The image contains a portion of a scientific paper discussing geological and mineralogical studies. The main focus is on the Wasekwan Lake area and the Lynn Lake greenstone belt in northern Manitoba. The paper discusses the formation and mineralization of granitic rocks and their significance in the geological context of the region.

In the Lynn Lake greenstone belt (Fig. 1), the study examines the Wasekwan Lake area and suggests that these late suite granitoids are notable for their high Au content up to 1.45 g/t, which is strongly mineralized but requires further evaluation. The area is noted for its potential to host magmatic Ni-Cu-Co-(Pt) deposits.

The paper also discusses the importance of greenschist-facies retrograde metamorphism and the role of overprinted mineral assemblages in the development of mineral deposits. The study benefited from discussions with various stakeholders, including M. Rein (Alamos Gold Inc.), C. Lawley (Geological Survey of Canada), and S.D. Anderson in the field.

The geological setting of the area is characterized by a variety of volcanic and volcaniclastic rocks, including basalt, andesite, dacite, and rhyolite, which are intruded by three suites of granitoid intrusions. These areas are being subjected to multiple phases of deformation and metamorphism.

The main findings include:

1. Volcanic and volcaniclastic rocks of units 1 and 2 are dominated by tholeiitic rocks, although some display calc-alkaline affinities with a large compositional range of rocks from basalt to andesite.
2. Sedimentary rocks of unit 3 show geochemical similarities to the volcanic rocks, suggesting that they are likely derived from local provenance with similar compositions and deposited rapidly within an intra-arc basin.
3. Unit 4 gabro is mainly tholeiitic, but some could be affected by crustal contamination as indicated by high FeO/tot ratio.
4. Gabbros are intrusion-related, and are mainly metamorphosed, typical of volcanic arc origin.
5. Key HFSE signatures are retained in tectonite of unit 7, although some samples are heavily altered (reflected by high LOI contents >5%).

The study involved extensive fieldwork, sample collection, and geochemical analysis, including isotopic and elemental data. The results are presented in various figures and diagrams, which show the distribution of different rock types and mineral deposits in the area.

The paper concludes with a discussion on the implications of these findings for mineral exploration and the potential for future discoveries in the region.