

Construction Electrician Level 3

Construction Electrician

Unit: C1 Industrial Electrical Code

Level:	Three		
Duration:	80 hours		
	Theory:	80	hours
	Practical:	0	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about the industrial electrical code. The unit begins with coverage of industrial wiring methods and devices. Part of the unit covers other industrial components and concepts, including overcurrent and lightning protection and lighting applications. Finally, the unit covers main service and feeder sub-panel requirements, and interpretation of plans, drawings and specifications.

Object	ives	and Content:	Percent of Unit Mark (%)
1.		ntify hazards and describe safe work practices pertaining to industrial electrica le applications.	l 5%
2.	Des	scribe industrial wiring methods and practices.	15%
	a.	CEC requirements	
	b.	Single conductors, cables, busways, and raceways (including underground)	
		Ampacities	
		Derations	
		Conditions of use	
		Metallurgy (compatibility of materials)	
	С.	Bonding and grounding	
	d.	Perform related calculations	
		Voltage drop calculations	
		Raceway fill calculations	
	e.	Grounded and ungrounded systems	
3.	Des	scribe industrial wiring devices and applications.	10%
	a.	CEC requirements	
	b.	Outlet boxes	
		• Sizes	
		• Types	
		Applications	
		Box fill calculations	
	c.	Receptacles	
	d.	Switches and disconnects	
	e.	Specialty outlets	

4.	Des	scribe industrial overcurrent protection.	5%
	a.	CEC requirements	
	b.	Breaker fundamentals	
		 Low and medium voltage breakers 	
		 Characteristics and operation (ARC Extinguishing media) 	
		Selective coordination	
	C.	Fuse fundamentals	
	•.	Types and applications	
		Characteristics and operation	
		Selective coordination	
	d.	Short circuit calculation	
5.	De	scribe metal clad switch gear.	5%
	а.	CEC requirements	
	ы.	Breaker installations	
	с.	Switch gear breaker characteristics	
	0.	emion goar broater enaracientite	
6.	De	scribe lightning protection.	5%
	a.	CEC requirements	
	b.	Describe the lightning process	
	C.	Identify the requirements for protecting a building	
	d.	List lightning safety rules	
7.	De	scribe industrial lighting applications.	5%
	a.	CEC requirements	
	b.	Types, including:	
		Incandescent	
		Fluorescent	
		High-intensity discharge (HID)	
		 Light emitting diode (LED) 	
	c.	Considerations in lamp selection	
	0.	Colour rendition	
		Efficacy	
		Maintenance	
	d	Purpose and location Control options	
	d.	Control options	
8.	De	scribe transformers and capacitors.	15%
	a.	CEC requirements for transformer and capacitor installations	
		• Dry	
		Liquid-filled	
		Single phase	
		Three phase	
	b.	Perform related calculations	
9.	De	scribe the installation of single motors and groups of motors.	15%
	a.	CEC requirements	1070
	b.	Single phase AC	
	С.	Three phase AC	
	d.	DC	
	u. e.	Hermetic motor compressors (for HVAC and refrigeration applications)	
	С.		

- f. Various duty cycles
 - Continuous
 - Intermittent
 - Varying
 - Periodic
 - Short-time

g. Perform related calculations (including tap conductors)

10. Describe main service and feeder sub-panel requirements.

- a. CEC requirements
- b. Installation and maintenance
- c. Perform main service and feeder sub-panel calculations (single and three phase)
 - Small industrial buildings
 - Schools
 - Hospitals
 - Motels/Hotels

11. Describe welder installations.

a. CEC requirements.

b. Perform related calculations

15%

5%

Construction Electrician

Unit: C2 Three Phase Theory and Transformers

Level:	Three		
Duration:	90 hours		
	Theory:	85	hours
	Practical:	5	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about three phase theory and transformers. The unit begins with coverage of three phase systems and loads in wye and delta configurations. Part of the unit covers transformers and transformer connections. Finally, the unit covers transformer testing and connection techniques.

Object	ives and Content:	Percent of <u>Unit Mark (%)</u>
1.	Identify hazards and describe safe work practices pertaining to three phase theor and transformers.	y 5%
2.	 Define and describe three phase systems in wye and delta configurations. a. Relationship between phase and line Voltage Current b. Vector relationship (current and voltage) c. Connections 	10%
3.	 Define and describe three phase loads in wye and delta configurations. a. Perform related calculations Balanced and unbalanced loads b. Draw and interpret vector diagrams Unity and non-unity power factor loads c. Effects of a broken neutral 	15%
4.	 Determine the power draw and power ratings of three phase loads and sources. a. Power factor b. Perform related calculations Balanced and unbalanced loads Power factor correction Power measurement (two or three single-phase wattmeter and single three-phase wattmeter methods) 	10% Se
5.	Describe principles of transformers. a. Purpose	20%

	b.	Basic components	
	c.	Operation	
		Transformer action	
		 Automatic and manual tap changing for voltage regulation 	
		Cooling methods	
	d.	Nameplate data	
	e.	Types, application and maintenance	
		Isolation	
		Auto transformer	
	f.	Transformer polarity	
		Inductive kick test	
		Low voltage polarity test	
	g.	Paralleling	
	3	Percent impedance	
		• Polarity	
	h.	Efficiency	
		Types of losses	
	i.	Perform related calculations	
		Percent impedance and fault current	
		 Rated primary and secondary currents (based on nameplate data) 	
		Efficiency calculations	
		 Determine primary and secondary currents under various loads 	
6.	Des	scribe instrument transformers.	5%
0.	a.	Current transformers (CT)	0,0
	u.	Connection and safety	
	b.	Potential transformers (PT)	
	ь.	Connection	
	c.	Perform related calculations for metering	
	0.	i onomi rotatod odlodiationo for motoring	
7.	Des	scribe and draw three phase transformers and transformer banks.	15%
	a.	Connections	
	u.	• Wye	
		Delta (3 and 4 wire)	
		Open delta	
		opon dolla	
8.	Des	scribe special transformer connections.	5%
	а.	Applications	
	b.	Connections	
		• Scott	
		T-connection	
		• Zig zag (ground bank)	
9.	Dei	nonstrate principles of three phase systems in wye and delta configurations.	5%
	a.	Verify phase and line relationship by connections and measurements.	2,0
	b.	Verify power measurement	
	~.	· / · · · · · · · · · · · · · · · · · ·	
10.	Per	form transformer testing to verify nameplate data.	5%
	a.	Verify polarity of transformers	•
		Low voltage polarity test	
	b.	Verify primary and secondary voltages	

c. Startup (commissioning) and shutdown procedures

- a. Wye
- b. Delta
 - Delta closure test

6

Construction Electrician

Unit: C3 Electronic Concepts II

Level:	Three		
Duration:	45 hours		
	Theory:	25	hours
	Practical:	20	hours

Overview:

This unit, which builds on *B5 Electronic Concepts I*, is designed to provide the apprentice with additional knowledge about electronic concepts. The unit begins with coverage of filtration and percent ripple in a circuit. Part of the unit covers thyristors and transistors. Finally, the unit covers additional applications of electronic concepts.

Objec	tives and Content:	Percent of Unit Mark (%)
1.	Review hazards and safe work practices pertaining to electronic concepts.	5%
2.	Describe filtration and percent ripple in a circuit. a. Perform related calculations	10%
3.	 Describe thyristors. a. Purpose and applications DC Circuits AC Circuits b. Types Silicon-Controlled Rectifier (SCR) Gate Turn-Off (GTO) Triode for Alternating Current (TRIAC) c. Phase shifting (voltage controllers) d. Identify the schematic symbols and terminal connections e. Perform related calculations 	30%
4.	 Describe a transistor. a. Purpose and applications Switching Amplification b. Types Bi-polar Junction Field-Effect Transistor (JFET) Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Insulated Gate Bipolar Transistor (IGBT) c. Identify and label schematic symbols and terminals 	20%
	7	04-2025

- d. Describe transistor characteristics
 - Operating point
 - Current gain
 - Voltage gain
 - Load lines
- e. Perform related calculations

5. Demonstrate and apply electronic concepts.

- a. Measure the voltages and verify the percent ripple
- b. Test an SCR
- c. Connect an SCR to control a DC circuit
- d. Connect an SCR to control a single-phase AC circuit
- e. Analyze the operation of SCR and triac phase control
- f. Test a transistor in a circuit and out of a circuit
- g. Use an oscilloscope to demonstrate transistor characteristics

35%

Construction Electrician

Unit: C4 Industrial Control Systems

Level:	Three		
Duration:	95 hours		
	Theory:	60	hours
	Practical:	35	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about industrial control systems. The unit begins with coverage of industrial control system components, including sensors, detectors and control transformers. Part of the unit covers advanced control circuits and heating, ventilating and air conditioning systems. Finally, the unit covers installation, testing and troubleshooting techniques using wiring diagrams.

Object	ives and Content:	Percent of <u>Unit Mark (%)</u>
1.	Identify hazards and describe safe work practices pertaining to industrial control systems.	5%
2.	 Describe sensors and detectors. a. Purpose and application Hall effect Proximity Photo Temperature 	5%
3.	 Describe reduced voltage starting methods. a. Purpose and application Resistor and reactor Autotransformer Wye – Delta Variable frequency drives (VFD) Soft starters Part winding 	15%
4.	Describe control transformers. a. Purpose and application	5%
5.	Describe solenoids and motor operated valves.a. Purposeb. Types and application	5%

6.	Design and interpret advanced control circuits. a. Purpose	10%
	b. Applications (such as conveyors, alternating pumps and other automated equipment)	
7.	Describe heating, ventilating and air conditioning (HVAC) systems.	20%
	a. Purpose	
	b Cycle of operations	
	c. Residential, commercial and industrial applications	
	Gas furnaces	
	Electric furnaces	
	Air conditioning (A/C) units	
	Heat recovery ventilator (HRV)	
	Boilers	
	Rooftop units (RTU)	
	Heat pumps	
8.	Describe testing and troubleshooting of control circuits using handheld devices.	10%
	a. Purpose	
	b. Types	
	Ohmmeter	
	Ammeter	
	Voltmeter	
	Megohmmeter	
	c. Operation and applications	
	Meter selection	
	Meter placement	
	Meter reading	
	d. Logical testing procedure	
	e. Grounded and ungrounded control circuits	
	f. Common circuit problems.	
	g. Startup (commissioning) and shutdown procedures	
9.	Describe plugging and braking.	5%
	a. Purpose and application	
	b. Types of plugging	
	c. Types of braking, including:	
	Dynamic	
	DC injection	
	Mechanical	
	d. VFDs	
	DC application	
	Dynamic application	
10.	Perform installation, testing and troubleshooting techniques using schematic or	20%
10.	wiring diagrams.	2070
	a. Design and wire advanced control circuits	
	Timing sequence	
	Order of operation	
	Counters	
	Memory circuits	
	b. Design and wire HVAC systems	

• VFD

- Soft start
- Autotransformer
- Wye-delta

Construction Electrician

Unit: C5 AC Machines and Maintenance

Level:	Three		
Duration: 40 hours			
	Theory:	30	hours
	Practical:	10	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about AC machines and maintenance. This unit covers three phase motors, single phase motors and AC generators. Part of the unit covers reactive, preventive and predictive practices for electrical apparatus. Finally, the unit covers insulation tests on electrical systems and apparatus.

Objectives and Content:		Percent of <u>Unit Mark (%)</u>
1.	Identify hazards and describe safe work practices pertaining to AC machines and maintenance.	5%
2.	 Describe three phase motors. a. Types Squirrel cage induction motors Wound rotor induction motors Synchronous motors b. Purpose and applications c. Operating characteristics d. Basic construction e. Terminal markings f. Nameplate ratings g. Perform related calculations 	25%
3.	 Describe single phase motors. a. Types Split phase induction motors Alternating current series motors Shaded pole motors Electronically commutated motor (ECM) Stepping motors b. Purpose and applications c. Operating characteristics d. Basic construction e. Terminal markings 	25%

- f. Nameplate ratings
- g. Perform related calculations

4. Describe AC generators.

- a. Types and construction details
- b. Operating characteristics and losses
- c. Paralleling requirements
- d. Installation and maintenance

5. Describe and compare reactive, preventive and predictive practices for electrical 20% apparatus.

- a. Purpose
- b. Considerations
 - · Effects of temperature and correction factors
 - Effects of moisture
 - Effects of contamination
- c. Procedures for megohmmeter testing
 - Lockout / tag out procedures
 - Equipment grounding
 - Maximum test voltages
 - Meter lead connections
 - Institute of Electrical and Electronics Engineers (IEEE) standards
- d. Test methods using a megohmmeter
 - Sixty second test (including for commissioning and decommissioning)
 - Step voltage test
 - Dielectric absorption test
- e. Thermal imaging
- f. Maintenance schedule and records

6. Perform tests on electrical systems and apparatus.

- a. Sixty second test
- b. Ohmmeter test
- c. Potential test
- d. Startup (commissioning) and shutdown procedures

10%

15%