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Summary
The Lalor volcanogenic massive-sulphide deposit is 

the largest deposit in the Snow Lake mining camp and 
is also the richest in terms of total contained Au. The 
deposit is affected by polyphase deformation that has 
strongly influenced the geometry of the ore zones and 
the distribution of metals. Underground mapping has 
been completed at several selected locations in the mine 
to document the effects of deformation on the geometry 
of the deposit. Two regional deformation events (D2 and 
D3) strongly influenced the macroscopic geometry of the 
deposit, whereas early (D1) deformation features have been 
obliterated by later events and their importance is still not 
clear. Local remobilization of some base- and precious-
metal sulphide minerals out of the primary  massive-
sulphide lenses occurred during deformation and led to 
epigenetic reconcentration of ore. These observations will 
assist in characterizing the structural setting and geometry 
of the Lalor deposit.

Introduction
The Lalor volcanogenic  massive-sulphide (VMS) de- 

posit has combined reserves and resources estimated 
at 25.3 Mt averaging 5% Zn, 0.79% Cu, 2.9 g/t Au and 
25.04 g/t Ag (as of January 2014; HudBay Minerals Inc., 
2014), potentially containing more than 70 t Au, making 
it the largest and best VMS deposit in the Snow Lake 
camp in terms of Au endowment. These features, as well 
as the location of the deposit in an already well-studied 
camp (Galley et al., 2007 and references therein), make 
the Lalor deposit an ideal study area to improve our 
understanding of precious metals–enrichment processes in 
VMS systems. The Geological Survey of Canada, through 
the VMS project of the Targeted Geoscience Initiative 4 
program and in collaboration with the Manitoba 
Geological Survey, HudBay Minerals Inc., the Institut 
national de la recherche scientifique and the University 
of Ottawa, initiated a research project at Lalor in 2011, 
which includes two graduate thesis projects (Ph.D. and 
M.Sc.). The Ph.D. study (this report) involves extensive 
drillcore logging, underground mapping, petrography, 

whole-rock geochemistry and oxygen-isotope analysis 
(Mercier-Langevin et al., GS-7, this volume). In 2013 
and 2014, underground mapping was completed to 
improve our knowledge of the geological and structural 
setting of the deposit and the effects of deformation on 
the ore, with a focus on the Zn-rich  massive-sulphide 
zones, Au-rich sulphide-poor zones and main structural 
contacts. Preliminary results and their implications for the 
structural setting of the deposit are presented here.

Previous and ongoing work
The Snow Lake camp hosts eight past-producing 

VMS mines and a past-producing orogenic Au mine 
(Galley et al., 2007). Previous studies have documented 
the regional geodynamic, structural and metallogenic 
context (Stern et al., 1995; Bailes and Galley, 1996; David 
et al., 1996; Lucas et al., 1996; Bailes and Galley, 1999; 
Kraus and Williams, 1999; Gagné et al., 2006; Galley 
et al., 2007; Rubingh et al., 2013), the hydrothermal 
alteration associated with VMS deposits (Galley et 
al., 1993; Hodges and Manojlovic, 1993; Skirrow and 
Franklin, 1994; Bailes and Galley, 1996) and the regional 
metamorphic history (Froese and Gasparrini, 1975; 
Gordon, 1989; Zaleski et al., 1991; Kraus and Menard, 
1997; Menard and Gordon, 1997; Kraus and Williams, 
1998; Gagné et al., 2005).

Ongoing research in the Snow Lake camp is 
concentrated on the volcanic stratigraphy and geometry 
of the Chisel sequence (see below) and its ore deposits 
(Bailes, unpublished reports for HudBay Minerals Inc., 
2008, 2009, 2011; Engelbert et al., 2014; Gibson et al., 
2014). The Lalor deposit is also the focus of geological 
investigations (Bailes, unpublished reports for HudBay 
Minerals Inc., 2008, 2009, 2011) and several projects to 
study specific aspects of the deposit: volcanic stratigraphy, 
alteration and structure (Caté et al., 2013a, b, 2014, in 
press); three-dimensional (3-D) modelling of the deposit 
and its hostrocks using geophysical, geochemical and 
rock-physical properties (E. Schetselaar, P. Shamsipour, 
K. Miah, G. Bellefleur, S. Cheraghi, J. Craven, A. Caté, 
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2 Natural Resources Canada, Geological Survey of Canada, 490 rue de la Couronne, Québec, QC  G1K 9A9
3 Geology Department, Lalor Mine, P.O. Box 130, Snow Lake, MB  R0B 1M0
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P. Mercier-Langevin, N. El Goumi, R. Enkin and 
M. Salisbury, work in progress); ore mineralogy and 
chemistry (Duff et al., 2013); and metamorphism (Lam et 
al., 2013, 2014; Tinkham, 2013).

Geological and structural setting
The Lalor deposit is part of the Paleoproterozoic Snow 

Lake arc assemblage (SLA), which has been described 
in detail in the literature (e.g., Bailes and Galley, 1996; 
David et al., 1996); only a summary of its main features 
relevant to this study are presented here. The SLA is 
located in the eastern part of the Paleoproterozoic Flin 

Flon greenstone belt in the Trans-Hudson orogen (Figure 
GS-8-1). The SLA is bounded to the north by the Snow 
Lake fault, to the east by the Berry Creek fault and to 
the west by the Ham Lake pluton. Volcanogenic massive-
sulphide deposits in the SLA are present in the Anderson 
primitive-arc sequence and in the overlying Chisel mature-
arc sequence (Bailes and Galley, 1999; Figure GS-8-1). 
The Lalor deposit is located in the Chisel sequence, along 
with other Zn-rich VMS deposits (Chisel, Chisel North, 
Ghost and Lost) and one Au-rich VMS deposit (Photo 
Lake; Galley et al., 2007; Figure GS-8-1). Most of these 
deposits, including the Lalor deposit, are thought to be 
located at the same time/stratigraphic level (Bailes et al., 

Figure GS-8-1: Simplified geology of the Snow Lake area (from Galley et al., 2007), showing major alteration zones and 
VMS deposits, including the Lalor deposit (LA). Other deposits: A, Anderson; B, Bomber zone; C, Chisel Lake; CN, Chisel 
North; G, Ghost; J, Joannie zone; LO, Lost; LD, Linda zone; M, Morgan Lake zone; P, Pot Lake zone; PH, Photo Lake; 
PN, Pen zone; RD, Rod; RM, Ram zone; RN, Raindrop zone; S, Stall Lake.
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2013; Engelbert et al., 2014; Caté et al., in press), defined 
as the contact between the Lower Chisel and Upper Chisel 
subsequences and marking a transition from dominantly 
calcalkaline to more tholeiitic volcanism. This contact, 
referred to as the Lalor-Chisel contact in this report, has 
been described as a stratigraphic contact in the Chisel 
area (Engelbert et al., 2014) but has been interpreted as 
structural in other locations (Bailes, unpublished reports 
for HudBay Minerals Inc., 2008, 2009, 2011; Bailes et 
al., 2013), and its nature in the hangingwall of the Lalor 
deposit is still debated.

The Snow Lake area records polyphase deformation 
(D1 to D4) related to its accretion to the Amisk collage 
(Lucas et al., 1996) and its subsequent modification 
during the Trans-Hudson orogeny (Kraus and Williams, 
1999). The D1 structural features have generally been 
obliterated by later events, but S0 parallel foliation 
(S1), tight isoclinal folds and early thrusts are locally 
preserved. In most cases, the S1 foliation is parallel to 
the main regional foliation (S2), which is attributed to D2 
and is associated with the stretching of primary volcanic 
features (including clasts in volcaniclastic rocks). The 

S2 foliation generally dips moderately (30–40°) to the 
north or northeast, but is commonly affected by later 
deformation. The F2 southerly-verging folds are tight and 
isoclinal with S2-parallel axial planes. The D3 deformation 
is manifested as broad, open to locally tight, northeast-
trending upright folds. An S3 crenulation cleavage is 
locally present. Structures associated with D4 deformation 
are very subtle and have not been observed in the Lalor 
deposit. Polyphase metamorphism (Menard and Gordon, 
1997) affected the SLA and mineral assemblages indicate 
peak amphibolite-facies metamorphism. Late north-
south brittle faults overprint features of the previous 
deformations (Figure GS-8-1).

Lalor deposit
The Lalor deposit is hosted in a distinct volcanic 

succession (herein referred to as the Lalor volcanic 
succession; Figure GS-8-2) overprinted by intense 
hydrothermal alteration (Caté et al., 2014) and amphibolite-
grade metamorphism. However, the prefix ‘meta’ will 
not be used here in naming rock units to simplify the 
text. Least-altered rocks are tholeiitic to calcalkaline 

Figure GS-8-2: Simplified geological cross-section 5600N (looking northwest) of the Lalor deposit. The Balloch and 
Western volcanic successions are in washed-out colours and the Lalor volcanic succession is in brighter colours. Ore 
zone outlines were determined from HudBay Minerals Inc.; the 10 lens is projected from section 5500N. Unit names in the 
Balloch volcanic succession are from Bailes (2008). Traces of drillholes used to interpret this section are indicated. See 
Caté et al. (in press) for more information on the protoliths of altered rocks in the Lalor volcanic succession.
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volcaniclastic rocks, lava flows and subvolcanic intrusions 
of mafic, intermediate and felsic composition. Individual 
volcanic units dip 20–30° to the northeast. Extensive 
alteration in the Lalor volcanic succession is marked by 
diverse metamorphic mineral assemblages, including 
quartz, muscovite, biotite, chlorite, Mg-Fe–amphiboles, 
cordierite, garnet, staurolite, kyanite, sillimanite, 
Ca-amphiboles, diopside, carbonates, anhydrite, gahnite, 
sulphides and other minerals. Mineral assemblages have 
been divided into five groups (or chemical associations) 
using geochemical characteristics (Caté et al., 2014; 
Figure GS-8-2): 1) the K chemical association, 2) the 
K-Mg-Fe chemical association, 3) the Mg-Fe chemical 
association, 4) the Mg-Ca chemical association, and 5) the 
Ca chemical association. The mineralization is hosted in 
the most intensely altered rocks as stratigraphically and 
structurally stacked, variably elongated lenses. Individual 
mineralized lenses dip 20–30° to the northeast. Zinc-rich, 
massive- to semi massive-sulphide lenses are located 
in the uppermost part of the host succession. They are 
underlain by, or are mixed with, Au-rich sulphide-poor 
ore lenses. Semimassive to disseminated Cu-Au sulphide 
mineralization is located north of the Zn-rich  massive-
sulphide lenses, at depth in the footwall.

Least-altered mafic volcaniclastic rocks stratigraph-
ically overlie the Lalor deposit (Figure GS-8-2). They are 
truncated by the Lalor-Chisel contact and juxtaposed with 
steeply dipping, overturned, mafic to felsic volcanic units 
(Bailes, 2008), herein informally referred to as the ‘Balloch 
volcanic succession’ (Figure GS-8-2). Relatively fresh 
volcanic units (informally grouped here in the Western 
volcanic succession; Figure GS-8-2) located west of the 
deposit are in contact with the intensely altered rocks of 
the Lalor volcanic succession. The contact between these 
two volcanic successions is defined here as the ‘Western 
fault’.

Underground mapping
Detailed mapping (1:250 scale) of drift walls at 

selected locations in underground workings, and localized 
observations elsewhere in the mine, have been completed 
to date.

Drift mL 865 10 HW
The 865 10 HW drift follows the strike of the 10 lens, 

which consists of massive sulphide. The mapped area is 
located at the northwest end of the 10 lens on the southeast-
dipping limb of an F3 fold. The  massive-sulphide lens 
is hosted in quartz-muscovite-pyrite-biotite schist; a 
boudinaged mafic dike (or sill) crosscuts mineralization 
and altered wallrocks (Figures GS-8-3a, -4a). Intense D2 
deformation produced isoclinal folds in the sequence and 
resulted in boudinage of the dike (Figure GS-8-3a). More-
ductile sulphide minerals (sphalerite, chalcopyrite and 
pyrrhotite) were remobilized into the necks of boudins, 

and locally constitute remobilized Zn-rich ore (Figures 
GS-8-3a, -4a). The dike was locally affected by Ca-rich 
metasomatism characterized by diopside, grossular, 
epidote, actinolite, carbonates and anhydrite (Figure 
GS-8-4b). Veins of grossular, calcite, actinolite, anhydrite, 
chalcopyrite, galena and sulphosalts are associated with 
this Ca-rich metasomatism (Figure GS-8-4c). Similar 
Cu-Pb–bearing, sulphosalt- and Ca-rich assemblages 
are also present in weakly altered, competent dikes that 
crosscut the mineralization in drillcore. These dikes 
are commonly associated with anomalous Au grades at 
the intersection with  massive-sulphide lenses. Such 
association has not been observed in strongly altered, 
ductile, quartz-muscovite-pyrite-biotite schist. The 
Ca-rich metasomatism in the 865 10 HW drift overprints 
the S2 foliation (Figure GS-8-4b).

Drift mL 865 North Access
The 865 North Access drift intersects the contact 

between altered rocks of the Lalor volcanic succession 
and least-altered rocks of the Western volcanic succession, 
close to the contact with massive sulphide of the 20 lens 
(Figure GS-8-3b). A repetition of the S1-2-subparallel 
contact occurs in the drift, with the least-altered rocks of 
the Western volcanic succession in contact with altered 
rocks of the 10 lens footwall (quartz-biotite-pyrite with 
lesser kyanite and muscovite) to the northeast and rocks 
of the 20 lens hangingwall (quartz-muscovite-pyrite with 
lesser biotite and kyanite) to the southwest. Evidence of 
reverse shearing (southwestern contact; Figure GS-8-4d) 
and an intensification of the deformation are observed 
close to the contact. Least-altered rocks of the Western 
volcanic succession consist of massive, biotitized mafic 
rocks with bands of epidote and lesser grossular pervasive 
alteration. Some of these bands are affected by the main 
foliation and folded by F2 folds (Figure GS-8-4e), but 
many bands clearly crosscut the S2 foliation, suggesting 
a protracted, syn- to post-D2 history of Ca metasomatism 
(Figure GS-8-4f).

Drift mL 865 20 North
The 865 20 North drift follows the strike of the 20 lens. 

Altered hostrocks are chlorite schist, quartz-muscovite-
pyrite schist and quartz-biotite-pyrite schist (Figure 
GS-8-5a). Isoclinal F2 folds are overprinted by open F3 
folds with steeply dipping axial planes (Figure GS-8-6a). 
Hinges of F3 folds can be traced using variations in the 
strike of the S1-2 foliation (Figure GS-8-5a). The strike 
of the 20 lens is affected by both F2 and F3 folds, which 
results in a complex ore envelope (Figure GS-8-5a).

Drift mL 815 West Haulage
The West Haulage on level 815 exposes the 20 and 

31  massive-sulphide lenses separated by an interval of 
intensely chlorite-altered rocks (Figure GS-8-5b) that show 
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variable deformation intensity. Rocks in the hangingwall 
of the 20 lens are weakly altered. Intense deformation 
is focused along the 31 lens, with both C-S kinematic 
indicators and drag folds suggesting a component of 
apparent normal movement (Figure GS-8-6b). This shear 
zone corresponds to the Lalor footwall fault shown in 
Figure GS-8-2. The footwall of the 31 lens is in contact 
with intensely foliated and moderately altered felsic 
rocks (Figure GS-8-6c) that also show non-coaxial shear 

indicators close to the contact. Least-altered massive 
mafic rocks of the Western volcanic succession are in 
discordant contact with the 31 lens and the moderately 
altered felsic rocks (Figure GS-8-6c). No evidence of 
shearing is present at the contact, which is subparallel 
to the S2 foliation. Intense deformation is apparent in the 
mafic rocks, but there is no clear evidence of non-coaxial 
shear. Mafic rocks contain bands of epidote alteration 
similar to that present in the mL 865 North Access drift 

Figure GS-8-3: Geological maps (at 1:250 scale) of the vertical walls of underground workings (maps rotated to horizontal) 
in: a) drift mL 865 10 HW; b) drift mL 865 North Access.
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and variably intense quartz-calcite veining, both of which 
are affected by D2 deformation structures. The exact 
nature of the felsic over mafic contact is still not clear. 
The altered felsic rocks structurally overlying the mafic 
rocks exposed on the southeast wall of the drift are not 
present on the northwest wall, suggesting that the contact 
is structural and/or intrusive in nature. Similar contacts 
might be present elsewhere in the deposit.

Lalor-Chisel contact
As presented above, the nature of the Lalor-Chisel 

contact in the hangingwall of the Lalor deposit is still 
debated. The Lalor-Chisel contact has only been observed 
in drillcore, as it is not currently exposed underground. The 
contact between units of the Balloch volcanic succession 
(hangingwall) and the Lalor volcanic succession 
(footwall) was intersected by Hudson Bay Exploration and 

Figure GS-8-4: Structural features and relationships in the Lalor deposit: a) remobilized sulphides in the neck of a 
boudinaged dike, drift mL 865 10 HW; b) late- to post-D2 grossular-rich vein, drift mL 865 10 HW; c) chalcopyrite (Ccp), 
galena (Gn), and sulphosalt (S-salts) mineralization in a post-VMS dike with actinolite (Act), quartz (Qz), grossular (Grs) 
and anhydrite (Anh), drift mL 865 10 HW; d) S-C fabric developed in altered rocks near the western fault, drift mL 865 
North Access; e) F2-folded band of epidote (Ca-rich alteration), drift mL 815 West Haulage; f) late- to post-D2 bands of 
epidote (Ca-rich alteration) that crosscut the S2 foliation, drift mL 865 North Access.
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Development Co. Ltd. drillholes DUB211, DUB223 and 
DUB241. In the first two holes, the contact is overprinted 
by strong amphibolitization, which prevented detailed 
structural observations. In DUB241, a rhyodacitic unit 
of the Balloch volcanic succession is in contact with 
the mafic volcaniclastic rocks that conformably overlie 
the Lalor deposit. The contact is sharp, wavy and cut 
by the S2 foliation (Figure GS-8-6d). No major increase 

in the strain intensity is apparent at or near the contact. 
The mafic volcaniclastic rocks are affected by a strong 
amphibolitization.

Structural observations
Numerous structural measurements were collected 

in several locations in the mine. The S1 and S2 foliations 

Figure GS-8-5: Geological maps (at 1:250 scale) of the vertical walls of underground workings (maps rotated to horizontal) 
in: a) drift mL 865 20 North (with map of the back); b) drift mL 815 West Haulage.
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can be distinguished in F2 fold hinges (Figure GS-8-6e), 
but they are usually parallel to each other elsewhere. The 
F2 folds are present in all rock types and affect S1, early 
veins, alteration textures and contacts. An S3 crenulation 
cleavage is present in phyllosilicate-rich rocks (Figure 
GS-8-6f) and, in rare cases, obliterates the S1-2 foliation. 
Poles to the composite S1-2 foliation define a partial girdle 
on a stereogram, perhaps due to noncylindrical F2 folding 

inherited from D1 structures, but possibly also due to the 
presence of cylindrical F3 folds (Figure GS-8-7). The F3 
folds at the Chisel mine (Martin, 1966) are concentric 
and moderately plunging folds. Calculated fold axis 
(030°/26°) and fold-axial plane (214°/82°N) orientations 
fit with the measured orientation of the S2-S3 crenulation 
lineation and S3 crenulation foliation, respectively (Figure 
GS-8-7).

Figure GS-8-6: Structural features and relationships in the Lalor deposit: a) F2 and F3 folds in altered rocks in the 
structural footwall of the 20 lens massive sulphides, drift mL 865 20 North; b) shear zone in the structural hangingwall of 
the 31 lens (massive sulphide) with a sheared sulphide band, drift mL 815 West Haulage; c) contact between altered felsic 
rocks and least-altered massive mafic rocks, drift mL 815 West Haulage; d) contact between felsic rocks of the Balloch 
volcanic succession and mafic rocks of the Lalor volcanic succession, drillhole DUB 241; e) relationships between S0, S1 
and S2 in the hinge zone of an isoclinal F2 fold in altered rocks, drift mL 865 20 North; f) relationship between S2 and S3 in 
an open S3 fold in altered rocks, drift mL 865 10 HW.
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Preliminary interpretations
Structural features associated with the regional D1, 

D2 and D3 deformation events have been observed in the 
Lalor mine. However, no clear evidence of the regional 
D4 deformation is observed. The effect of D1 deformation 
is cryptic due to the overprinting by later deformation 
events. The main foliation is S2, and older structures 
(including S1) and contacts are highly transposed into 
parallelism with S2. The F2 folds are ubiquitous, but 
their isoclinal nature often makes them difficult to map 
and interpret at the scale of a mine stope. Importantly, 
F2 folds are responsible for structural repetitions of units 
and ore lenses at various scales (Figure GS-8-3a). The D3 
deformation event produced large open folds that locally 
affect the orientation of older features without having a 
major effect on deposit-scale trends. The presence of a 
shear zone affecting the 31 lens suggests that structural 
repetition of ore lenses (Caté et al., 2014) is, in part, due 
to structural breaks.

The Lalor-Chisel contact and the Western fault are 
pre-D2 features. Despite clear evidence of a structural 
contact at the cross-section scale (Bailes, unpublished 
report for HudBay Minerals Inc., 2009; Figure GS-8-2), 
the Lalor-Chisel contact is wavy, sharp and overprinted 
by the S2 foliation where observed at Lalor. Based on our 
preliminary observations and available data, the Lalor-
Chisel contact can be interpreted as an unconformity 
or an early brittle fault. The Western fault sharply cuts 
VMS-related alteration, and it also cuts the Lalor volcanic 

succession (Caté et al., in press). At stope scale, the 
contact is transposed subparallel to the S2 foliation and 
its repetition indicates tight D2 folding±transposition 
(Figures GS-8-2, -3b). The Western fault could be an early 
intrusive contact that has been passively folded during D2, 
or an early fault that has been folded during D2. Evidence 
of shearing indicates reactivation of this contact during D2 
(e.g., transposition).

Mechanical (i.e., solid-state) remobilization of 
less-competent sulphide minerals into boudin necks 
represents a significant, but most probably local, means 
for remobilizing Zn- and Cu-rich sulphides, whereas 
Au and Ag are associated with sulphosalt-rich veins and 
Ca-rich metasomatism, indicating hydrothermal (i.e., 
fluid-state) remobilization and concentration, plausibly 
along high-strain zones in the host sequence. Overprinting 
relationships indicate that these remobilizations occurred 
in various stages (syn- to late- or post-D2 deformation), 
but mechanical remobilization apparently also occurred 
earlier in the deformation, as the earliest of such features 
were reworked during D2 and D3.

Economic considerations
The general shape and orientation of  massive-

sulphide lenses in the Lalor deposit is largely controlled 
by an intense flattening and stretching±transposition 
subparallel to S2 foliation. Attenuation due to D2 flattening, 
as well as thickening due to F2 folding, both clearly affect 
the geometry of the ore zones and their hostrocks. The D3 

Figure GS-8-7: Wulff stereographic projection (lower hemisphere) of measured and calculated structural features in the 
Lalor mine.
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deformation does not seem to have had a major impact on 
the general shapes of ore lenses, but both F2 and F3 folds 
locally affect their strike.

Mechanical remobilization of ductile sulphides 
probably also occurred in the hinges of F3 folds and at the 
contacts of  massive-sulphide lenses with more competent 
and/or least-altered rocks. This remobilization is local 
and may cause reconcentration of some metals in ore 
shoots that have a geometry controlled by the structure 
responsible for their development.

Remobilization of Au and Ag is apparent only local, 
generally very close to  massive-sulphide lenses, and is 
associated with various stages (syn- to late- or post-D2) of 
Ca-rich metasomatism. Galena-chalcopyrite-sulphosalt–
rich bands and veins preferentially occur in competent 
rocks such as dikes or least altered rocks, and rarely in 
strongly altered, more ductile rocks such as muscovite-
rich schist. This remobilization seems to reconcentrate 
part of the Au and Ag outside of the primary ore gangue 
(base-metal–rich sulphide lenses).

Future work
The current report presents preliminary observations 

and interpretations on the various structural features 
present in the Lalor deposit. More work will be conducted 
in 2014–2015 to further constrain the relative timing and 
effects of the different deformation events recorded by the 
deposit and its hostrocks. Future work on the structural 
setting of the Lalor deposit will focus on 1) the nature 
of the Lalor-Chisel contact and the Western fault, in 
order to understand the distribution of the Lalor volcanic 
succession outside the mine area; 2) F2-F3 fold interference 
and its influence on the geometry of the  massive-sulphide 
lenses; 3) the macroscale deposit geometry; 4) the relative 
timing and significance of the remobilization of base 
and precious metals at the scale of stopes or the entire 
deposit. This work will involve additional underground 
mapping, thin-section petrography, structural analysis, 
and 3-D geophysical, geological, geochemical and 
structural modelling of the host successions, ore lenses 
and distribution of metals.
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