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The Rice Lake gold mine is located 
northeast of Winnipeg, in the central portion of the Archean Rice Lake 
greenstone belt.

Discovered in 1911, the Rice Lake deposit was in continuous 
production from 1932 to 1968, during which time it produced 1.31 
million ounces of gold from 4.87 million tons of ore grading 0.27 oz. 
Au/ton. Including subsequent production in the periods 1980-1983, 
1997-1998 and 1999-2001, the mine has produced a total of 1.44 
million ounces of gold.

In 2006, San Gold Corporation reopened the Rice Lake mine and is 
currently working toward full production in fall 2007. Proven and 
probable reserves total 261,670 ounces within a total resource of 
826,920 ounces. In terms of total gold endowment (past production, 
plus current reserves and resources), the Rice Lake deposit is the 
largest lode-gold deposit discovered to date in Manitoba.

This poster presents the results of detailed geological and structural 
mapping of auriferous quartz-carbonate vein arrays on the 30th level 
(1370 m below surface) of the Rice Lake mine. This work was 
undertaken by the MGS during the 2007 field season in order to gain 
a better understanding of the geology and structure of the deposit, 
and the mechanisms and relative structural timing of vein 
emplacement. Also included for reference is an overview of the 
structural geology of supracrustal rocks in the vicinity of the mine, 
based on MGS bedrock mapping in 2004.

This work forms part of the Rice Lake metallogeny project, which was 
initiated in 2002 with the objective of re-evaluating the stratigraphy, 
structure and tectonic evolution of the Rice Lake belt, using a 
combination of bedrock mapping, structural analysis, litho-
geochemistry, Sm-Nd isotope geochemistry, U-Pb geochronology and 
mineral deposits studies.

Work completed to date, including the structural data presented in 
this poster, provides a significantly improved context for lode-gold 
exploration in the Rice Lake belt.

at Bissett, Manitoba, 150 km 

The Rice Lake greenstone belt is situated in the western 
Uchi Subprovince of the Archean Superior Province, and is 
bound to the north and south, respectively, by the crustal-scale 
Wanipigow and Manigotagan shear zones. In Manitoba, the 
volcanoplutonic Uchi Subprovince is flanked to the north by the 
ca. 3.0 Ga North Caribou continental terrane and to the south 
by ca. 2.69 Ga metasedimentary rocks and granitoid plutons of 
the English River Subprovince.

The Rice Lake belt consists of Meso- and Neoarchean 
mafic to intermediate volcanic and volcaniclastic rocks, 
intercalated with derived epiclastic rocks and intruded by 
synvolcanic mafic sills. In the eastern portion of the belt, these 
rocks are subdivided into distinct lithotectonic assemblages, 
which include the Mesoarchean Wallace (ca. 2.92-2.99 Ga) 
and Garner (ca. 2.87-2.90 Ga) assemblages, and the 
Neoarchean Bidou (ca. 2.72-2.73 Ga) and Gem (ca. 2.72 Ga) 
assemblages. The Bidou assemblage includes synvolcanic 
quartz diorite and granodiorite plutons, the most prominent of 
which is the ca. 2.73 Ga Ross River pluton in the central 
portion of the belt.

Fluvial and alluvial siliciclastic rocks of the ca. 2.70 Ga 
San Antonio assemblage unconformably overlie these rocks 
and likely represent the proximal equivalents to basinal 
turbidites of the ca. 2.70 Ga Edmunds assemblage, which 
overlaps the south margin of the belt.

Supracrustal rocks in the vicinity of the Rice Lake mine 
comprise the mainly metavolcanic Bidou assemblage and the 
metasedimentary San Antonio assemblage. At Rice Lake, the 
Bidou assemblage consists of an upright, homoclinal 
succession of intermediate to felsic volcaniclastic rocks that 
dips moderately north. These rocks are intruded by gabbro 
sills, which include the San Antonio Mine sill ('SAM sill') that 
hosts the Rice Lake deposit.

The Bidou assemblage is intruded in the southeast by 
porphyritic quartz diorite of the Ross River pluton and, to the 
west, is unconformably overlain by the San Antonio 
assemblage, which defines a 1.5-2.0 km thick, broadly S-
shaped map unit that trends across the regional strike of the 
Rice Lake belt.

Metamorphic mineral assemblages throughout the Rice 
Lake area indicate regional metamorphism in the low to middle 
greenschist-facies.

Ductile and ductile-brittle deformation structures in the Rice Lake area are 
subdivided into six generations (G1 to G6) on the basis of mesoscopic overprinting 
relationships and inferences drawn from macroscopic map patterns. These structures 
are interpreted to result from four distinct episodes of regional deformation (D1 to D4). 
Consistent overprinting relationships are observed between three generations of 
regionally-pervasive planar fabric (S3, S4 and S5), which provides a useful tool for 
structural correlation.

G3 structures are well developed in the San Antonio assemblage, indicating a ca. 
2.70 Ga maximum age for penetrative regional deformation in the Rice Lake belt. As 
described below, the G3 fabrics are also well-developed in the SAM sill at depth in the 
Rice Lake mine. The implications of this new observation are described below.

The existence and nature of two early deformation episodes (D1 and D2) are 
inferred from map patterns in the Horseshoe Lake area.

Field relationships indicate a pronounced angular unconformity at the base of the 
San Antonio assemblage, thereby requiring regional tilting of the underlying Bidou 
assemblage into a subvertical orientation prior to its deposition. This tilting is attributed 
to D1 deformation, and may record accretion-related tectonism along the North Caribou 
Terrane margin.

West of Horseshoe Lake, west-younging rocks of the San Antonio and Bidou 
assemblages exhibit an older-over-younger map pattern that is inferred to result from 
D2 thrusting during tectonic inversion of the San Antonio basin in the initial stages of 
crustal thickening within the Rice Lake belt. This deformation is evidenced by a locally 
preserved penetrative S2 foliation along the upper contact of the San Antonio 
assemblage.

D3 deformation produced a regionally pervasive S3 flattening fabric and northeast-
plunging L3 elongation lineation. Map patterns and bedding cleavage relationships 
define a macroscopic F3 fold-pair, the Horseshoe Lake anticline and Gold Creek 
syncline (see photo), which are tight, upright structures that are overturned to the 
southwest.

These G3 structures record NNE-SSW shortening (present coordinates) of the 
Rice Lake belt. Locally preserved sinistral kinematic indicators on the north margin of 
the Wanipigow Shear Zone are inferred to result from D3 shear deformation. G3 linear 
fabric elements adjacent to the south margin of the Wanipigow Shear Zone were 
significantly re-oriented during D4 deformation.

At depth in the Rice Lake mine, the SAM sill typically contains a penetrative L- or 
L-S fabric defined by foliated chlorite and actinolite, and elongate (stretched), altered, 
plagioclase crystals. The L-fabric plunges moderately northeast in the plane of the 
northeast dipping S-fabric. On the basis of style and orientation, these fabrics are 
correlated with the regional S3-L3 fabrics.

The initial stages of D4 deformation produced a penetrative to finely spaced 
crenulation cleavage (see photo) that transects the macroscopic F3 folds in the Rice 
Lake area. This cleavage is axial planar to minor Z-asymmetric F4 folds.

The G4 structures appear to have accommodated weak NW-SE shortening of 
the Rice Lake belt during the early increments of regional, late-orogenic, dextral 
transcurrent shear deformation along the Wanipigow Shear Zone. On a regional 
scale, this transcurrent shear deformation is interpreted to coincide with the terminal 
phase of the ca. 2.69 Ga Kenoran Orogeny.

The main increment of D4 deformation produced a regionally pervasive fracture 
or shear-band cleavage (S5; see photo) that trends northwest and exhibits dextral 
offset or asymmetry. This cleavage locally intensifies into discrete, ductile>brittle, 
high-strain zones that contain mylonitic S5 foliations and shallowly-plunging L5 
lineations. In these high-strain zones, packets of strongly Z-asymmetric, open to tight 
F5 folds exhibit variable plunges, from shallowly east to steeply north, and are 
associated with well-developed dextral kinematic indicators on horizontal outcrop 
surfaces.

In the Wanipigow Shear Zone, G5 mylonite contains conjugate (synthetic and 
antithetic) shear bands, indicating a significant component of zone-normal 
shortening. These G5 structures are interpreted to record NNW-SSE shortening of 
the Rice Lake belt during main-stage, orogen-scale dextral transcurrent shear in the 
Uchi Subprovince.

Auriferous vein systems at the Poundmaker and SG1 deposits are overprinted 
by penetrative dextral asymmetric fabrics that are correlated on the basis of style and 
orientation with the G5 deformation structures. 

The latest increment of D4 deformation produced a macroscopic, north-trending, 
open fold of the Bidou assemblage in the Rice Lake area, which is associated with a 
north-trending, axial planar S6 crenulation cleavage (see photo) and mesoscopic 
open F6 folds. On the east limb of the macroscopic fold, S3-S4-S5 fabrics in the 
Normandy Creek Shear Zone trend southwes, and are thus markedly oblique to the 
regional foliation trends.

The tectonic significance of this deformation is uncertain, but may be related to a 
local strain perturbation in response to a buttressing effect along the northwest 
margin of the Ross River pluton during late increments of regional NNW-SSE 
shortening and dextral transcurrent shear deformation.

The fact that the Wanipigow Shear Zone is unaffected by the macroscopic F6 
fold at Rice Lake suggests that late-stage transcurrent shear deformation likely 
continued subsequent to folding, and was strongly partitioned into the shear zone.

As is typical of Archean lode-gold deposits, the Rice Lake deposit is composed of 
complex arrays of synkinematic quartz veins in brittle-ductile fracture systems that formed 
under greenschist-facies metamorphic conditions in close proximity to crustal-scale, 
domain-bounding faults. Because the geometry and localization of lode-gold deposits is 
strongly influenced and controlled by structure, structural analysis is a critical tool for 
constraining metallogenic models and formulating exploration strategies. 

The present study indicates that the auriferous 16-type and 38-type veins in the Rice 
Lake deposit were emplaced synchronously. Vein textures and structures, together with 
overprinting relationships, indicate that vein emplacement was intimately associated with 
late- to post-D3 faulting, and thus occurred subsequent to, or perhaps in the latest 
increments of, the regional D3 deformation. Vein orientations and textures indicate that 
the near-field maximum principal stress was subhorizontal (present coordinates) at the 
time of vein emplacement, in a direction that probably fluctuated from N-S to NE-SW 
(present coordinates) due to transient variations in the local boundary conditions.

These data, in conjunction with the results of the recent 1:20 000 scale bedrock 
mapping completed by the MGS, provide important new predictive parameters for lode-
gold exploration in the central portion of the Rice Lake belt.

Hangingwall contact of the SAM sill, showing sharp contact 
between variably-altered and quartz-veined gabbro (lower 
left) and felsic epiclastic rocks (upper right; 2998E; wall 
exposure, facing west).

The Rice Lake deposit is hosted by a moderately 
northeast-dipping, weakly differentiated gabbro sill (the SAM 
sill) that intrudes ca. 2.72-2.73 Ga felsic epiclastic rocks of 
the Bidou assemblage. The gabbro is interpreted to be a 
subvolcanic equivalent to basaltic flows 300-400 m up-
section, suggesting a very shallow emplacement depth. The 
sill ranges up to 190 m thick and has been traced down-dip 
for over 2.5 km. The deposit consists of a complex system of 
auriferous quartz-carbonate veins, which are mainly hosted 
by leucogabbro in the thickest portion of the sill. Sparsely 
porphyritic dacite dikes cut the sill prior to vein emplacement. 
Auriferous veins exhibit well-developed, though typically 
narrow, alteration haloes that grade outward from proximal 
ankerite-albite-sericite-pyrite to distal chlorite-calcite 
assemblages. Along the margins of the sill, the felsic 
epiclastic rocks contain intense ankerite-sericite alteration.

San Gold Corp. provided unfettered 
access to the Rice Lake gold mine and 
proprietary data.

Particular thanks are extended to Jim 
Harvey and Lawrence Norquay, Mine 
Geologists, for guiding the author on 
numerous mine tours and freely sharing 
their observations pertaining to the 
geology and structure of the deposit.

Intense ankerite-sericite alteration and L-S fabric in felsic 
epiclastic rocks in the immediate hangingwall of the SAM 
sill (2998E; wall exposure, facing north).

Weakly-altered, heterolithic, volcanic conglomerate in the 
footwall of the SAM sill (D-shaft access ramp, level 36; wall 
exposure, facing west). Rock-bolt plates are 15 cm square.

Leucocratic gabbro in the hangingwall portion of the SAM 
sill (3096E; wall exposure, facing southwest), showing 
penetrative L-fabric defined by altered and stretched 
plagioclase crystals. 

North-dipping fault-fill vein (96 vein; 3096E; wall/back exposure, 
facing west). Internal fabric defined by stylolitic pressure solution 
seams and tabular wall-rock inclusions. Note shallow-dipping and 
ptygmatically folded extension veins on hangingwall contact.

Diffuse stockwork composed of subsidiary fault-fill veins and 
extension-vein arrays in the hangingwall of the 96 vein (3096E; back 
exposure, facing south). Note transposed felsic dike (emerald 
green) along the bottom edge of the photograph.

Extension-vein stockwork bound by the 96 vein (bottom) and a 
folded subsidiary fault-fill vein (top) (3096E; back exposure, facing 
south). The geometry and orientation of these structures indicate 
synkinematic vein emplacement in a sinistral kinematic frame.

Steeply north-dipping fault-fill vein (96 vein; 3096E; back exposure, 
facing south). Stylolitic pressure solution seams define a complex 
internal fabric that ranges from subparallel to markedly oblique to 
the vein margins.

Mineral and stretching lineation in discrete 16-type 
shear zone (3096W; wall exposure, facing south).

Mylonitic foliation and transposed quartz veins in 16-
type shear zone (2893W; face exposure, facing west).

Detailed structural mapping has been completed along the entire length of the 96 vein 
system on the 30th level of the Rice Lake gold mine, with particular emphasis on the 
transitions from 16-type to 38-type veins at the NE and SW extents of the system. The map 
above shows the locations of the detailed maps presented on this poster.

Inverted plan-section of 2902 stockwork-breccia vein, 
showing internal breccia flanked by wedge-shaped 
extension veins (back exposure, facing west).

Subvertical fault-fill vein with flanking extension veins. 
Note discordant relationship to wall-rock G3 fabric 
(3098E; wall exposure, facing northwest).

Cross-section of 2902 stockwork-breccia vein, 
showing shallow-dipping extension veins on east 
margin of breccia vein (face exposure, facing north).

Longitudinal section of 2902 vein, showing shallowly 
south-plunging line of intersection between breccia 
vein and extension veins (wall exposure, facing east).

The ‘96’ fault-fill vein showing laminated and breccia 
textures, and peripheral arrays of extension fractures 
(4650 drift; back exposure, facing south).

The ‘96’ fault-fill vein, showing left-lateral juxtaposition 
of altered epiclastic rocks (left) and gabbro (right) 
(4650 drift; face exposure, facing east).

Shear-hosted, laminated fault-fill vein showing pinch 
and swell structure and flat, quartz-filled extension 
veins (3096E sub; face exposure, facing west)

Laminated and brecciated domains in the 98 vein, 
separated pyritic slip-surface/pressure solution seam 
(2998W; back exposure, facing south).

G3 shape fabric cross-cut 
by quartz-filled extension 
fractures (3096E sub; wall 
exposure, facing SE).

Discrete 16-type shear 
zone cut by flat extension 
veins on the margin of 38-
type breccia (3096W; wall 
exposure, facing W).

The present study provides important new constraints on the relative structural timing 
of vein emplacement, which can be summarized as follows:
1)  At depth, the SAM sill contains a pervasive planar-linear (S-L) shape fabric that is 

correlated on the basis of style and orientation with the regional G3 fabric.
2)  The G3 fabric is overprinted by 16-type shear zones and is cross-cut by peripheral, 

quartz-filled extension fractures associated with 16-type fault-fill veins and 38-type 
breccia veins.

3)  The 16-type shear zones and 38-type veins exhibit mutual overprinting relationships, 
indicating that these structures are broadly coeval.

16-type shear zone cross-
cut by 38-type breccia vein 
(3096W; floor/wall 
exposure, facing north).

Gold mineralization in the Rice Lake deposit is hosted by two distinct orientations of vein systems that are 
preferentially developed in the leucogabbroic portion of the SAM sill and are informally known as the ‘16-type’ and ‘38-
type’ veins (see figure).

The 16-type veins are hosted by discrete, ductile>brittle shear zones that cross-cut, and trend counterclockwise to, 
the SAM sill. Although significant variations in strike and dip are observed within and between individual shear zones, 
most dip steeply north-northwest. At least some of these variations are due to refraction in the uppermost portion of the 
sill. Ductile asymmetrical fabrics and lineations indicate sinistral-reverse oblique-slip shear, consistent with the left-lateral 
offsets of felsic dikes and the hangingwall contact of the sill. Most shear zones appear to dissipate along strike to the 
southwest and do not displace the footwall contact of the sill, indicating that displacement was accommodated by more 
diffuse, ‘horsetail’-type structures within the sill.

The 16-type veins are fault-fill veins that range up to 2.0 m thick and exhibit massive, laminated and breccia textures. 
Multiple generations of planar slip-surfaces, fault-fill quartz veins, quartz-filled extension fractures and stylolitic pressure 
solution seams indicate repeated cycles of fault slip, fault dilation, hydraulic extension fracturing, hydrothermal sealing 
and stress accumulation (i.e., fault-valve behaviour). Syndeformational arrays of en-echelon extension veins locally form 
complex peripheral stockwork systems. Shallow-dipping shear zone segments tend to host thicker, breccia-style veins, in 
contrast to the thinner, more strongly laminated veins in the steeply-dipping segments, consistent with hydrothermal 
infilling of extensional jogs (i.e., releasing bends) during sinistral-reverse shear.

The 38-type veins trend roughly parallel, or slightly clockwise, to the trend of the SAM sill. In the upper levels of the 
mine, subvertically-dipping 38-type veins are arranged en-echelon down the dip of the SAM sill, and are limited in dip-
extent by the sill contacts. At depth however, some of these veins dip subparallel to the sill and thus extend for 
considerable distances down-dip. The 38-type veins range up to 10 m thick and comprise sinuous, irregular zones of 
intensely fractured and quartz veined gabbro. Typically, the core is marked by quartz-matrix breccias and minor fault-fill 
veins, which grade outward into complex stockworks of quartz-filled extension fractures, and peripheral arrays of shallow-
dipping extension veins. Hydraulic fracturing is indicated by in-situ fragmentation textures (i.e., jigsaw breccia) in the 
breccia veins. The geometry and internal structure of the peripheral vein arrays indicate that the near-field maximum 
principal stress was subhorizontal at the time of emplacement. Incipient 38-type vein-systems appear to be controlled by 
discrete brittle faults; however, felsic dikes cross-cut by these veins exhibit negligible to minor offsets. On this basis, the 
38-type vein systems are interpreted to be controlled by brittle faults that accommodated minor back-rotation of fault-
bounded blocks of the SAM sill, due to differential slip on the block-bounding 16-type shear zones.

Thick, subvertical, hydraulic breccia vein (right) and 
relatively inclusion-poor, steeply northeast-dipping, 
fault-fill vein (left) at the northern extent of the 3096W 
vein (back exposure, facing N).

Subhorizontal extension veins on 
the east margin of the 3096W vein 
(wall exposure, facing E). Note 
subvertical felsic dike along right 
edge of photo.

Hydraulic breccia in the south 
portion of the 3096W vein 
(back exposure, facing S).

Shallowly north-dipping extension 
veins on the west margin of the 
3096W breccia vein (wall exposure, 
facing W).

East margin of the 3096W vein shown to left, 
illustrating the gradation from hydraulic breccia (top) to 
peripheral arrays of shallowly dipping extension veins 
(wall exposure, facing NE).
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