

How Extending Crop Rotations Can [Pay Dividends] Save Money

David Kaminski, Field Crop Pathologist Manitoba Agriculture and Resource Development January 23, 2020

Kaminski back in the saddle, again

- Came to Manitoba in 2001 to be Field Crops Pathologist
- Turned over the reins to Holly Derksen in 2008.
- Left public life in 2013. Six years as self-employed arborist – 3DTreeCare
- Signed on as "oldest rookie in MB Agriculture", April 15, 2019

What's changed?

- A lot!
- In 2001, MB growers were still consumed by the battle against FHB in wheat.
 - Needed EU registration for fungicides
 - Varieties of the time had, at best, Fair resistance to head blight
 - Still developing a predictive risk forecast

What's else?

- Other major issue of the day was Sclerotinia stem rot in canola
- Consistently wet years had led to prophylactic use of fungicides.
- Trying to use weather-based risk prediction tools

 Found to be too dependent on field histories and microclimatic effects.

Fast forward to 2019

• Very strong reliance on 2-3 crops in rotation

Conclusions

- Over-reliance on a few crops leads to buildup of hard-to-manage (esp. soil-borne) diseases
- A minimum 2-year break between crops generally serves to allow pathogen breakdown
- Adding dis-similar crops to a rotation helps to manage and spread risks from both pests and environmental extremes

Crop mix in Manitoba

How does your area compare?

Canola & Wheat dominate

Canola Frequency on Prairies (2009-16 Spatial Density from AAFC)

Source: Murray Hartman, presentation at Canola Discovery Forum, November 2019

 \ll

Where are those other crops going?

RANK			2018
1	canola	3119.5	35%
2	wheat	2706.0	30%
3	soybean	1841.4	21%
4	oats	401.8	4%
5	corn	351.8	4%
6	barley	236.2	3%
7	dry bean	118.9	1%
8	field pea	78.1	1%
9	sunflower	42.9	0%
10	flax	33.7	0%
		8930	100%

7 Retweets 34 Likes

Simon Ellis @FarmLifeMB · 2d Replying to @realloudlyndsey Barley has been the crop we have cut. Used to grow a lot on our farm and still grows a good crop, but not enough demand anymore. We grow it 1 in 5 years now.

17 ♡2 %

Günter 🌾 🙌 @gmjochum · 1d 🗸 × Replying to @realloudlyndsey

Flax, haven't grown it for over 25 yrs. have no desire to grow it. Won't yield well here, coupled with only average price = no return.

10 year history of annual cropping in MB

	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009
canola	35%	34%	35%	34%	36%	36%	40%	42%	40%	38%
wheat	30%	26%	31%	34%	33%	36%	33%	32%	34%	35%
soybean	21%	25%	18%	16%	16%	12%	9%	9%	7%	6%
oats	4%	5%	4%	5%	4%	4%	5%	7%	6%	6%
corn	4%	4%	4%	2%	3%	3%	3%	3%	2%	-
barley	3%	3%	4%	4%	4%	5%	6%	4%	5%	7%
dry bean	1%	1%	1%	1%	2%	1%	2%	1%	2%	2%
field pea	1%	1%	2%	1%	1%	1%	1%	0%	1%	1%
sunflower	0%	1%	1%	1%	1%	1%	1%	1%	2%	2%
flax	0%	0%	1%	1%	1%	1%	1%	1%	2%	4%

Manitoba 🗫

Seed Manitoba 2018

Seed Manitoba 2019

Seed Manitoba 2020

Seed Manitoba 2017

Seed Manitoba 2016

Seed Manitoba 2015

Ways to consider crop type

- Grasses vs. Broadleaves
 Balanced 46% vs. 54%
- High Residue vs. Low
- Cool Season vs. Warm
 Skewed 81% vs. 19%
- Herbicide Tolerant vs. Not
- Deep-rooted vs. Shallow

- Are you growing as a commodity or for a specific end use?
- Can you extract more value from what you're already growing?

Varieties planted in Manitoba – 2019

Variety	Category	Acres
CDC Austenson	Food and Feed	76,675
Conlon	Food and Feed	71,946
AAC Synergy	Malting (recommended)	32,764
CDC Copeland	Malting (recommended)	30,400
AC Metcalfe	Malting (recommended)	25,671
Celebration	Malting (other)	19,253
AAC Connect	Malting (recommended)	14,187
Newdale	Malting (other)	13,173
Canmore	Food and Feed	9,795
Total acres		337,775

MASC Seeded Acreage Report 2019

Choose Less Susceptible Crops/Varieties

Most susceptib	le —		→	Least su	sceptible
CWAD	CPS	CWRS	Barley		Oats
Triticale			6 Row	2 Row	
CWES					

Winter wheat

								Resistance Level:								
	Site			Maturity	Height	Test Wt	Rough or			Surface		Netted	Spotted			Fusarium ³
	Years	Yield	Protein	+/-	+/-	+/-	Smooth		Loose	-borne	Root	Net	Net	Spot	Stem ²	Head
Category / Variety ¹	Tested	(bu/acre)	%	88 days	89 cm	48.7 lb/bu	Awns	Lodging	Smut	Smut	Rot	Blotch	Blotch	Blotch	Rust	Blight
Malting: Acceptance	- Reco	ommen	ded						\frown							
AAC Connect (2)®	35	104	12.5	0	-3	-0.5	R	G	S	R	MS	- I	MR	MR	MR	MR
AAC Synergy (2)	32	112	12.2	0	-3	-0.4	R	G	S		1	MR	R	R	MR	1
AC Metcalfe (2)	205	97	12.9	0	0	0	R	F	R	1		S		- I	MR	
CDC Bow (2)@	44	105	12.1	1	3	0.5	R	G	S		MS	S	MR	- I	MR	MS
CDC Copeland (2)	51	97	12.5	0	5	-0.5	R	F	MS	/		1	- I	S	MR	- I
Malting: Other									\backslash /							
CDC Churchill (2)	19	109	12.2	1	-5	-0.2	R	G	MS	MR	—	MR	MR	- I	MR	MS
CDC Copper (2)	19	105	12.3	1	-5	-0.7	R	G		MR	MR	MR	MR			MS
CDC Fraser (2)@	32	108	12.1	1	0	-0.7	R	G	R	MR	MS	MR	MR	MR	MR	I.
AAC Goldman (2)@	50	105	12.7	1	3	-0.4	R	G	MS		S		R			MR
CDC Goldstar (2)@	14	104	12.4	0	0	0	R	G	- I	R	S	1	MR	- I	- I -	MS
CDC Kindersley (2)	34	103	12.7	-1	-3	0	R	G	S	R		MS	MR		MR	
CDC Meredith (2)	42	103	12.5	2	-3	-2.1	R	F	R	MR	1	MS	R	MS	MR	I I
CDC PlatinumStar (2)	o 18	99	12.2	0	3	-0.5	R	F	S	R	S		MR	S		MR

Cereals diseases – effects of rotation

- Not strong
 - Rusts (blown in)
 - Fusarium head blight (other incl. non-cereal hosts)
- Significant impacts
 - Wheat (Septoria & tan spot)
 - Barley (Net Blotch)
 - Oats (bacterial blight)
 - Corn (Goss' wilt)

Slippery Slope – Pest Buildup

	Fusarium HB	Root Rots	Net Blotch	Goss Wilt	Sclerotinia	Rhizoctonia RR	Fusarium RR	Pasmo	Phytophthora RR	Blackleg	Ascochyta	Aphanomyces	Clubroot
BREAK	2	3+	2	2	3+	3+	3+	3	3+	2	3	3+	3+
Wheat	+++	++											
Oat	+	+											
Barley	+	+++	+++										
Grain Corn	+	+		+++									
Canola					+++	++				+++			+++
Flax					+	++		+++					
Field Pea					+	+					+++	+++	
Soybean					++	+	++		+++				
Sunflower					++++	+							

The most destructive disease affecting annual broadleaf crops in wetter years

- Sclerotinia sclerotiorum (Lib.) de Bary
- Causes stem rot, white mold, wilt, head rot
- Infects most broadleaf crops:
 - Canola, pulses and sunflowers

life cycle / spore illustrations]

How Apothecia Appear

- From sclerotia within 1 2 in. of surface
- When soil is near-saturated for 7 8 days
 - Between field capacity and saturation
 - More likely in heavier textured soils
 - Usually beneath a plant "canopy"
- Over a wide temperature range

- More likely when it's cool

Rotational concerns with too much canola

- Blackleg
 - Selection of new pathotypes
 - Sexual spores are a neighborhood issue
 - Inoculum overload

Blackleg may not be the most yield-robbing fungus that prairie canola producers face, but it is certainly a concern.

"Growers shouldn't assume that blackleg doesn't have a repercussion for their overall profitability," said Clint Jurke of the Canola Council of Canada.

2019 Blackleg Disease Survey Results

preliminary data

Source: Canola Council of Canada

New concern for canola - clubroot

Rotational concerns with too much canola

- Clubroot
 - Expansion of an emerging disease
 - Long-lived resting spores require longer break
 - Inoculum movement through wind and water

History of Clubroot in Manitoba

- Vegetable crops reports dating back to 1925
- 2005: Low severity symptoms observed in field
 All testing came back inconclusive
- 2011: Started detecting *Plasmodiophora brassicae* var. Woronin DNA in soil samples
- 2013: First case of clubroot symptoms in field in canola in MB
- 2017: Formal township survey concluded
- 2019: Confirmation of resistance-breaking pathotype 3A in MB

Canola Frequency on Prairies (2009-16 Spatial Density from AAFC)

Source: Murray Hartman, presentation at Canola Discovery Forum, November 2019

Manitoba 🗫

- Potential high-risk areas for developing clubroot
- More frequent canola crops in an area = greater risk of clubroot spore increase and infection
- >40% canola acres in a year means susceptible crop, and lots of it

Just because your RM is not RED on the clubroot map, doesn't mean you are not at a higher risk for finding it

Scouting

- Look for areas that are stressed or prematurely ripening
- Check field approaches, corners, low spots, water runs and near yards and shelterbelts
- Dig up (not just pull) plants from these areas and compare to healthy portions of field
- Clubroot dev. is favoured by moist, warm soils

SOURCE: MANITOBA AGRICULTURE, 2013

It 's all about the numbers

- Soils in Alberta can have 10 million or 100 million resting spores per gram
- A 90% reduction could still leave a million spores

(eep the numbers as low as possible)

1,000

1.000

10,000

100,000

1,000,000

Clubroot severity at different concentrations of resting spores per gram of soil This will vary with soil conditions

Top canola varieties and disease ratings

canola			clubroot	blackleg
L233P (LT)	1407989	44%		R
L255PC (LT)	371835	12%	R	R
L252 (LT)	306110	10%		R
L234PC (LT)	83952	3%	R	R
L230 (LT)	72719	2%		R
46H75 (ST)	58582	2%		R
P501L (LT)	54068	2%	R	R
75-65 RR (RT)	53420	2%		R
1026 RR (RT)	50634	2%	R	R
45CM39 (RT)	41954	1%	R	R

R-rated Hybrids

n

- 10 LL
- 2 CL
- 42 Total

Commercially available in 2020

CLUBROOT RESISTANT CANOLA VARIETY LISTING

			Clubroot	Resistance	4	
Company	Hybrid	Herbicide Tolerance ¹	Resistance Rating	Resistance Generation ²	Blackleg Resistance	Pod Shatter Tolerance
BASF - InVigor	L241C	LL	R	1	R	
BASF - InVigor	L234PC	LL	R	2	R	Yes
BASF - InVigor	L255PC	LL	R	1	R	Yes
BASF - InVigor	L258HPC	LL	R	1	R	Yes
BASF - InVigor	LR344PC	LL/TF	R	1	R	Yes
BASF - InVigor	L345PC	LL	R	1	R	Yes
BASF - InVigor	L352C	LL	R	1	R	11.0.00
BrettYoung	4187 RR	RR	R	1	R	
BrettYoung	6076 CR	RR	R	2	R	
BrettYoung	6090 CR	RR	R	1	R	Yes
BrettYoung	BY 5105 CL	CL	R	1	R	
BrettYoung	BY 6204 TF	TF	R	1	R	
BrettYoung	BY 6207 TF	TF	R	2	R	
BREVANT seeds	1024 RR	RR	R	1	R	
BREVANT seeds	1026 RR	RR	R	1	R	
BREVANT seeds	1028 RR	RR	R	1	R	
BREVANT seeds	2028 CL	CL	R	1	R	
BREVANT seeds	B3010M	LL	R	2	R	Yes
BREVANT seeds	B3011	LL	R	1	R	
BREVANT seeds	D3155C	RR	R	1		
Cargill - VICTORY	V12-3	RR	R	1	R	
Cargill - VICTORY	V14-1	RR	R	1	R	
Cargill - VICTORY	V24-1	RR	R	1	R	
Cargill - VICTORY	V25-1T	TF	R	1	R	
Canterra Seeds	CS2000	RR	R	1	R	
Canterra Seeds	CS2600 CR-T	TF	R	2	R	Yes
DEKALB	75-42 CR	RR	R	1	R	
DEKALB	DKTF 94 CR	TF	R	1	R	
DEKALB	DKTF 98 CR	TF	R	1	R	
Pioneer Hi-Bred	45CM39	RR	R	2	R	Yes
Pioneer Hi-Bred	45CS40	RR	R	1	R	
Pioneer Hi-Bred	45H33	RR	R	1	R	
Pioneer Hi-Bred	45H37	RR	R	1	R	
Pioneer Hi-Bred	P501L	LL	R	1	R	
Nutrien Ag Solutions	PV 580 GC	RR	R	1	R	
Nutrien Ag Solutions	PV 581 GC	RR	R	1	R	
Nutrien Ag Solutions	PV 585 GC	RR	R	1	R	
Nutrien Ag Solutions	PV 591 GCS	RR	R	1	R	
Nutrien Ag Solutions	PV 680 LC	LL	R	1	R	
Nutrien Ag Solutions	PV 780 TC	TF	R	1	R	
WinField United Canada	CP19R1C	RR	R	1	R	
WinField United Canada	CP20R3C	RR	R	2	R	

1 Herbicide tolerance trait, LL = Liberty Link, RR = Roundup Ready, TF = TruFlex Roundup Ready, CL = Clearfield Herbicide System

2 Second-generation clubroot genetic resistance may demonstrate an enhanced resistance to certain clubroot pathotypes.

How to manage clubroot

- Rotation, rotation, rotation
 - Scout for disease & pathogen
 - Stop movement of resting spores
 - Stop spore increase
 - Employ patch management
 - Use CR varieties if your area has higher spore loads or fields with symptoms

Sanitation & Biosecurity

• Regulating entry to your fields

• Requiring booties or cleaning footwear with bleach

- Staging field operations to reduce soil transfer
 - e.g. Till field when drier, preventing clods sticking on equipment
 - Do field work last on infected field, then clean equipment

Current status

Another "slow building" soil-borne disease

- Soybean Cyst Nematode (SCN) won't see aboveground symptoms until levels have built for a number of years.
- Cysts on roots are tiny and not likely to be visualized unless roots are washed carefully
- The pest survives as eggs in encysted (dead) females and can move with the soil by water & wind

worms

Both these pests (clubroot and SCN) will establish where rotation is "too tight"

- But can go undetected until such time as they require lengthy breaks to allow breakdown of the pest
- Resistant genotypes are already available but may need to be rotated as well to prevent overcoming resistance.

Assumptions: Crop Sequence Yields

					Crop Pla	anted			
Previous Crop	Spring Wheat	Oat	Barley	Canola	Flax	Field Pea	Soybean	Sunflower	Grain Corn
Sp Wheat	85	94	95	102	104	103	102	103	96
Oat	91	79	78	95	92	93	100	102	99
Barley	88	90	82	100	102	91	100	96	92
Canola	100	101	103	87	86	98	100	92	99
Flax	96	90	107	103	83	91	98	88	85
Field Pea	102	110	106	104	148	-	95	-	98
Soybean	107	108	107	103	107	90	93	103	103
Sunflower	102	102	106	90	99	85	93	82	97
Grain Corn	98	110	94	110	-	90	101	115	88
Yield/ac	50 bu	101 bu	65 bu	36 bu	21 bu	38 bu	35 bu	1607 lb	121 bu

<u>Source:</u> Yield response of Manitoba crops sown on large (>120 acre) fields of various previous crop (stubble) in rotation 2010-2016 (MASC)

Conclusions

- Over-reliance on a few crops leads to buildup of hard-to-manage (esp. soil-borne) diseases
- A minimum 2-year break between crops generally serves to allow pathogen breakdown
- Adding dis-similar crops to a rotation helps to manage and spread risks from both pests and environmental extremes

Crop Diagnostic School 2020

<mark>plan for Crop</mark>	plan for Crop Diagnostic School 2020								triflu	uralin possi	ble				
canola	wheat	soybean	gr.corn/s	l.corn	oats	barley	ed.beans	fld.pea	sun(no/o)	faba	flax	buck.w	canary	mustard
			row							row					
0.93L/ac		0.93L/ac					0.93L/ac								0.93L/ac
liquid triflura	alin														
	120 #/ac	N			70 #,	/ac N									
135 #/ac N	as NH4N	O3													
					-										
			1	2	3	4	5	6	7	8	9	10	11	12	13

Please join the conversation with Manitoba Agriculture

- Subscribe to our <u>newsletter</u>
- Follow us on Twitter: twitter.com/MBGovAg
- Visit our website: Manitoba.ca/agriculture
- Call our general inquiries line 1-844-769-6224
- View our videos on YouTube: youtube.com/ManitobaAgriculture

Slippery Slope – Pest Buildup

	Fusarium HB	Root Rots	Net Blotch	Goss Wilt	Sclerotinia	Rhizoctonia RR	Fusarium RR	Pasmo	Phytophthora RR	Blackleg	Ascochyta	Aphanomyces	Clubroot
BREAK	2	3+	2	2	3+	3+	3+	3	3+	2	3	3+	3+
Wheat	+++	++											
Oat	+	+											
Barley	+	+++	+++										
Grain Corn	+	+		+++									
Canola					+++	++				+++			+++
Flax					+	++		+++					
Field Pea					+	+					+++	+++	
Soybean					++	+	++		+++				
Sunflower					++++	+							

\$