



# Steamfitter-Pipefitter Level 2



# **Steamfitter-Pipefitter**

Unit: B1 Industrial Drawings

**Level:** Two

**Duration:** 30 hours

Theory: 30 hours Practical: 0 hours

#### Overview:

This unit of is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of industrial drawings.

| Objectives and Content: |                                                                                                                                                                                              |     |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.                      | Define terminology associated with industrial drawings and specifications.                                                                                                                   | 20% |
| 2.                      | Identify types of industrial drawings and describe their applications.  a. process and instrumentation drawings (PandID)  b. spool sheets c. isometric (ISO) drawings d. revisions e. vendor | 20% |
| 3.                      | Identify symbols relating to industrial drawings and describe their characteristics and applications.                                                                                        | 20% |
| 4.                      | Identify industrial drawing-related documentation and describe their applications.                                                                                                           | 20% |
| 5.                      | Interpret and extract information from industrial drawings and specifications.                                                                                                               | 20% |

\*\*\*



# **Steamfitter-Pipefitter**

**Unit:** B2 Template Development

Level: Two

**Duration:** 20 hours

Theory: 20 hours Practical: 0 hours

#### Overview:

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of template development.

| Objec | tives and Content:                                                                                                    | Percent of<br>Unit Mark (%) |
|-------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.    | Define terminology associated with template development.                                                              | 20%                         |
| 2.    | Interpret information pertaining to template development found on drawings and specifications.                        | 20%                         |
| 3.    | Identify tools and equipment relating to template development and describe their applications and procedures for use. | 20%                         |
| 4.    | Identify the methods used for template development.  a. simple b. parallel line c. radial line d. triangulation       | 20%                         |
| 5.    | Describe the procedures used to develop templates.                                                                    | 20%                         |

\*\*\*

# **Steamfitter-Pipefitter**

Unit: B3 Spool and Fitting Fabrication

Level: Two

**Duration:** 22 hours

Theory: 8 hours Practical: 14 hours

#### Overview:

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of spool and fitting fabrication.

| Objecti | ves and Content:                                                                                                                      | Percent of<br>Unit Mark (%) |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.      | Define terminology associated with spool fabrication.                                                                                 | 4%                          |
| 2.      | Interpret information pertaining to spool fabrication found on drawings and specifications.                                           | 4%                          |
| 3.      | Identify tools and equipment relating to spool fabrication and describe their applications and procedures for use.                    | 4%                          |
| 4.      | Describe the procedures used to fabricate and assemble pipe spools.                                                                   | 4%                          |
| 5.      | Demonstrate the procedures used to fabricate pipe spools.                                                                             | 32%                         |
| 6.      | Define terminology associated with fitting fabrication.                                                                               | 4%                          |
| 7.      | Interpret codes and regulations pertaining to fitting fabrication.                                                                    | 4%                          |
| 8.      | Interpret information pertaining to fitting fabrication found on drawings and specifications.                                         | 3%                          |
| 9.      | Identify tools and equipment relating to fitting fabrication and describe their applications and procedures for use.                  | 3%                          |
| 10.     | Identify types of fittings and describe their characteristics and applications.  a. elbow b. tees c. true wyes d. laterals e. crosses | 3%                          |
| 11.     | Describe the procedures used to layout and fabricate fittings.                                                                        | 3%                          |

Rev. June 2011

3

| 12. | Demonstrate knowled     | aa af tha r  | rocoduros to | fahricata nina  | fittings  |
|-----|-------------------------|--------------|--------------|-----------------|-----------|
| 14. | Delliolistiate kilowieu | ue oi ille i | カレしせはいせる iO  | Tabilicate bibe | HILLIHUS. |

32%

\*\*\*

## **Steamfitter-Pipefitter**

Unit: B4 Advanced Hoisting, Lifting, and Rigging

Level: Two

**Duration:** 14 hours

Theory: 14 hours Practical: 00 hours

#### Overview:

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of advanced hoisting, lifting, and rigging.

### **Objectives and Content:**

Percent of Unit Mark (%)

- 1. Identify hazards and describe safe work practices pertaining to advanced hoisting, 25% lifting and rigging operations.
  - a. energized power lines
  - b. critical lifts
  - c. weather conditions
  - d. ground conditions
  - e. multi-tag lines
- 2. Identify documentation required for engineered lifts.

25%

3. Describe how to do calculations pertaining to hoisting, lifting and rigging.

25%

- a. sling angle
- b. load/weight
- c. centre of gravity
- d. safe working loads (SWL)

#### 4. Describe how to do advanced lifts.

25%

- a. ball and hook
- b. multi-lift
- c. transferring
- d. unbalanced
- e. positioning

\*\*\*

5

## Steamfitter-Pipefitter

Unit: B5 Stainless Steel Piping

Level: Two

**Duration:** 18 hours

Theory: 8 hours Practical: 10 hours

#### Overview:

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of stainless steel piping.

| Object | ives and Content:                                                                                                             | Percent of<br>Unit Mark (%) |
|--------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.     | Define terminology associated with stainless steel piping.                                                                    | 3%                          |
| 2.     | Identify hazards and describe safe work practices pertaining to stainless steel piping.                                       | 3%                          |
| 3.     | Interpret codes and regulations pertaining to stainless steel piping.                                                         | 3%                          |
| 4.     | Interpret information pertaining to stainless steel piping found on drawings and specifications.                              | 3%                          |
| 5.     | Describe identification systems and methods used for stainless steel piping.                                                  | 3%                          |
| 6.     | Identify tools and equipment related to stainless steel piping and describe their applications and procedures for use.        | 3%                          |
| 7.     | Identify fittings used with stainless steel piping and describe their purpose and applications.                               | 3%                          |
| 8      | Identify stainless steel piping accessories and describe their purpose and applications.  a. supports  b. hangers  c. sleeves | 3%                          |
| 10     | Explain the systems of measurement for stainless steel piping.  a. dimension  b. length  c. wall thickness/schedule           | 3%                          |
| 11.    | Describe the procedures used to measure stainless steel piping.                                                               | 3%                          |

| 12. | Describe the procedures used to inspect stainless steel piping.                                                                                                                           | 3%    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 13. | Identify the methods used to cut stainless steel piping and describe their associated procedures.                                                                                         | 3%    |
| 14. | Identify the methods used to join stainless steel piping and describe their associated procedures.  a. threaded  b. grooved  a. welded  b. flanged  c. press-fit  d. compression fittings | 3%    |
| 15. | Describe the procedures used to install fittings and accessories for stainless stepping.                                                                                                  | el 3% |
| 16. | Describe the different types, schedules, uses of stainless steel pipe.                                                                                                                    | 5%    |
| 17. | Demonstrate the procedures used to measure, cut and join stainless steel piping                                                                                                           | . 50% |

\*\*\*

### Steamfitter-Pipefitter

Unit: B6 Fiberglass Piping

Level: Two

**Duration:** 3 hours

Theory: 3 hours Practical: 0 hours

#### Overview:

This unit is designed to provide the Steamfitter-pipefitter apprentice with the knowledge and understanding of fiberglass piping

| Object | ives and Content:                                                                                                  | Percent of<br>Unit Mark (%) |
|--------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.     | Define terminology associated with fiberglass piping.                                                              | 7%                          |
| 2.     | Identify hazards and describe safe work practices pertaining to fiberglass piping.                                 | 7%                          |
| 3.     | Interpret codes and regulations pertaining to fiberglass piping.  a. manufacturers' certification requirements     | 7%                          |
| 4.     | Interpret information pertaining to fiberglass piping found on drawings and specifications.                        | 7%                          |
| 5.     | Describe the identification systems and methods for fiberglass piping.                                             | 7%                          |
| 6.     | Identify tools and equipment relating to fiberglass piping and describe their applications and procedures for use. | 7%                          |
| 7.     | Identify fittings used with fiberglass piping and describe their purpose and applications.                         | 7%                          |
| 8.     | Identify fiberglass piping accessories and describe their purpose and application                                  | s. 7%                       |
|        | a. supports                                                                                                        |                             |
|        | b. hangers                                                                                                         |                             |
|        | c. sleeves                                                                                                         |                             |
| 9.     | Explain the systems of measurement for fiberglass piping.  a. dimension  b. length  c. wall thickness/schedule     | 7%                          |
| 10.    | Describe the procedures used to measure fiberglass piping.                                                         | 7%                          |

8

| 11. | Describe the procedures used to inspect fiberglass piping.                                    | 7% |
|-----|-----------------------------------------------------------------------------------------------|----|
| 12. | Identify the methods used to cut fiberglass piping and describe their associated procedures.  | 6% |
| 13. | Identify the methods used to join fiberglass piping and describe their associated procedures. | 6% |
| 14. | Describe the different types, schedules, uses of stainless fiberglass pipe.                   | 5% |
| 15. | Describe the procedures used to install fittings and accessories for fiberglass piping.       | 6% |

\*\*\*

g Rev. June 2011

### Steamfitter-Pipefitter

Unit: B7 Specialty Piping

Level: Two

g.

other

**Duration:** 21 hours

Theory: 21 hours Practical: 0 hours

#### Overview:

Steamfitters-Pipefitters require a good, practical grasp of specialty piping. This unit is the program gateway to further learning about these topics.

| Objec | tives | and Content:                                                                                                 | Percent of<br>Unit Mark (%) |
|-------|-------|--------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.    | Def   | fine terminology associated with specialty piping.                                                           | 6%                          |
| 2.    | lde   | ntify hazards and describe safe work practices pertaining to specialty piping.                               | 6%                          |
| 3.    | Inte  | erpret codes and regulations pertaining to specialty piping.                                                 | 6%                          |
| 4.    |       | erpret information pertaining to specialty piping found on drawings and ecifications.                        | 6%                          |
| 5.    | De    | scribe the identification systems and methods for specialty piping.                                          | 6%                          |
| 6.    |       | ntify tools and equipment relating to specialty piping and describe their plications and procedures for use. | 6%                          |
| 7.    |       | ntify specialty piping systems and describe their characteristics and blications.                            | 6%                          |
| 8.    | lde   | ntify types of specialty piping and describe their properties and characteristics                            | s. 7%                       |
|       | a.    | duplex                                                                                                       |                             |
|       | b.    | super duplex                                                                                                 |                             |
|       | a.    | copper nickel                                                                                                |                             |
|       | b.    | chrome molybdenum                                                                                            |                             |
|       | C.    | monel                                                                                                        |                             |
|       | d.    | inconel                                                                                                      |                             |
|       | e.    | titanium                                                                                                     |                             |
|       | f.    | aluminum                                                                                                     |                             |

| 9.  | Identify fittings used with specialty piping and describe their purpose and applications.    | 7% |
|-----|----------------------------------------------------------------------------------------------|----|
| 10. | Identify specialty piping accessories and describe their purpose and applications.           | 7% |
|     | a. supports                                                                                  |    |
|     | b. hangers                                                                                   |    |
|     | c. sleeves                                                                                   |    |
| 11. | Explain the systems of measurement for specialty piping.                                     | 7% |
|     | a. dimension                                                                                 |    |
|     | b. length                                                                                    |    |
|     | c. wall thickness/schedule                                                                   |    |
| 12. | Describe the procedures used to measure specialty piping.                                    | 6% |
| 13. | Describe the procedures used to inspect specialty piping.                                    | 6% |
| 14. | Identify the methods used to cut specialty piping and describe their associated procedures.  | 6% |
| 15. | Identify the methods used to join specialty piping and describe their associated procedures. | 6% |
| 16. | Describe the procedures used to install fittings and accessories for specialty piping.       | 6% |

\*\*

11

## Steamfitter-Pipefitter

Unit: B8 Hydronic Systems

Level: Two

**Duration:** 91 hours

Theory: 66 hours Practical: 25 hours

#### Overview:

Steamfitters-Pipefitters require a good, practical grasp of hydronic systems. This unit is the program gateway to further learning about these topics.

| Objecti | ves and Content:                                                                                                  | Percent of<br>Unit Mark (%) |
|---------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.      | Define terminology associated with hydronic systems.                                                              | 3%                          |
| 2.      | Identify hazards and describe safe work practices pertaining to hydronic systems.                                 | 3%                          |
| 3.      | Interpret codes and regulations pertaining to hydronic systems.                                                   | 3%                          |
| 4.      | Interpret information pertaining to hydronic systems found on drawings and specifications.                        | 3%                          |
| 5.      | Identify tools and equipment relating to hydronic systems and describe their applications and procedures for use. | 3%                          |
| 6.      | Explain the principles of heat transfer.  a. radiation                                                            | 3%                          |
|         | b. conduction                                                                                                     |                             |
|         | c. convection                                                                                                     |                             |
| 7.      | Identify sources of heat used in hydronic systems.  a. oil                                                        | 3%                          |
|         | b. gas                                                                                                            |                             |
|         | c. solid fuel                                                                                                     |                             |
|         | d. geothermal                                                                                                     |                             |
|         | e. solar                                                                                                          |                             |
|         | f. electric                                                                                                       |                             |

| 8.  | lde | ntify sources of cooling used in hydronic systems.                                                                  | 3% |
|-----|-----|---------------------------------------------------------------------------------------------------------------------|----|
|     | a.  | ground source                                                                                                       |    |
|     | b.  | cooling                                                                                                             |    |
|     | C.  | direct expansion                                                                                                    |    |
| 9.  | ope | entify types of hydronic systems and describe their characteristics and eration.                                    | 3% |
|     | a.  | high pressure (awareness of)                                                                                        |    |
|     | b.  | low pressure                                                                                                        |    |
| 10. |     | entify hydronic heating system components and describe their purpose and eration.  piping                           | 3% |
|     | b.  | boilers : low mass and high mass                                                                                    |    |
|     | C.  | boiler trim                                                                                                         |    |
|     | d.  | heat pumps                                                                                                          |    |
|     | e.  | expansion tanks                                                                                                     |    |
|     | f.  | heat exchangers                                                                                                     |    |
|     | g.  | circulating pumps                                                                                                   |    |
|     | h.  | mixing components                                                                                                   |    |
|     | i.  | valves                                                                                                              |    |
| 11. |     | plain forces that impact on pipe and tubing in hydronic systems and their sociated calculations.  thermal expansion | 3% |
|     | b.  | thermal contraction                                                                                                 |    |
|     | C.  | weight                                                                                                              |    |
|     | d.  | friction loss                                                                                                       |    |
|     | e.  | turbulence                                                                                                          |    |
|     | f.  | galvanic action                                                                                                     |    |
| 12. |     | entify types of heat transfer equipment and describe their characteristics and eration radiators                    | 3% |
|     | b.  | convectors                                                                                                          |    |
|     | C.  | pipe coils                                                                                                          |    |
|     | d.  | horizontal and vertical unit heaters                                                                                |    |
|     | e.  | radiant panels                                                                                                      |    |
|     | f.  | Heat exchangers, others, panels                                                                                     |    |
| 13. |     | entify fluids used in hydronic systems and describe their characteristics and plications.  water                    | 3% |

13

|     | C. | methyl hydrate                                                                                                                      |    |
|-----|----|-------------------------------------------------------------------------------------------------------------------------------------|----|
| 14. |    | entify additives used in hydronic systems and describe their purpose and plications.                                                | 3% |
| 15. |    | entify piping arrangements used with hydronic heating systems and describe<br>eir characteristics and applications.  reverse return | 3% |
|     | b. | direct return                                                                                                                       |    |
|     | C. | monoflow                                                                                                                            |    |
|     | d. | series loop                                                                                                                         |    |
|     | e. | primary/secondary                                                                                                                   |    |
| 16. |    | ntify hydronic cooling system components and describe their purpose and eration.  piping                                            | 3% |
|     | b. | cooling towers                                                                                                                      |    |
|     | C. | expansion tanks                                                                                                                     |    |
|     | d. | chillers                                                                                                                            |    |
|     | e. | circulating pumps                                                                                                                   |    |
|     | f. | valves                                                                                                                              |    |
|     | g. | panels, coils, etc.                                                                                                                 |    |
| 17. |    | ntify piping arrangements used with hydronic cooling systems and describe ir characteristics and applications.                      | 3% |
| 18. | De | scribe the procedures used to layout and install piping for hydronic systems.                                                       | 3% |
| 19. | De | scribe the procedures used to install hydronic system components.                                                                   | 3% |
| 20. |    | Describe the procedures used to maintain and repair hydronic system omponents.                                                      | 3% |
| 21. |    | Describe the procedures used to test and troubleshoot hydronic system omponents.                                                    | 3% |
| 22. | De | scribe the procedures used to install heat transfer equipment.                                                                      | 3% |
| 23. | De | scribe the procedures used to protect heat transfer equipment.                                                                      | 3% |
| 24  | De | scribe the procedures used to maintain and renair heat transfer equipment                                                           | 3% |

b. glycol

| 25. | Describe the procedures used to test and troubleshoot heat transfer equipment.                        | 3%  |
|-----|-------------------------------------------------------------------------------------------------------|-----|
| 26. | Demonstrate the procedures used to install, maintain, repair, test and Troubleshoot hydronic systems. | 25% |

\*\*\*



### **Steamfitter-Pipefitter**

Unit: B9 Hydronic Systems Control

**Level:** Two

**Duration:** 27 hours

Theory: 21 hours Practical: 6 hours

#### Overview:

Steamfitters-Pipefitters require a good, practical grasp of hydronic systems control. This unit is the program gateway to further learning about these topics.

| Objectives and Content: |     |                                                                                                                                                                       | Percent of<br>Unit Mark (%) |
|-------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                         | 1.  | Define terminology associated with hydronic systems control.                                                                                                          | 6%                          |
|                         | 2.  | Identify hazards and describe safe work practices pertaining to hydronic systems control.                                                                             | 6%                          |
|                         | 3.  | Interpret codes and regulations pertaining to hydronic systems control.                                                                                               | 6%                          |
|                         | 4.  | Interpret information pertaining to hydronic systems control found on drawings and specifications.                                                                    | 6%                          |
|                         | 5.  | Identify tools and equipment relating to hydronic systems controls and describe their applications and procedures for use.                                            | 6%                          |
|                         | 6.  | Identify types of hydronic systems controls and describe their characteristics, applications and operation  a. operating and temperature controls  b. safety controls | 6%                          |
|                         | 7.  | Identify hydronic systems control components and describe their purpose and operation.                                                                                | 7%                          |
|                         | 8.  | Describe the procedures used to install hydronic systems control components.                                                                                          | 7%                          |
|                         | 9.  | Describe the procedures used to protect hydronic systems control components.                                                                                          | 7%                          |
|                         | 10. | Describe the procedures used to set and adjust hydronic systems control components.                                                                                   | 7%                          |
|                         | 11. | Describe the procedures used to maintain and repair hydronic systems control                                                                                          | 7%                          |

### components.

- 12. Describe the procedures used to test and troubleshoot hydronic systems control components. 7%
- 13. Demonstrate the procedures used to install, maintain, repair, test and troubleshoot 22% hydronic systems control.

\*\*\*



### Steamfitter-Pipefitter

Unit: B10 Cross Connection Controls

**Level:** Two

**Duration:** 7 hours

Theory: 7 hours

Practical: 0 hours

### Overview:

This uni is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of cross connection control. After completing this unit, apprentices will be able to learn, amongst other skills, the following objectives.

| Objectives and Content: |                                                                                                                           |     |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| 1.                      | Define terminology associated with cross connection control.                                                              | 10% |
| 2.                      | Identify hazards and describe safe work practices pertaining to cross connection control.                                 | 10% |
| 3.                      | Interpret codes and regulations pertaining to cross connection control: training and certification requirements.          | 10% |
| 4.                      | Interpret information pertaining to cross connection control found on drawings and specifications.                        | 10% |
| 5.                      | Identify tools and equipment relating to cross connection control and describe their applications and procedures for use. | 10% |
| 6.                      | Explain backflow and its causes.                                                                                          | 10% |
| 7.                      | Identify types of cross connection control devices and describe their characteristics, operation and applications.        | 10% |
| 8.                      | Describe the procedures used to install cross connection control devices.                                                 | 10% |
| 9.                      | Describe the procedures used to maintain and repair cross connection control devices.                                     | 10% |
| 10.                     | Describe the procedures used to test and troubleshoot cross connection control devices.                                   | 10% |

### **Steamfitter-Pipefitter**

Unit: B11 Mathematics/Science II (includes heat load calculations,

fan laws and pumps)

Level: Two

**Duration:** 40 hours

Theory: 40 hours Practical: 0 hours

#### Overview:

Upon completion of this unit of instruction apprentices will be able to show understanding of intermediate mathematics and science fundamentals related to steamfitter-pipefitter situations which includes electricity

| Objec | Objectives and Content:                                                                                                                                                |     |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| 1.    | Describe by reviewing level one contents relating to elevations and grades.                                                                                            | 6%  |  |  |
| 2.    | Describe rolling offsets.                                                                                                                                              | 6%  |  |  |
| 3.    | Describe jumper offsets.                                                                                                                                               | 6%  |  |  |
| 4.    | Describe special case of 45° offset.                                                                                                                                   | 6%  |  |  |
| 5.    | Describe water pressure: head and force.                                                                                                                               | 6%  |  |  |
| 6.    | Describe air pressure and air chambers.                                                                                                                                | 6%  |  |  |
| 7.    | Describe ratio of pipe capacities.                                                                                                                                     | 6%  |  |  |
| 8.    | Describe ratio and proportion.                                                                                                                                         | 6%  |  |  |
| 9.    | Describe by reviewing any problem contents.                                                                                                                            | 6%  |  |  |
| 10.   | Describe basic electricity.  a. electron theory  b. Ohm's Law  c. basic series circuits  d. parallel circuit  e. millivoltage  f. 24 volt circuit  g. 110 volt circuit | 15% |  |  |
|       | h open and closed circuits (controls)                                                                                                                                  |     |  |  |

|     | j.                           | voltage drops in circuit                      |     |
|-----|------------------------------|-----------------------------------------------|-----|
| 11. | Describe electrical devices. |                                               | 15% |
|     | a.                           | thermopile and thermocouple                   |     |
|     | b.                           | transformer                                   |     |
|     | C.                           | gas valves                                    |     |
|     | d.                           | thermostats                                   |     |
|     | e.                           | safety controls                               |     |
|     | f.                           | connectors and connections                    |     |
|     | g.                           | wire sizes and types                          |     |
|     | h.                           | Identify and explain meters                   |     |
|     | i.                           | Code requirements                             |     |
|     | j.                           | motors                                        |     |
| 12. | Des                          | scribe gas appliances, sequence of operation. | 16% |
|     | a.                           | basic wiring systems                          |     |
|     | b.                           | circuit wiring systems                        |     |
|     | C.                           | wiring diagrams of the appliances             |     |
|     | d.                           | troubleshooting controls and circuits         |     |
|     | e.                           | electronic ignition systems                   |     |
|     |                              |                                               |     |
|     |                              |                                               |     |

relay circuit

i.

\*\*\*

## Steamfitter-Pipefitter

Unit: B12 Arc Welding

**Level:** Two

**Duration:** 22 hours

Theory: 7 hours Practical: 15 hours

#### Overview:

Steamfitter-Pipefitter's require a good, practical grasp of arc welding. This unit is the program gateway to further your welding skills.

| Objectives and Content: Pe |                                                                                                                                          |              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.                         | Define terminology associated with arc welding.                                                                                          |              |
| 2.                         | Identify hazards and describe safe work practices pertaining to arc welding.  a. personal  b. workplace                                  | 4%           |
| 3.                         | Interpret codes and regulations pertaining to arc welding.  a. certification requirements                                                | 4%           |
| 4.                         | Interpret information pertaining to arc welding found on drawings and specifications.  a. symbols and abbreviations                      | 4%           |
| 5.                         | Describe the properties and characteristics of metals.                                                                                   | 4%           |
| 6.                         | Identify types of arc welding equipment and describe their associated components, accessories and consumables.                           | 4%           |
| 7.                         | Identify basic weld joints and describe their applications.                                                                              | 4%           |
| 8.                         | Describe the procedures used to set up, adjust, maintain and store arc welding equipment, their components, accessories and consumables. | 4%           |
| 9.                         | Describe the procedures used to tack weld.                                                                                               | 4%           |
| 10.                        | Demonstrate the procedures used to set up, adjust, maintain and store arc welding                                                        | <b>g</b> 64% |

\*\*\*