

Power Electrician Level 3

04-2025

Power Electrician

Unit: C1 Electrical Code for Industrial Applications I

Level:	Three		
Duration:	60 hours		
	Theory:	60	hours
	Practical:	0	hours

Overview:

This unit is designed to provide the apprentice with introductory knowledge about the electrical code for industrial applications. The unit begins with coverage of industrial wiring methods and devices. Part of the unit covers other industrial components and concepts, including transformers, capacitors, motors, and lightning protection and lighting applications. Finally, the unit covers demand factors for industrial applications, and interpretation of plans, drawings and specifications.

Object	ives and Content:	Percent of <u>Unit Mark (%)</u>
1.	Identify hazards and describe safe work practices pertaining to electrical code for industrial applications.	5%
2.	 Describe industrial wiring methods and practices. a. CEC requirements b. Single conductors, cables, busways and raceways Ampacities Derations Conditions of use Metallurgy (compatibility of materials) c. Bonding and grounding d. Underground ampacities and installations e. Perform related calculations Voltage drop calculations Raceway fill calculations 	15%
3.	 Describe industrial wiring devices and applications. a. CEC requirements b. Outlet boxes Sizes Types Applications Box fill calculations c. Receptacles 	15%

- d. Switches and disconnects
- Specialty outlets e.

4. Describe industrial lighting applications.

- a. CEC requirements
- b. Types, including:
 - Incandescent
 - Fluorescent
 - High-intensity discharge (HID)
 - Light emitting diode (LED)
- c. Considerations in lamp selection
 - Colour rendition
 - Efficacy
 - Maintenance
 - Purpose and location
- d. Control options

5. Describe transformers and capacitors.

- a. CEC requirements
- b. Transformer types
 - Dry
 - Liquid-filled
 - · High voltage
- c. Transformer installations
 - Single phase
 - Three phase
- d. Perform related calculations
- e. Grounded and ungrounded systems
 - Ground fault detection
- f. Unit substation
 - Medium voltage installation

6. Describe the installation of single motors and groups of motors. a. CEC requirements b. Single phase AC Three phase AC c. d. DC e. Various duty cycles

- Continuous
- Intermittent
- Varying
- Periodic
- Short-time
- f. Perform related calculations (including tap conductors)

7.	Des	scribe welder installations.	5%
	a.	CEC requirements	
	b.	Perform related calculations	

8.	Describe demand factors for industrial applications.	10%

- a. Single phase voltage drop
- b. Three phase voltage drop

20%

5%

- c. Continuous loading
- d. Conductor derating
- e. System voltages

9. Describe electrical bus networks.

- a. Purpose
- b. Types and applications
- c. Electrical clearances
- d. Insulators
- e. Connections and terminations
- f. Sizing and ampacity considerations and installation applications

Power Electrician

Unit: C2 Three-Phase Circuit Analysis and Transformers

Level:	Three		
Duration:	90 hours		
	Theory:	85	hours
	Practical:	5	hours

Overview:

This unit is designed to provide the apprentice with the knowledge and skills about three phase circuit analysis and transformers. The unit starts by covering three phase systems and loads in wye and delta configurations, and power draw and power ratings of three phase loads and sources. Later the unit covers power transformers, instrument transformers and special transformer connections. Part of the unit covers three phase transformers and transformer banks. Finally, the unit covers transformer testing and connection techniques.

Object	ives and Content:	Percent of Unit Mark (%)
1.	Identify hazards and describe safe work practices pertaining to three-phase circuit analysis and transformers.	t 5%
2.	 Define and describe three phase systems in wye and delta configurations. a. Relationship between phase and line Voltage Current b. Vector (phasor) relationship Phasor diagram c. Connections 	10%
3.	 Define and describe three phase loads in wye and delta configurations. a. Perform related calculations Balanced and unbalanced loads b. Draw and interpret vector (phasor) diagrams Unity and non-unity power factor loads c. Effects of a broken neutral 	10%
4.	 Determine the power draw and power ratings of three phase loads and sources. a. Power factor b. Perform related calculations Balanced and unbalanced loads Power factor correction Power measurement (two and three wattmeter method) 	15%

	c. d.	 Operation and maintenance Transformer action Regulated and non-regulated transformers Cooling methods Nameplate data 	
	e.	Types and applicationIsolationAuto transformer	
	f.	Transformer polaritiesInductive kick testLow voltage polarity test	
	g.	Efficiencies Types of losses 	
	h.	 Perform related calculations Percent impedance and fault current Rated primary and secondary currents (based on nameplate data) Efficiency calculations Determine primary and secondary currents under various loads 	
	i.	 Perform testing calculations Winding resistance (temperature coefficient) Ratio Capacitance bridge theory 	
6.		scribe instrument transformers.	10%
	a. b.	Purpose Current transformers (CT) • Connection and safety	
	c. d. e.	Potential transformers (PT) Connection Perform related calculations Hazards 	
7.	De a. b.	 scribe and draw three phase transformers and transformer banks. Connections Wye Delta (3 and 4 wire) Open delta Phase shifting Power flow Paralleling Reflected impedance Dot polarity direction 	20%
8.	De a. b.	 scribe special transformer connections. Applications Connections Scott T-connection Zig zag (ground bank) 	5%

Describe principles of transformers.

Basic components

5.

a. Purpose

b.

9. Demonstrate connections of three-phase wye and delta transformers and loads.

- a. Verify phase and line relationship by connections and measurements
- b. Verify power measurement
- c. Wye-connected transformer
- d. Delta-connected transformer
 - Delta closure test
- e. Verify polarity of transformers
 - Inductive kick test
 - Low voltage polarity test
- f. Verify primary and secondary voltages

Power Electrician

Unit: C3 Electronic Concepts II

Level:	Three		
Duration:	50 hours		
	Theory:	20	hours
	Practical:	30	hours

Overview:

This unit, which builds on *B5 Electronic Concepts I*, is designed to provide the apprentice with additional knowledge and skills about electronic concepts. The unit begins with coverage of filtration and percent ripple in a circuit. Part of the unit covers thyristors and transistors. Finally, the unit covers additional applications of electronic concepts.

Objectives and Content:		Percent of <u>Unit Mark (%)</u>
1.	Review hazards and safe work practices pertaining to electronic concepts.	5%
2.	Describe filtration and percent ripple in a circuit. a. Perform related calculations	10%
3.	 Describe thyristors. a. Purpose and applications DC Circuits AC Circuits b. Types Silicon-Controlled Rectifier (SCR) Gate Turn-Off (GTO) Triode for Alternating Current (TRIAC) c. Phase shifting (voltage controllers) d. Identify the schematic symbols and terminal connections e. Perform related calculations 	30%
4.	 Describe a transistor. a. Purpose and applications Switching Amplification b. Types Bi-polar Junction field effect transistor (JFET) Depletion and Enhancement MOSFETs Insulated Gate Bipolar Transistor (IGBTs) c. Identify and label schematic symbols and terminals 	20%

- d. Describe transistor characteristics
 - Operating point
 - Current gain
 - Voltage gain
 - Load lines
- e. Perform related calculations

5. Demonstrate and apply electronic concepts.

- a. Measure the voltages and verify the percent ripple
- b. Test an SCR
- c. Connect an SCR to control a DC circuit
- d. Connect an SCR to control a single phase AC circuit
- e. Analyze the operation of SCR and TRIAC phase control
- f. Test a transistor in a circuit and out of a circuit
- g. Use an oscilloscope to demonstrate transistor characteristics

Power Electrician

Unit: C4 Industrial Control Systems

Level:	Three		
Duration:	90 hours		
	Theory:	60	hours
	Practical:	30	hours

Overview:

This unit is designed to provide the apprentice with the knowledge and skills about industrial control systems. The unit begins with coverage of industrial control system components, including sensors, detectors and control transformers. Part of the unit covers advanced control circuits and heating, ventilating and air conditioning systems, and variable frequency drives. Finally, the unit covers installation, testing and troubleshooting techniques using wiring diagrams.

Object	ives and Content:	Percent of <u>Unit Mark (%)</u>
1.	Identify hazards and describe safe work practices pertaining to industrial control systems.	5%
2.	 Describe sensors and detectors. a. Purpose and application Hall effect Proximity Photo 	5%
3.	 Describe reduced voltage starting methods. a. Purpose and application Resistor and reactor Autotransformer Wye – Delta Variable frequency drives (VFD) 	5%
4.	 Describe control transformers. a. Purpose and application b. Terminal markings c. Turns ratio d. Dual voltage connections 	5%
5.	Describe solenoids and motor operated valves.a. Purposeb. Types and application	10%

6.	Des	sign and interpret advanced control circuits.	20%
	a.	Purpose	
	b.	Applications	
		Conveyors	
		Alternating pumps	
		Other automated equipment	
7.	Des	scribe heating, ventilating and air conditioning (HVAC) systems.	5%
	a.	Purpose	
	b	Cycle of operations	
	C.	Types and applications	
		Gas furnaces	
		Electric furnaces	
		A/C units	
		Heat recovery ventilator (HRV)	
8.	Des	scribe variable frequency drives (VFD).	10%
	a.	Purpose	
	b.	Types and applications	
		AC drives	
		DC drives	
9.		scribe testing and troubleshooting of control circuits using hand held devices.	1 0 %
	a.	Purpose	
	b.	Types	
		Ohmmeter	
		Ammeter	
		Voltmeter	
		Megohmmeter	
	с.	Operation and applications	
		Meter selection	
		Meter placement	
	م ا	Meter reading	
	d.	Logical testing procedure	
	е.	Grounded and ungrounded control circuits	
	f.	Common circuit problems.	
10.		scribe plugging, DC injection, dynamic braking and regenerative braking.	5%
	a.	Purpose and application	
11.		form practical wiring projects.	20%
	a.	Design and wire advanced control circuits	
		Timing sequence	
		Order of operation	
		Counters	
		Memory circuits	
	b.	Design and wire HVAC systems	
	C.	Design and wire VFD systems	

10

Power Electrician

Unit: C5 Interrupting Equipment

Level:	Three		
Duration:	20 hours		
	Theory:	20	hours
	Practical:	0	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about interrupting equipment. The unit begins with coverage of breakers, arc and arc-extinguishing media, and fuses. Part of the unit covers disconnects. Finally, the unit covers sizing and ampacity considerations and installation applications.

Objectives and Content:		Percent of <u>Unit Mark (%)</u>
1.	Identify hazards and describe safe work practices pertaining to interrupting equipment.	5%
2.	 Describe breakers and automatic circuit reclosers (ACRs). a. Purpose and applications b. Classification Low voltage (any voltage not exceeding 750 V) Medium voltage (any voltage exceeding 750 V but not exceeding 25 kV) High voltage (any voltage exceeding 25 kV) C. Operating mechanisms Stored energy (springs) Solenoid Hydraulic High pressure air Motor d. Hazards 	20%
3.	 Describe arc and arc-extinguishing media. a. Purpose b. Types and applications Gas Bulk oil Magna blast Minimum oil Air blast Vacuum 	25%

- c. Hazards and safe handling procedures
 - Filling and recovery of SF₆ gas and oil

4. Describe fuses.

- a. Purpose
- b. Types and applications
- c. Co-ordination
- d. Perform related calculation
 - Short circuit calculation

5. Describe disconnects.

- a. Purpose
- b. Types and applications
 - Centre-break
 - Horizontal and vertical
 - Propeller
 - Single-break
 - Tandem
 - Vacrupters
- c. Means of disconnection
 - Manual
 - Motorized
 - Insulated switch stick

6. Describe sizing and ampacity considerations and installation applications. 20%

- a. Breakers
- b. Fuses
- c. Disconnects

15%

Power Electrician

Unit: C6 AC Machines, Governors and Exciters

Level:	Three		
Duration:	40 hours		
	Theory:	40	hours
	Practical:	0	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about AC machines, governors, and exciters. This unit covers three-phase and single-phase motors, and AC generators. After covering AC generators, the unit also covers mechanical/hydraulic governor and governor control systems. Part of the unit covers components and controls for speed control and excitation. Finally, the unit covers generator voltage output controls.

Objectives and Content:		Percent of <u>Unit Mark (%)</u>
1.	Identify hazards and describe safe work practices pertaining to machines, governors and exciters.	5%
2.	Describe three phase motors.	25%
	a. Types	
	Squirrel cage induction motors	
	Wound rotor induction motors	
	Synchronous motors	
	b. Purpose and applications	
	c. Operating characteristics	
	d. Basic construction	
	e. Terminal markings	
	 f. Nameplate ratings g. Perform related calculations 	
	g. Perform related calculations	
3.	Describe single phase motors.	25%
	a. Types	
	 Split phase induction motors 	
	 Alternating current series motors 	
	Shaded pole motors	
	b. Purpose and applications	
	c. Operating characteristics	
	d. Basic construction	
	e. Terminal markings	
	f. Nameplate ratings	
	g. Perform related calculations	
		04 2025

4.	Describe AC generators.		20%
	a.	Types and construction details	
	b.	Operating characteristics and losses	
	c.	Paralleling requirements	
5.	De	scribe mechanical/hydraulic governor systems.	5%
	a.	Purpose	
	b.	Application	
6.		scribe governor control systems and how they are integrated into the hydraulic /ernor.	5%
	a.	Туреѕ	
		Electrical	
		Electronic	
		Digital	
	b.	Applications	
7.	De	scribe components and controls for speed control.	5%
	а.	Permanent Magnet Generator (PMG) and ball head motor	
	b.	Speeder motor controls	
		Gate limit	
		Best gate	
		• Full gate	
	C.	Servos, control rings, and wicket gates	
8.	De	scribe components and controls for excitation.	5%
	a.	Slip rings and commutators	
	b.	Exciters	
		Electronic	
		 Motor generator (MG) set 	
	C.	Field breaker	
9.	De	scribe generator voltage output controls.	5%
	a.	Purpose	
	b.	Types and components	
		 Automatic voltage regulator (AVR) 	
		Amplidynes	
		Silicon control rectifier (SCR)	
