Shale gas to Three Forks: Manitoba Geological Survey's petroleum and stratigraphic investigations

Michelle Nicolas, P. Geo.

19th Williston Basin Petroleum Conference Regina, SK May 3, 2011

Current Projects

- Shallow Unconventional Shale Gas Project
- Bakken-Three Forks Project
- GEM Energy: Hudson Bay and Foxe Basins Project
- 3-D Model of Southern Manitoba
- TGI 2: Williston Basin
- CO₂ Storage in the Basal Aquifer
- Cretaceous Gammon Ferruginous Chemostratigrapic Investigations

Shallow Unconventional Shale Gas Project

Project goals:

- To verify if the Cretaceous sequences of SW Manitoba have the right <u>geological</u> <u>conditions</u> for economic shale gas accumulations.
- Identify the best target formations.
- Determine type of gas (biogenic or thermogenic).

Cretaceous Gas Shows

1906-1933:

- Natural gas used for domestic lighting and cooking purposes at several sites in SW Manitoba.
- Historical documents indicate up to 12 gas wells drilled in SW Manitoba between 1906 and 1933.
 - least two wells remain capped.

• Exploration resumed between 2003-2006.

Project Target Formations & Documented Gas Shows

SOUTHWESTERN MANITOBA		
	Pierre Shale	Coulter Member
		Odanah Member
		Millwood Member
		Pembina Member
		Gammon Ferruginous Member
CRETACEOUS	Carlile Formation	Boyne Member
		Morden Member
	Favel Formation	Assiniboine Member
		Keld Member
	Ashville Formation	Belle Fourche Member
		Westgate Member
		Newcastle Member
		Skull Creek Member

• Stratigraphic details:

- West (T1 R29W1):
 - 620 m thick
 - 100 m TVD to 720 m TVD
 - Pierre Shale (Odanah Mb) to Ashville Fm.
- East (T2 R9W1):
 - 220 m thick
 - 100 m TVD to 310 m TVD
 - Pierre Shale (Odanah Mb) to Ashville Fm.

Yellow highlight indicates units with documented gas shows

Isopach map: Pembina Member to Belle Fourche Member

- Combined thickness from the top of the Pembina Member to the base of the Belle Fourche Member.
- Lack of data towards the north and along the outcrop belt.
- Orange upper limit = 240 m
- **blue** lower limit = 0 m

Outcrop, Core & Soil Sampling

- Geochemical and mineralogical analyses include:
 - Rock-EvalTM (TOC and T_{max});
 - X-Ray Diffraction (XRD);
 - Major and minor trace element bulk geochemistry (chemostratigraphy).
- MMI soil geochemistry profiling.
- SEM to characterize pores and estimate porosity.

Manitobo

Water and Gas Well Sampling

- Geochemical analyses include:
 - Dissolved gas composition;
 - Free gas composition;
 - Water chemistry:
 - cations, anions, alkalinity, sulphates;
 - Stable Isotopes:
 - Sulphur, carbon, oxygen.
- 5 free gas samples collected:
 - 2 gas wells;
 - 3 domestic water wells.
- 13 domestic water wells sampled.

Results

• Geochemistry:

- High organic content in the shale in most of the formations.
- Rocks thermally immature, so gas is still present in the rocks.
- Methane present is present as free gas within the pores, fractures and adsorbed on particles.
- Dry biogenic gas.
- Mineralogy is complex and variable, but some beds have high quartz content.
- Porosity and permeability is comparable to the other shale gas plays.

SEM image of siltstone in the Carlile Formation showing pores.

Conclusions

- Best shale gas target formations identified include up to 220 m thick of shale.
- Geochemistry and mineralogy of the rocks is similar to other shale gas basins.
- Geochemistry results indicate that this is an unconventional **biogenic** shallow gas play.
- Potential shale gas area covers over 50 000 km².
- Manitoba does have the right geological conditions for shale gas.
 - Question: Is it economic?
- Still more work to do...

Bakken-Three Forks Project

Project goals:

- Review, update and describe the stratigraphy of the Three Forks Fm.
- Describe the regional geology of the Three Forks Fm, and how it relates hydrocarbon accumulations.
- Update Bakken Formation stratigraphy and how it relates to the Three Forks Fm.
- Define the Big Valley Formation.
- Build a depositional, erosional and deformational model for the Three Forks, Big Valley and Bakken formations.

Three Forks Formation

- Maximum thickness of the Three Forks in Manitoba is 64 m.
- Three Forks is subdivided into four units;
 - Correlative to Christopher (1961) units in Saskatchewan.
 - Units 1, 2 and 4 are further subdivided into subunits.
- Isopach and subcrop trends of each unit are north-south.
- Three Forks and Middle Bakken are hydraulically linked, therefore oil production is reported as commingled.
- Best production comes from subunit 4c, and subunit 2c.
- Where there is production from Unit 4, the Middle Bakken is very thin (< 1m).
- Production from Unit 2 is economic when the Middle Bakken is thick (> 4 m) and acts as the dominant reservoir.

Three Forks Isopach

- Thin in Manitoba due to erosion
- Thickest in the west along the MB-SK border

Three Forks Isopach

- Thickest in the west along the MB-SK border
- Localized thickening in the east

Contour Interval = 2 m

Manitoba

Three Forks Isopach & Unit Edges

- The units within the Three Forks were individually mapped.
- North-south trend to subcrop edges; follows isopach trend.
- Localized isopach thicks in the east correspond to preservation of Units 3 and 4 east of the main subcrop edge for these units.

Contour Interval = 2 m

TF Unit Edges & Tectonics Controls

- **Basement features:**
 - Fault re-activation throughout the Paleozoic (SBZ);
 - Large scale effects of the Severn Arch.
- post-Prairie Evaporite structural deformation:
 - Localized and large scale salt collapse;
 - draping effects.

Superior Boundary Zone

basement hinge line

Birdtail-Waskada Zone

Bakken-Three Forks Producing Areas

Manitoba 🗫

Bakken-Three Forks Prospects

Manitoba 🗫

From the TGI 2 Williston Basin 3-D Model (available at <u>www.**WillistonTGI**.com</u>)

looking south-east

Coming Soon...

Stratigraphy and regional geology of the Late Devonian-Early Mississippian Three Forks Group, southwest Manitoba (NTS 62F, parts of 62G, K)

By M.P.B. Nicolas

Manitoba

Geoscientific Report will include:

- New stratigraphic framework.
- Updated regional geological framework.
- Detailed description and mapping of the Three Forks, Big Valley and Bakken formations.
- Depositional, erosional and deformation model described.
- Economic discussion.

GEM Energy:

Hudson Bay and Foxe Basins Project

Project goals:

- Develop a better understanding of the geological evolution of the basins;
- Provide a modern appraisal of their hydrocarbon potential.

GEM Energy: Hudson Bay and Foxe Basins

Results to date:

- Several oil shale horizons;
- Shale within the oil window.
- Bituminous residue found in several cores;
- Modern pockmarks identified on the basin floor.

Still more work to do...

For more info on MGS projects...

Click on

at

www.manitoba.ca/minerals

