

Industrial Electrician Level 3

Industrial Electrician

Unit: C1 Industrial Electrical Code I

Level:	Three		
Duration:	77 hours		
	Theory:	77	hours
	Practical:	0	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about the industrial electrical code. The unit begins with coverage of industrial wiring methods, overcurrent protection, and lighting types and applications. Part of the unit includes coverage of transformers and capacitors and single motors and groups of motors. Finally, the unit covers arc flash protection and batteries.

Objectives and Content:		Percent of <u>Unit Mark (%)</u>	
1.	Des	scribe industrial wiring methods and practices.	15%
	a.	CEC requirements	
	b.	Multi-conductor cables, free air conductors, busways and raceways	
		Ampacities	
		Derations	
		Conditions of use	
		 Metallurgy (compatibility of materials) 	
	c.	Bonding and grounding	
	d.	Underground ampacities and installations	
	e.	Disconnects	
		 Types and applications (high and low voltage) 	
		Isolating means	
		 Equipment withstand ratings 	
	f.	Lightning protection	
		High voltage applications	
		Low voltage applications	
	g.	Class 1 and Class 2 circuits	
		 Extra low voltage power circuits 	
		Low energy power circuit	
	h.	Considerations in hazardous locations	
		Classification	
		Grounding	
		Bonding	
	i.	Considerations in high voltage installations	
		Grounding methods	
		Bonding methods	
		Touch and step voltages	

- j. Perform related calculations
 - Voltage drop calculations
 - Raceway fill calculations

2. Describe industrial overcurrent protection.

- a. CEC requirements
- b. Circuit breaker fundamentals
 - High and low voltage breakers
 - Characteristics and operation
 - · Selective coordination for high and low voltage systems
 - · Moulded case and switchgear
 - Interpret breaker time (current curves)
 - Arc extinguishing means (air, air/magnetic, oil, vacuum, gas)
- c. Fuse fundamentals
 - Types and applications
 - Characteristics and operation
 - · Selective coordination for high and low voltage systems
 - Interpret fuse time (current curves)
 - Arc extinguishing means
- d. Short circuit calculation

3. Describe industrial lighting applications.

- a. CEC requirement
- b. Types, including:
 - Incandescent
 - Fluorescent
 - High-intensity discharge (HID)
 - Light emitting diode (LED)
- c. Theory of lightning
- d. Considerations in lamp selection
 - Colour rendition
 - Efficacy
 - Maintenance
 - · Purpose and location
- e. Control options

4. Describe transformers and capacitors.

- a. CEC requirements (overcurrent protection)
- b. Transformer types
 - Dry
 - Liquid-filled
 - · High and low voltage
- c. Transformer installations
 - Single phase
 - Three phase
- d. Perform related calculations
- e. Grounded and ungrounded systems
 - Ground fault detection

5. Describe the installation of single motors and groups of motors.

- a. CEC requirements
- b. Single phase AC
- c. Three phase AC

20%

10%

10%

	d.	Various duty cycles	
	e.	Size and type of overcurrent protection	
	f.	Size and type of overload protection	
		Thermal	
		Magnetic	
		Electronic	
	g.	Perform related calculations	
		Overload protection	
		Service factor	
		Tap conductors	
6.	Des	scribe the installation of single arc welders and groups of arc welders.	10%
	a.	CEC requirements	
	b.	Single phase AC	
	c.	Three phase AC	
	d.	Various duty cycles	
	e.	Size and type of overcurrent protection	
	f.	Perform related calculations	
		Tap conductors	
7.	Des	scribe busway and raceway systems.	10%
	a.	CEC requirements	
	b.	Busways	
		Types and applications	
		Rationings and ampacities	
		Components and connections	
		Metallurgical considerations	
		Support systems	
		Torque specifications	
	C.	Raceways	
		 Types and applications 	
		Cable trough	
		Surface raceways	
8.	Des	scribe arc flash protection.	10%
	a.	National codes	
	b.	Hazard analyses	
	c.	Personal protective equipment (PPE)	
	d.	Personal protective grounds	
	e.	Limited approach boundary limitations	
	f.	Energized electrical work permits	
9.	Des	scribe battery applications.	5%
	a.	CEC requirements.	
	b.	Battery installations	
	C.	Size and type of conductors	
	d.	Size and types of overcurrent protection	
	e.	Perform related calculations	
10.	Des	scribe three-phase consumer/supply services and metering equipment.	5%
	a.	CEC requirements	
	b.	Types and applications	
		Overhead	

- Underground
- Temporary
- c. Metering equipment

Industrial Electrician

Unit: C2 Three Phase Theory and Transformers

Level:	Three		
Duration:	77 hours		
	Theory:	56	hours
	Practical:	21	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about three phase theory and transformers. The unit begins with coverage of three phase systems and loads in wye and delta configurations. Part of the unit covers transformers and transformer connections. Finally, the unit covers transformer testing and connection techniques.

Objec	tives	s and Content:	Percent of <u>Unit Mark (%)</u>
1.	De	fine and describe three phase systems in wye and delta configurations.	5%
	a.	Relationship between phase and line	
		Voltage	
		Current	
	b.	Vector (phasor) relationship	
		Phasor diagram	
	C.	Connections	
2.	De	fine and describe three phase loads in wye and delta configurations.	10%
	a.	Perform related calculations	
		 Balanced and unbalanced loads 	
	b.	Draw and interpret vector (phasor) diagrams	
		 Unity and non-unity power factor loads 	
	C.	Effects of a broken neutral	
3.	De	termine the power draw and power ratings of three phase loads and sources.	15%
	a.	Power factor	
	b.	Perform related calculations	
		 Balanced and unbalanced loads 	
		Power factor correction	
		Power measurement (two and three wattmeter method)	
4.	De	scribe principles of transformers.	10%
	a.	Purpose	
	b.	Basic components	
	C.	Operation	
		Transformer action	
		 Regulated and non-regulated transformers 	

		Cooling methods	
	d.	Nameplate data	
	e.	Types and application	
		Isolation	
	£	Auto transformer Transformer	
	f.	Transformer polarities	
		Inductive kick test	
		Low voltage polarity testParalleling	
	a	Efficiencies	
	g.	Types of losses	
	h.	Perform related calculations	
		Percent impedance and fault current	
		 Rated primary and secondary currents (based on nameplate data) 	
		Efficiency calculations	
		Determine primary and secondary currents under various loads	
		 Maximum fault current (based on nameplate data) 	
5.	De	scribe instrument transformers.	15%
	a.	Current transformers (CT)	
		Connection and safety	
	b.	Potential transformers (PT)	
		Connection	
	c.	Perform related calculations for metering	
6.	De	scribe and draw three phase transformers and transformer banks.	15%
	а.	Connections	
		• Wye	
		Delta (3 and 4 wire)	
		Open delta	
7.	De	scribe special transformer connections.	5%
	a.	Applications	
	b.	Connections	
		• Scott	
		T-connection	
		Zig zag (ground bank)	
-	_		. = 0 /
8.		monstrate principles of three phase systems in wye and delta configurations.	15%
	a.	Verify phase and line relationship by connections and measurements.	
	b.	Verify power measurement	
9.	Pe	form transformer testing to verify nameplate data.	5%
	a.	Verify polarity of transformers	
		Inductive kick test	
		Low voltage polarity test	
	b.	Verify primary and secondary voltages	
10.	Do	monstrate connections of three phase transformer banks.	5%
10.	a.	Wye	5 /0
	b.	Delta	
	δ.	Delta closure test	

6

Industrial Electrician

Unit: C3 Power Quality

Level:	Three		
Duration:	7 hours		
	Theory:	7	hours
	Practical:	0	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about power quality. This unit covers power quality issues, harmonics and ground fault protection. This unit also covers uninterruptible power supply.

Objec	tives and Content:	Percent of <u>Unit Mark (%)</u>
1.	Describe power quality issues.	25%
	a. Key considerations	
	b. Causes	
	Voltage sag	
	Voltage swell	
	Over and under voltage condition	
	Voltage fluctuation	
	Voltage transient.	
	c. Mitigation Methods	
	 Transient Voltage Surge Suppression (TVSS) in transmission lines, primary 	
	distribution centers and secondary circuits	
2.	Describe harmonics.	25%
	a. Characteristics	
	 Frequency of different order harmonics 	
	b. Causes	
	Linear and non-linear loads	
	 Negative, positive and zero sequence harmonics in transformers, circuit breaker and neutral conductors 	S
	Harmonic currents in motors, capacitors and sensitive electronic equipment	
	c. Mitigation Methods	
3.	Describe Ground Fault Protection (GFP).	25%
•••	a. Purpose and application	
	b. Systems	
4.	Describe uninterruptible power supply (UPS) and demonstrate its operation.	25%
	a. Operation and application	

- b. Codes
- c. Test procedures
- d. Standby generators

Industrial Electrician

Unit: C4 Electronic Concepts II

Level:	Three		
Duration:	42 hours		
	Theory:	21	hours
	Practical:	21	hours

Overview:

This unit, which builds on *B5 Electronics Concept I*, is designed to provide the apprentice with the knowledge about additional electronic concepts. The unit begins with coverage of filtration and percent ripple in a circuit. Part of the unit covers triacs and transistors. Finally, the unit covers application of electronic concepts.

Object	tives and Content:	Percent of <u>Unit Mark (%)</u>
1.	Describe filtration and percent ripple in a circuit. a. Perform related calculations	20%
2.	 Describe a silicone controlled rectifier (SCR). a. Purpose and applications DC circuits AC circuits b. Phase shifting c. Identify the schematic symbols and terminal connections d. Perform related calculations 	20%
3.	 Describe a triac. a. Purpose and applications b. Phase shifting c. Identify the schematic symbols and terminal connections d. Perform related calculations 	20%
4.	 Describe a transistor. a. Purpose and applications Switching Amplification b. Types Bi-polar Junction field effect transistor (JFET) Metal oxide semiconductor field effect transistor (MOSFET) Depletion enhancement metal oxide semiconductor field effect transistor (DEMOSFET) c. Identify and label schematic symbols and terminals 	20%

- d. Describe transistor characteristics
 - Operating point
 - Current gain
 - Voltage gain
 - Load lines
- e. Perform related calculations

5. Demonstrate and apply electronic concepts.

- Measure the voltages and verify the percent ripple
- b. Test an SCR.

a.

- c. Connect an SCR to control a DC circuit.
- d. Connect an SCR to control a single phase AC circuit.
- e. Analyze the operation of SCR and triac phase control.
- f. Test a transistor in a circuit and out of a circuit.
- g. Use an oscilloscope to demonstrate transistor characteristics.

Industrial Electrician

Unit: C5 Industrial Control Systems I

Level:	Three		
Duration:	77 hours		
	Theory:	38	hours
	Practical:	39	hours

Overview:

This unit is designed to provide the apprentice with introductory knowledge about industrial control systems. The unit begins with coverage of control system pilot and sensing device for motor control. Part of the unit covers programmable logic controllers (PLCs) and discrete I/O's. Finally, the unit covers PLC numbering systems.

Objectives and Content:	Percent of <u>Unit Mark (%)</u>
 Describe and demonstrate operation of control system pilot devices for motor control. a. Purpose b. Basic components Push buttons Float switches Temp switches Flow switches Pressure switches Limit switches Selector switches Coperation and application 	10%
 2. Describe and demonstrate operation of control system sensing devices for moto control. a. Purpose b. Basic components Inductive detector Capacitive detector Magnetic detector Photo detector Operation and application 	or 20%
 Describe and demonstrate the basic operation of programmable logic controller (PLCs). a. Purpose b. Types • Fixed 	s 25%

- Modular
- Remote
- c. Components
 - Central processing unit (CPU)
 - Memory storage
 - Input/output (I/O) section
 - Power supply
 - Programming devices
- d. Basic operation and applications

4. Describe and demonstrate programming of basic ladder logic using discrete I/O's. 15%

- a. Interpret basic ladder logic
- b. Field and internal addressing
 - Examine on and examine off contacts
 - Internal and external I/O's
 - Time on and time off timers
 - Count up and countdown counters
- c. Contact nesting

5. Describe and demonstrate programming and wiring practices for PLC controlled 10% systems.

a. Devices

- Master control relays
- Emergency stop stations
- Internal and external I/O's (discrete and analog)
- Communications modules
- Numerical modules
- b. Programming
 - Processor security
 - Procedures for using force functions
 - Program documentation
 - Processor scan time
- c. Wiring practices
 - Overcurrent protection
 - Bonding and shielding
- 6. Create, interpret and demonstrate basic applications of industrial control system 10% diagrams.
 - a. Schematic diagrams for pilot and sensing devices
 - b. Ladder diagrams for PLCs.
- 7. Describe and apply basic principles of PLC numbering systems for computerized 10% equipments.
 - a. Binary
 - b. Binary- coded decimal (BCD)
 - c. Octal
 - d. Hexadecimal

Industrial Electrician

Unit: C6 AC Machines and Controls

Level:	Three		
Duration:	35 hours		
	Theory:	17	hours
	Practical:	18	hours

Overview:

This unit is designed to provide the apprentice with the knowledge about AC machines. This unit covers three phase and single phase motors and AC generators. This unit also covers the operation of reduced voltage starting methods.

Objectives and Content:			Percent of <u>Unit Mark (%)</u>
1.	Review unit B6 DC Machines and Control	S.	5%
2.	 Describe three phase motors. a. Types Squirrel cage induction motors Wound rotor induction motors Synchronous motors b. Purpose and applications c. Operating characteristics d. Basic construction e. Terminal markings f. Nameplate ratings g. Perform related calculations 		25%
2.	 Describe single phase motors. a. Types Split phase induction motors Alternating current series motors Shaded pole motors b. Purpose and applications c. Operating characteristics d. Basic construction e. Terminal markings f. Nameplate ratings g. Perform related calculations 		20%
3.	 Describe AC generators. a. Types and construction details b. Operating characteristics and losses 		25%
		13	Rev. June 2017

c. Paralleling requirements

4. Describe and demonstrate operation of reduced voltage starting methods.

- a. Principles and applications
 - Across the line start
 - Reduced voltage start (reason for use)
- b. Types of reduced voltage starting methods
 - Resistive start
 - Wye-start
 - Delta-run start
 - Part winding start
 - Auto transformer start
 - Wound rotor motors
- c. Manual and automatic control for synchronous motors
- d. Variable frequency drive and soft start controllers
- e. Interpret and create related diagrams (design methods)

Industrial Electrician

Unit: C7 Predictive and Preventive Maintenance I

Level:	Three		
Duration:	35 hours		
	Theory:	17	hours
	Practical:	18	hours

Overview:

This unit is designed to provide the apprentice with introductory knowledge about predictive and preventive maintenance. This unit covers insulation testing, maintenance and troubleshooting procedures for stationary and rotating equipment. This unit also covers insulation testing methods on electrical systems and apparatus.

Objec	tives	s and Content:	Percent of <u>Unit Mark (%)</u>
1.	De	scribe insulation testing for stationary and rotating equipment.	50%
	a.	Purpose	
	b.	Procedures for insulation testing and safety considerations	
		Lockout / tag out procedures	
		 Equipment and personal protective grounding 	
		Maximum test voltages	
		Meter lead connections	
		 Testing and cleaning of insulating liquids 	
		 Additional hazards associated with high potential testing methods 	
	C.	Institute of Electrical and Electronics Engineers (IEEE) standard for minimum resistance for electrical systems and apparatus Low voltage wiring systems 	
		Motors and generators	
		Transformers	
		HV cables and equipment	
	d.	Types of insulation testing using a megohmmeter allowing for temperature correction • Sixty second test	on
		Step voltage test	
		Dielectric absorption test	
		Polarization Indexing	
	e.	Interpret and perform trend analysis on insulating materials using megohmmeter readings	
2.		monstrate and perform insulation testing methods on electrical systems and paratus.	25%
	а.	Megohmmeter	

- Basic function and operation
- Lockout / tag out procedures

- Equipment and personal protective grounding
- Meter lead connections
- 3. Describe and demonstrate maintenance and troubleshooting procedures for stationary and rotating equipment.
 - a. Transformer maintenance
 - Insulation Test
 - Polarity Test
 - Ratio Test
 - Core loss Test
 - Impedance Test
 - b. Testing and maintenance for AC and DC machines
 - DC motors and generators
 - AC motors and generators
 - · Rotors and stators
 - Commutator and slip rings
 - Brushes and brush rigging
 - Bearings