Livestock Operation Policies – Where is your Municipality in this Process?
Michelle Erb & Sheri Grift, Land Use Specialists, Land Use Planning KC, MAFRI

Municipal and district planning authorities have been busy preparing local development plans to meet the provincial livestock operation policy (LOP) requirements under The Planning Act. The province generally defines a livestock operation as a permanent or semi-permanent non-grazing area where at least 10 animal units (AU) of livestock are kept and raised. Local authorities decide where in their municipality or planning district livestock operations (LOs) should be permitted, limited in size, or prohibited. They also set out the mutual separation distance requirements between livestock operations and residences – and these may be higher than the provincial requirements that are based on the Farm Practices Guidelines.

As of February, 42 planning authorities had adopted a livestock operations policy in their development plans, with a further 32 authorities with an LOP in the draft form or in the process of being adopted, and 14 planning authorities still beginning their LOP process.

Livestock Operation Policy Limitations on Size of Operation

Most municipalities and planning districts (PD) have not placed an overall limit on the size of livestock operations, but have identified areas around towns, rural residential and/or recreational areas where livestock development is restricted. These size restrictions may extend from ½ to 2 miles from town and area boundaries and are intended to minimize the potential for conflict between livestock operations and non-agricultural developments.

Examples include:

Southwest
- Shoal Lake
- Oakland
- Grahamdale
- Woodlands
- Whitehead
- Southwest PD
- Mid-west PD
- Carlton Trail PD
- Tanners Crossing PD
- Neepawa & Area PD
- Roblin PD

South East
- Stuartburn
- Hanover
South Central
• Montcalm
• Dufferin
• Roland
• Rhineland
• South Central PD

Interlake
• West Interlake PD
• Pembina-Manitou PD
• Thompson PD
• Big Grass PD

Northern
• Kelsey (The Pas)
• Thompson Planning District

Other planning authorities have restricted livestock development to an overall maximum size depending on the number and size of existing operations within the municipality:

• Morris - 1200 AU
• DeSalaberry - 1601 AU west of Rat River; 600 AU east of Rat River
• West Interlake PD - 300 AU for new operations in Coldwell and St. Laurent
• Souris-Glenwood – 5000 AU
• Blanshard - 1600 AU (Mid-west PD)

Some planning authorities have selected additional areas in which livestock development is restricted based on the nature of the area. The following municipalities have identified buffers around local water features where livestock is prohibited or restricted to a maximum size:

• Dufferin
• Shoal Lake
• Stuartburn
• Morris
• De Salaberry
• Whitehead
• Neepawa and Area PD
• Souris-Glenwood
• Tanners Crossing PD
• Big Grass PD
• Hamiota

Separation Distances:
Most planning authorities have selected mutual separation distances between livestock operations and single residences or designated residential areas that are consistent with the provincial requirements. In some cases, municipalities have increased separation distances between LOs and single residences from 20 to 100% higher than the provincial requirements and up to 50% greater between LOs and designated residential or recreational areas.

These development plans and livestock operation policies can have a significant impact on existing livestock operations and livestock development opportunities. Fortunately, the planning process is a public process and producers can and should get involved. Development plans must be reviewed and renewed on a regular basis, and can also be amended. It is never too late to become aware of and be a part of the planning process in your municipality or planning district. Your municipal office should be able to provide you with access to any development plan or zoning by-law in effect in your area.

Record Analysis: Why Bother??
By Ron Bazylo MAFRI

This is a first of a series of articles on properly analyzing records on your operation and what to look out for.

This article will deal with farrowing rate and its affect on the bottom line. According to the 2008 annual summary data collected through PigChamp 3000, the average farrowing rate is 83.02%. The top 10% of the farms had an average rate of 89.55% while the lowest 10% of the farms had an average farrowing rate of 77.40%.

What are the consequences?

Lower farrowing rates result in carrying a larger sow inventory to meet breeding targets. For
example, if you have 24 crates in your farrowing room you would have to breed only 27 sows weekly to have 24 successful breedings with an 89% farrowing rate. However, if you are in the lower 10% percentile, 31 sows would have to be mated. As a result, more labor and more feed are required in this scenario.

There are direct correlations between farrowing rates and weaning to estrous interval and number of pigs born alive. Operations that have sows returning into heat within 7 days have a farrowing rate of over 84%. More importantly, herds which have an average return to estrous after weaning of 8 or more days have only 10.4 pigs born alive or less per sow. Farms with less than an 8 day interval have at least 10.9 pigs or more born alive per litter. This has a major affect on your bottom line. On a 500 sow farrow to finish operation, a difference in the number born alive of this magnitude costs over $16,000 and with higher sow inventories will result in a reduction of net income of well over $20,000 annually.

Possible Solutions:

The number of times you mate your sows during estrous may have a big influence on your farrowing rate, especially if heat detection and correct insemination timing is not occurring. Records were analyzed on a client’s farm looking at 240 matings Sows and/or gilts that were mated only once during estrous had a 65% farrowing rate. Sows mated twice during estrous had a 75% conception rate while those mated three or more times had a 92.9% farrowing rate. Multiple matings can compensate for incorrect insemination timing.

If sows return again into estrous 21 days after mating, cull them. Of over 250 recorded matings, sows bred on their first estrous after weaning had an over 85% farrowing rate. Sows that returned 21 days after mating had less than a 70% conception rate and when serviced a third time had only a 50% success. These sows that return into heat are unproductive and need to be culled.

All farms need to know their farrowing rate so weekly breedings result in full facility usage. For example, if you have an 86% farrowing rate and have 24 crates in each farrowing room, breed 28 sows weekly. All sows which return are to be culled. Make sure your gilt pool is adequate enough to ensure enough breeding takes place weekly.

As well, gilts may be weaned three or four days earlier if they take longer to return into estrous after weaning. This will reduce the number of days required to breed the number of sows and gilts required.

Finally, pay close attention to your nursing sow diets and your feeding regime after weaning if your operation has a longer weaning to estrous interval.

New MAFRI Staff: Clay Sawka, Nutrient Management Specialist.

Clay spent the last 2.5 years working as the lead field technician on the long term crop and manure management field trial for the National Centre for Livestock and the Environment at the Glenlea Research Station. For this experiment there were 2 cropping systems (perennial and annual) with 3 different manures (solid dairy, solid pig, liquid pig). These manures were spread at 2 different rates: N based rate annually and a P based rate (5 year rate once) then monitored to determine when they required further manure based on Olsen P levels. Yields and soil nutrient levels as well as weed populations and pathogens in the soil were also monitored.
Clay also advised the Glenlea Research Station with respect to the farm’s manure management plan because their situation is fairly unique with liquid pig manure, solid pig manure, dairy manure and beef manure all to be land applied, all with different nutrient profiles and a variety of crops grown at the station made the MMP complex and a challenge every year.

Clay started as a Nutrient Management Specialist in early December 2009.

His job revolves around Phosphorus extension and Clay’s main goal is to help individual producer’s assess their operations for phosphorus balance and try to present options for obtaining P balance on their farms.

He hopes to help hog farmers by assessing their individual situation with respect to soil test P and see where if some of that phosphorus can be exported off farm or perhaps limit the amount of P coming on to the farm originally. In some cases it may be as easy as just re-locating some of the phosphorus in other locations around the farm.

Ultimately less P in equals less P out and hopefully together Clay and the producer can make the farm more efficient when it comes to valuable nutrients.

To contact Clay Sawka for more information call: (204) 750-3066 or email him at: clay.sawka@gov.mb.ca

As a follow up to the popular Risk Management seminars that was held last summer, MAFRI are planning business and marketing plan development seminars. These seminars will help you interpret your records, update your costs of production, determine your marketing strategy and help you manage your farm better.

MAFRI is also planning a follow up series to the CME’s “Introduction to Hedging” seminar with Tom Clark that was held last July.

For more information regarding these or other seminars contact Robyn Harte or Ron Bazylo.

Ron Bazylo
Farm Production Extension Specialist- Swine Livestock Knowledge Centre (Dauphin)
Office: 204-622-2015
Mobile: 204-572-5282

Email: ron.bazylo@gov.mb.ca

Robyn Harte
Business Development Specialist – Swine Livestock Knowledge Centre (Winnipeg)
Office: 204-945-5402
Mobile: 204-918-9483

Email: robyn.harte@gov.mb.ca