



# Steamfitter-Pipefitter Level 2

# **Steamfitter-Pipefitter**

## UNIT B1 TOOLS AND EQUIPMENT II

Unit: B1a Tools and Equipment II

| Level:           | Two        |   |       |
|------------------|------------|---|-------|
| <b>Duration:</b> | 7 hours    |   |       |
|                  | Theory:    | 7 | hours |
|                  | Practical: | 0 | hours |

#### **Overview:**

This unit introduces Steamfitter-Pipefitter apprentices to additional procedures for selecting, using, and maintaining tools and equipment in a variety of steamfitting-project settings. The principles and practical methods introduced here are pursued in greater depth and complexity throughout technical training.

| Objectiv | es and Content:                                                                                                        | Percent of<br><u>Unit Mark (%)</u> |
|----------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.       | Describe the selection, use, and maintenance of fabrication (power tools) and equipment.                               | 25%                                |
| 2.       | Describe intermediate level techniques for selection, use, and maintenance of fabrication (power tools) and equipment. | 25%                                |
| 3.       | Describe the selection, use, and maintenance of additional steel welding tools and equipment.                          | 25%                                |
| 4.       | Describe intermediate level techniques for selection, use, and maintenance of steel welding.                           | 25%                                |

# **Steamfitter-Pipefitter**

| Unit: | B1b Advanced Hoisting, Lifting, and Rigging |
|-------|---------------------------------------------|
|-------|---------------------------------------------|

| Level:    | Two        |   |       |
|-----------|------------|---|-------|
| Duration: | 7 hours    |   |       |
|           | Theory:    | 7 | hours |
|           | Practical: | 0 | hours |

#### **Overview:**

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of advanced hoisting, lifting, and rigging.

| 1.       Identify hazards and describe safe work practices pertaining to advanced hoisting, lifting and rigging operations.       25%         a.       Energized power lines       b.       Critical lifts       c.         b.       Critical lifts       c.       Weather conditions       d.         c.       Weather conditions       d.       Ground conditions       e.       Multi-tag lines         2.       Identify documentation required for engineered lifts.       25%       25%         3.       Describe how to do calculations pertaining to hoisting, lifting and rigging.       a.       Sling angle         b.       Load/weight       c.       Centre of gravity       d.       Safe working loads (SWL)         4.       Describe how to do advanced lifts.       a.       Ball and hook       b.       Multi-lift         c.       Transferring       d.       Unbalanced       e.       Positioning       Positioning | Object | ives                         | and Content:                                                                                                      | Percent of<br><u>Unit Mark (%)</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|
| <ul> <li>3. Describe how to do calculations pertaining to hoisting, lifting and rigging.</li> <li>a. Sling angle</li> <li>b. Load/weight</li> <li>c. Centre of gravity</li> <li>d. Safe working loads (SWL)</li> </ul> 4. Describe how to do advanced lifts. <ul> <li>a. Ball and hook</li> <li>b. Multi-lift</li> <li>c. Transferring</li> <li>d. Unbalanced</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.     | lift<br>a.<br>b.<br>c.<br>d. | ing and rigging operations.<br>Energized power lines<br>Critical lifts<br>Weather conditions<br>Ground conditions | ıg, 25%                            |
| <ul> <li>a. Sling angle</li> <li>b. Load/weight</li> <li>c. Centre of gravity</li> <li>d. Safe working loads (SWL)</li> </ul> 4. Describe how to do advanced lifts. 25% <ul> <li>a. Ball and hook</li> <li>b. Multi-lift</li> <li>c. Transferring</li> <li>d. Unbalanced</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.     | Iden                         | tify documentation required for engineered lifts.                                                                 | 25%                                |
| <ul> <li>b. Load/weight</li> <li>c. Centre of gravity</li> <li>d. Safe working loads (SWL)</li> </ul> <b>4. Describe how to do advanced lifts.</b> <ul> <li><b>25%</b></li> <li>a. Ball and hook</li> <li>b. Multi-lift</li> <li>c. Transferring</li> <li>d. Unbalanced</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.     | Des                          | cribe how to do calculations pertaining to hoisting, lifting and rigging.                                         | 25%                                |
| <ul> <li>c. Centre of gravity</li> <li>d. Safe working loads (SWL)</li> </ul> <b>4. Describe how to do advanced lifts.</b> <ul> <li>a. Ball and hook</li> <li>b. Multi-lift</li> <li>c. Transferring</li> <li>d. Unbalanced</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | a.                           | Sling angle                                                                                                       |                                    |
| <ul> <li>d. Safe working loads (SWL)</li> <li>4. Describe how to do advanced lifts. 25%</li> <li>a. Ball and hook</li> <li>b. Multi-lift</li> <li>c. Transferring</li> <li>d. Unbalanced</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | b.                           | •                                                                                                                 |                                    |
| 4. Describe how to do advanced lifts.       25%         a. Ball and hook       5%         b. Multi-lift       5%         c. Transferring       5%         d. Unbalanced       5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | c.                           |                                                                                                                   |                                    |
| <ul> <li>a. Ball and hook</li> <li>b. Multi-lift</li> <li>c. Transferring</li> <li>d. Unbalanced</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | d.                           | Safe working loads (SWL)                                                                                          |                                    |
| <ul><li>b. Multi-lift</li><li>c. Transferring</li><li>d. Unbalanced</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.     | De                           | escribe how to do advanced lifts.                                                                                 | 25%                                |
| c. Transferring<br>d. Unbalanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | a.                           | Ball and hook                                                                                                     |                                    |
| d. Unbalanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | b.                           | Multi-lift                                                                                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | C.                           | Transferring                                                                                                      |                                    |
| e. Positioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | d.                           | Unbalanced                                                                                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | e.                           | Positioning                                                                                                       |                                    |

# **Steamfitter-Pipefitter**

## UNIT B2 FABRICATION II

## Subunit: B2a Spool and Fitting Fabrication

| Level:    | Two        |    |       |
|-----------|------------|----|-------|
| Duration: | 22 hours   |    |       |
|           | Theory:    | 8  | hours |
|           | Practical: | 14 | hours |

#### **Overview:**

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of spool and fitting fabrication.

| Objectiv | ves and Content:                                                                                                                                                                                    | Percent of<br><u>Unit Mark (%)</u> |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.       | Define terminology associated with spool fabrication.                                                                                                                                               | 4%                                 |
| 2.       | Interpret information pertaining to spool fabrication found on drawings and specifications.                                                                                                         | 4%                                 |
| 3.       | Identify tools and equipment relating to spool fabrication and describe their applications and procedures for use.                                                                                  | 4%                                 |
| 4.       | Describe the procedures used to fabricate and assemble pipe spools.                                                                                                                                 | 4%                                 |
| 5.       | Demonstrate the procedures used to fabricate pipe spools.                                                                                                                                           | 32%                                |
| 6.       | Define terminology associated with fitting fabrication.                                                                                                                                             | 4%                                 |
| 7.       | Interpret codes and regulations pertaining to fitting fabrication.                                                                                                                                  | 4%                                 |
| 8.       | Interpret information pertaining to fitting fabrication found on drawings and specifications.                                                                                                       | 3%                                 |
| 9.       | Identify tools and equipment relating to fitting fabrication and describe their applications and procedures for use.                                                                                | 3%                                 |
| 10.      | <ul> <li>Identify types of fittings and describe their characteristics and applications.</li> <li>a. Elbow</li> <li>b. Tees</li> <li>c. Flanges</li> <li>d. Laterals</li> <li>e. Crosses</li> </ul> | 3%                                 |

e. Crosses

| 11. | Describe the procedures used to layout and fabricate fittings. | 3%  |
|-----|----------------------------------------------------------------|-----|
| 12. | Demonstrate the procedures to fabricate pipe fittings.         | 32% |

# **Steamfitter-Pipefitter**

## Subunit: B2b Stainless Steel Piping

| Level:    | Two        |   |       |
|-----------|------------|---|-------|
| Duration: | 15 hours   |   |       |
|           | Theory:    | 8 | hours |
|           | Practical: | 7 | hours |

#### **Overview:**

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of stainless steel piping.

| Ob | jectiv | ves and Content:                                                                                                                                                | Percent of<br><u>Unit Mark (%)</u> |
|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|    | 1.     | Define terminology associated with stainless steel piping.                                                                                                      | 3%                                 |
|    | 2.     | Identify hazards and describe safe work practices pertaining to stainless steel piping.                                                                         | 3%                                 |
|    | 3.     | Interpret codes and regulations pertaining to stainless steel piping.                                                                                           | 3%                                 |
|    | 4.     | Interpret information pertaining to stainless steel piping found on drawings and specifications.                                                                | 3%                                 |
|    | 5.     | Describe identification systems and methods used for stainless steel piping.                                                                                    | 3%                                 |
|    | 6.     | Identify tools and equipment related to stainless steel piping and describe their applications and procedures for use.                                          | 3%                                 |
|    | 7.     | Identify fittings used with stainless steel piping and describe their purpose and applications.                                                                 | 3%                                 |
|    | 8      | Identify stainless steel piping accessories and describe their purpose and applications.<br>a. Supports<br>b. Hangers<br>c. Sleeves                             | 3%                                 |
|    | 10     | <ul> <li>Explain the systems of measurement for stainless steel piping.</li> <li>a. Dimension</li> <li>b. Length</li> <li>c. Wall thickness/schedule</li> </ul> | 3%                                 |
|    | 11.    | Describe the procedures used to measure stainless steel piping.                                                                                                 | 3%                                 |
|    | 12.    | Describe the procedures used to inspect stainless steel piping.                                                                                                 | 3%                                 |
|    |        |                                                                                                                                                                 |                                    |

| 13. |          | ntify the methods used to cut stainless steel piping and describe their sociated procedures.                 | 3% |
|-----|----------|--------------------------------------------------------------------------------------------------------------|----|
| 14. |          | ntify the methods used to join stainless steel piping and describe their<br>sociated procedures.<br>Threaded | 3% |
|     | a.<br>b. | Grooved                                                                                                      |    |
|     | а.       | Welded                                                                                                       |    |
|     | ы.       | Flanged                                                                                                      |    |
|     | C.       | Press-fit                                                                                                    |    |
|     | d.       | Compression fittings                                                                                         |    |
| 15. |          | scribe the procedures used to install fittings and accessories for stainless steel ing.                      | 6% |
| 16. | Des      | scribe the different types, schedules, uses of stainless steel pipe.                                         | 5% |

17. Demonstrate the procedures used to measure, cut and join stainless steel piping. 50%

# **Steamfitter-Pipefitter**

| Subunit:         | B2c Special | ty Pi | iping |
|------------------|-------------|-------|-------|
| Level:           | Two         |       |       |
| <b>Duration:</b> | 24 hours    |       |       |
|                  | Theory:     | 24    | hours |

Practical:

#### **Overview:**

Steamfitters-Pipefitters require a good, practical grasp of specialty piping. This unit is the program gateway to further learning about these topics.

0 hours

| Objecti | ves and Content:                                                                                                  | Percent of<br><u>Unit Mark (%)</u> |
|---------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.      | Define terminology associated with specialty piping.                                                              | 6%                                 |
| 2.      | Identify hazards and describe safe work practices pertaining to specialty piping                                  | J. 6%                              |
| 3.      | Interpret codes and regulations pertaining to specialty piping.                                                   | 6%                                 |
| 4.      | Interpret information pertaining to specialty piping found on drawings and specifications.                        | 6%                                 |
| 5.      | Describe the identification systems and methods for specialty piping.                                             | 6%                                 |
| 6.      | Identify tools and equipment relating to specialty piping and describe their applications and procedures for use. | 6%                                 |
| 7.      | Identify specialty piping systems and describe their characteristics and applications.                            | 6%                                 |
| 8.      | Identify types of specialty piping and describe their properties and characterist                                 | ics. 7%                            |
|         | a. Duplex                                                                                                         |                                    |
|         | b. Super duplex                                                                                                   |                                    |
|         | a. Copper nickel                                                                                                  |                                    |
|         | b. Chrome molybdenum                                                                                              |                                    |
|         | c. Monel                                                                                                          |                                    |
|         | d. Inconel                                                                                                        |                                    |
|         | e. Titanium                                                                                                       |                                    |
|         | f. Aluminum                                                                                                       |                                    |
|         | g. Fiberglass piping<br>h. Other                                                                                  |                                    |
| 9.      | Identify fittings used with specialty piping and describe their purpose and applications.                         | 7%                                 |

| 10. | lder        | tify specialty piping accessories and describe their purpose and applications.         | 7% |
|-----|-------------|----------------------------------------------------------------------------------------|----|
|     | a.          | Supports                                                                               |    |
|     | b.          | Hangers                                                                                |    |
|     | C.          | Sleeves                                                                                |    |
| 11. | Ехр         | lain the systems of measurement for specialty piping.                                  | 7% |
|     | a.          | Dimension                                                                              |    |
|     | b.          | Length                                                                                 |    |
|     | C.          | Wall thickness/schedule                                                                |    |
| 12. | Des         | cribe the procedures used to measure specialty piping.                                 | 6% |
| 13. | Des         | cribe the procedures used to inspect specialty piping.                                 | 6% |
| 14. |             | ntify the methods used to cut specialty piping and describe their associated cedures.  | 6% |
| 15. |             | ntify the methods used to join specialty piping and describe their associated cedures. | 6% |
| 16. | Des<br>pipi | cribe the procedures used to install fittings and accessories for specialty ng.        | 6% |

# **Steamfitter-Pipefitter**

## Subunit: B2d Industrial Drawings I

| Level:    | Two        |    |       |
|-----------|------------|----|-------|
| Duration: | 15 hours   |    |       |
|           | Theory:    | 15 | hours |
|           | Practical: | 0  | hours |

#### **Overview:**

This unit of is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of industrial drawings.

| Objecti | ves and Content:                                                                                                                                                                                                                                            | Percent of<br><u>Unit Mark (%)</u> |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.      | Define terminology associated with industrial drawings and specifications.                                                                                                                                                                                  | 25%                                |
| 2.      | <ul> <li>Identify types of industrial drawings and describe their applications.</li> <li>a. Process and instrumentation drawings (PandID)</li> <li>b. Spool sheets</li> <li>c. Isometric (ISO) drawings</li> <li>d. Revisions</li> <li>e. Vendor</li> </ul> | 25%                                |
| 3.      | Identify symbols relating to industrial drawings and describe their characteristic and applications.                                                                                                                                                        | s 25%                              |
| 4.      | Identify industrial drawing-related documentation and describe their applications                                                                                                                                                                           | s. 25%                             |

# **Steamfitter-Pipefitter**

| Subunit:         | B2e GTAW   | Welc | ling  |
|------------------|------------|------|-------|
| Level:           | Two        |      |       |
| <b>Duration:</b> | 25 hours   |      |       |
|                  | Theory:    | 5    | hours |
|                  | Practical: | 20   | hours |

#### **Overview:**

Steamfitter-Pipefitter's require a good, practical grasp of Tungsten inert gas (TIG) welding. This unit is the program gateway to further your welding skills.

| Objecti | ves and Content:                                                                                                                            | Percent of<br>Unit Mark (%) |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1.      | Define terminology associated with TIG welding.                                                                                             | 4%                          |
| 2.      | Identify hazards and describe safe work practices pertaining to TIG welding.<br>a. Personal<br>b. Workplace                                 | 4%                          |
| 3.      | Interpret codes and regulations pertaining to TIG welding.<br>a. Certification requirements                                                 | 4%                          |
| 4.      | Interpret information pertaining to TIG welding found on drawings and specifications.<br>a. Symbols and abbreviations                       | 4%                          |
| 5.      | Describe the properties and characteristics of metals.                                                                                      | 4%                          |
| 6.      | Identify types of TIG welding equipment and describe their associated components, accessories and consumables.                              | 4%                          |
| 7.      | Identify basic weld joints and describe their applications.                                                                                 | 4%                          |
| 8.      | Describe the procedures used to set up, adjust, maintain and store TIG welding equipment, their components, accessories and consumables.    | 4%                          |
| 9.      | Describe the procedures used to tack weld.                                                                                                  | 4%                          |
| 10.     | Demonstrate the procedures used to set up, adjust, maintain and store TIG weld<br>equipment, their components, accessories and consumables. | ing 32%                     |
| 11.     | Demonstrate Gas tungsten arc welding.                                                                                                       | 32%                         |

# **Steamfitter-Pipefitter**

UNIT B3 LAYOUT II

# Subunit:B3a Industrial Drawings IILevel:TwoDuration:15 hoursTheory:15 hoursPractical:0 hours

#### Overview:

Upon completion of this unit of instruction apprentices will be able to show understanding of intermediate level industrial drawings related to steamfitter-pipefitter situations.

| Objectiv | ves and Content:                                                               | Percent of |
|----------|--------------------------------------------------------------------------------|------------|
| 1.       | Interpret and extract information from industrial drawings and specifications. | 50%        |
| 2.       | Generate drawings.                                                             | 50%        |
|          |                                                                                |            |

# **Steamfitter-Pipefitter**

## Subunit: B3b Template Development

| Level:    | Two        |    |       |
|-----------|------------|----|-------|
| Duration: | 15 hours   |    |       |
|           | Theory:    | 15 | hours |
|           | Practical: | 0  | hours |

#### **Overview:**

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of template development.

| Object | ives and Content:                                                                                                     | Percent of<br><u>Unit Mark (%)</u> |
|--------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.     | Define terminology associated with template development.                                                              | 20%                                |
| 2.     | Interpret information pertaining to template development found on drawings and specifications.                        | 20%                                |
| 3.     | Identify tools and equipment relating to template development and describe their applications and procedures for use. |                                    |
| 4.     | Identify the methods used for template development.                                                                   | 20%                                |
|        | a. Simple                                                                                                             |                                    |
|        | b. Parallel line                                                                                                      |                                    |
|        | c. Radial line                                                                                                        |                                    |
|        | d. Triangulation                                                                                                      |                                    |
| 5.     | Describe the procedures used to develop templates.                                                                    | 20%                                |

# **Steamfitter-Pipefitter**

## UNIT B4 HYDRONIC SYSTEMS

| Subunit:         | B4a Hydronic Systems |    |       |
|------------------|----------------------|----|-------|
| Level:           | Two                  |    |       |
| <b>Duration:</b> | 56 hours             |    |       |
|                  | Theory:              | 40 | hours |
|                  | Practical:           | 16 | hours |

#### Overview:

Steamfitters-Pipefitters require a good, practical grasp of hydronic systems. This unit is the program gateway to further learning about these topics.

| Objective | es and Content                                                                                                       | Percent of<br><u>Unit Mark (%)</u> |
|-----------|----------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.        | Identify piping arrangements used with hydronic cooling systems and describe their characteristics and applications. |                                    |
| 2.        | Describe the procedures used to layout and install piping for hydronic systems                                       | s. 5%                              |
| 3.        | Describe the procedures used to install hydronic system components.                                                  | 5%                                 |
| 4.        | Describe the procedures used to maintain and repair hydronic system components.                                      | 10%                                |
| 5.        | Describe the procedures used to test and troubleshoot hydronic system components.                                    | 10%                                |
| 6.        | Describe the procedures used to install heat transfer equipment.                                                     | 10%                                |
| 7.        | Describe the procedures used to protect heat transfer equipment.                                                     | 10%                                |
| 8.        | Describe the procedures used to maintain and repair heat transfer equipment.                                         | 10%                                |
| 9.        | Describe the procedures used to test and troubleshoot heat transfer equipmen                                         | t. 10%                             |
| 10.       | Demonstrate the procedures used to install, maintain, repair, test and Troubleshoot hydronic systems.                | 25%                                |

# **Steamfitter-Pipefitter**

## Subunit: B4b Hydronic System Controls

| Level:    | Two        |    |       |
|-----------|------------|----|-------|
| Duration: | 18 hours   |    |       |
|           | Theory:    | 14 | hours |
|           | Practical: | 4  | hours |

#### **Overview:**

This unit is designed to provide the Steamfitter-Pipefitter apprentice with the additional knowledge and understanding of hydronic system controls. After completing this unit, apprentices will be able to learn, amongst other skills, the following objectives.

| Objectiv | ves and Content: .                                                                                             | Percent of<br><u>Unit Mark (%)</u> |
|----------|----------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.       | Describe the procedures used to install hydronic systems control components.                                   | 15%                                |
| 2.       | Describe the procedures used to protect hydronic systems control components.                                   | 15%                                |
| 3.       | Describe the procedures used to set and adjust hydronic systems control components.                            | 15%                                |
| 4.       | Describe the procedures used to maintain and repair hydronic systems control components.                       | 15%                                |
| 5.       | Describe the procedures used to test and troubleshoot hydronic systems contro components.                      | 20%                                |
| 6.       | Demonstrate the procedures used to install, maintain, repair, test and troublesho<br>hydronic system controls. | ot 20%                             |

# **Steamfitter-Pipefitter**

## SubUnit: B4c Cross Connection Controls Awareness

| Level:    | Two        |   |       |
|-----------|------------|---|-------|
| Duration: | 7 hours    |   |       |
|           | Theory:    | 7 | hours |
|           | Practical: | 0 | hours |

#### **Overview:**

This uni is designed to provide the Steamfitter-Pipefitter apprentice with the knowledge and understanding of cross connection control. After completing this unit, apprentices will be able to learn, amongst other skills, the following objectives.

| Objectiv | ves and Content:                                                                                                          | Percent of<br><u>Unit Mark (%)</u> |
|----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.       | Define terminology associated with cross connection control.                                                              | 10%                                |
| 2.       | Identify hazards and describe safe work practices pertaining to cross connectio control.                                  | n 10%                              |
| 3.       | Interpret codes and regulations pertaining to cross connection control: training and certification requirements.          | 10%                                |
| 4.       | Interpret information pertaining to cross connection control found on drawings and specifications.                        | 10%                                |
| 5.       | Identify tools and equipment relating to cross connection control and describe their applications and procedures for use. | 10%                                |
| 6.       | Explain backflow and its causes.                                                                                          | 10%                                |
| 7.       | Identify types of cross connection control devices and describe their characteristics, operation and applications.        | 10%                                |
| 8.       | Describe the requirements used to install cross connection control devices.                                               | 10%                                |
| 9.       | Describe the requirements used to maintain and repair cross connection contro devices.                                    | l 10%                              |
| 10.      | Describe the requirements used to test and troubleshoot cross connection cont devices.                                    | rol 10%                            |

## Apprenticeship Manitoba Steamfitter-Pipefitter

## UNIT B5 HEAT TRACING SYSTEMS (INCLUDES LIQUID)

Subunit: B5a Hydronic Heat Trace Systems I

| Level:    | Two        |    |       |
|-----------|------------|----|-------|
| Duration: | 25 hours   |    |       |
|           | Theory:    | 16 | hours |
|           | Practical: | 9  | hours |

### **Overview:**

Steamfitters-Pipefitters require a good, practical grasp of hydronic heat trace systems. This unit is the program gateway to further learning about these topics.

| Objectiv | es and Content:                                                                                                              | Percent of<br><u>Unit Mark (%)</u> |
|----------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.       | Define terminology associated with hydronic heat trace systems.                                                              | 6%                                 |
| 2.       | Identify hazards and describe safe work practices pertaining to hydronic heat trace systems.                                 | 6%                                 |
| 3.       | Interpret codes and regulations pertaining to hydronic heat trace systems.                                                   | 6%                                 |
| 4.       | Interpret information pertaining to hydronic heat trace systems found on drawings and specifications.                        | 6%                                 |
| 5.       | Identify tools and equipment relating to hydronic heat trace systems and describe their applications and procedures for use. | 6%                                 |
| 6.       | Explain the principles of heat transfer.                                                                                     | 5%                                 |
|          | a. Radiation                                                                                                                 |                                    |
|          | b. Conduction                                                                                                                |                                    |
|          | c. Convection                                                                                                                |                                    |
| 7.       | Identify sources of heat used in hydronic heat trace systems.                                                                | 5%                                 |
|          | a. Oil                                                                                                                       |                                    |
|          | b. Gas                                                                                                                       |                                    |
|          | c. Solid fuel                                                                                                                |                                    |
|          | d. Geothermal                                                                                                                |                                    |
|          | e. Solar                                                                                                                     |                                    |
|          | f. Electric                                                                                                                  |                                    |
| 8.       | Identify sources of cooling used in hydronic heat trace systems.                                                             | 5%                                 |
|          | a. Ground source                                                                                                             |                                    |
|          | b. Cooling                                                                                                                   |                                    |
|          | c. Direct expansion                                                                                                          |                                    |

| 9.  | Identify types of hydronic heat trace systems and describe their characteristics and operation.                         | 5% |
|-----|-------------------------------------------------------------------------------------------------------------------------|----|
|     | a. High pressure (awareness of)                                                                                         |    |
|     | b. Low pressure                                                                                                         |    |
| 10. | Identify hydronic heating heat trace system components and describe their purpose and operation.                        | 5% |
|     | a. Piping                                                                                                               |    |
|     | b. Boilers : low mass and high mass                                                                                     |    |
|     | c. Boiler trim                                                                                                          |    |
|     | d. Heat pumps                                                                                                           |    |
|     | e. Expansion tanks                                                                                                      |    |
|     | f. Heat exchangers                                                                                                      |    |
|     | g. Circulating pumps                                                                                                    |    |
|     | h. Mixing components                                                                                                    |    |
|     | i. Valves                                                                                                               |    |
| 11. | Explain forces that impact on pipe and tubing in hydronic heat trace systems and their associated calculations.         | 5% |
|     | a. Thermal expansion                                                                                                    |    |
|     | b. Thermal contraction                                                                                                  |    |
|     | c. Weight                                                                                                               |    |
|     | d. Friction loss                                                                                                        |    |
|     | e. Turbulence                                                                                                           |    |
|     | f. Galvanic action                                                                                                      |    |
| 12. | Identify types of heat transfer equipment and describe their characteristics and operation                              | 5% |
|     | a. Radiators                                                                                                            |    |
|     | b. Convectors                                                                                                           |    |
|     | c. Pipe coils                                                                                                           |    |
|     | d. Horizontal and vertical unit heaters                                                                                 |    |
|     | e. Radiant panels                                                                                                       |    |
|     | f. Heat exchangers, others, panels                                                                                      |    |
| 13. | Identify fluids used in hydronic heat trace systems and describe their characteristics and applications.                | 5% |
|     | a. Water                                                                                                                |    |
|     | b. Glycol                                                                                                               |    |
|     | c. Methyl hydrate                                                                                                       |    |
| 14. | Identify additives used in hydronic heat trace systems and describe their purpose and applications.                     | 5% |
| 15. | Identify piping arrangements used with hydronic heat trace systems and describe their characteristics and applications. | 5% |
|     | a. Reverse return                                                                                                       |    |
|     | b. Direct return                                                                                                        |    |
|     | c. Monoflow                                                                                                             |    |
|     | d. Series loop                                                                                                          |    |

e. Primary/secondary

16. Identify hydronic cooling system components and describe their purpose and 10% operation.

- a. Piping
- b. Cooling towers
- c. Expansion tanks
- d. Chillers
- e. Circulating pumps
- f. Valves
- g. Panels, coils, etc.
- 17. Demonstrate the procedures used to install, maintain, repair, test and troubleshoot hydronic heat trace systems.

10%

# **Steamfitter-Pipefitter**

## Subunit: B5b Hydronic Heat Trace Systems Controls I

| Level:    | Two        |   |       |
|-----------|------------|---|-------|
| Duration: | 9 hours    |   |       |
|           | Theory:    | 7 | hours |
|           | Practical: | 2 | hours |

#### **Overview:**

Steamfitters-Pipefitters require a good, practical grasp of hydronic heat trace systems control. This unit is the program gateway to further learning about these topics.

| Objectiv | ves and Content:                                                                                                                                                                        | Percent of<br><u>Unit Mark (%)</u> |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.       | Define terminology associated with hydronic heat trace systems control.                                                                                                                 | 15%                                |
| 2.       | Identify hazards and describe safe work practices pertaining to hydronic heat trace systems control.                                                                                    | 15%                                |
| 3.       | Interpret codes and regulations pertaining to hydronic heat trace systems contro                                                                                                        | ol. 10%                            |
| 4.       | Interpret information pertaining to hydronic heat trace systems control found on drawings and specifications.                                                                           | n 10%                              |
| 5.       | Identify tools and equipment relating to hydronic heat trace systems controls an describe their applications and procedures for use.                                                    | nd 10%                             |
| 6.       | Identify types of hydronic heat trace systems controls and describe their<br>characteristics, applications and operation<br>a. Operating and temperature controls<br>b. Safety controls | 8%                                 |
| 7.       | Identify hydronic heat trace systems control components and describe their purpose and operation.                                                                                       | 10%                                |
| 8.       | Demonstrate the procedures used to install, maintain, repair, test and troubleshe heat trace controls.                                                                                  | oot 22%                            |

# **Steamfitter-Pipefitter**

UNIT **B6 MATHEMATICS II** 

| Subunit:  | B6a Mathemat | tics | II    |
|-----------|--------------|------|-------|
| Level:    | Two          |      |       |
| Duration: | 20 hours     |      |       |
|           | Theory:      | 20   | hours |
|           | Practical:   | 0    | hours |

#### **Overview:**

Upon completion of this unit of instruction apprentices will be able to show understanding of intermediate mathematics fundamentals related to steamfitter-pipefitter situations which includes electricity

| Objective | es and Content:                                                             | Percent of<br><u>Unit Mark (%)</u> |
|-----------|-----------------------------------------------------------------------------|------------------------------------|
| 1.        | Describe by reviewing level one contents relating to elevations and grades. | 10%                                |
| 2.        | Describe rolling offsets.                                                   | 10%                                |
| 3.        | Describe jumper offsets.                                                    | 10%                                |
| 4.        | Describe special case of 45° offset.                                        | 10%                                |
| 5.        | Describe water pressure: head and force.                                    | 10%                                |
| 6.        | Describe air pressure and air chambers.                                     | 10%                                |
| 7.        | Describe ratio of pipe capacities.                                          | 10%                                |
| 8.        | Describe ratio and proportion.                                              | 10%                                |
| 9.        | Describe by reviewing any problem contents.                                 | 20%                                |

## **Steamfitter-Pipefitter**

## UNIT B7 SCIENCE II

| Subunit:         | B7a Science II |    |       |
|------------------|----------------|----|-------|
| Level:           | Two            |    |       |
| <b>Duration:</b> | 15 hours       |    |       |
|                  | Theory:        | 15 | hours |
|                  | Practical:     | 0  | hours |

#### Overview:

This unit is designed to provide the Steamfitter-Pipefitter apprentice with additional knowledge and understanding of mathematics. After completing this unit, apprentices will be able to learn, amongst other skills, the following objectives.

| Objectives and Content: |     |                                                                                                                                                                                                                                        | Percent of<br><u>Unit Mark (%)</u> |
|-------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1.                      | Des | scribe at an intermediate level with respect to sciences metals and alloys:                                                                                                                                                            | 50%                                |
|                         | a.  | Define metals, alloys, conduction, melting point, specific heat, linear expansion, ductility, shear strength, tensile strength, compressive strength, working(safe) strength, malleable, ferrous, non-ferrous, anneal, harden, temper. |                                    |
|                         | b.  | Identify the most common metals                                                                                                                                                                                                        |                                    |
|                         | c.  | Identify the most common alloys                                                                                                                                                                                                        |                                    |
|                         | d.  | Define cost effectiveness                                                                                                                                                                                                              |                                    |
|                         | e.  | Identify and describe properties of metals                                                                                                                                                                                             |                                    |
|                         | f.  | Identify and describe problems in linear expansion                                                                                                                                                                                     |                                    |
|                         | g.  | Identify and describe bi-metal strip and its uses                                                                                                                                                                                      |                                    |
|                         | h.  | Identify and describe various solder                                                                                                                                                                                                   |                                    |
|                         | i.  | Identify and describe wrought iron                                                                                                                                                                                                     |                                    |
|                         | j.  | Identify and describe corrosion (oxidation): chemical and electrochemical                                                                                                                                                              |                                    |
|                         | k.  | Identify and describe methods in preventing corrosion                                                                                                                                                                                  |                                    |
|                         | I.  | Identify and describe galvanic series                                                                                                                                                                                                  |                                    |
|                         | m   | Identify and describe factors aiding corrosion                                                                                                                                                                                         |                                    |
|                         | n.  | Identify and describe corrosion resistant materials                                                                                                                                                                                    |                                    |
| 2.                      |     | scribe at an intermediate level with respect to sciences hydrodynamics,<br>Irostatics and pneumatics:                                                                                                                                  | 30%                                |
|                         | a.  | Define hydrodynamics, hydrostatics, pneumatics, fluids, viscosity, adhesion, cohesion, capillary action, relative density, pressure (psi, psia, pascals, head).                                                                        |                                    |
|                         | b.  | Total pressure, transmission of pressure, vacuum, partial vacuum, siphon, manometer, buoyancy, laminar flow, turbulent flow, pitot tube, velocity head, venturi, bernoulli's theorem, hydraulic ram, water hammer, cavitation.         |                                    |
|                         | c.  | Identify and describe plumbing systems                                                                                                                                                                                                 |                                    |
|                         |     | and the second                                                                                                                       |                                    |

- d. Identify and describe flow of liquids and gases
- e. Identify and describe pressurized systems
- f. Identify and describe hydraulic jacks and presses

- g. Identify and describe thrust blocks
- h. Identify and describe air chambers
- i. Identify and describe pumps
- j. Identify and describe syphons
- k. Identify and describe velocity head
- I. Identify and describe bourdon type pressure gauge
- m. Identify and describe uses of buoyance
- n. Identify and describe conversion of fps to gpm and gpm to fps, m/s to i/s and i/s to m/s
- o. Identify and describe flow in venturis
- p. Identify and describe Bernoulli's theorem applied
- q. Identify and describe Charle's. and Boyle's gas laws
- 3. Describe heat load calculations, fan laws and pumps.

20%

# **Steamfitter-Pipefitter**

UNIT B8 ELECTRICAL II

| Subunit:  | B8a Electrical II |    |       |  |
|-----------|-------------------|----|-------|--|
| Level:    | Two               |    |       |  |
| Duration: | 20 hours          |    |       |  |
|           | Theory:           | 20 | hours |  |
|           | Practical:        | 0  | hours |  |

#### Overview:

Steamfitter-Pipefitters require a good, practical grasp of electricity. This unit of instruction is the program gateway to further learning about this topic. Electrical theory is presented in a manner that is relevant and useful. The apprentice will learn a basic overview of the fundamentals of electricity.

| Objectives and Content: |     | Percent of<br><u>Unit Mark (%)</u>           |     |
|-------------------------|-----|----------------------------------------------|-----|
| 1.                      | Des | cribe basic electricity.                     | 33% |
|                         | a.  | Electron theory                              |     |
|                         | b.  | Ohm's Law                                    |     |
|                         | c.  | Basic series circuits                        |     |
|                         | d.  | Parallel circuit                             |     |
|                         | e.  | Millivoltage                                 |     |
|                         | f.  | 24 volt circuit                              |     |
|                         | g.  | 110 volt circuit                             |     |
|                         | h.  | Open and closed circuits (controls)          |     |
|                         | i.  | Relay circuit                                |     |
|                         | j.  | Voltage drops in circuit                     |     |
| 2.                      | Des | cribe electrical devices.                    | 33% |
|                         | a.  | Thermopile and thermocouple                  |     |
|                         | b.  | Transformer                                  |     |
|                         | C.  | Gas valves                                   |     |
|                         | d.  | Thermostats                                  |     |
|                         | e.  | Safety controls                              |     |
|                         | f.  | Connectors and connections                   |     |
|                         | g.  | Wire sizes and types                         |     |
|                         | h.  | Identify and explain meters                  |     |
|                         | i.  | Code requirements                            |     |
|                         | j.  | Motors                                       |     |
| 3.                      | Des | cribe gas appliances, sequence of operation. | 34% |
|                         | a.  | Basic wiring systems                         |     |

- b. Circuit wiring systems
- c. Wiring diagrams of the appliances
- d. Troubleshooting controls and circuits
- e. Electronic ignition systems