphorus (TP) increased in Buffalo Creek above the MWQSOGs narrative guideline for streams (0.050 mg/L), but returned to baseline within a week of onset in both years. In winter and spring following the closure of Reach 1 in 2012, TP increased from 2011/2012 Operation and was above baseline. Following the freshet, TP returned to baseline in most of the watershed, but remained high at the downstream end of Buffalo Creek throughout 2013. In the spring of 2014, there was another spike in TP. TP occasionally exceeded the narrative guideline for streams during 2011/2013 Closure.

Similar to phosphorus, nitrogen increased in the watershed in the winter and spring following the closure of Reach 1. During closure, ammonia occasionally exceeded the CCME PAL guideline in Big Buffalo Lake. Baseline data are too limited to determine if the ammonia exceedances observed in Big Buffalo Lake can be attributed to the Project.

Chlorophyll *a* concentrations in Buffalo Creek were consistently higher than baseline from spring 2012 to August 2015, though baseline data are limited. There are no MWQSOGs or CCME guidelines for chlorophyll *a*.

Several metals and major ions increased in Buffalo Creek during operation in 2011/2012 and 2014/2015, including: arsenic, barium, boron, calcium, chloride, fluoride, magnesium, molybdenum, potassium, sodium, sulphate, and uranium. Additionally, copper increased during 2011/2012 Operation, but decreased during 2014/2015 Operation. At the onset of 2014/2015 Operation there was a small increase in mercury and methyl mercury in Buffalo Creek, but both returned to baseline by October 2014. The analytical detection limit used for mercury in 2011 was too high to detect if mercury changed at the onset of 2011/2012 Operation and methyl mercury was not measured at that time.

Metals and major ions that had increased in Buffalo Creek during operation showed a decreasing trend during 2011/2012 Closure, though some remained higher than baseline prior to 2014/2015 Operation.

During operation in 2011/2012 and 2013/2014, chloride and fluoride exceeded the CCME PALs (120 and 0.12 mg/L, respectively) in the Buffalo Creek watershed. These guidelines were occasionally exceeded in Big Buffalo Lake during 2011/2012 Closure, but no longer in Buffalo Creek. During 2011/2012 Operation, selenium was frequently above the MWQSOGs/CCME PAL (0.001 mg/L) in the Buffalo Creek watershed. During 2011/2012 Closure, iron frequently exceeded the PAL/aesthetic objective for drinking water (0.3 mg/L), and chromium occasionally exceeded the CCME PAL (0.0089 mg/L) at the downstream end of Buffalo Creek. There were no other exceedances of MWQSOGs/CCME PAL and or drinking water for metals or major ions that could be attributed to the Project.

Lower Dauphin River

Conductivity, TDS, laboratory pH, true colour and hardness were similar upstream and downstream of Buffalo Creek during baseline, operation, and closure. No changes to routine water quality of the Dauphin River were observed that can be attributed to the Project.

The Dauphin River was generally well-oxygenated. A small decrease (<2 mg/L) in DO was observed downstream of Buffalo Creek during operation in 2015. However, DO concentrations below the MWQSOGs/CCME PAL have been observed throughout monitoring for the Project both upstream and downstream of Buffalo Creek during both the open-water and ice covered seasons.

At the onset of operation in 2011 and 2014, TSS increased in the lower Dauphin River such that a plume of sediment was visible along the shoreline. After approximately one month of operation in 2011 and two weeks of operation in 2014, TSS in the lower Dauphin River returned to background. However, during 2014/2015 Operation in March and spring 2015, TSS was again elevated downstream of Buffalo Creek. At the onset of operation in both 2011 and 2014, TSS concentrations in the lower Dauphin River exceeded the MWQSOGs 1 day/CCME long-term PAL as far downstream as Sturgeon Bay for more than a day. Additionally, TSS was consistently above the MWQSOGs 30 day/CCME short-term PAL from 04-25 November 2011, 05-16 July 2014, 27 March 2015; and, along the shoreline downstream of Buffalo Creek 01 May 2015 and 11 June 2015.

TSS also increased along the Dauphin River shoreline downstream of Buffalo Creek in spring 2013 during closure. During 2011/2012 Closure, TSS concentrations in the lower Dauphin River occasionally exceeded MWQSOGs 30 day/CCME short-term PAL.

At the onset of operation in 2011 and 2014, in the spring of 2013, and in March and spring of 2015, phosphorus concentrations increased in the lower Dauphin River as far downstream as Sturgeon Bay. At the onset of operation, TP exceeded the MWQSOGs narrative guidelines. No other changes to nutrient concentrations in the Dauphin River were observed that can be attributed to the Project.

Chlorophyll *a* was similar throughout the Dauphin River and was within the baseline range during operation and closure. There are no MWQSOGs or CCME guidelines for chlorophyll *a*. No changes to chlorophyll *a* concentrations in the Dauphin River were observed that can be attributed to the Project.

There were no observed changes to most metals or major ions in the Dauphin River that can be attributed to the Project. However, at the onset of 2014/2015 Operation, mercury and methyl mercury increased in the Dauphin River downstream of Buffalo Creek. At the onset of 2011/2012 Operation, the analytical detection limited used for mercury was too high to detect any changes in mercury concentrations that may have occurred and methyl mercury was not measured at this time. Mercury and methyl mercury remained well below the MWQSOGs/CCME PALs (26 and 4 ng/L, respectively) in the lower Dauphin River during 2014/2015 Operation.

Sturgeon Bay

The extent of the mixing zone between the Dauphin River and Lake Winnipeg increased during 2011/2012 Operation. During 2011/2012 Closure, the size of the mixing zone decreased, but it remained larger than baseline. As a result of the mixing zone changes, TDS was more frequently above the aesthetic objective for drinking water (\leq 500 mg/L) in areas of Sturgeon Bay away from the Dauphin River than baseline. No changes to routine water quality in Sturgeon Bay were observed during 2014/2015 Operation that can be attributed to the Project.

Sturgeon Bay was well-oxygenated during baseline, operation and closure. DO was consistently within PAL guidelines for cool and cold-water species. No changes to DO in the Sturgeon Bay were observed that can be attributed to the Project.

In the spring of 2011/2012 Operation, TSS increased in Sturgeon Bay near the Dauphin River and, at the onset of 2014/2015 Operation, TSS increased in Sturgeon Bay near the Dauphin River mouth and remained higher near the river for about a month. No data are available for Sturgeon Bay at the onset of 2011/2012 Operation, so an assessment of effects of operation in 2011 cannot be conducted. No changes to TSS in Sturgeon Bay were observed during 2011/2012 Closure that can be attributed to the Project.

There was a spike in nitrogen and phosphorus near the mouth of the Dauphin River in the spring of 2011/2012 Operation. This resulted in a guideline exceedance for TP; however, TP exceedances were frequently observed in Sturgeon Bay from 2011-2015. No other changes to nutrient concentrations in Sturgeon Bay were observed that can be attributed to the Project.

From 2012-2015, chlorophyll *a* was typically lower than baseline. Chlorophyll *a* concentrations near the Dauphin River were higher in spring 2012 and lower in October 2014, compared with the rest of Sturgeon Bay. At other times, chlorophyll *a* was generally similar throughout the bay. There are no MWQSOGs or CCME guidelines for chlorophyll *a*. Baseline data are too limited to determine if any changes to chlorophyll *a* concentrations that were observed can be attributed to the Project.

During 2011/2012 and 2014/2015 Operation, aluminum and iron increased in Sturgeon Bay near the Dauphin River; however, concentrations remained within the baseline range for Sturgeon Bay. During 2011/2012 Operation, methyl mercury was more frequently detected and at higher concentrations near the Dauphin River than in the rest of Sturgeon Bay. Similarly, In March 2015, during 2014/2015 Operation, methyl mercury was detected near the Dauphin River and Willow Point but not at other sites in Sturgeon Bay; concentrations were well below the MWQSOGs/CCME PAL (4 ng/L). From 2012-2014, chloride concentrations were more frequently above the CCME long-term PAL (120 mg/L) in areas of Sturgeon Bay away from the Dauphin River than during baseline (i.e., the area of high chloride concentrations in the bay increased). There were no other exceedances of MWQSOGs/CCME PAL and/or drinking water for metals or major ions that could be attributed to the Project.

TABLE OF CONTENTS

1.0	INTRODUCTION1					
2.0	F	PROJECT DESCRIPTION AND STUDY AREA3				
	2.1	PROJ	ECT DESCRIPTION			
		2.1.1	Reach 1 Emergency Outlet Channel			
		2.1.2	Reach 3 Emergency Channel			
		2.1.3	Project Schedule			
	2.2	STUD	Y AREA			
3.0	V	VATER O	UALITY MONITORING PROGRAMS			
	3.1	REGIO	ONAL WATER QUALITY MONITORING PROGRAM			
		3.1.1	Sample Sites			
		3.1.2	Sampling Methods			
	3.2	LSME	OC MONITORING PROGRAM			
		3.2.1	Sampling Sites7			
		3.2.2	Sampling Frequency			
		3.2.3	Sampling Methods			
	3.3	IN SIT	U MONITORING PROGRAM			
	3.4	ANAL	YSIS			
		3.4.1	Quality Assurance and Quality Control (QA/QC)9			
		3.4.1	1 Field Blanks9			
		3.4.1				
		3.4.1.	3 Replicate Samples			
		3.4.1	4 QA/QC Assessment			
		3.4.2	Comparison to Water Quality Objectives and Guidelines			
4.0	S	MMARY	OF RESULTS			
	4.1	LAKE	ST. MARTIN			
	4.2	REAC	H 1 AND THE BUFFALO CREEK WATERSHED12			
		4.2.1	Routine			
		4.2.2	Dissolved Oxygen12			
		4.2.3	TSS			
		4.2.4	Nutrients			
		4.2.5	Chlorophyll a13			
		4.2.6	Metals and Major Ions13			
	4.3	LOW	ER DAUPHIN RIVER			
		4.3.1	Routine			
		4.3.2	Dissolved Oxygen14			
		4.3.3	TSS			

5.0 F	REFEREN	CES	17
	4.4.6	Metals and Major Ions	. 16
	4.4.5	Chlorophyll a	. 15
	4.4.4	Nutrients	. 15
	4.4.3	TSS	. 15
		Dissolved Oxygen	
		Routine	-
4.4	STUR	GEON BAY	. 15
	4.3.6	Metals and Major Ions	. 14
		Chlorophyll a	
	4.3.4	Nutrients	

LIST OF TABLES

Table 1.	Timing of Reach 1 Construction and Operation milestones	. 19
Table 2.	Water quality parameters measured as part of the RWQMP, 2011-2015	. 20
Table 3	Main sites and sampling periods for the RWQMP, 2011-2015.	. 21
Table 4.	Laboratory analysed parameters measured as part of the LSMEOC monitoring program, 2011-2014.	. 22
Table 5.	Samples collected for the LSMEOC monitoring program, 2011-2015	. 23

LIST OF FIGURES

Figure 1.	The location of major waterbodies and waterways affected by flooding in southern Manitoba during spring 2011	25
	Location of the Reach 1 Emergency Outlet Channel, the Reach 3 Emergency Channel, and the Buffalo Creek Drainage System in relation to Lake St. Martin, the Dauphin River and Sturgeon Bay	26
Figure 3.	Water quality sampling sites that were part of the RWQMP, 2011-2015	27
Figure 4.	Water quality sampling sites that were part of the LSMEOC monitoring program, 2011-2015.	28

LIST OF APPENDICES

Appendix A	Regional water quality monitoring program – Fall 2011	. 29
Appendix B	Regional water quality monitoring program – 2011/2012 Operation	. 77
Appendix C	Regional water quality monitoring program – Fall 2012	191
Appendix D	Regional water quality monitoring program – 2011/2012 Closure	239
Appendix E	Regional water quality monitoring program – 2014/2015 Operation	363
Appendix F	In Situ water quality monitoring program – Fall 2011	445
Appendix G	In Situ water quality monitoring program – February and March 2012	456
Appendix H	LSMEOC water quality monitoring results – 2011 to 2015	475
Appendix I	Water quality objectives and guidelines	535

1.0

INTRODUCTION

Widespread record flooding throughout southern Manitoba during 2011 (Figure 1) led to water levels in Lake Manitoba and Lake St. Martin that were several feet higher than desirable, resulting in significant damage to hundreds of properties, restricted road access to several communities, and long-term evacuation of four First Nations communities in the vicinity of Lake St. Martin. As part of emergency relief measures, the Province of Manitoba, through Manitoba Infrastructure and Transportation (MIT), constructed the Lake St. Martin Emergency Outlet Channel System (LSMEOC System), which is comprised of two emergency channels (Figure 2).

The Reach 1 Emergency Outlet Channel (Reach 1) begins at the northeast shore of the north basin of Lake St. Martin and extends approximately 6 km to the bog area surrounding Big Buffalo Lake. Water from Reach 1 inundates the bog area and then follows the natural Buffalo Creek Drainage System until flowing into the lower Dauphin River and ultimately into Sturgeon Bay (Figure 2). Water began to flow through Reach 1 on 01 November 2011 and the channel was operated until 21 November 2012.

Computer models of potential water levels at the mouth of the Dauphin River indicated that there was a significant risk of major flooding of the Dauphin River communities in spring 2012. Consequently, a second channel (Reach 3 Emergency Channel; Reach 3) was constructed during winter 2011/2012. Reach 3 was designed to divert excess flow from Reach 1 and Buffalo Creek and away from the lower Dauphin River. Due to extremely mild winter conditions in 2011/2012, ice effects on both Reach 1 and the Dauphin River were much less severe than forecasted. Consequently, the proposed operation of Reach 3 was no longer required.

Heavy precipitation during winter 2013/2014 and spring 2014 again elevated water levels in Lake Manitoba and Lake St. Martin, prompting MIT to re-open Reach 1 at the beginning of July 2014. The channel was re-opened in two stages. The first occurred during in July 2014 when approximately 35 m of the berm closing Reach 1 was removed. The second stage occurred in November 2014, when an additional 10 m of the closure berm were removed to allow additional flow into the channel. Reach 1 remained in operation until at August 2015. Collectively, construction and operation of Reach 1, as well as construction of Reach 3, are referred to hereafter as "the Project".

Concurrent with construction of Reach 1 in summer 2011, MIT initiated studies and monitoring to help describe and assess environmental effects arising from the Project. These included studies to document changes to the physical environment (e.g., measurement of water flow through Reach 1 and the Dauphin River; sedimentation and erosion studies) and possible subsequent effects to the biological environment (e.g., possible change to fish community in Buffalo Creek). Environmental studies began in August 2011 and concluded in September 2015.

Water quality monitoring studies have been conducted annually, focussing on routine parameters (e.g., conductivity, pH), dissolved oxygen (DO), total suspended solids (TSS), nutrients, chlorophyll *a*, metals and major ions, and petroleum hydrocarbons. Water quality data were collected from the Fairford River, Lake St. Martin, Reach 1 and the Buffalo Creek watershed, the Dauphin River, and Sturgeon Bay.

This report provides an overview of the water quality monitoring programs including a summary of Project related effects to water quality in Lake St. Martin, the Buffalo Creek watershed, the lower Dauphin River, and Sturgeon Bay. This report also compiles all the raw data collected for the Project from September 2011 to September 2015.

2.0 PROJECT DESCRIPTION AND STUDY AREA

2.1 PROJECT DESCRIPTION

Infrastructure constructed to support the emergency reduction of Lake Manitoba and Lake St. Martin water levels included two channels designed to increase flow from Lake St. Martin to Sturgeon Bay. The first channel, the Reach 1 Emergency Outlet Channel, was completed in fall 2011. The second channel, the Reach 3 Emergency Channel, was constructed during winter 2011/2012 but was not operated. Additional details pertinent to each of the channels are presented in the following sections.

2.1.1 Reach 1 Emergency Outlet Channel

As previously stated, Reach 1 was constructed to increase the flow of water from Lake St. Martin to Sturgeon Bay. The inlet to Reach 1 is located along the northeast shore of the Lake St. Martin north basin. The channel extends north east for approximately 6 km to a bog area surrounding Big Buffalo Lake. Drainage water from Reach 1 flowed through the bog area and Big Buffalo Lake into Buffalo Creek, and then flowed down Buffalo Creek to its confluence with the lower Dauphin River, approximately 4 km upstream of Sturgeon Bay.

The inlet of Reach 1 consisted of a fixed-level invert with a sill at an elevation of 243.1 m above sea level (mASL). The sill was designed to convey the desired flow of 142 m^3 /s at 244.1 mASL and was 120 m in length, had a bottom width of 60 m, and 3:1 side slopes. At the onset of operation, flow through Reach 1 was estimated to be 255 m^3 /s based on Lake St. Martin water level at that time.

2.1.2 Reach 3 Emergency Channel

Water level projections indicated that there was a substantial risk for major flooding in the Dauphin River communities in spring 2012 due to unprecedented flows along the Dauphin River downstream of Buffalo Creek and the increased potential for frazil ice jamming at the mouth of the Dauphin River. It was determined that the construction of an additional channel to divert Reach 1 flows away from the Dauphin River, and construction of dikes along the banks of the lower Dauphin River prior to spring break up was necessary to reduce the risk of flooding in the communities.

Following a review of configuration options, the Reach 3 Emergency Channel was constructed. Reach 3 originates at Buffalo Creek about 8 km downstream of Big Buffalo Lake (Figure 2), is approximately 6 km in length, and terminates in a lowland area 3 km inland of Sturgeon Bay. From the outlet of Reach 3, water would flow overland towards Sturgeon Bay, entering the bay through a proposed shoreline breach structure which was to be constructed through the beach ridge to the west of Willow Point.

It was expected that Reach 3 would only operate for a short period of time during the spring freshet in 2012 to limit the threat of flooding along the lower Dauphin River. However, an exceptionally mild winter in 2011/2012 allowed sufficient drainage from Lake Manitoba and Lake St. Martin to reduce water levels to a point where the risk of frazil ice jamming and flooding at Dauphin River communities became negligible. Consequently, Reach 3 was not operated.

2.1.3 Project Schedule

Construction of Reach 1 was initiated in mid-July 2011. The channel was completed and water began to flow through it by November 01, 2011. Closure of Reach 1 was initiated on November 15, 2012. Closure operations included constructing a dike across the Reach 1 inlet at Lake St. Martin to prevent water from flowing into the channel. By November 21, construction had progressed to where no flow was entering Reach 1 (Table 1).

Heavy precipitation during winter 2013/2014 and spring 2014 again elevated water levels in Lake Manitoba and Lake St. Martin, prompting MIT to re-open Reach 1 at the beginning of July 2014 (Table 1). The channel was re-opened in two stages. The first occurred during in July 2014 when approximately 35 m of the berm closing Reach 1 was removed. The second stage occurred in November 2014, when an additional 10 m of the closure berm were removed to allow additional flow into the channel. Flow into Reach 1 was halted in late August 2015.

2.2 STUDY AREA

The emphasis of aquatic monitoring is to determine what effects construction and operation of Reach 1 may have had on waterways downstream of the channel. These include the Buffalo Creek watershed, the lower Dauphin River, and Sturgeon Bay. However, these waterways are also affected by conditions occurring upstream of Reach 1 and, in some instances, fish move between areas upstream and downstream of Reach 1. Consequently, some components of the aquatic monitoring program (water quality monitoring and fisheries investigations) include waterways upstream of Reach 1.

Local hydrology is affected by water flow from across the province. The main water inflows into Lake Manitoba are from the Whitemud River, the Waterhen River (including Lake Winnipegosis and Dauphin Lake), and the Portage Diversion, which routes excess flows from the Assiniboine River into the south end of Lake Manitoba (Figure 1). Water flows out of Lake Manitoba through the Fairford River and Lake Pineimuta into Lake St. Martin, and then through the Dauphin River to Sturgeon Bay.

The Buffalo Creek watershed is situated between Lake St. Martin to the south and the Dauphin River and Sturgeon Bay to the north. Prior to operation of Reach 1, the watershed was isolated and did not receive water from other waterways; all flow was due to local run off. The headwaters of the watershed are comprised of a bog complex including Big Buffalo Lake and several other ponds. Buffalo Creek originates in Big Buffalo Lake and flows through the bog complex before entering into a more defined creek channel. The creek discharges into the Dauphin River approximately 4 km upstream of Sturgeon Bay.

3.0 WATER QUALITY MONITORING PROGRAMS

Aquatic environment monitoring for the emergency reduction of Lake Manitoba and Lake St. Martin water levels included two main water quality monitoring programs: (1) a Regional Water Quality Monitoring Program (RWQMP), which collected water quality information from all major waterbodies and waterways within the study area that were affected by flooding; and, (2) a localised water quality monitoring program within Reach 1 and the Buffalo Creek watershed (Lake St. Martin Emergency Outlet Channel Monitoring; LSMEOC Monitoring). Additionally, *in situ* water quality monitoring was conducted in Sturgeon Bay to gather spatial information on the water quality of Sturgeon Bay, and in particular to define the area of influence of the Dauphin River. Detailed results of these programs are presented in Appendices A to H. The data from 2011 to 2012 have been previously published in a series of reports (AECOM 2012, KGS 2013, NSC 2013a, NSC 2013b, NSC 2014).

3.1 REGIONAL WATER QUALITY MONITORING PROGRAM

The RWQMP was initiated in October 2011, prior to the operation of Reach 1, and continued until May 2015. The intent of this program was to provide a regional perspective on water quality conditions both upstream and downstream of Reach 1. Water quality in all major waterbodies and waterways within the study area were sampled. Water quality parameters included in the RWQMP were identified based on potential linkages between the Project and water quality, including potential effects on TSS and related variables (e.g., nutrients and metals), effects related to diversion, and potential effects of flooding and/or diversion on water quality (i.e., nutrients, DO, pH and metals), and/or variables that provide supporting information for interpretation of other data. Ultra-trace mercury and methylmercury were included to facilitate comparison to the Manitoba Water Quality Standards, Objectives, and Guidelines (MWQSOGs; MWS 2011) and because both may be affected by flooding. A complete list of water quality parameters selected for laboratory analysis and *in situ* measurements are provided in Table 2. In general, four sampling periods occurred during each year. Details on sampling site locations and sampling periods are provided in Table 3 and Figure 3.

3.1.1 Sample Sites

In general, sampling was conducted at 17 sites throughout the study area, as follows:

- Waterhen River one site at the bridge on PR # 328 (at MWS site MB05LHS002);
- Lake Manitoba one site at Lake Manitoba Narrows (at MWS site MB05LKS009);
- Fairford River one site at the PTH # 6 bridge (at MWS site MB05LMS001);
- Lake St. Martin one site in the north basin;
- Dauphin River four sites, including one site near the outflow from Lake St. Martin, one site near the existing MWS site (MWS Site MB05LMS003), one site upstream of the confluence of Buffalo Creek, and one site in the mouth of the Dauphin River upstream of Sturgeon Bay;
- Buffalo Creek one site at the creek mouth; and,
- Sturgeon Bay eight sites.

However, not all sites were sampled during all sampling periods. The following exceptions occurred:

- Sampling at the Waterhen River and Lake Manitoba Narrows was discontinued after 2012 as it was felt that the site in the Fairford River captured the condition of the water quality entering the Lake St. Martin/Dauphin River system;
- The eighth site in Sturgeon Bay, LKW3B (near the Dauphin River mouth), was added in spring 2012; and,
- During winter sampling, some sites were not accessible due to ice/snow conditions and were therefore either relocated to a more accessible location or not sampled at all.

Additionally, occasional RWQMP sampling was conducted at sites within the LSMEOC system, including:

- Lake St. Martin near the Reach 1 inlet (October 2011);
- Big Buffalo Lake –in the middle of the basin (March and May 2013; and, April and June 2014);
- Buffalo Creek in the upper reaches of the creek (October 2011, January 2012, and May 2013); and,
- Dauphin River immediately downstream of the confluence with Buffalo Creek (October 2011 and August 2014).

3.1.2 Sampling Methods

Sampling sites were accessed by truck, boat, helicopter, or snowmobile depending on site accessibility and season. Sample locations were recorded using a handheld Garmin GPS receiver. Sampling date and time were noted for each sampling site. Measurements of effective water depth (using a handheld depth sounder) and of ice thickness (if appropriate) were recorded at each site. In winter, where necessary, holes were drilled through the ice using a power auger.

In situ measurements of water quality parameters including pH, specific conductance, DO, turbidity, and water temperature were collected using a handheld water quality meter. At river sites and those accessed from shore, *in situ* parameters were measured at approximately 0.3 m below the water surface. At lake sites, *in situ* profiles were taken in one of two ways: measurements were recorded near the surface (i.e., at 0.3 m) and then at either 0.5 m (if total water depth was less than 5.0 m) or 1.0 m increments, or measurements were recorded both near the surface (about 0.3 m beneath the bottom surface of the ice) and at approximately 0.3 m above the lake bottom. Due to several water quality meter malfunctions, *in situ* measurements were not consistently measured with one brand of device throughout the sampling program (see Appendices A to E for details).

At each sampling site, grab samples were collected from approximately 0.3 m below the water surface into clean sample bottles supplied by ALS Laboratories. Under ice-cover, samples were collected from 0.5 m below the ice using a Kemmerer sampler. If thermal stratification was evident at lake sampling sites, water samples were also collected from approximately 1.0 m above the sediments using a Kemmerer sampler. Where necessary, samples were preserved according to instructions provided by the analytical laboratory. After collection, samples were placed in a cooler and kept cool using ice packs until submission (within 48 hours) to ALS Laboratories in Winnipeg for analysis. Additionally, Quality

Assurance/Quality Control (QA/QC) samples were submitted to the laboratory during each sampling event, including field blanks, trip blanks, and replicate samples. A detailed description of QA/QC procedures followed is provided in Section 3.4.1.

3.2 LSMEOC MONITORING PROGRAM

LSMEOC monitoring was initiated during the early construction of Reach 1 and provided additional and targeted temporal and spatial water quality monitoring in Reach 1 and the Buffalo Creek watershed. This program continued until September 2015. Waterbodies sampled included Lake St. Martin, Reach 1, the Buffalo Creek watershed and the lower Dauphin River; details on sampling site locations are provided in Figure 4. This program included special consideration of TSS and DO to determine potential changes due to project activities. Other parameters analyzed included nutrients, mercury, and petroleum hydrocarbons. A complete list of laboratory analysed parameters is provided in Table 4. *In situ* measurements of water quality parameters including turbidity, DO, temperature, pH, and specific conductance were also collected. Sampling was typically more frequent than the RWQMP but varied with Project phase; a list of sampling dates and parameters measured is provided in Table 5.

3.2.1 Sampling Sites

Sampling sites were added or removed as appropriate for each Project phase; however, in general, sampling was conducted at 12 sites within the LSMEOC system as follows:

- Lake St. Martin one of two sites, including one site near the centre of the north basin (LSM1), and one site near the Reach 1 inlet (LSM2);
- Reach 1 three sites, including one site at the upstream end of the channel (EC1), one at the downstream end of the channel (EC2), and one downstream of the channel where the water entered the wetland area surrounding Big Buffalo Lake (EC3);
- Buffalo Creek five sites, including one site at the upstream most end of the creek (BC1), one site near the upstream end of the creek (BC2), one site downstream of the proposed entrance to Reach 3 (BC4), one site downstream of Creek 3 (BC5), and one site at the mouth of the creek (BC3); and,
- Dauphin River three sites, one site upstream of the confluence of Buffalo Creek, one site immediately downstream of the confluence of Buffalo Creek, and one site in the mouth of the Dauphin River upstream of Sturgeon Bay.

Additionally, two sites in Lake St. Martin near the Reach 1 inlet (LSM03 and LSM04) were monitored for TSS and turbidity during the construction phase of the Project; one site was sampled in Big Buffalo Lake (BBL) in 2013 and 2014; and, water samples for analysis of TSS and turbidity were also collected at the turbidity monitoring station in Buffalo Creek (BC-TM),

3.2.2 Sampling Frequency

In general, sampling frequency changed in response to Project phase as follows:

- Baseline monitoring was approximately every two weeks;
- Construction monitoring was almost daily from 05 October to 07 November 2011;
- During operation, sampling was approximately monthly;
- During closure, sampling was conducted seasonally; and,
- When it was expected that there would be an increase in sediment transport (e.g., channel opening, spring freshet) more frequent (e.g., daily, every 2-3 days, or weekly, as appropriate) sampling occurred.

3.2.3 Sampling Methods

In situ water quality data was measured during each sample event at each sample site using a handheld multi-meter (YSI or Horiba). *In situ* turbidity was also measured during each sampling event using a handheld Oakton turbidity meter. The handheld multi-meter was calibrated prior to each sample event to maximize accuracy. However, these probes do not always function properly when operated under freezing conditions. On several occasions during the winter months, the probe froze and or became encased in ice and it was not possible to complete *in situ* data collections. In 2011, samples were collected from the water's edge, whereas from 2012 through 2015 most samples were collected by a device lowered from a helicopter. Exceptions included: winter sampling when all sites were accessed by snowmobile and samples collected from holes drilled in the ice; and, the Lake St. Martin which was sampled by boat during open water periods. Safety protocols were developed for all methods used during the 2012 and 2013 water quality monitoring programs.

When sampling from helicopter, one staff harnessed into the helicopter lowered a weighted sampling device to the water surface. Samples were retrieved from just below the surface of the water (approximately 0.3 m) and examined to ensure water was free of excess sediment resulting from sampling error. Water from the sampler was used to fill sample bottles and take *in situ* measurements. The weighted sampler was rinsed at each site prior to sample collection.

When sampling through the ice, a hole was drilled using a hand auger. Samples were collected by lowering a Kemmerer sampler approximately 1.0 m below the ice. The Kemmerer was site rinsed before samples were collected. *In situ* measurements were collected from under the ice. When sampling from a boat, samples were collected from just below the surface (0.3 m) directly into laboratory supplied sample bottles.

Where necessary, samples were preserved according to instructions provided by the analytical laboratory. After collection, samples were placed in a cooler and kept cool using ice packs until submission (within 48 hours) to ALS Laboratories in Winnipeg, MB (a Canadian Association for Laboratory Accreditations, Inc. [CALA] accredited laboratory) for analysis.

QA/QC samples were included during each sampling event, including: a field blank; a trip blank provided by the laboratory; and, a duplicate sample. A detailed description of QA/QC procedures followed is provided in Section 3.4.1

3.3 IN SITU MONITORING PROGRAM

The *in situ* monitoring program was conducted in Sturgeon Bay in fall 2011, and in February and March, 2012. The primary objective of the program was to gather spatial information on the water quality of Sturgeon Bay This program included the collection of *in situ* measurements of pH, specific conductance, DO, turbidity, and water temperature; as well as, sample collection for laboratory analysis of TSS and turbidity.

3.4 ANALYSIS

3.4.1 Quality Assurance and Quality Control (QA/QC)

For both the RWQMP and LSMEOC monitoring program standard QA/QC measures were followed during sample collection (e.g., use of latex gloves, standard labelling practices, meter calibration, etc.). Additionally, QA/QC samples were collected, including field blanks, trip blanks, and replicate samples.

3.4.1.1 Field Blanks

Field blanks are intended to provide information on sample contamination from atmospheric exposure and sample handling techniques (i.e., cleanliness of sampling equipment, carry-over contamination from site to site), as well as potential laboratory contamination and/or error (British Columbia Ministry of Environment, Lands, and Parks (BCMELP) 1998). Field blanks were prepared by filling sample bottles with deionized water (both provided by the analytical laboratory) in the field and submitting the blanks along with the environmental samples.

3.4.1.2 Trip Blanks

Trip blanks are used for evaluating the potential for sample contamination that may occur from the container or preservatives through transport and storage of the sample, as well as laboratory precision (BCMELP 1998). Trip blanks were prepared in the laboratory by filling sample bottles with deionized water. Trip blanks were transported to the field sampling sites, but remained sealed, and were then submitted to the analytical laboratory in conjunction with environmental samples for analysis.

3.4.1.3 Replicate Samples

Replicate samples were collected at randomly selected sites to provide a measure of variability of environmental conditions and the overall precision associated with field methods and laboratory analyses.

3.4.1.4 QA/QC Assessment

All water quality data were examined qualitatively for potential outliers and/or transcription or analytical errors. Where one replicate sample differed notably from the others, the measurement was flagged as "suspect".

QA/QC samples were assessed according to standard criteria to evaluate precision and identify potential sample contamination issues (BCMELP 1998). Percent relative standard deviation (PRSD) was calculated for triplicate samples as follows:

PRSD (%) = standard deviation of the triplicate values / mean of the triplicate values x 100

The relative percent mean difference (RPMD) was calculated for duplicate samples as follows:

RPMD (%) =
$$| (value 1 - value 2) / ((value 1 + value 2) / 2) | x 100$$

Precision of replicate samples was evaluated using the "rule of thumb" criteria for precision of 18% for triplicate samples and 25% for duplicate samples (BCMELP 1998). Where one or more of the replicate values were less than five times the analytical detection limit (DL), an analysis of precision was not undertaken, in accordance with guidance provided in BCMELP (1998).

Field and trip blank results were also evaluated for evidence of sample contamination. Values for any parameter that exceeded five times the DL were considered to be indicative of sample contamination and/or laboratory error.

3.4.2 Comparison to Water Quality Objectives and Guidelines

Results were compared to the MWQSOGs (MWS 2011) for the protection of aquatic life (PAL) as well as the Canadian Council of Ministers of the Environment (CCME) guidelines for the protection of freshwater aquatic life (CCME 1999; updated to 2015). In general, the MWQSOGs for PAL are similar to the CCME guidelines for PAL for parameters measured; however, there are CCME guidelines for some parameters which lack a provincial guideline/objective and others for which the CCME guideline is different from the provincial one; typically the CCME guideline is more stringent than the MWQSOGs.

Drinking water quality objectives and guidelines are intended to be applied to treated or finished water as it emerges from the tap and "are not intended to be applied directly to source waters" (CCME 1999, updated to 2015). However, comparison of water quality in the study area to drinking water quality objectives and guidelines is included to provide context. The MWQSOGs indicate that "all surface waters...are susceptible to uncontrolled microbiological contamination... [and] it is therefore assumed that all raw surface water supplies will be disinfected as the minimum level of treatment prior to consumption" (MWS 2011). Furthermore, it is indicated that the MWQSOGs "apply to finished drinking water, but can be extrapolated to provide protection to raw drinking water sources."

In general, water quality objectives and guidelines are more stringent for the protection of aquatic life and wildlife, relative to those established to protect various human usages (e.g., drinking water). A summary of relevant water quality objectives and guidelines is presented in Appendix I.

4.0

SUMMARY OF RESULTS

The following section provides a summary of the results of the water quality monitoring programs conducted since 2011 in relation to the Reach 1 operational phases. The intent is to provide an overview of observed change/lack of change in water quality of Lake St. Martin, Reach 1 and the Buffalo Creek watershed, the lower Dauphin River, and Sturgeon Bay. A detailed assessment of effects for the Project which included data collected from 2011-2014 is provided in NSC and KGS (2015a) with greater detail for the water quality program provided in the water quality supporting volume (NSC and KGS 2015b). This assessment was later updated with data collected in 2015 in NSC and KGS (2015c).

The potential linkages between the Project and water quality impacts are complex but relate primarily to three main physical effects pathways:

- Alterations in the rate and seasonality of flow discharged to Sturgeon Bay and other waterbodies in the study area;
- Effects of flooding along the flow diversion route; and,
- Potential for erosion and/or mobilization of sediments due to Reach 1 operation.

Water quality data are discussed in relation to the Reach 1 operational phases, defined as follows:

- Historical The 10-year period prior to the 2011 flood;
- Flood April 2011 to October 31, 2011;
- 2011/2012 Operation 01 November 2011 to 27 November 2012;
- 2011/2012 Closure 28 November 2012 to 30 June 2014; and,
- 2014/2015 Operation 01 July 2014 to 13 August 2015.
- 2014/2015 Closure 15 August 2015 to 14 September 2015

Water quality data gathered during Project-related monitoring programs (presented in Appendices A to H) are the main sources of information used to assess the effects of the Project on water quality. However, water quality data collected by MCWS were also used in order to provide historical context and to supplement data collected for the Project. A qualitative assessment of effects was conducted for key water quality parameters and was described in relation to Project phases. Changes in water quality that were linked to the Project, which resulted in the exceedance or a change in the frequency of exceedance of water quality guidelines and objectives were given more weight.

4.1 LAKE ST. MARTIN

During dredging related to construction activities in October. 2011), TSS in the vicinity of the Reach 1 inlet exceeded the 30 day MWQSOGs/CCME long-term PAL (average of 5 mg/L above background), and periodically exceeded the 1-day MWQSOGs/CCME short-term PAL (25 mg/L above background).

There was no linkage to operation of Reach 1 and effects to water quality in Lake St. Martin.

4.2 REACH 1 AND THE BUFFALO CREEK WATERSHED

4.2.1 Routine

The water quality of the Buffalo Creek watershed changed as water from Lake St. Martin was introduced and then withheld from the system. During operation, conductivity, TDS, and hardness increased substantially, pH increased slightly, and colour decreased. The reverse took place during closure. During operation and closure, TDS exceeded the aesthetic objective for drinking wate≤(500 mg/L) and was well below this objective during the Flood.

4.2.2 Dissolved Oxygen

DO concentrations below the PAL guidelines for cool and cold-water species were observed throughout the watershed during each phase of the Project and during baseline, particularly in winter. At the onset of 2014/2015 Operation, DO temporarily (for 1-10 days depending upon location) decreased below PAL guidelines throughout the watershed (this was not observed in 2011). This change in DO may be attributable to the Project, or it may be due to seasonal changes that are coincident with the timing of operation. Baseline data are too limited to determine if the changes to DO that were observed in the Buffalo Creek watershed can be attributed to the Project.

4.2.3 TSS

Baseline TSS concentrations in Buffalo Creek were low (< 2-6 mg/L). At the onset of operation in both 2011 and 2014, TSS increased in the Buffalo Creek watershed, ranging from 10-60 mg/L and from 3.2-180 mg/L, respectively. The magnitude of the increase at the downstream end of Buffalo Creek was three times greater in 2014 than in 2011. During 2011/2012 Closure, TSS was high in the spring and remained higher than baseline at the downstream end of Buffalo Creek. Similarly, TSS concentrations increased slightly following closure activities in 2015. After 02 November 2011, TSS was consistently higher at the downstream end of Buffalo Creek than at the upstream end of the creek, this was not observed during baseline. At the onset of operation in both 2011 and 2014, TSS exceeded the 1-day MWQSOGs/CCME short-term PAL (25 mg/L above background) throughout the watershed for more than a day. Exceedances of this guideline occurred at varying locations within the watershed on 04, 07, 17 and 25 November in 2011, and from 03 to 11 July in 2014. Additionally, during operation, TSS was frequently above the 30 day MWQSOGs/CCME long-term PAL (average of 5 mg/L above background) throughout the watershed and, during 2011/2012 Closure, consistently exceeded the 30-day MWQSOGs/CCME long-term PAL at the downstream end of Buffalo Creek.

4.2.4 Nutrients

At the onset of operation in 2011 and 2014, total phosphorus (TP) increased in Buffalo Creek above the MWQSOGs narrative guideline for streams (0.050 mg/L), but returned to baseline within a week of onset in both years. In winter and spring following the closure of Reach 1 in 2012, TP increased from 2011/2012 Operation and was above baseline. Following the freshet, TP returned to baseline in most of the watershed, but remained high at the downstream end of Buffalo Creek throughout 2013. In the

spring of 2014, there was another spike in TP. TP occasionally exceeded the narrative guideline for streams during 2011/2013 Closure.

Similar to phosphorus, nitrogen increased in the watershed in the winter and spring following the closure of Reach 1. During closure, ammonia occasionally exceeded the CCME PAL guideline in Big Buffalo Lake. Baseline data are too limited to determine if the ammonia exceedances observed in Big Buffalo Lake can be attributed to the Project.

4.2.5 Chlorophyll a

Chlorophyll *a* concentrations in Buffalo Creek were consistently higher than baseline (0.37-0.52 μ g/L) from spring 2012 to August 2015 (0.61-5.64 μ g/L), though baseline data are limited. There are no MWQSOGs or CCME guidelines for chlorophyll *a*.

4.2.6 Metals and Major lons

Several metals and major ions increased in Buffalo Creek during operation in 2011/2012 and 2014/2015, including: arsenic, barium, boron, calcium, chloride, fluoride, magnesium, molybdenum, potassium, sodium, sulphate, and uranium. Additionally, copper increased during 2011/2012 Operation, but decreased during 2014/2015 Operation. At the onset of 2014/2015 Operation there was a small increase in mercury and methyl mercury in Buffalo Creek, but both returned to baseline by October 2014. The analytical detection limit used for mercury in 2011 was too high to detect if mercury changed at the onset of 2011/2012 Operation and methyl mercury was not measured at that time.

Metals and major ions that had increased in Buffalo Creek during operation showed a decreasing trend during 2011/2012 Closure, though some remained higher than baseline prior to 2014/2015 Operation.

During operation in 2011/2012 and 2013/2014, chloride and fluoride exceeded the CCME PALs (120 and 0.12 mg/L, respectively) in the Buffalo Creek watershed. These guidelines were occasionally exceeded in Big Buffalo Lake during 2011/2012 Closure, but no longer in Buffalo Creek. During 2011/2012 Operation, selenium was frequently above the MWQSOGs/CCME PAL (0.001 mg/L) in the Buffalo Creek watershed. During 2011/2012 Closure, iron frequently exceeded the PAL/aesthetic objective for drinking water (0.3 mg/L), and chromium occasionally exceeded the CCME PAL (0.0089 mg/L) at the downstream end of Buffalo Creek. There were no other exceedances of MWQSOGs/CCME PAL and or drinking water for metals or major ions that could be attributed to the Project.

4.3 LOWER DAUPHIN RIVER

4.3.1 Routine

Conductivity, TDS, laboratory pH, true colour and hardness were similar upstream and downstream of Buffalo Creek during baseline, operation, and closure.

No changes to routine water quality of the Dauphin River were observed that can be attributed to the Project.

4.3.2 Dissolved Oxygen

The Dauphin River was generally well-oxygenated. A small decrease (<2 mg/L) in DO was observed downstream of Buffalo Creek during operation in 2015. However, DO concentrations below the MWQSOGs/CCME PAL have been observed throughout monitoring for the Project both upstream and downstream of Buffalo Creek during both the open-water and ice covered seasons.

4.3.3 TSS

At the onset of operation in 2011 and 2014, TSS increased in the lower Dauphin River such that a plume of sediment was visible along the shoreline. After approximately one month of operation in 2011 and two weeks of operation in 2014, TSS in the lower Dauphin River returned to background. However, during 2014/2015 Operation in March and spring 2015, TSS was again elevated downstream of Buffalo Creek. At the onset of operation in both 2011 and 2014, TSS concentrations in the lower Dauphin River exceeded the MWQSOGs 1 day/CCME long-term PAL as far downstream as Sturgeon Bay for more than a day. Additionally, TSS was consistently above the MWQSOGs 30 day/CCME short-term PAL from 04-25 November 2011, 05-16 July 2014, 27 March 2015; and, along the shoreline downstream of Buffalo Creek 01 May 2015 and 11 June 2015.

TSS also increased along the Dauphin River shoreline downstream of Buffalo Creek in spring 2013 during closure. During 2011/2012 Closure, TSS concentrations in the lower Dauphin River occasionally exceeded MWQSOGs 30 day/CCME short-term PAL.

4.3.4 Nutrients

At the onset of operation in 2011 and 2014, in the spring of 2013, and in March and spring of 2015, phosphorus concentrations increased in the lower Dauphin River as far downstream as Sturgeon Bay. At the onset of operation, TP exceeded the MWQSOGs narrative guidelines. No other changes to nutrient concentrations in the Dauphin River were observed that can be attributed to the Project.

4.3.5 Chlorophyll a

Chlorophyll *a* was similar throughout the Dauphin River and was within the baseline range during operation and closure. There are no MWQSOGs or CCME guidelines for chlorophyll *a*.

No changes to chlorophyll *a* concentrations in the Dauphin River were observed that can be attributed to the Project.

4.3.6 Metals and Major lons

There were no observed changes to most metals or major ions in the Dauphin River that can be attributed to the Project. However, at the onset of 2014/2015 Operation, mercury and methyl mercury increased in the Dauphin River downstream of Buffalo Creek. At the onset of 2011/2012 Operation, the analytical detection limited used for mercury was too high to detect any changes in mercury concentrations that may have occurred and methyl mercury was not measured at this time. Mercury

and methyl mercury remained well below the MWQSOGs/CCME PALs (26 and 4 ng/L, respectively) in the lower Dauphin River during 2014/2015 Operation.

4.4 STURGEON BAY

4.4.1 Routine

The extent of the mixing zone between the Dauphin River and Lake Winnipeg increased during 2011/2012 Operation. During 2011/2012 Closure, the size of the mixing zone decreased, but it remained larger than baseline. As a result of the mixing zone changes, TDS was more frequently above the aesthetic objective for drinking water (\leq 500 mg/L) in areas of Sturgeon Bay away from the Dauphin River than baseline.

No changes to routine water quality in Sturgeon Bay were observed during 2014/2015 Operation that can be attributed to the Project.

4.4.2 Dissolved Oxygen

Sturgeon Bay was well-oxygenated during baseline, operation and closure. DO was consistently within PAL guidelines for cool and cold-water species.

No changes to DO in the Sturgeon Bay were observed that can be attributed to the Project.

4.4.3 TSS

In the spring of 2011/2012 Operation, TSS increased in Sturgeon Bay near the Dauphin River and, at the onset of 2014/2015 Operation, TSS increased in Sturgeon Bay near the Dauphin River mouth and remained higher near the river for about a month. No data are available for Sturgeon Bay at the onset of 2011/2012 Operation, so an assessment of effects of operation in 2011 cannot be conducted.

No changes to TSS in Sturgeon Bay were observed during 2011/2012 Closure that can be attributed to the Project.

4.4.4 Nutrients

There was a spike in nitrogen and phosphorus near the mouth of the Dauphin River in the spring of 2011/2012 Operation. This resulted in a guideline exceedance for TP; however, TP exceedances were frequently observed in Sturgeon Bay from 2011-2015.

No other changes to nutrient concentrations in Sturgeon Bay were observed that can be attributed to the Project.

4.4.5 Chlorophyll a

From 2012-2015, chlorophyll *a* was typically lower than baseline. Chlorophyll *a* concentrations near the Dauphin River were higher in spring 2012 and lower in October 2014, compared with the rest of

Sturgeon Bay. At other times, chlorophyll a was generally similar throughout the bay. There are no MWQSOGs or CCME guidelines for chlorophyll a.

Baseline data are too limited to determine if any changes to chlorophyll a concentrations that were observed can be attributed to the Project.

4.4.6 Metals and Major lons

During 2011/2012 and 2014/2015 Operation, aluminum and iron increased in Sturgeon Bay near the Dauphin River; however, concentrations remained within the baseline range for Sturgeon Bay. During 2011/2012 Operation, methyl mercury was more frequently detected and at higher concentrations near the Dauphin River than in the rest of Sturgeon Bay. Similarly, In March 2015, during 2014/2015 Operation, methyl mercury was detected near the Dauphin River and Willow Point but not at other sites in Sturgeon Bay; concentrations were well below the MWQSOGs/CCME PAL (4 ng/L). From 2012-2014, chloride concentrations were more frequently above the CCME long-term PAL (120 mg/L) in areas of Sturgeon Bay away from the Dauphin River than during baseline (i.e., the area of high chloride concentrations in the bay increased). There were no other exceedances of MWQSOGs/CCME PAL and/or drinking water for metals or major ions that could be attributed to the Project.

5.0

REFERENCES

- AECOM. 2012. Lake St. Martin Emergency Outlet Channel environmental monitoring final report. A memorandum from AECOM to Manitoba Infrastructure and Transportation. February 12, 2012.
- BRITISH COLUMBIA MINISTRY OF ENVIRONMENT, LANDS, AND PARKS (BCMELP). 1998. Guidelines for interpreting water quality data. Version 1, May 1998. Prepared for the Land Use Task Force Resource Inventory Committee.
- CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME). 1999 (Updated to 2015). Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg.
- KALFF, J. 2002. Limnology: inland water ecosystems. Prentice Hall, New Jersey. 572 pp.
- KONTZAMANIS GRAUMANN SMITH MACMILLAN INC (KGS). 2013 Emergency reduction of Lake Manitoba and Lake St. Martin water levels – 2012 water quality monitoring for the Lake St. Martin Emergency Channel System. Final Report. A report prepared for Manitoba Infrastructure and Transportation by KGS Group.
- MANITOBA WATER STEWARDSHIP (MWS). 2011. Manitoba Water Quality Standards, Objectives, and Guidelines. Manitoba Water Stewardship Report 2011-01. July 4, 2011. 68 pp.
- N. ARMSTRONG. 2012. Manitoba Conservation and Water Stewardship, Water Stewardship Division, Water Science and Management Branch. Suite 160, 123 Main Street, Winnipeg MB, R3C 1A5.
- NORTH/SOUTH CONSULTANTS INC (NSC). 2013a. Emergency reduction of Lake Manitoba and Lake St. Martin water levers: aquatic environment monitoring fall 2011. A data report prepared for Manitoba Infrastructure and Transportation.
- NSC. 2013b. Emergency reduction of Lake Manitoba and Lake St. Martin Water Levels: aquatic environment monitoring January August 2012. A report prepared for Manitoba Infrastructure and Transportation.
- NSC. 2014. Emergency reduction of Lake Manitoba and Lake St. Martin water levers: aquatic environment monitoring fall 2012. A data report prepared for Manitoba Infrastructure and Transportation.
- NSC and KGS. 2015a. Lake St. Martin Emergency Outlet Channel assessment of effects and development of offsetting: assessment of effects to aquatic habitat and fish. A report prepared for Manitoba Infrastructure and Transportation by North/South Consultants Inc. and KGS Group.
- NSC and KGS. 2015b. Lake St. Martin Emergency Outlet Channel assessment of effects and development of offsetting: water quality supporting volume. A report prepared for Manitoba Infrastructure and Transportation by North/South Consultants Inc. and KGS Group.

NSC and KGS. 2015c. Lake St. Martin Emergency Outlet Channel assessment of effects and development of offsetting: offsetting plan addendum. A report prepared for Manitoba Infrastructure and Transportation by North/South Consultants Inc. and KGS Group. Appendix D.

LSMEOC Species Lists

MBCDC List of Known Plants for the Interlake Plain Ecoregion

Common Name	Scientific Name	MBCDC Listing
Alternate-leaved dogwood	Cornus alternifolia	S3
American germander	Teucrium canadense	S3S4
Arethusa	Arethusa bulbosa	S2
Beggar's-lice	Desmodium canadense	S2
Black ash	Fraxinus nigra	S3
Bog adder's-mouth	Malaxis paludosa	S1
Bristly buttercup	Ranunculus hispidus var. caricetorum	S2
Canada yew	Taxus canadensis	S3
Canada brome grass	Bromus pubescens	SNA
Cliff-brake	Pellaea glabella ssp. occidentalis	S2
Closed gentian	Gentiana rubricaulis	S2S3
Common agrimony	Agrimonia gryposepala	S1S2
Common moonwort	Botrychium Iunaria	S3S4
Culver's-root	Veronicastrum virginicum	S1
Cynthia	Krigia biflora	S2
Daisy-leaf moonwort	Botrychium matricariifolium	S1?
Dioecious sedge	Carex sterilis	S2
Ditch-stonecrop	Penthorum sedoides	S1S2
Dog violet	Viola conspersa	S3?
Douglas sedge	Carex douglasii	S3?
Dwarf bilberry	Vaccinium caespitosum	S3
False dragonhead	Physostegia virginiana	SU
False heather	Hudsonia tomentosa	S3
False indigo	Amorpha fruticosa	S1S2
Field sedge	Carex conoidea	S1
Fox sedge	Carex vulpinoidea	S3?
Foxtail muhly	Muhlenbergia andina	S1
Great plains ladies'-tresses	Spiranthes magnicamporum	S1S2
Gastony's cliffbrake	Pellaea gastonyi	S1
Green adder's-mouth	Green adder's-mouth	S2?
Green needle grass	Nassella viridula	S3
Grooved yellow flax	Linum sulcatum	S3
Hairy bugseed	Corispermum villosum	S1S2
Hairy-fruited parsley	Lomatium foeniculaceum	S3
Hooker's orchid	Platanthera hookeri	S2
Horned beakrush	Rhynchospora capillacea	S2
Horned bladderwort	Utricularia cornuta	S3
Houghton's umbrella-sedge	Cyperus houghtonii	S2
Indian milkvetch	Astragalus australis	S1?
Interrupted fern	Osmunda claytoniana	S3

Common Name	Scientific Name	MBCDC Listing
lowa golden-saxifrage	Chrysosplenium iowense	S1?
Large northern aster	Canadanthus modestus	S2
Large white-flowered ground-cherry	Leucophysalis grandiflora	S3
Leathery grape-fern	Botrychium multifidum	S3
Lesser Bladderwort	Utricularia minor	S3
Livid sedge	Carex livida	S3
Long-fruited parsley	Lomatium macrocarpum	S3
Louisiana broom-rape	Orobanche Iudoviciana	\$2
Lyre-leaved rock cress	Arabis lyrata	S2?
Milkvetch	Astragalus neglectus	S1
Narrow-leaved milkvetch	Astragalus pectinatus	S2S3
Narrow-leaved gerardia	Agalinis tenuifolia	S2S3
Narrow-leaved water-plantain	Alisma gramineum	S1
New Jersey tea	Ceanothus herbaceus	S3
Northern adder's-tongue	Ophioglossum pusillum	S1
Northern spike-moss	Selaginella selaginoides	S4
Oblong-leaved sundew	Drosera anglica	S3
Papoose-root	Caulophyllum thalictroides	S2
Parry's sedge	Carex parryana	\$3?
Pinweed	Lechea intermedia	S1
Plains rough fescue	Festuca hallii	S3
Prairie moonwort	Botrychium campestre	S1
Prairie spike-moss	Selaginella densa	S3
Porcupine Sedge	Carex hystericina	
Porter's chess	Bromus porteri	\$3?
Purple locoweed	Oxytropis lambertii	\$3\$4
Ram's head lady's-slipper	Cypripedium arietinum	S2S3
Red-root flatsedge	Cyperus erythrorhizos	S1
Richardson needle grass	Achnatherum richardsonii	S1S2
Riddell's goldenrod	Solidago riddellii	S2
Rigid sedge	Carex tetanica	\$2
Riverbank Grape	Vitis riparia	S3S4
Rough purple false-foxglove	Agalinis aspera	S1S2
Round-leaved bog orchid	Platanthera orbiculata	S3
Round-leaved pyrola	Pyrola americana	S2
Sensitive fern	Onoclea sensibilis	S3S4
Sharp-toothed goldenrod	Solidago juncea	S2
Side-oats grama	Bouteloua curtipendula	S2S3
Small grass-of-parnassus	Parnassia palustris var. parviflora	S1
Small white lady's-slipper	Cypripedium candidum	S2
Spikenard	Aralia racemosa	S2
Spring cress	Cardamine bulbosa	SH
Stalked sedge	Carex pedunculata	\$3?
Stiff sunflower	Helianthus pauciflorus ssp	SU
Striped coralroot	Corallorhiza striata	S3S4

Common Name	Scientific Name	MBCDC Listing
Sundrops	Oenothera perennis	S1S2
Swamp-pink	Calopogon tuberosus	S2
Twig rush	Cladium mariscoides	S2
Virgin's-bower	Clematis virginiana	S2
Waxleaf meadow-rue	Thalictrum revolutum	S1
Weak sedge	Carex supina var. spaniocarpa	S2?
Western prairie fringed orchid	Platanthera praeclara	S1
Western silvery aster	Symphyotrichum sericeum	S2S3
Western virgin's-bower	Clematis ligusticifolia	S1
White adder's-mouth	Malaxis monophyllos	S2?
White beakrush	Rhynchospora alba	S3?
White boltonia	Boltonia asteroides var. recognita	S2S3
White-eyed grass	Sisyrinchium campestre	SU
White heath aster	Symphyotrichum ericoides var. ericoides	S3?
Whorled loosestrife	Lysimachia quadriflora	S2
Whorled milkweed	Asclepias verticillata	S3
Whorled milkwort	Polygala verticillata	S2
Wild crane's-bill	Geranium maculatum	S1
Wild ginger	Asarum canadense	S3S4
Woodland lettuce	Lactuca floridana	SH
Yellow sedge	Carex flava	S2S3
Yellow stargrass	Hypoxis hirsuta	S4
Yellow twayblade	Liparis loeselii	S3S4

Source: MBCDC (2015)

MBCDC (2015) Definitions for Status Listing:

- 1 Very rare throughout its range or in the province (5 or fewer occurrences, or very few remaining individuals). May be especially vulnerable to extirpation.
- 2 Rare throughout its range or in the province (6 to 20 occurrences). May be vulnerable to extirpation.
- 3 Uncommon throughout its range or in the province (21 to 100 occurrences).
- 4 Widespread, abundant, and apparently secure throughout its range or in the province, with many occurrences, but the element is of long-term concern (>100 occurrences).
- 5 Demonstrably widespread, abundant, and secure throughout its range or in the province, and essentially impossible to eradicate under present conditions.
- **U** Possibly in peril, but status uncertain; more information needed.
- **H** Historically known; may be rediscovered.
- **X** Believed to be extinct; historical records only, continue search.
- **SNR** A species not ranked. A rank has not yet assigned or the species has not been evaluated.
- **SNA** A conservation status rank is not applicable to the element.
- **S#S#** Numeric range rank: A range between two of the numeric ranks. Denotes range of uncertainty about the exact rarity of the species.
- ?^{*} Inexact or uncertain; for numeric ranks, denotes inexactness.

List of Known Mammals for the Interlake Plain Ecoregion

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
American beaver	Castor canadensis	Not Listed
American black bear	Ursus americanus	Not Listed
American deer mouse	Peromyscus maniculatus	Not Listed
American elk	Cervus canadensis	Not Listed
American marten	Martes americana	Not Listed
American mink	Neovison vison	Not Listed
American water shrew	Sorex palustris	Not Listed
Arctic shrew	Sorex arcticus	Not Listed
Big brown bat	Eptesicus fuscus	Not Listed
Canada lynx	Lynx canadensis	Not Listed
Coyote	Canis latrans	Not Listed
Eastern heather vole	Phenacomys ungava	Not Listed
Eastern fox squirrel	Sciurus niger	Not Listed
Eastern-red bat	Lasiurus borealis	Not Listed
Ermine (short-tailed weasel)	Mustela erminea	Not Listed
Fisher	Martes pennanti	Not Listed
Grey wolf	Canis lupus	Not Listed
Hoary bat	Lasiurus cinereus	Not Listed
House mouse	Mus musculus	Not Listed
Least chipmunk	Eutamias minimus	Not Listed
Least weasel	Mustela nivalis	Not Listed
Little brown myotis	Myotis lucifugus	Endangered- Schedule 1- S2N
Long-tailed weasel	Mustela frenata	Not Listed
Masked shrew	Sorex cinereus	Not Listed
Meadow jumping mouse	Zapus hudsonius	Not Listed
Meadow vole	Microtus pennsylvanicus	Not Listed
Moose	Alces alces	Not Listed
Muskrat	Ondatra zibethicus	Not Listed
North American porcupine	Erethizon dorsatum	Not Listed
Northern bog lemming	Synaptomys borealis	Not Listed
Northern flying squirrel	Glaucomys sabrinus	Not Listed
Northern long-eared (northern myotis)	Myotis septentrionalis	Endangered- Schedule 1- not listed by MCDC for Interlake Plain Ecoregion
Plains pocket gopher	Geomys bursarius	S3
Pygmy shrew	Sorex hoyi	Not Listed

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
Raccoon	Procyon lotor	Not Listed
Red fox	Vulpes vulpes	Not Listed
Red squirrel	Tamisciurus hudsonicus	Not Listed
River otter	Lontra canadensis	Not Listed
Short-tailed shrew	Blarina brevicauda	Not Listed
Silver-haired bat	Lasionycteris noctivagans	Not Listed
Snowshoe hare	Lepus americanus	Not Listed
Star-nosed mole	Condylura cristata	S3
Striped skunk	Mephitis mephitis	Not Listed
White-tailed deer	Odocoileus virginianus	Not Listed
Woodchuck	Marmota monax	Not Listed
Wood bison	Bos bison athabascae	Special Concern-Schedule 1- SNA

Sources: Caras (1967); Reid (2006); MBCDC (2015); and SARA (2015)

MBCDC (2015) Definitions for Status Listing:

- 1 Very rare throughout its range or in the province (5 or fewer occurrences, or very few remaining individuals). May be especially vulnerable to extirpation.
- 2 Rare throughout its range or in the province (6 to 20 occurrences). May be vulnerable to extirpation.
- 3 Uncommon throughout its range or in the province (21 to 100 occurrences).
- 4 Widespread, abundant, and apparently secure throughout its range or in the province, with many occurrences, but the element is of long-term concern (>100 occurrences).
- 5 Demonstrably widespread, abundant, and secure throughout its range or in the province, and essentially impossible to eradicate under present conditions.
- **U** Possibly in peril, but status uncertain; more information needed.
- **H** Historically known; may be rediscovered.
- **X** Believed to be extinct; historical records only, continue search.
- **SNR** A species not ranked. A rank has not yet assigned or the species has not been evaluated.
- **SNA** A conservation status rank is not applicable to the element.
- **S#S#** Numeric range rank: A range between two of the numeric ranks. Denotes range of uncertainty about the exact rarity of the species.
- ?^{*} Inexact or uncertain; for numeric ranks, denotes inexactness.

SARA (2015) Definitions for Status Listing:

- **Schedule 1:** is the official list of species that are classified as extirpated, endangered, threatened, and of special concern.
- **Threatened:** a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.

Special Concern: a wildlife species that may become a threatened or an endangered species because of a combination of biological characteristics and identified threats.

Endangered: A wildlife species facing imminent extirpation or extinction.

List of Known Amphibians and Reptiles for the Interlake Plain Ecoregion

Common Name	Scientific Name	Conservation Status (SARA, MBESEA, MBCDC)
Blue-spotted salamander	Ambystoma laterale	S3S4
Eastern Tiger Salamander	Ambystoma tigrinum tigrinum	S2
Canadian Toad	Anaxyrus hemiophrys	Not Listed
Grey tree frog	Hyla versicolor	Not Listed
Boreal chorus frog	Pseudacris maculata	Not Listed
Wood frog	Rana sylvatica	Not Listed
Smooth green snake	Liochlorophis vernalis	S3S4
Northern Leopard Frog	Lithobates pipiens	Special Concern - Schedule 1 - S4
Western plains garter snake	Thamnophis radix haydenii	Not Listed
Red-sided garter snake	Thamnopis sirtalis parietalis	Not Listed

Sources: Conant and Collins (1991); Science Team Report (2002); MBCDC (2015); Nature North (2014); and SARA (2015)

MBCDC (2013) Definitions for Status Listing:

- 1 Very rare throughout its range or in the province (5 or fewer occurrences, or very few remaining individuals). May be especially vulnerable to extirpation.
- 2 Rare throughout its range or in the province (6 to 20 occurrences). May be vulnerable to extirpation.
- 3 Uncommon throughout its range or in the province (21 to 100 occurrences).
- 4 Widespread, abundant, and apparently secure throughout its range or in the province, with many occurrences, but the element is of long-term concern (>100 occurrences).
- 5 Demonstrably widespread, abundant, and secure throughout its range or in the province, and essentially impossible to eradicate under present conditions.
- **U** Possibly in peril, but status uncertain; more information needed.
- **H** Historically known; may be rediscovered.
- **X** Believed to be extinct; historical records only, continue search.
- SNR A species not ranked. A rank has not yet assigned or the species has not been evaluated.

SNA A conservation status rank is not applicable to the element.

S#S# Numeric range rank: A range between two of the numeric ranks. Denotes range of uncertainty about the exact rarity of the species.

?^{*} Inexact or uncertain; for numeric ranks, denotes inexactness.

SARA (2015) Definitions for Status Listing:

- Schedule 1: is the official list of species that are classified as extirpated, endangered, threatened, and of special concern.
- **Threatened:** a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.

Special Concern: a wildlife species that may become a threatened or an endangered species because of a combination of biological characteristics and identified threats.

List of Known Birds for the Interlake Plain Ecoregion

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
Alder flycatcher	Empidonax alnorum	Not Listed
American avocet	Recurvirostra americana	Not Listed
American bittern	Botaurus lentiginosus	Not Listed
American coot	Fulica americana	Not Listed
American crow	Corvus brachyrhynchos	Not Listed
American golden-plover	Pluvialis dominica	Not Listed
American goldfinch	Carduelis tristis	Not Listed
American kestrel	Falco sparverius	Not Listed
American redstart	Setophaga ruticilla	Not Listed
American robin	Turdus migratorius	Not Listed
American three-toed woodpecker	Picoides dorsalis	Not Listed
American tree sparrow	Spizella arborea	Not Listed
American white pelican	Pelecanus erythrorhynchos	S3S4B
American wigeon	Anas americana	Not Listed
American woodcock	Scolopax minor	Not Listed
Bald eagle	Haliaeetus leucocephalus	Not Listed
Baltimore oriole	Icterus galbula	Not Listed
Bank swallow	Riparia riparia	Threatened – no schedule
Barn swallow	Hirundo rustica	Threatened – no schedule – S4B
Barred owl	Strix varia	S4B
Bay-breasted warbler	Setophaga castanea	Not Listed
Belted kingfisher	Megaceryle alcyon	Not Listed
Black tern	Chlidonias niger	S4B
Black-and-white warbler	Mniotilta varia	Not Listed
Black-billed cuckoo	Coccyzus erythropthalmus	Not Listed
Black-billed magpie	Pica hudsonia	Not Listed
Blackburnian warbler	Setophaga fusca	Not Listed
Black-capped chickadee	Poecile atricapillus	Not Listed
Black-crowned night heron	Nycticorax nycticorax	S3S4B
Blackpoll warbler	Setophaga striata	Not Listed
Black-throated blue warbler	Setophaga caerulescens	Not Listed
Black-throated green warbler	Setophaga virens	Not Listed
Blue jay	Cyanocitta cristata	Not Listed
Blue-headed vireo	Vireo solitarius	Not Listed
Blue-winged teal	Anas discors	Not Listed

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
Bobolink	Dolichonyx oryzivorus	Threatened – no Schedule– S4B
Bonaparte's gull	Chroicocephalus philadelphia	Not Listed
Boreal owl	Aegolius funereus	Not Listed
Brewer's blackbird	Euphagus cyanocephalus	Not Listed
Broad-winged hawk	Buteo platypterus	Not Listed
Brown creeper	Certhia americana	Not Listed
Brown thrasher	Toxostoma rufum	Not Listed
Brown-headed cowbird	Molothrus ater	Not Listed
Bufflehead	Bucephala albeola	Not Listed
Cackling goose	Branta hutchinsii	Not Listed
California gull	Larus californicus	Not Listed
Canada goose	Branta canadensis	Not Listed
Canada warbler	Cardellina canadensis	Threatened – Schedule 1 – S4B
Canvasback	Aythya valisineria	Not Listed
Cape may warbler	Setophaga tigrina	Not Listed
Caspian tern	Sterna caspia	S3S4B
Cedar waxwing	Bombycilla cedrorum	Not Listed
Chestnut-sided warbler	Setophaga pensylvanica	Not Listed
Chimney swift	Chaetura pelagica	Threatened – Schedule 1 – S2B
Chipping sparrow	Spizella passerina	Not Listed
Clay-colored sparrow	Spizella pallida	Not Listed
Cliff swallow	Petrochelidon pyrrhonota	Not Listed
Common goldeneye	Bucephala clangula	Not Listed
Common grackle	Quiscalus quiscula	Not Listed
Common loon	Gavia immer	Not Listed
Common merganser	Mergus merganser	Not Listed
Common nighthawk	Chordeiles minor	Threatened – Schedule 1 – S3B
Common raven	Corvus corax	Not Listed
Common redpoll	Acanthus flammea	Not Listed
Common tern	Sterna hirundo	Not Listed
Common yellowthroat	Geothlypis trichas	Not Listed
Connecticut warbler	Oporornis agilis	Not Listed
Cooper's hawk	Accipiter cooperii	S4S5B
Dark-eyed junco	Junco hyemalis	Not Listed
Double-crested cormorant	Phalacrocorax auritus	S5B
Downy woodpecker	Picoides pubescens	Not Listed
Eared grebe	Podiceps nigricollis	S4S5B
Eastern bluebird	Sialia sialis	Not Listed

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
Eastern kingbird	Tyrannus tyrannus	Not Listed
Eastern phoebe	Sayornis phoebe	Not Listed
Eastern towhee	Pipilo erythrophthalmus	S4B
Eastern whip-poor-will	Antrostomus vociferus	Threatened – Schedule 1 – S3B
Eastern wood-pewee	Contopus virens	Special Concern – no schedule
Eastern-screech owl	Megascops asio	Not Listed
Eurasian collared dove	Streptopelia decaocto	Not Listed
European starling	Sturnus vulgaris	Not Listed
Evening grosbeak	Coccothraustes vespertinus	Not Listed
Forster's tern	Sterna forsteri	S4B
Fox sparrow	Passerella iliaca	Not Listed
Franklin's gull	Leucophaeus pipixcan	Not Listed
Gadwell	Anas strepera	Not Listed
Golden-winged warbler	Vermivora chrysoptera	Threatened – Schedule 1 – S3B
Grasshopper sparrow	Ammodramus savannarum	S2B
Gray jay	Perisoreus canadensis	Not Listed
Gray partridge	Perdix perdix	Not Listed
Great blue heron	Ardea herodias	S4S5B
Great crested flycatcher	Myiarchus crinitus	Not Listed
Great egret	Ardea alba	Not Listed
Great grey owl	Strix nebulosa	Not Listed
Great horned owl	Bubo virginianus	Not Listed
Greater scaup	Aythya marila	Not Listed
Greater white-fronted goose	Anser albifrons	Not Listed
Greater yellowlegs	Tringa melanoleuca	Not Listed
Green winged teal	Anas carolinensis	Not Listed
Grey catbird	Dumetella carolinensis	Not Listed
Hairy woodpecker	Leuconotopicus villosus	Not Listed
Harris's sparrow	Zonotrichia querula	Not Listed
Hermit thrush	Catharus guttatus	Not Listed
Herring gull	Larus argentatus	Not Listed
Hooded merganser	Lophodytes cucullatus	Not Listed
Horned grebe	Podiceps auritus	Special concern – no Schedule - S3B
Horned lark	Eremophila alpestris	Not Listed
House finch	Carpodacus mexicanus	Not Listed
House sparrow	Passer domesticus	Not Listed
Indigo bunting	Passerina cyanea	Not Listed

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
Killdeer	Charadrius vociferus	Not Listed
Lapland longspur	Calcarius lapponicus	Not Listed
Lark sparrow	Chondestes grammacus	Not Listed
Le Conte's sparrow	Ammodramus leconteii	Not Listed
Least bittern	Ixobrychus exilis	Threatened – Schedule 1 – S2S3B
Least flycatcher	Empidonax minimus	Not Listed
Least sandpiper	Calidris minutilla	Not Listed
Lesser scaup	Aythya affinis	Not Listed
Lesser yellowlegs	Tringa flavipes	Not Listed
Lincoln's sparrow	Melospiza lincolnii	Not Listed
Loggerhead Shrike	Lanius ludovicianus excubitorides	Threatened – Schedule 1 – S1B
Long-eared owl	Asio otus	Not Listed
Magnolia warbler	Setophaga magnolia	Not Listed
Mallard	Anas platyrhynchos	Not Listed
Marbled godwit	Limosa fedoa	Not Listed
Marsh wren	Cistothorus palustris	Not Listed
Merlin	Falco columbarius	Not Listed
Mountain bluebird	Sialia currucoides	Not Listed
Mourning dove	Zenaida macroura	Not Listed
Mourning warbler	Geothlypis philadelphia	Not Listed
Nashville warbler	Leiothlypis ruficapilla	Not Listed
Nelson's sparrow	Ammodramus nelsoni	Not Listed
Northern flicker	Colaptes auratus	Not Listed
Northern goshawk	Accipiter gentilis	Not Listed
Northern harrier	Circus cyaneus	Not Listed
Northern hawk owl	Surnia ulula	Not Listed
Northern parula	Setophaga americana	Not Listed
Northern pintail	Anas acuta	Not Listed
Northern rough-winged swallow	Stelgidopteryx serripennis	Not Listed
Northern saw-whet owl	Aegolius acadicus	Not Listed
Northern shoveler	Anas clypeata	Not Listed
Northern waterthrush	Parkesia noveboracensis	Not Listed
Olive-sided flycatcher	Contopus cooperi	Threatened – Schedule 1 – S3S4B
Orange-crowned warbler	Vermivora celata	Not Listed
Orchard oriole	Icterus spurius	Not Listed
Osprey	Pandion haliaetus	Not Listed

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
Ovenbird	Seiurus	Not Listed
Palm warbler	Setophaga palmarum	Not Listed
Pectoral sandpiper	Calidris melanotos	Not Listed
Peregrine falcon	Falco peregrinus anatum	Special Concern- no Schedule – S1B
Philadelphia vireo	Vireo philadelphicus	Not Listed
Piebald grebe	Podilymbus podiceps	Not Listed
Pileated woodpecker	Hylatomus pileatus	Not Listed
Pine grosbeak	Pinicola enucleator	Not Listed
Pine siskin	Carduelis pinus	Not Listed
Pine warbler	Setophaga pinus	Not Listed
Piping plover	Charadrius melodus	Endangered – Schedule 1 – S1B
Purple finch	Haemorhous purpureus	Not Listed
Purple martin	Progne subis	Not Listed
Red crossbill	Loxia curvirostra	Not Listed
Red-breasted merganser	Mergus serrator	Not Listed
Red-breasted nuthatch	Sitta canadensis	Not Listed
Red-eyed vireo	Vireo olivaceus	Not Listed
Redhead	Aythya americana	Not Listed
Red-headed woodpecker	Melanerpes erythrocephalus	Threatened – Schedule 1 – S2B
Red-necked grebe	Podiceps grisegena	Not Listed
Red-tailed hawk	Buteo jamaicensis	Not Listed
Red-winged blackbird	Agelaius phoeniceus	Not Listed
Ring-billed gull	Larus delawarensis	Not Listed
Ring-necked duck	Aythya collaris	Not Listed
Rock pigeon	Columba livia	Not Listed
Rose-breasted grosbeak	Pheucticus Iudovicianus	Not Listed
Rough-legged hawk	Buteo lagopus	Not Listed
Ruby-crowned kinglet	Regulus calendula	Not Listed
Ruby-throated hummingbird	Archilochus colubris	Not Listed
Ruddy duck	Oxyura jamaicensis	Not Listed
Ruffed grouse	Bonasa umbellus	Not Listed
Rusty blackbird	Euphagus carolinus	Special Concern –Schedule 1 – not ranked by MBCDC for Interlake Plain EcoRegion
Sanderling	Calidris alba	Not Listed
Sandhill crane	Grus canadensis	Not Listed
Savannah sparrow	Passerculus sandwichensis	Not Listed
Scarlet tanager	Piranga olivacea	Not Listed

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)
Sedge wren	Cistothorus platensis	Not Listed
Semi-palmated sandpiper	Calidris pusilla	Not Listed
Sharp-skinned hawk	Accipiter striatus	Not Listed
Sharp-tailed grouse	Tympanuchus phasianellus	Not Listed
Short-billed dowitcher	Limnodromus griseus	Not Listed
Short-eared owl	Asio flammeus	Special Concern –Schedule 1 – S2S3B
Snow bunting	Plectrophenax nivalis	Not Listed
Snow goose	Chen caerulescens	Not Listed
Solitary sandpiper	Tringa solitaria	Not Listed
Song sparrow	Melospiza melodia	Not Listed
Sora	Porzana carolina	Not Listed
Spotted sandpiper	Actitis macularius	Not Listed
Sprague's pipit	Anthus spragueii	Threatened – Schedule 1 – S2B
Spruce grouse	Falcipennis canadensis	Not Listed
Swainson's hawk	Buteo swainsoni	Not Listed
Swainson's thrush	Catharus ustulatus	Not Listed
Swamp sparrow	Melospiza georgiana	Not Listed
Tennessee warbler	Leiothlypis peregrina	Not Listed
Tree swallow	Tachycineta bicolor	Not Listed
Trumpeter Swan	Cygnus buccinator	S1S2B
Tundra swan	Cygnus columbianus	Not Listed
Turkey vulture	Cathartes aura	Not Listed
Upland sandpiper	Bartramia longicauda	Not Listed
Veery	Catharus fuscescens	Not Listed
Vesper sparrow	Pooecetes gramineus	Not Listed
Virginia rail	Rallus limicola	Not Listed
Warbling vireo	Vireo gilvus	Not Listed
Western grebe	Aechmophorus occidentalis	S4B
Western kingbird	Tyrannus verticalis	Not Listed
Western meadowlark	Sturnella neglecta	Not Listed
White-breasted nuthatch	Sitta carolinensis	Not Listed
White-crowned sparrow	Zonotrichia leucophrys	Not Listed
White-throated sparrow	Zonotrichia albicollis	Not Listed
White-winged crossbill	Loxia leucoptera	Not Listed
Willet	Tringa semipalmata	Not Listed
Wilson's phalarope	Phalaropus tricolor	Not Listed
Wilson's snipe	Gallinago delicata	Not Listed

Common Name	Scientific Name	Conservation Listing (SARA, MBESEA, MBCDC)		
Wilson's warbler	Cardellina pusilla	Not Listed		
Winter wren	Troglodytes hiemalis	Not Listed		
Wood duck	Aix sponsa	Not Listed		
Yellow rail	Coturnicops noveboracensis	Special Concern –Schedule 1 – S3S4B		
Yellow warbler	Setophaga petechia	Not Listed		
Yellow-bellied flycatcher	Empidonax flaviventris	Not Listed		
Yellow-bellied sapsucker	Sphyrapicus varius	Not Listed		
Yellow-headed blackbird	Xanthocephalus xanthocephalus	Not Listed		
Yellow-rumped warbler	Setophaga coronata	Not Listed		
Yellow-throated vireo	Vireo flavifrons	Not Listed		

Sources: Bezener and De Smet (2000); Peterson and Peterson (2002); Manitoba Avian Research Committee (2003); MBCDC (2015); SARA (2015); and MBBA (2015)

MBCDC (2015) Definitions for Status Listing:

- 1 Very rare throughout its range or in the province (5 or fewer occurrences, or very few remaining individuals). May be especially vulnerable to extirpation.
- 2 Rare throughout its range or in the province (6 to 20 occurrences). May be vulnerable to extirpation.
- 3 Uncommon throughout its range or in the province (21 to 100 occurrences).
- 4 Widespread, abundant, and apparently secure throughout its range or in the province, with many occurrences, but the element is of long-term concern (>100 occurrences).
- 5 Demonstrably widespread, abundant, and secure throughout its range or in the province, and essentially impossible to eradicate under present conditions.
- **U** Possibly in peril, but status uncertain; more information needed.
- H Historically known; may be rediscovered.
- **X** Believed to be extinct; historical records only, continue search.
- SNR A species not ranked. A rank has not yet assigned or the species has not been evaluated.
- **SNA** A conservation status rank is not applicable to the element.
- **S#S#** Numeric range rank: A range between two of the numeric ranks. Denotes range of uncertainty about the exact rarity of the species.
- ?^{*} Inexact or uncertain; for numeric ranks, denotes inexactness.
- **B** Breeding status of a migratory species. Example: S1B,SZN breeding occurrences for the species are ranked S1 (critically imperilled) in the province, nonbreeding occurrences are not ranked in the province.
- SARA (2015) Definitions for Status Listing:
- **Schedule 1:** is the official list of species that are classified as extirpated, endangered, threatened, and of special concern.
- Schedule 2: species listed in Schedule 2 are species that had been designated as endangered or threatened, and have yet to be re-assessed by COSEWIC using revised criteria. Once these species have been reassessed, they may be considered for inclusion in Schedule 1.
- **Schedule 3:** species listed in Schedule 3 are species that had been designated as special concern, and have yet to be re-assessed by COSEWIC using revised criteria. Once these species have been re-assessed, they may be considered for inclusion in Schedule 1.
- **Special Concern:** a wildlife species that may become a threatened or an endangered species because of a combination of biological characteristics and identified threats.
- **Threatened:** a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction.

Map 5 MBCDC Known Species of Concern within the RSA

Appendix E.

LSMEOC Summary of Debris Monitoring

The following sections have been taken from Lake St. Martin Emergency Outlet Channel Monitoring Report – Debris Monitoring Draft Report 2016. (North/South, 2016)

4.17 Comparison of 2011/2012 Closure and 2014/2015 Operation data

4.1.7.1 Debris Levels and Composition

When the debris monitoring data from 2011/2012 Operation (spring and fall 2013 and spring 2014) are compared to the data from 2014/2015 Operation (summer and fall 2014 and spring 2015), the most obvious difference between the two Project phases is that all nets monitored during 2011/2012 Closure accumulated some level of debris (except for two that were tailed back to the dock), while 54% (n=36) of the nets monitored during 2014/2015 Operation contained none (Table 7). As described above, commercial fishers avoid fishing in areas of Sturgeon Bay that are known to accumulate large amounts of debris in the water column, and they will also move their nets either up or down in the water column to avoid debris. When the net set locations during 2011/2012 Closure are compared to the locations fished during 2014/2015 Operation (Figures 6, 8, 10, 12, 14 and 16). This may be because the commercial fishermen expected increased amounts of debris to be washed downstream out of Buffalo Creek and into Sturgeon Bay during 2014/2015 Operation and not a decision based on time of year, distribution of target species, or other factor.

While the data from summer/fall 2014 and spring 2015 do indicate that nets set in the vicinity of the Dauphin River outflow were more likely to accumulate debris than nets set in other parts of Sturgeon Bay (Tables 10, 15, 20, 25, 30 and 35), it is possible that debris is always more likely to accumulate in nets set in the vicinity of the Dauphin River outflow. Unfortunately, because nets were almost exclusively set in the vicinity of the Dauphin River outflow during 2011/2012 Closure, there are no debris data from remote sites during Reach 1 closure that can be used to make this comparison. Nonetheless, the debris monitoring results from 2014/2015 Operation suggest that debris is in fact more likely to accumulate in nets set in the vicinity of the Dauphin River outflow because nets set during 2011/2012 Closure always contained some level of debris, while the majority of nets set during 2014/2015 Operation contained no debris.

Debris composition was also more variable during 2014/2015 Operation than 2011/2012 Closure (Figures 7, 9, 11, 13, 15 and 17). While the debris observed during 2011/2012 Operation was almost entirely aquatic vegetation with small numbers of sticks interspersed, algae, grass and silt were frequently observed in nets monitored during 2014/2015 Operation, and each of these debris types were dominant in some of the nets. This difference is likely due to the wider variety of gillnetting locations fished during 2014/2015 Operation.

4.1.7.2 Fishing Effort and Catch

As described in Section 3.2.3.2, when the commercial fishing debris monitoring program was initiated in 2013, the amount of time that it took commercial fishermen to complete six different tasks was

recorded by an observer in the boat. Tables that present the 2013 data that were recorded for all six tasks can be found in Appendix B. Based on the results of monitoring in spring and fall 2013, it was decided that only the amount of time it took to service the net (a debris-dependent activity) and the amount of time it took to clean each net's catch (a debris-independent activity when divided by the number of fish captured) were relevant and would be recorded. For the purpose of comparing between monitoring years, only the net service times and the fish cleaning times from 2013 will be discussed in detail here.

While a total of 135 net sets were monitored for debris between spring 2013 and spring 2015 (Table 7), roughly a quarter of these nets will not be considered here because they either remained in the water for more than one overnight (usually due to high winds or storms, which can further increase debris transport and accumulation, particularly large woody debris), the number of fish captured was not recorded, or net servicing time was not recorded or was recorded improperly. After these net sets were excluded, 105 net sets across six monitoring seasons remained. The majority of these nets contained either no debris (n = 32) or a low level of debris (n = 56), while a smaller number contained either a medium (n =-14) or high level (n = 2) of debris. The three net sets with very high debris were excluded because a net servicing time was not recorded for DN-06(c) and because DN-29(c) and DN-30(c) remained in the water for 48 hours. Of the four nets that contained high levels of debris, only DN-29(b) and DN-46 were examined further because the net servicing time for DN-01(c) included the fish cleaning time and therefore could not be used, and DN-65 remained in the water for approximately 72 hours.

Initially, each season's effort data were analyzed separately, but trends were not obvious because of the small sample size for each level of debris accumulation (see Appendix C for each season's individual results). Even when the data were divided into monitoring conducted during 2011/2012 Closure (spring and fall 2013, spring 2014) and 2014/2015 Operation (summer and fall 2014, spring 2015), sample sizes were still too small to reasonably compare the effort required to service nets that had accumulated different levels of debris (Tables 40 and 41).

When the total data set of 105 net sets was combined (Table 42), a reasonable sample size was attained for nets that accumulated no debris, a low level of debris, and a medium level of debris, but the available data only included two nets with a high level of debris. As the sample size for a high level of debris was too small to provide meaningful insight, the two nets were excluded from further discussion of the results. It should be noted that the mean CPUE for the two nets with a high level of debris was slightly lower than the mean catch for nets that had accumulated low and medium levels of debris, and the amount of time required to service each panel was much higher.

The combined results from all monitoring seasons (n=103) suggest that the number of fish caught was fairly consistent regardless of the amount of debris (none, a low level, or a medium level) that accumulated in the net (Table 42), although nets that contained no debris had a lower CPUE than nets that had accumulated low and medium levels of debris. The amount of time spent servicing their nets (per fish) was almost identical across the three debris level categories, and the amount of time that it took to service an individual panel was similar across different levels of debris accumulation, although it

took longer to reset nets that had accumulated debris. As was expected, the average amount of time that it took to clean each fish was similar across all levels of debris accumulation.

While fishing effort does not appear to increase with increased levels of debris (Table 42), mean CPUE did decrease slightly as debris level increased, although mean CPUE was lowest for nets with no debris (Tables 40, 41 and 42). When mean CPUE is examined by Project phase, it was much higher during 2011/2012 Operation than 2014/2015 Operation. Some of this variation appears to be a result of the commercial fishermen setting their nets in different areas of Sturgeon Bay during 2014/2015 Operation, as the highest CPUEs observed during 2011/2012 Operation were at sites in the vicinity of the Dauphin River and/or closer to shore than the sites fished during 2014/2015 Operation. It should be noted that areas that were fished in both phases of the Project had higher CPUEs during 2011/2012 Closure, indicating a potentially higher abundance of fish during this Project phase. Whether this difference was a result of seasonal differences in water temperature (monitoring was conducted on similar dates between years), or some other environmental factor such as Reach 1 being inoperative, is not known.

The number of species of fish captured was consistently higher in fall (n = 11-13) than spring or summer (n = 8-9) (Tables 11, 16, 21, 31 and 36), and the increased variety of locations fished in fall 2014 is the likely reason for the highest number of species being captured during that season. Regardless of Project phase, Walleye and White Sucker were the dominant species in the spring catch, although CPUE decreased from 2011/2012 Closure to 2014/2015 Operation (possibly as a result of different fishing locations between Project phases; see above) (Tables 11, 21 and 36). Species composition for the fall catch was also consistent between years, but the dominant species in the fall 2013 catch differed from the fall 2014 catch: Lake Whitefish and White Sucker were dominant in 2013, while Walleye and Northern Pike were dominant in 2014 (Tables 16 and 31). Differences in species dominance are probably explained by the fact that debris monitoring was conducted in two phases: it started at the beginning of October (when Lake Whitefish and White Sucker dominated the catch, as they had in fall 2013), was halted for approximately two weeks due to inclement weather, and then resumed (and Walleye and Northern Pike began to dominate the catch) (Table 32).

Debris Level	n	Mean Fish Catch	Mean CPUE ¹	Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)	Mean Fish Cleaning Time (minutes)	Mean Cleaning Time per Fish (minutes)
							2	2
Low	35	123	42.09	64.9	20.45	0.68	48.9 ²	0.58 ²
Medium	9	98	39.27	62.3	21.37	0.71	45.3	0.44
High	1	70	36.79	70.0	35.00	1.00	10.0	0.14
								3
Total	45	117	41.41	64.5	20.96	0.69	46.3 ³	0.52 ³

Table 40. Comparison of mean fish catch, pull time and fish cleaning time by debris level, 2011/2012 Closure.

1 - CPUE is calculated as # fish/100m/24hr

2 - n = 17

3 - n = 27

Table 41. Comparison of mean fish catch, pull time and fish cleaning time by debris level, 2014/2015 Operation.

Debris Level	n Me		Mean CPUE ¹	Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)	Mean Fish Cleaning Time (minutes)	Mean Cleaning Time per Fish (minutes)
None	32	75	24.11	40.5	13.04	0.62	24.6 ²	0.32 ²
Low	21	88	36.50	45.5	19.88	0.61	13.6 ³	0.23 ³
Medium	6	67	30.78	34.8	8.98	0.52	9.2 ⁴	0.13 4
High	1	40	28.50	121.0	60.50	3.03	30.0	0.75
Total	60	78	31.76	43.0	13.83	0.65	19.71 ⁵	0.28 ⁵

1 - CPUE is calculated as # fish/100m/24hr

2 - n = 31

3 - n = 18

4 - n = 5

5 - n = 55

Table 42.Comparison of mean fish catch, pull time and fish cleaning time by debris level, 2011/2012 Closure and 2014/2015 Operation
combined.

Debris Level	n	Mean Fish Catch	Mean CPUE ¹	Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)	Mean Fish Cleaning Time (minutes)	Mean Cleaning Time per Fish (minutes)	
None	32	75	24.11	40.5	13.04	0.62	24.6 ²	0.32 ²	
Low	56	110	36.50	56.3	18.11	0.64	30.7 ³	0.40 ³	
Medium	15	85	30.78	51.3	16.41	0.63	32.4 4	0.334	
Total	103	96	31.82	51.4	16.29	0.64	28.7 ⁵	0.36 ⁵	

1 - CPUE is calculated as # fish/100m/24hr

2 - n = 31

3 - n = 35

4 - n = 14

5 - n = 80

4.1.8 Anecdotal Information

Once debris monitoring during the commercial fishery was initiated, commercial fishers would occasionally share additional information or express their opinions regarding Reach 1 and its potential effects on the Sturgeon Bay fishery with field technicians. These are summarized here.

- "There is not much debris in nets once you get 3-5 km out from the mouth of the Dauphin River."
- "There is lots of debris in my nets near Halfway Point."
- "My nets are being destroyed by debris."
- "We are not catching many fish this year."
- "The pickerel (Walleye) are bigger this year, there are no smaller fish."
- "Much of the debris that came out of Buffalo Creek has already been buried by sediment."

4.2 TIME-LAPSE PHOTOGRAPHY

A cursory review of images collected by each camera indicated that debris abundance was greatest at the onset of Reach 1 operation and declined shortly after operation began. Consequently, detailed examination of photographs focused on the first six days following the onset of operation. Abundance of observable debris was negligible in subsequent days.

A total of 9,023 photographs were examined for the presence of surface debris from 04-09 July (Appendix E). Camera DR-1 (looking upstream into Buffalo Creek) captured 393 images of debris while camera DR-2 (looking at the confluence) captured 437. No surprisingly, the observed hourly trends for debris flowing out of Buffalo Creek were similar between the two cameras (Figures 18 and 19). The majority of debris was observed from 04-06 July with at least some debris noted every hour photographs were taken. The proportion of images with debris during the first three days ranged from approximately 35-45% on the morning of 05 July shortly after the opening of Reach 1 to 5% by the end of 06 July. Furthermore, greater amounts of debris were observed before noon each day than after. Flows in Buffalo Creek generally did not exhibit diel trends in discharge, so this trend may be due to the changing angle of the sun's glare on the water which could affect the ability to identify debris in a photograph. From 07-09 July, observations of debris were less frequent, ranging from 0-6.7% (Figures 18 and 19). Only five total images contained debris on 09 July. These data suggest that most debris flow occurred within the first 24-48 hours of Reach 1 opening in 2014.

The type of debris generally ranged from small sticks and branches, to larger logs, to entire trees (Figures 20 and 21; Appendix E). Most debris (approximately 65-70%) was observed along the right-hand bank (looking upstream) of Buffalo Creek. Water velocity in this stretch of Buffalo Creek was higher along the right-hand bank. Additionally, the cameras were installed on the right-hand shoreline, so debris on the left-hand bank was farther away in the images and may have been more difficult to observe.

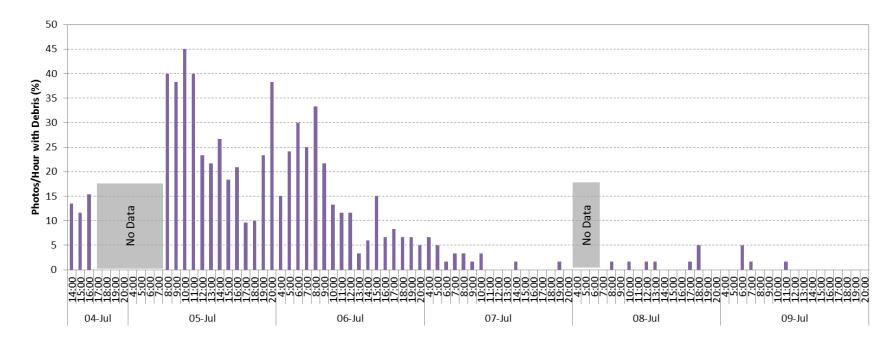


Figure 18. Hourly transport of surface debris in Buffalo Creek following the opening of Reach 1. These data were collected from time-lapse camera DR-1 oriented to take photographs facing upstream into Buffalo Creek from its confluence with the Dauphin River. Note: hours with no data include periods when the camera was not functioning or the images were not clear enough to assess, usually due to weather conditions).

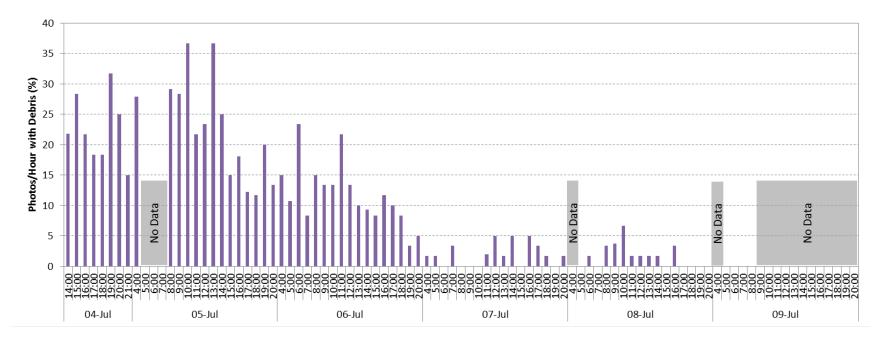


Figure 19. Hourly transport of surface debris in Buffalo Creek following the opening of Reach 1. These data were collected from time-lapse camera DR-2 oriented to take photographs of the Buffalo Creek/Dauphin River confluence. Note: hours with no data include periods when the camera was not functioning or the images were not clear enough to assess, usually due to weather conditions).

Figure 20. Time-lapse photograph from camera DR-1 showing large tree debris flowing downstream in Buffalo Creek.

Figure 21. Time-lapse photograph from camera DR-2 showing small sticks and branches flowing downstream towards the Dauphin River.

4.3 SHORELINE DEBRIS MONITORING IN STURGEON BAY

A detailed description of the results from the 2012 boat-based inventory of shoreline debris in Sturgeon Bay can be found in Appendix F. Generally, observations in early spring 2012 suggested debris that could have originated in the Buffalo Creek watershed and been washed into Sturgeon Bay were accumulating in low levels along the shoreline to the south and east of the Dauphin River.

Shoreline debris monitoring following opening in 2014 was less intensive than in spring 2012, and included anecdotal observations of debris distributed along the Sturgeon Bay shoreline. In general, very little debris was observed along the shoreline that may have originated in the Buffalo Creek watershed. This may be due to an MIT initiative to remove debris from the Buffalo Creek channel prior to the onset of Reach 1 operation, lesser amounts of debris leaving the creek relative to the 2011/2012 operation, or reduced dedicated sampling effort.

In general, it is thought that most debris (possibly excluding large trees that wash up onto the shoreline) is distributed throughout the bay by wind and wave action. A commercial fisher reported large amounts of woody debris had accumulated on an island in the northern part of Sturgeon Bay. Whether the observed debris originated from Buffalo Creek is not known (although the fisher claimed it was), but does further suggest that debris is well distributed throughout the bay.

SUMMARY

- 1) This report provides a summary of debris monitoring data collected during the 2013 (spring and fall) 2014 (spring, summer and fall) and 2015 (spring) commercial fishing seasons on Sturgeon Bay.
- 2) Field methods differed between 2013 and 2014/2015, but sufficient data were collected to examine the effect of Reach 1 operation on debris accumulation and fish capture rates in commercial fishing nets in Sturgeon Bay.
- 3) A total of 66 nets were monitored for debris accumulation during 2011/2012 Closure. The majority of these nets (70%) contained a low level of debris, while 13 contained a medium level of debris, two contained a medium level of debris, and three nets contained a very high level of debris. The two nets that contained no debris had been tailed back to the dock (dragged back while still in the water) so they were excluded from additional analyses. Aquatic vegetation was by far the dominant debris type during this phase of the Project, with a few sticks regularly present. Small amounts of silt and algae also accumulated occasionally.
- 4) In summer 2014, Reach 1 was re-opened, and 69 nets were monitored for debris accumulation during 2014/2015 Operation. Commercial fishermen were less likely to set their nets in the vicinity of the Dauphin River outflow during this phase of the Project (as compared to 2011/2012 Operation). The majority of nets (52%) did not accumulate any debris, and fewer nets accumulated low and medium levels of debris than during 2011/2012 Operation. Debris composition was more variable during 2014/2015 Operation, and aquatic vegetation was not always the dominant type of debris that accumulated in the commercial nets that were monitored; grass, algae and silt also frequently comprised a large proportion of the debris observed in nets.
- 5) Dominant species in the fish catch were consistent by season: Walleye and White Sucker dominated the spring catch while Lake Whitefish and White Sucker dominated the fall catch (although a dominant species shift to Walleye and Northern Pike was observed later in fall 2014). The number of species captured in fall was higher than the number captured in spring, with the highest number of species captured in fall 2014 (likely because a wider variety of locations were fished in this year).
- 6) Catch-per-unit-effort appeared to decrease as the level of debris increased. Net sets that contained no debris do not follow this pattern; they had a lower mean CPUE than nets that had accumulated a low, medium or high level of debris. This may be due to differences in net set location (see #7 below).
- 7) During 2014/2015 Operation most of the fishermen chose to set their nets away from the Dauphin River outflow. While site-specific CPUEs were similar between fall 2013 (2011/2012 Closure) and fall 2014 (2014/2105 Operation), CPUEs in spring 2015 were much lower than those seen in spring 2013 and 2014. It is likely that different net set locations in spring 2015 (away from the Dauphin River outflow and farther from shore) were at least partially responsible for the lower catch rates, as sites closer to shore generally exhibited higher CPUEs.

5

- 8) Sample sizes were too small to compare fishing effort results between different phases of the Project. When the data from all six sampling seasons were combined, the amount of time spent servicing nets (per fish) was similar, regardless of the amount of debris (no debris, a low level or a medium level) that had accumulated in the net. As expected, the amount of time that it took to clean the catch was not affected by different levels of debris accumulation.
- 9) Time-lapse photography of surface debris flowing out of Buffalo Creek following Reach 1 opening in summer 2014, indicates large amounts of woody debris are transported during the first 24-48 hours of operation. Surface debris levels decreased rapidly and remained low following this initial pulse.
- 10) Sturgeon Bay shoreline debris surveys in 2012 identified woody debris that was suspected to have originated in the Buffalo Creek watershed and transported downstream during operation of Reach1. Although the level of survey effort was less following the onset of Reach 1 operation in 2014, observations suggest that debris accumulation along the shorelines of southern Sturgeon Bay may have been less than 2012.

Appendix B

Detailed effort records and analyses by season

Site ¹	Date Lifted	Set Duration	No. of	Debris	No. of People on	Preparation Time	Travel to Gang Time	Net Servicing	Net Servicing	Travel Back to Camp Time	Unload Boat Time	Process Catch and Fish	Total Fish	Catch	Estimated
Sile	Date Linted	(hours)	Panels	Level	Crew	(minutes)	(minutes)	Activity	Time (minutes)	(minutes)	(minutes)	Cleaning Time (minutes)	Individual	Tubs	Fish Catch
DN-01(a) 3	14-Jun-13	41.7	4	Med	2	35	10	run	85	-	-	- ²	31	2	62
DN-02(a)	14-Jun-13	42.7	3	Low	2	-	8	run	85	14	16	- 2	14	3	69
DN-01(b)	15-Jun-13	24.0	4	High	2	33	8	run	93	-	-	_ 2	19	3	61
DN-02(b)	15-Jun-13	24.4	3	Low	2	-	11	run	144	8	18	_ 2	43	4	102
DN-01(c)	16-Jun-13	23.9	4	Low	2	30	8	lift	109	-	-	- 2	35	2	69
DN-02(c)	16-Jun-13	24.1	3	Low	2	-	8	lift	150	12	17	-	14	3	75
DN-03(a)	17-Jun-13	24.0	2	Low	2	30	15	run	18	-	-	-	15	1	27
DN-04(a)	17-Jun-13	24.5	4	Low	2	-	3	run	37	-	-	-	24	1	40
DN-05(a)	17-Jun-13	24.4	4	Low	2	-	6	run	65	11	5	60 ³	69	6	156
DN-06(a)	18-Jun-13	12.8	4	Low	2	30	8	run	160	-	-	-	64	12	247
DN-05(b)	18-Jun-13	27.8	4	Low	3	-	6	run	115	-	-	-	90	7	201
DN-04(b)	18-Jun-13	30.5	4	Low	3	-	7	run	78	-	-	-	35	4	121
DN-03(b)	18-Jun-13	32.5	2	Low	3	-	8	lift	41	13	22	200 4	65	2	108
DN-06(b)	19-Jun-13	23.4	4	Low	3	60	9	run	191	-	-	-	76	14	295
DN-05(c)	19-Jun-13	23.7	4	Low	3	-	8	run	112	-	-	-	56	6	151
DN-04(c)	19-Jun-13	23.7	4	Low	3	-	8	run	122	14	60	180 ⁵	40	7	151
DN-06(c)	20-Jun-13	24.3	4	Very High	3	60	-	lift	-	20	-	-	53	7	164
DN-05(d)	20-Jun-13	28.6	4	Med	3	-	-	lift	-	-	-	-	68 ⁷	9 ⁷	211 ⁷
DN-04(d)	20-Jun-13	27.6	4	Med	3	-	-	lift	-	-	-	210 ⁶	00	9	211
DN-07	18-Jun-13	23.9	4	Low	3	15	14	run	85	-	-	- ²	231	-	231
DN-08	18-Jun-13	25.0	4	Low	3	-	5	run	105	20	10	- 2	222	-	222

 Table B-1.
 Record of fishing effort for each commercial net included in the spring 2013 Sturgeon Bay debris monitoring program.

1 - letters denote multiple sets in the same location

2 - fish cleaning time included in net servicing time

3 - combined fish cleaning time for DN-03(a), DN-04(a) and DN-05(a)

4 - combined fish cleaning time for DN-03(b), DN-04(b), DN-05(b) and DN-06(a)

5 - combined fish cleaning time for DN-04(c), DN-05(c) and DN-06(b)

6 - combined fish cleaning time for DN-04(d), DN-05(d) and DN-06(c)

7 - catch for sites DN-05(d) and DN-04(d) are combined

Site	Date Lifted	Set Duration (hours)	No. of Panels	Debris Level	No. of People on Crew	Preparation (minutes)	Travel to Gang Time (minutes)	Net Servicing Activity	Net Servicing Time (minutes)	Return to Dock (minutes)	Unload Boat (minutes)	Process Catch and Fish Cleaning Time (minutes)	Total Fish Catch
DN-09	7-0ct-13	24.0	2	Low	1	10	13	run	31	9	1	30	59
DN-10	7-Oct-13	4.1	2	Low	1	5	27	run	24	-	-	-	29
DN-11	7-Oct-13	4.2	2	Low	1	-	9	run	35	36	6	55 ³	44
DN-12	8-Oct-13	24.8	4	Low	2	21	13	run	94	-	-	-	182
DN-13	8-Oct-13	26.4	4	Low	2	-	5	run	39 ²	11	30 ²	131 ⁴	- 6
DN-14	9-Oct-13	24.2	4	Low	1	20	6	run	40	-	-	201 ⁵	114
DN-15	9-Oct-13	24.4	4	Low	1	-	2	run	26	-	-	-	59
DN-16	9-Oct-13	24.4	4	Low	1	-	3	run	28	-	-	-	18
DN-17	9-Oct-13	25.0	4	Low	1	-	5	run	31	-	-	-	50
DN-18	9-Oct-13	25.1	4	Low	1	-	5	run	64	5	2	-	218
DN-19	10-Oct-13	24.3	4	Low	2	3	6	lift	98	7	2	80	154
DN-20(a) 1	9-Oct-13	24.4	2	Low	2	25	30	run	60	-	-	75	95
DN-21(a)	9-Oct-13	24.8	3	Medium	2	-	15	run	95	5	10	90	90
DN-20(b)	10-Oct-13	23.7	2	Low	2	25	30	lift	75	-	-	65	92
DN-21(b)	10-Oct-13	24.3	3	Medium	2	-	20	lift	105	10	15	110	101
DN-22	11-Oct-13	22.9	3	Low	2	25	10	run	35	-	-	35	36
DN-23	11-Oct-13	23.5	3	Low	2	-	5	run	25	-	-	45	44
DN-24	11-Oct-13	24.0	3	Low	2	-	5	run	20	10	15	70	41
DN-25	13-Oct-13	47.8	2	Medium	2	20	20	run	80	20	25	85	85
DN-26	14-Oct-13	24.2	4	Medium	2	25	10	lift	75	-	-	40	114
DN-27	14-Oct-13	25.5	3	Medium	2	-	5	lift	80	10	15	60	119

 Table B-2.
 Record of fishing effort for each commercial net included in the fall 2013 Sturgeon Bay debris monitoring program.

1 - letters denote multiple sets in the same location

2 - DN-13 pulled but not picked until boat was docked, therefore "net servicing" and "unload boat" times are not typical

3 - combined fish cleaning time for DN-10 and DN-11

4 - combined fish cleaning time for DN-12 and DN-13

5 - combined fish cleaning time for DN-14, -15, -16, -17 and -18

6 - observer did not have time to count fish

Appendix C

Detailed fishing effort records and analyses by season

Table C-1.Comparison of mean pull time and fish catch by debris level, spring 2013. Note: Mean fish cleaning times could not be calculated
as fish from multiple nets were cleaned together and a single time was recorded.

Debris Level	n	Estimated Mean Fish Catch	Mean CPUE ¹	Mean Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)
News	0					
None	0	-	-	-	-	-
Low	10 ²	150	41.71	93.9	24.9	0.64
Medium	0 3	-	-	-	-	-
High	0 4	-	-	-	-	-
Very High	0 5	-	-	-	-	-
Total	10	150	41.71	93.9	24.9	0.64

1 - CPUE is calculated as # fish/100m/24hr

2 - does not include net DN-01(c), DN-02 (a), (b) or (c), DN-07 or CN-08 because cleaning time was included in net servicing time

3 - does not include net DN-01(a) because cleaning time was included in net servicing time, and does not include DN-04(d) or DN-05(d) since a net servicing time was not recorded for either net and their catch count was combined

4 - does not include net DN-01(b) because cleaning time was included in net servicing time

5 - does not include net DN-06(d) since a net servicing time was not recorded for either net and their catch count was combined

Debris Level	n	Mean Fish Catch	Mean CPUE ¹	Mean Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)	Mean Fish Cleaning Time (minutes)	Mean Cleaning Time per Fish (minutes)
None	0	-	-	-	-	-	-	-
Low	13 ²	89	29.90	48.2	15.76	0.65	57.1 ⁴	0.89 4
Medium	4 ³	106	39.43	89.0	33.33	0.86	75.0	0.74
Very High	0	-	-	-	-	-	-	-
Total	17	93	32.14	57.8	18.65	0.7	63.6 ⁵	0.83 5

Table C-2. Comparison of mean net servicing time and fish catch by debris level, fall 2013.

1 - CPUE is calculated as # fish/100m/24hr

2 - does not include DN-10 and DN-11 because their set duration was short (~4 hours); also does not include net DN-13 since a count was not obtained for the catch

3 - does not include DN-25 because its set duration was unusually long (~48 hours)

4 - n = 7; does not include net sets DN-10, -11, -12, -13, -14, -15, -16, -17 or -18 because fish from multiple nets were cleaned together and a single time was recorded

5 - n = 11

Debris Level	n	Mean Fish Catch	Mean CPUE ¹	Mean Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)	Mean Fish Cleaning Time (minutes)	Mean Cleaning Time per Fish (minutes)
None	01	-	-	-	-	-	-	-
Low	10 ²	156	57.22	62.9	23.1	0.71	43.1	0.37
Medium	5	91	42.58	41.2	16.1	0.58	21.6	0.21
High	1	70	36.79	70.0	35.0	1.00	10.0	0.14
Very High	0 ³	-	-	-	-	-	-	-
Total	16	130	51.37	56.6	21.6	0.69	34.3	0.30

Table C-3. Comparison of mean net servicing time and fish catch by debris level, spring 2014.

1 - CPUE is calculated as # fish/100m/24hr

2 - does not include DN-36(b) or DN-38(b) because they were tailed in

3 - does not include DN-33(b), DN-34(b), DN-41 or DN-42 because they were in the water for more than one overnight

4 - does not include DN-29(c) or DN-30(c) because they were in the water for more than one overnight

Debris Level	n	Mean Fish Catch	Mean CPUE ¹	Mean Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)	Mean Fish Cleaning Time (minutes)	Mean Cleaning Time per Fish (minutes)
None	12	89	26.58	43.7	13.2	0.55	22.5 ¹	0.23
Low	6	114	36.81	9.7	18.1	0.65	5.7 ²	0.06
Medium	1	49	24.42	22.0	11.0	0.45	_ 3	-
High	1	40	20.21	121.0	60.5	3.03	30.0	0.75
Total	20	92	29.22	49.9	16.9	0.70	19.7	0.23

Table C-4. Comparison of mean net servicing time and fish catch by debris level, summer 2014.

1 - CPUE is calculated as # fish/100m/24hr

2 - fish cleaning time was only recorded for 11 of 12 sets that accumulated no debris (not recorded for DN-58)

3 - fish cleaning time was only recorded for 3 of 6 sets that accumulated a low level of debris (not recorded for DN-50, -56 and -61)

4 - fish cleaning time was not recorded for the single net set that accumulated a medium level of debris

Mean Fish Mean Net Servicing Mean Net Servicing Time Mean Net Servicing Mean Fish Cleaning Mean Cleaning Time Mean **Debris Level** n CPUE 1 Catch Time (minutes) per Panel (minutes) Time per Fish (minutes) Time (minutes) per Fish (minutes) 2 ² None 115 36.96 35.0 8.8 0.32 17.5 0.15 6 ³ Low 63 18.50 42.3 11.4 0.69 9.5 0.16 1 4 Medium 52 16.00 30.0 7.5 0.58 8.0 0.15 05 High -_ -----9 Total 73 22.33 39.3 10.4 0.60 11.1 0.16

Table C-5. Comparison of mean net servicing time and fish catch by debris level, fall 2014.

1 - CPUE is calculated as # fish/100m/24hr

2 - does not include DN-73(b), DN-76, -77 and -78 because they remained in the water for more than one overnight

3 - does not include DN-62 or DN-75 because they remained in the water for more than one overnight

4 - does not include DN-66 or DN-67 because they remained in the water for more than one overnight

5 - does not include DN-65 because it remained in the water for more than one overnight

n	Mean Fish Catch	Mean CPUE ¹	Mean Net Servicing Time (minutes)	Mean Net Servicing Time per Panel (minutes)	Mean Net Servicing Time per Fish (minutes)	Mean Fish Cleaning Time (minutes)	Mean Cleaning Time per Fish (minutes)
18	61	21.0	13.4	39.0	0.71	26.7	0.39
9	88	26.6	13.4	41.2	0.53	19.0	0.34
4	75	17.0	8.8	39.3	0.53	9.5	0.13
31	71	22.1	12.8	39.7	0.63	22.2	0.34
	18 9 4	n Catch 18 61 9 88 4 75	n Catch CPUE ¹ 18 61 21.0 9 88 26.6 4 75 17.0	n Catch CPUE ¹ Time (minutes) 18 61 21.0 13.4 9 88 26.6 13.4 4 75 17.0 8.8	n Catch CPUE ¹ Time (minutes) per Panel (minutes) 18 61 21.0 13.4 39.0 9 88 26.6 13.4 41.2 4 75 17.0 8.8 39.3	n Catch CPUE ¹ Time (minutes) per Panel (minutes) Time per Fish (minutes) 18 61 21.0 13.4 39.0 0.71 9 88 26.6 13.4 41.2 0.53 4 75 17.0 8.8 39.3 0.53	n Catch CPUE ¹ Time (minutes) per Panel (minutes) Time per Fish (minutes) Time (minutes) 18 61 21.0 13.4 39.0 0.71 26.7 9 88 26.6 13.4 41.2 0.53 19.0 4 75 17.0 8.8 39.3 0.53 9.5

 Table C-6.
 Comparison of mean net servicing time and fish catch by debris level, spring 2015.

1 - CPUE is calculated as # fish/100m/24hr

Appendix F

Results from the 2012 Sturgeon Bay Shoreline Debris Inventory Survey

The Sturgeon Bay shoreline was surveyed to document the presence of recently deposited debris that may have originated from Reach 1 or the Buffalo Creek Drainage System, or washed downstream from upstream areas via Reach 1 and Buffalo Creek or the Dauphin River. The area surveyed and distribution of observed debris is illustrated in Figure F-1. The survey was divided into five areas based on proximity to the Dauphin River mouth. These included the following:

- 1. The western shoreline of Sturgeon Bay from Hay Point south to the mouth of the Dauphin River;
- 2. The mouth of the Dauphin River south to Halfway Point;
- 3. Halfway Point east to Willow Point;
- 4. Mantagao Bay; and,
- 5. The eastern shoreline of Sturgeon Bay north of Mantagao Bay.

Debris observations are summarized by area in Table F-1, and discussed in the following sections. An inventory of shoreline debris photos is provided in Table F-1, and all photographs are provided in the attached CD.

Section 1: Hay Point South to the Dauphin River

Old, rafted debris and poplars that appeared to have been felled by wind or shoreline erosion were observed in this section. There was no noticeably new natural debris or any evidence of anthropogenic debris along this section of shoreline.

Section 2: The Dauphin River South to Halfway Point

Woody debris was abundant along the shoreline in this section, but most appeared to be locally fallen trees or old rafted debris deposited at the existing tree line along the beach ridge (Figure F-2). At least one large spruce was observed on the beach near Halfway Point (at point # 2741 in Figure F-1) and had been more recently deposited. This tree may have originated from the Buffalo Creek watershed (Figure F-3). Although fresh peat deposits were observed at the water's edge along this reach of shoreline during spring, none remained at the time of this survey. Old, anthropogenic debris in the form of fish tubs and nets were observed along the tree line and an old dock had washed ashore (at point # 2746 in Figure F-1), but no recently deposited anthropogenic debris was observed.

Section 3: Halfway Point East to Willow Point

As between the Dauphin River and Halfway Point, woody debris was abundant along the shoreline between Halfway Point and Willow Beach, but consisted of local trees knocked over by the wind or old, rafted material (Figure F-4). Fresh peat deposits were observed in this section during spring, in smaller quantities than the section closer to the Dauphin River mouth, but were not evident during this survey. Old fish tubs and nets were observed along the tree line, but there was no evidence of any recently deposited anthropogenic debris.

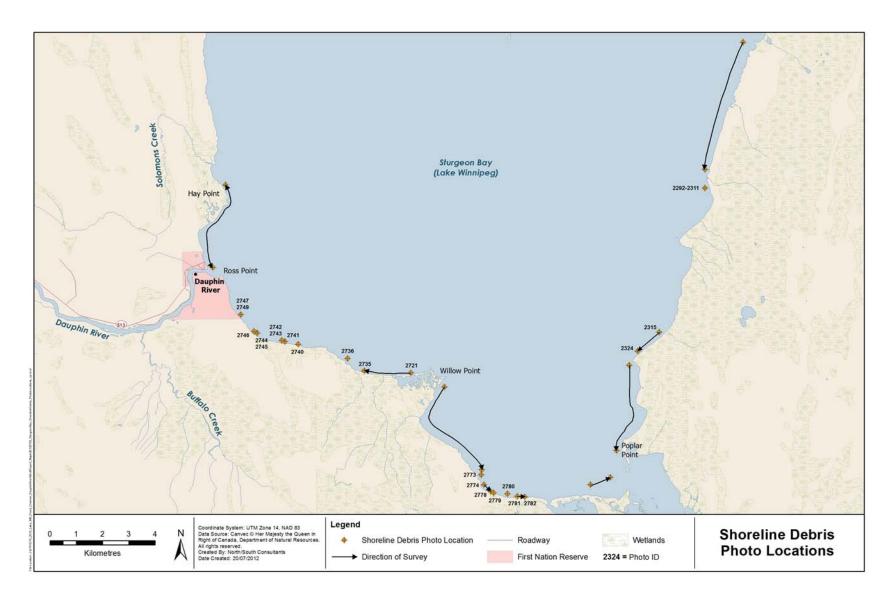


Figure F-1. Location of shoreline debris surveys in Sturgeon Bay, summer 2012. Includes point locations for geo-referenced photographs.

	Start Co	ordinates	End Coordinates		Debri				
Section	Easting	Northing	Easting	Northing	Trees	Peat	Anthropogenic (fishing equip.)	Anthropogenic (other)	Comments
Hay Point to Dauphin River	-	-	-	-	majority of tree line near Dauphin River mouth contains old rafted debris	-	no evidence of old nets, fish tubs present	-	no noticeable debris
	-	-	-	-	several sections with fallen poplars (either wind or shoreline erosion)	-	-	-	-
Dauphin River to Halfway Point	568121	5754310	-	-	Tree line littered with old (>1yr) trees (photo 2740)	-	fish tubs and old nets on shore	-	2 fish tubs observed – no photos taken
	567622	5754416	-	-	big spruce tree on shore (photo 2741)	-	-	-	-
	567504	5754458	-	-	trees (photos 2742-2743)	-	-	dock panels	-
	566567	5754743	-	-	downed poplars (photos 2744-2745)	-	-	-	-
	566447	5754801	-	-	-	-	-	dock washed up on shore (photo 2746)	-
	565942	5755440	-	-	fallen trees (photos 2747-2749)	-	-	-	-
Halfway Point to Willow Point	572417	5753223	-	-	trees along shoreline (>1yr) (photos 2721-2722)	-	old fish nets and tubs on shore	-	3 fish tubs observed – no photos taken
	572180	5753223	570644	5753301	trees and branches along ~60 m of shoreline (photos 2723-2724)	-	-	-	-
	571308	5753214	570644	5753301	downed trees along shoreline (photos 2725-2735)	-	-	-	-
	570000	5753775	-	-	large pile of downed trees and branches ~40 m long (photo 2736)	-	-	-	-

 Table F-1.
 Shoreline debris observed at five regions of Sturgeon Bay, spring 2012.

Table F-1. (continued).

	Start Coordinates	End Coordinates	Debris				
Section	Easting Northing	Easting Northing	Trees	Peat	Anthropogenic (fishing equip.)	Anthropogenic (other)	Comments
Mantagao Bay	573696 5752688	575115 5449534	-	-	no evidence of old nets or fish tubs on shore	-	No debris visible
	574961 5749547	575092 5749344	-	-	-	-	rafted debris (Photo 2773)
	575194 5748965	575445 5748719	-	-	-	-	rafted debris (Photo 2774-2778)
	575559 5748652		-	-	-	-	Photo 2779
	576094 5748622		-	-	-	-	Photo 2780
	576470 5748522	576744 5748509	-	-	-	-	Photo 2781-2782
	580725 5753511	580237 5750272	-	-	-	-	No debris visible
	579249 5748963	579998 5749242	-	-	-	-	No debris visible
	579092 5748937	579087 5748913	-	-	-	-	No debris visible
Eastern Shoreline	585055 5765808	583600 5760960	-	-	no evidence of fish nets or tubs on shore		No debris, clean shorelines
	583609 5760259	583633 5760259	downed trees along shoreline (wind)	-	-	-	All rafted debris >1yr
	583609 5760259	583639 5760260	downed trees along shoreline appear >1yr (photos 2292-2311)	-	-	-	-
	582282 5755645		fallen trees	-	-	-	-
	582100 5755101	581866 5754772	fallen trees	-	-	-	-
	581866 5754772	581041 5754050	-	-	old washed up material >1yr	old washed up material >1yr	photos 2315-2324

Figure F-2. Example of fallen trees and old, rafted debris along the shoreline from the Dauphin River to Halfway Point, summer 2012.

Figure F-3. A spruce deposited along the shoreline from the Dauphin River to Halfway Point, summer 2012. This tree may have originated in Buffalo Creek.

Figure F-4. Example of fallen trees and old, rafted debris along the shoreline from Halfway Point to Willow Point, summer 2012.

Section 4: Mantagao Bay

Like most of the shoreline in Sturgeon Bay, this section was marked with abundant woody debris in the form of locally wind-felled trees or old, rafted debris (Figure F-5). There was no evidence of any recently deposited debris, and none of the old, anthropogenic debris that was relatively common closer to the Dauphin River mouth.

Section 5: Eastern Shoreline of Sturgeon Bay

Old downed trees and rafted debris characterized the eastern shoreline of Sturgeon Bay (Figure F-6); however, there was no evidence of recently deposited debris. Small amounts of old, anthropogenic debris were washed ashore just north of Mantagao Bay.

Figure F-5. Example of fallen trees and old, rafted debris along the shoreline of Mantagao Bay, summer 2012.

Figure F-6. Example of fallen trees and old, rafted debris along the eastern shoreline of Sturgeon Bay, summer 2012.