
QUATERNARY
SURFICIAL DEPOSITS

HO LO CEN E
NONGLACIAL ENVIRONMENTS

ORGANIC DEPOSITS: peat and m u ck; formed by the accu m u lation of plant material in variou s stag es of
decomposition; g enerally occu rs as flat, wet terrain (swamps and bog s) over poorly drained su bstrates; fibric
fens are present mainly along  water channels thou g h also occu r throu g hou t very poorly drained areas;
permafrost is commonly present u nderlying /within org anics >30 cm thick; peat mantles most g eolog ical featu res

O x Organic thin veneer: very thin accu m u lations of peat, 15-30 cm thick; u nless otherwise noted, bedrock is
assu med to be the u nderlying  material

O v Organic veneer: thin accu m u lations of peat, >30-100 cm thick

O b Organic blanket: thicker accu m u lations of peat that locally obscu re u nderlying  u nits, 1-3 m thick; some
polyg ons inclu de hu m mocky mou nds and plateau s u nderlain by discontinu ou s permafrost
Organic wetland - bog: thick accu m u lations of peat that mask the u nderlying  topog raphy, >3 m thick; some
polyg ons inclu de hu m mocky mou nds and plateau s u nderlain by discontinu ou s permafrost; O1k inclu des
thermokarst terrain related to melting  g rou nd ice

O 2 Organic wetland - fen: thick accu m u lations of fibric, often floating , veg etation that mask the u nderlying
topog raphy, >3 m thick

ALLUVIAL DEPOSITS: sorted sand, silt and clay with minor g ravel and org anic detritu s; commonly stratified;
deposited along  and/or within all modern rivers and streams

Av Floodplain deposits: sorted sand, silt, clay, minor g ravel and org anic detritu s >1 m thick; forming  active
floodplains close to river and stream level

Af Alluvial fan deposits: sorted sand, silt, clay, minor g ravel and org anic detritu s; forming  active fan where small
streams enter larg er lakes

sL LACUSTRINE DEPOSITS: massive to stratified sand, and minor g ravel, deposited along  the modern lakeshore,
0.2 to >1 m thick

LAT E W IS CO N S IN AN
PROGLACIAL AND GLACIAL ENVIRONMENTS

GL GLACIOLACUSTRINE DEPOSITS: noncalcareou s, massive, very well sorted, moderately dense, 'milk-
chocolate' brown clay, and rarer sand (sGL); offshore sediments deposited in g lacial Lake Ag assiz; these
deposits are of variable thickness (0.1-3 m), and drape both till deposits and bedrock; arou nd some of the larg er
lakes, the g laciolacu strine sedim ents have been removed from the shoreline by Holocene wave-washing , and
thickness increases inland; at a few sites, g laciolacu strine clay was observed u nderlying  a veneer of till; the
sediment thickness, as mapped according  to the detailed field site data, serves as a g u ide bu t the u ser shou ld
note that the occu rrence of g laciolacu strine sediments is hig hly variable and u npredictable

GLx Glaciolacustrine thin veneer: 15-30 cm thick, thin discontinu ou s cover, u nderlying  topog raphy is discernible;
where thin g laciolacu strine veneers overlie tills, the two materials are often permafrost-mixed near the contact
zone (u p to 1 m of mixing ); u nless otherwise noted, bedrock is assu med to be the u nderlying  material

GLv Glaciolacustrine veneer: >0.31 m thick, moderately well to imperfectly drained, u nderlying  topog raphy is
discernible; u nless otherwise noted, bedrock is assu med to be the u nderlying  material; where g laciolacu strine
veneers overlie tills, the two materials are often perm afrost-mixed near the contact zone (u p to 1 m of mixing )

GLb Glaciolacustrine blanket: >1 to 3 m thick, moderately well to poorly drained, continu ou s cover forming  flat to
u ndu lating  topog raphy that locally obscu res u nderlying  g eomorpholog y

GF GLACIOFLUVIAL DEPOSITS: lig ht g rey, moderately to poorly sorted, silt, sand, g ravel and diamicton
deposited behind or at the ice marg in by flowing  g lacial meltwater

GF b Glaciofluvial blanket: >2 m thick, continu ou s sand and g ravel cover forming  flat to u ndu lating  topog raphy that
locally obscu res u nderlying  u nits and associated g eomorphic patterns

GF h Ice-contact glaciofluvial sediments: u ndifferentiated deposits; poorly sorted sand and g ravel with minor
diam ictons; deposited by g lacial meltwater in direct contact with the g lacier; 1 to >10 m thick; form ing  g ently
u ndu lating  to hu mmocky topog raphy related to melting  of u nderlying  ice; featu res inclu de kettles, kames and
ridg es; typically overlain by a veneer or blanket of g laciolacu strine sediments

GF r Eskers and esker systems: stratified sand and g ravel with minor diamicton, deposited by meltwater flow within
tu nnels beneath or within the g lacier; present as 1-8 m hig h seg m ents; the esker ridg es are below lacu strine
limit and in most places are overlain by a veneer or blanket of g laciolacu strine sediments; smaller esker
seg m ents are interpreted as beaded eskers, deposited into g lacial Lake Ag assiz

T GLACIAL DEPOSITS: u nsorted to poorly sorted diamictons (till) deposited in su bg lacial environm ents; the
predominant widespread till is beig e, sparsely fossiliferou s, has a silty-sand matrix, and is calcareou s (till matrix
24-53 wt. % total carbonate, 10.8-22.5 ppm CaO , and 11-17% Ca; with 30-70 ct. % calcareou s pebbles);
there is a wide rang e in the composition of the calcareou s till, with sig nificant variable proportions of eastern-
and/or northeastern-sou rced (calcareou s), locally sou rced (g reenstone belt), reg ional (g ranitoid) and northern-
sou rced (Du bawnt su perg rou p) clast concentrations; as su ch, the reg ional calcareou s till is a hybrid till that
contains a mix of inherited and overprinted detritu s; weakly calcareou s (till matrix <30 wt. % total carbonate, <10
ppm CaO , and <10% Ca; with <35 ct. % calcareou s pebbles) and noncalcareou s (till matrix <5 wt. % total
carbonate, <5.4 ppm CaO , and <4% Ca; with <7 ct. % calcareou s pebbles) tills were encou ntered at 3.3 and
2.9% of field sites, respectively (see T rommelen, 2014); the occu rrence of weakly calcareou s till is noted as
T 1and noncalcareou s till as T 2bu t these u nits have not been colou red separately

T st Streamlined till: >2 m thick, su bg lacial till mou lded beneath the g lacier into linear ridg es and/or fu rrows parallel
to ice flow; dru mlins, dru mlinoid ridg es, flu ting s; ridg es are typically 0.1-3 km long  and 1-10 m hig h

T h Hummocky till: su prag lacial meltou t (ablation) tills deposited by melting  of stag nant ice; loose, textu rally
variable sandy to g ravelly matrix, some sorting ; ang u lar to su bang u lar clasts; locally inclu des poorly sorted sand
and g ravel; g ently u ndu lating  to hu m mocky topog raphy

T v Till veneer: >0.15-1 m thick, discontinu ou s till cover; u nderlying  topog raphy is discernible; u nless otherwise
noted, bedrock is assu med to be the u nderlying  material

T b Till blanket: >1 m thick, continu ou s till cover forming  flat to u ndu lating  topog raphy that locally obscu res
u nderlying  u nits and associated g eomorpholog ical patterns; occasional thinner patches of till may occu r

PRE-QUATERNARY
BEDROCK

R Precambrian rocks: metasedimentary, metavolcanic rocks and associated intru sive rocks; may be overlain by
a thin, discontinu ou s veneer of till and or g laciolacu strine clay in u pland areas

N O T E: In areas where the su rficial cover forms a complex pattern, the area is colou red according  to the
dominant u nit and labelled in descending  order of dominance (e.g ., R /T v). W here u nderlying  stratig raphic u nits
are known, areas are colou red according  to the overlying  u nit and labelled in the following  manner:
O
T b
F or example, O x/GLv    means thin org anic veneer and less dominant
                          T st          g laciolacu strine veneer, all overlying  streamlined till
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DESCRIPTIVE NOTES
Surficial geology of the Knee Lake area (NTS 53L14, 15, 53M1, 2)
Introduction
T his map, one of fou r su rficial g eolog y map sheets (N T S  53L14, 15, 53M 1, 2), is complem ented
by a field-based ice-flow indicator data repository (T romm elen, 2012a), and g eolog ical papers
that focu ses on till composition (T romm elen, 2014; T romm elen and R oss 2014). T his work bu ilds
on previou s 1:250 000 scale mapping  (Klassen and N etterville, 1979; Clarke, 1988) and till
g eochem istry data collected at 1 km spacing  du ring  M anitoba Geolog ical S u rvey’s O peration
S u perior project u ndertaken from 1999 to 2001 in the same area (F edikow et al., 2001, 2002, 2009).
Methods
T he su rficial g eolog y of the Knee Lake area was interpreted from 1:60 000 scale black and
white airphotos, obtained from N atu ral R esou rces Canada. Aspects of the reg ional su rficial
g eolog y were also g leaned from S hu ttle R adar T opog raphy M ission imag ery (30 and 90 m
resolu tion, U nited S tates Geolog ical S u rvey, 2002) and S PO T  orthoim ag es (Geobase®, 2005-
2010). F ield stu dies were condu cted by helicopter and jet boat in Au g u st 2012. Helicopter
landing  sites were g enerally limited to open fens, and skid shu tdown sites were rare. T his project
inclu des data from 198 field sites visited in 2012, and archival data from 695 O peration S u perior
field sites.
Bedrock geology
T he u nderlying  bedrock consists predom inately of the O xford Lake–Knee Lake g reenstone
belt (Barry, 1959; Gilbert, 1985; S yme et al., 1998). T hese rocks are su rrou nded by intru sive
g ranitoid rocks of several ag es, which have not been su bject to sig nificant g eolog ical stu dy.
Ice-flow history
Erosional ice-flow indicators, the orientations and relative ag es of which were docu m ented at
27 sites in the stu dy area (T romm elen, 2012a), inclu de micro-scale nondirectional indicators
(striations and g rooves) and directional indicators (chatterm arks, crescentic g ou g es and stoss-lee
relationships). T he Knee Lake area contains evidence of at least five different ice-flow phases
(F ig u re 1). T he old, rare, ice-flow phase trending  to the sou theast (between 150 and 160°
azim u th, phase I), and the more widespread old phase trending  to the west (between 255 and
280°, phase II) are likely correlative to the pre-Illinoian S u ndance and Illinoian Amery
g laciations (N ielsen et al., 1986; Dredg e et al., 1990; Dredg e and M cM artin, 2011). Late
W isconsinan ice-flow phases inclu de a rare bu t widespread sou thward-trending  ice-flow phase
(between 180 and 194°, and toward 200°, phase III), followed by a major sou thwest-trending
phase (between 230 and 248°, phase IV). T here is also a you ng , presu mably late deg lacial, sou th-
sou thwest-trending  phase (between 212 and 220°, phase V). At one site, a rare you ng  westward
-trending  ice-flow phase (phase VI?) may correlate to the you ng  westward-trending  dru mlinoid
ridg es situ ated between the town of Gillam and city of T hompson, approximately 130 km
northwest of the stu dy area.
Till composition
T he composition of the su rface till was stu died in detail (F ig u re 2) and the reader is referred
to T rommelen (2014) and T romm elen and R oss (2014) for more inform ation. Generally, the
widespread reg ional till is beig e, calcareou s and sparsely fossiliferou s. T his heterog eneou s till
sheet was likely form ed du ring  ice-flow phases II and/or IV and V, when the larg e component of
allochthonou s calcareou s detritu s was transported at least 125 km (west or sou thwest) from the
Paleozoic carbonate platform in Hu dson Bay. Patchy, weakly-calcareou s, g rey or beig e till
was encou ntered at 3.3% of field sites. Patchy, noncalcareou s, brown, red-brown, g rey or beig e till
was encou ntered at 2.9% of field sites. T hese heterog eneou s weakly calcareou s to noncalcareou s
till samples were likely deposited du ring  sou therly ice-flow phase III, and protected from
dilu tion/reworking  du ring  the later sou thwesterly and/or westerly ice-flow phases.
All three till-types occu r within streamlined landforms, as well as in till blankets or veneers
over bedrock. T his diverse g eomorpholog y indicates that the process of sou thwesterly
dru mlinization within the deg lacial Hayes lobe (300 by >400 km) was by su bg lacial
modification/cannibalization of pre-existing  inherited sediment. As su ch, in the Knee Lake area,
the formation of these widespread streamlined landforms may have occu rred between or after
ice-flow phases IV and V, bu t is not directly related to sedim ent transport.
Drift exploration
T here is mineralization potential within the Knee Lake area. Gold potential occu rs
throu g hou t, especially at the historic Knee Lake Gold mine and Johnson Knee Lake mine g old-
silver occu rrences (S ou thard, 1977). M assive su lphide–type mineralization was investig ated near
u pper Knee Lake and at Cinder Lake (Gale et al., 1980). R are-earth-elem ent–bearing  minerals
have been observed in the fine-g rained silica-u ndersatu rated syenite, the metasom atized
peg m atite and within calcite veining  at Cinder Lake (Kressall et al., 2010). U nfortu nately, there
are no obviou s g lacial dispersal patterns from any of the field sites with elevated till-matrix
concentrations of m u ltiple metals. In larg e part, this is becau se the widespread reg ional
calcareou s till is partially masking  the local bedrock sig natu re. T he detailed data clearly shows
that elevated metal concentrations within till matrix, presu mably derived from the u nderlying
g reenstone belt, are predom inately detectable within the noncalcareou s or weakly calcareou s tills
(<10 ppm CaO , indu ctively cou pled plasma–em ission spectrom etry [ICP-ES ], <10 wt. %
Ca, instru m ental neu tron activation analysis [IN AA], or <30 wt. % total CO 3 [Chittick
or calciu m-mag nesiu m method]). T hu s for most g reenstone-belt derived elem ents, low
concentrations within the till matrix shou ld not be taken as indicative of a lack of local
mineralization. Even a small difference in carbonate content (7 versu s 10 wt. % Ca) may lead
to drastically different element concentrations. As su ch, detailed attention m u st be paid to
Ca wt. %, total CO 3 wt. % and/or CaO  ppm concentrations du ring  drift exploration analyses.
T he till within the Knee Lake area contains a mixtu re of inherited and overprinted su bg lacial detritu s,
and thu s the transport directions of older ice-flow phases shou ld not be ig nored.
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 F ig u re 1. Generalized ice-flow history for the Knee Lake project area, interpreted
 from field-based micro-scale ice-flow indicators and shown in comparison to
 streamlined landform orientation (yellow lines).
   
   

F ig u re 2. S implified till composition at sampled sites within the project area. It shou ld
 be noted that within these three classes the till is not homog enou s. T here is
considerable variation in the litholog ic composition between sites with no spatial 
correlation.
   

Symbols
2 R oche mou tonée
¤ Kettle
D O u tcrop
! F ield site with till sample

F ield site withou t till sample
S triae, direction known, poorly
preserved
S triae, direction known, well
preserved
S triae, direction u nknown, well
preserved

T rimline (wave-cu t bench)
S treamlined bedrock
Crag -and-tail landform
Dru mlinoid ridg e or flu ting
Iceberg  scou r
M eltwater channel 
M eltwater channel corridor
M inor moraine, u ndifferentiated
Esker, direction known
Esker, direction u nknown
Esker, washed, direction known
Esker, washed, direction u nknown
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