Summary

Fieldwork conducted during the summer of 2010 was designed to take advantage of a well-exposed corridor on the shores of Family and Fishing lakes. Preliminary field mapping of the outcrop was completed as the basis for use in the 1:250 000 scale digital map of Manitoba. In addition, modern technology ensures that comparisons can be made to similar adjacent rocks. The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rocks. Thirdly, the systematic terminology for igneous intrusive rocks has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.

The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rocks. Thirdly, the systematic terminology for igneous intrusive rocks has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.

This project's objective was to investigate the lithologies described by Ermanovics (1969, 1970) in the Family-Fishing lakes area. The Family-Fishing lakes area was used to study the evolution of the Precambrian shield. However, comparison of Manitoba maps with the adjacent rocks on the shores of Family and Fishing lakes,宝石山脉 adjacent maps in Ontario remains problematic. Although there is a significant improvement and will be less than 100% correlation the result will provide a significant increase in knowledge of the evolution of the Precambrian shield in this region along the Manitoba-Ontario border. The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.

This project's objective was to investigate the lithologies described by Ermanovics (1969, 1970) in the Family-Fishing lakes area. The Family-Fishing lakes area was used to study the evolution of the Precambrian shield. However, comparison of Manitoba maps with the adjacent rocks on the shores of Family and Fishing lakes,宝石山脉 adjacent maps in Ontario remains problematic. Although there is a significant improvement and will be less than 100% correlation the result will provide a significant increase in knowledge of the evolution of the Precambrian shield in this region along the Manitoba-Ontario border. The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.

This project's objective was to investigate the lithologies described by Ermanovics (1969, 1970) in the Family-Fishing lakes area. The Family-Fishing lakes area was used to study the evolution of the Precambrian shield. However, comparison of Manitoba maps with the adjacent rocks on the shores of Family and Fishing lakes,宝石山脉 adjacent maps in Ontario remains problematic. Although there is a significant improvement and will be less than 100% correlation the result will provide a significant increase in knowledge of the evolution of the Precambrian shield in this region along the Manitoba-Ontario border. The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.

This project's objective was to investigate the lithologies described by Ermanovics (1969, 1970) in the Family-Fishing lakes area. The Family-Fishing lakes area was used to study the evolution of the Precambrian shield. However, comparison of Manitoba maps with the adjacent rocks on the shores of Family and Fishing lakes,宝石山脉 adjacent maps in Ontario remains problematic. Although there is a significant improvement and will be less than 100% correlation the result will provide a significant increase in knowledge of the evolution of the Precambrian shield in this region along the Manitoba-Ontario border. The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.

This project's objective was to investigate the lithologies described by Ermanovics (1969, 1970) in the Family-Fishing lakes area. The Family-Fishing lakes area was used to study the evolution of the Precambrian shield. However, comparison of Manitoba maps with the adjacent rocks on the shores of Family and Fishing lakes,宝石山脉 adjacent maps in Ontario remains problematic. Although there is a significant improvement and will be less than 100% correlation the result will provide a significant increase in knowledge of the evolution of the Precambrian shield in this region along the Manitoba-Ontario border. The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.

This project's objective was to investigate the lithologies described by Ermanovics (1969, 1970) in the Family-Fishing lakes area. The Family-Fishing lakes area was used to study the evolution of the Precambrian shield. However, comparison of Manitoba maps with the adjacent rocks on the shores of Family and Fishing lakes,宝石山脉 adjacent maps in Ontario remains problematic. Although there is a significant improvement and will be less than 100% correlation the result will provide a significant increase in knowledge of the evolution of the Precambrian shield in this region along the Manitoba-Ontario border. The reconnaissance field mapping program was designed to (1) re-examine the plutonic rocks on the shores of Family and Fishing lakes. The goal was to review the tectonic variations in the area. Secondly, rock types were used to rationalize the terminology with the legend. A consistent and comprehensive map with a common legend. Secondly, the systematic terminology for igneous intrusive rocks (Streckeisen, 1976) has been applied to all rock types in the region - the 2.75 to 2.70 Ma granitic suite of samples for future geochronology. Finally, 119 samples were collected for geochronology and isotopic studies. The new data will allow for a better understanding of the tectonic history of the region. Additionally, 10 new plutonic units have been identified. A comparison to similar adjacent rocks in the region was successful in the transect area.