

MINERAL RESOURCES DIVISION

A COMPUTER MODEL FOR DETERMINING
THE OPTIMUM SIZE OF A MINE PROJECT

рà

R.G. Bagnall

1978

Electronic Capture, 2011

The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication.

A COMPUTER MODEL FOR DETERMINING THE OPTIMUM SIZE OF A MINE PROJECT

By

Robin G. Bagnall, Economist, Department of Mines, Resources and Environmental Management, Province of Manitoba, Canada.

ABSTRACT

The primary function of the computer model presented here is to calculate the optimum level of investment necessary for the development of a particular mineral deposit. However, the most important applications of the model would be to help answer a variety of more general economic questions. For example, an important application would be to compare the effect of different tax and royalty policies on a Province's stock of ore reserves. Another application would be to compare different mining and processing methods for a particular mineral deposit. These applications, plus others, suggest that a model of this kind would be of value to both industry and governments. A most significant consequence of planners using a model such as this is that in the process of optimizing the use of capital and human resources, they will also be maximizing the possible mineral resources that can be utilized.

Preface and Acknowledgements

The computer program described in this study was developed in the Mineral Resources Division, Department of Mines, Resources and Environmental Management, Province of Manitoba. The study was financed jointly by the Federal and Provincial Governments under the Non-Renewable Resource Evaluation Program (NREP) agreement (Project Number MN 7511-3). Federal Government consultant for the study was Dr. Asman Azis, Economist, Mineral Development Sector, Department of Energy, Mines and Resources. The study began in March of 1976 and was completed in March 1977.

To complete a study such as this requires the effort and skills of many different people. Individuals who have made valuable contributions during the course of the study include:

Heinz Ambach, Computer Programmer, Department of Mines, Resources and Environmental Management;

Dr. John Gray, Economist, University of Manitoba;

Mark Judd, Computer Programmer, Department of Renewable Resources and Transportation Services:

Marian Minjoot, Clerk-Typist, Department of Mines, Resources and Environmental Management;

Richard Werstler, Contract Economist, Department of Mines, Resources and Environmental Management.

I would particularly like to thank Professor Brian MacKensie, Director, Mining Program, McGill University, Montreal for taking the time to read a draft of this report and offer some useful suggestions. Professor MacKensie's comments along with some discussions are contained in an appendix to the final chapter.

Any deficiencies that remain in the computer model or in the written report are the responsibility of the author.

(iii)

TABLE OF CONTENTS

Chapter		Page
1 <u>Intro</u>	<u>oduction</u>	1
1.1 P	rurpose of the Model	1
1.2 0	verview of the Model	2
2 <u>Descr</u>	iption of the Computer Program	4
2.1 The C	complete Model	4
2.1.1 M	MIN Variables	4
2.1.2 I	input Data	10
2.1.3 C	alculate Equations	11
2.1.4 C	alculate Capital, Life and Pre-production eriod	11
2.1.5 C	alculate Annual Revenue	12
2.1.6 D	istribute Costs and Profit Over the Life	12
2.1.7 C	alculate Royalties	13
2.1.8 C	alculate Capital and Income Taxes	13
2.1.9 Ca	alculate Cash Flows	14
2.1.10 Ca	all the IRR Subroutine	14
2.1.11 A	djust Life or Size of Project	14
	alculate the Return to the Incremental	17
2.1.13 Pr	rint Details of Optimum Plant	17
2.1.14 Ca	all ANALYS Subroutine	19
2.2 The Ed	quations Subroutine (EQUATN)	21
2.2.1 E	QUATN Variables	21
2.2.2 Pr	reparation of the Data for Least—Squares nalysis	23
2.2.3 Ca	alculating the Appropriate Equations	24
2.2.4 Gr	raphing Each Equation	26
2.3 The An	nual Revenue Subroutine (ANNREV)	26
2.3.1 AN	NREV Variables	
2.3.2 Pr	roduction Grade is at Average Grade of many Reserves	29
2.3.3 Th	ne Mineral Deposit is to be High-graded	29
	liculate Production of Secondary Reserves	30
	int the Final Production Figures	30

Chapte	<u>er</u>	Page
2.4	The Royalty Subroutine (ROYALT)	31
2.4.1	ROYALT Variables	31
2.4.2	Initialization and Pre-production Period	38
2.4.3	Calculating the Annual Royalty	38
2.4.4	Varying the Annual Depreciation Rates	39
2.5	The Income Tax Subroutine (INCTAX)	43
2.5.1	INCTAX Variables	43
2.5.2	The Pre-production Period	50
2.5.3	Calculating the Annual Taxes	53
2.6	The Analysis Subroutine (ANALYS)	56
2.6.1	ANALYS Variables	56
2.6.2	Initial Conditions	59
2.6.3	Sensitivity Analysis	59
2.6.4	Probabilistic Analysis	59
2.6.5	The Interdependence of Variables	61
2.7	Other Subroutines	62
2.7.1	The Debt Amortization Subroutine	62
2.7.2	The Internal Rate of Return Subroutine	62
2.7.3	The Random Number Subroutine	64
	APPENDIX - Compiler Listing	65
3	Using the Program to Evaluate a Mining Project	95
3.1	Introduction	95
3.2	Input Data	95
3.2.1	The Option Cards	95
3.2.2	The Capital Cost Cards	100
3.2.3	Mineral Reserve Cards	102
3.2.4	Data for the Probabilistic Analysis	104
3.3	The Evaluation of a Mineral Deposit	106
3.3.1	Mineral Reserve Data	107
3.3.2	Capital and Operating Cost Data	108
3.3.3	First Options Data Card	110
3.3.4	Data for the Probabilistic Analysis	114

Chapte	<u>Chapter</u>	
3.3.5	Results of the Evaluation	115
3.4	The Sensitivity and Probabilistic Analyses	121
3-4-1	Sensitivity Analysis	121
3.4.2	The Probabilistic Analysis	123
	APPENDIX I	
	Computer Printout (Project With Constraint)	128
**	APPENDIX II	
	Computer Printout (Logarithmic Grade-Tonnage Relationship)	156
4	Some Extensions	172
4.1	Introduction	172
4.2	Economic Problems for the Model	172
4.2.1	Target Grade and Tonnage of a Deposit	173
4.2.2	Compare Different Mining and Processing Methods	173
4.2.3	Evaluate Taxation and Royalty Policy	174
4-2-4	Undertake the Economic Evaluation of a Whole Region	174
4.2.5	Social Cost-Benefit Analysis	175
4.2.6	Determine the Market Price of a Mineral Deposit	176
4•3	Conclusion	177
	APPENDIX	
	Comments by Professor B.W. MacKenzie	178
	Selected Ribliography	18%

FIGURES

Number		Page
2.1	Simplified Flow Chart of the Computer Program	5
2.2	Algorithm for Adjusting the Life and Size of a Project to Maximize the Rate of Return	16
2.3	Algorithm for Incrementing the Size of a Project and Determining the Marginal Rate of Return	18
2.4	Simplified Algorithm for the EQUATN Subroutine	20
2.5	Simplified Algorithm for the ANNREV Subroutine	28
2.6(A)	Simplified Algorithm for Calculating The Annual Royalties and Varying the Depreciation Rates to Minimize the Total Royalty	34
2.6(B)	Simplified Algorithm for Calculating the Annual Royalty	35
2.6(C)	Simplified Algorithm for Changing the Depre- ciation Rates to Minimize the Total Royalty	36
2.7(A)	Simplified Algorithm for Calculating the Capital and Income Taxes	44
2.7(B)	Algorithm for Calculating the Income Tax and Capital Tax for Years C to N	45 - 48
2.8	Simplified Algorithm for the ANALYS Subroutine	65
3.1	First Two Options Cards	97
3.2	Capital Cost Data Card	101
3.3	Mineral Reserve Data Card	103
3.4	Third Options Card	105
3.5	Variability Estimates Data Card	107
3.6	Average Grade and Cut-Off Grade Functions	109
3. 7	Capital Cost Functions	111
3.8	Operating Cost Functions	112
3.9	Expected Rate of Return Distribution	127

(vii)

TABLES

<u>Number</u>		Page
2.1	Example of Royalty Calculation Assuming no Inflation	37
3.1	Value of a Hypothetical Ore Sample	96
3.2	Mineral Reserve Data	108
3.3	Capital and Operating Cost Data	108
3.4	Factor Variability	114
3.5	Optimizing Iterations	115
3.6	Production Data for Optimum Project	117
3.7	Financial Data Summary	118
3.8	Project Cash Flow	119
3.9	Cash Flow After Adding Back Taxes and Royalties	120
3.10	Project Cash Flow Assuming Borrowed Capital	122
3.11	Sensitivity Analysis #1	124
3.12	Sensitivity Analysis #2	125
3.13	Sensitivity Analysis #3	126

CHAPTER 1

INTRODUCTION

1.1 Purpose of the Model

This computer model calculates the optimum size and life of a project needed to develop an ore body. The optimizing process is one of adjusting the size and productive life of the project until either (i) the maximum rate of return is achieved, or (ii) the marginal rate of return is at least equal to a pre-determined minimum rate. The evaluator will select one of these alternatives. It should be noted that the latter process gives a solution identical to the solution that would be obtained by using the pre-determined minimum rate as the discount rate and maximizing the present value of the project.

The model would normally optimize a project from the point of view of a private investor, meaning that money costs and values would be used throughout. However, for purposes of evaluating public policy, provision should be made for the inclusion of all costs and benefits from a project. That is, the evaluation could be done from a social rather than a private point of view.

The most important applications of a model of this kind are in the analysis of economic problems relating to the mining industry. One use would be to evaluate the effects on mining firms of different tax and royalty systems. Areas affected would be calculated ore reserves, the rate of extraction, and overall project profitability. Another use would be to estimate the level of mining activity needed to support the development of new town sites. These and other possible applications are discussed in more detail in the final chapter.

The description of the model that follows is done in two main parts. Chapter 2 is entirely devoted to a technical description of the computer program. It describes in detail what the program does and how it does it. Chapter 3 provides an example of an evaluation of a mineral deposit using the model. The emphasis here is on the pre-

paration of the data to be used in the analysis.

1.2 Overview of the Model

Two contrasting types of data are used by the program in evaluating a mining project. The first consists of geological data relating to the mineral deposit being evaluated. Sufficient information must be provided to enable the program to calculate two grade-tonnage functions: one function will express the relationship of tonnage to average grade; the other will express the relationship of tonnage to cut-off grade.

The second kind of information which must be provided is of a financial nature. For purposes of calculating income tax and royalty liabilities, five catefories of capital costs are used. These are: (i) pre-production exploration costs; (ii) pre-production development costs; (iii) mining investment; (iv) processing investment; and (v) social capital investment. For purposes of calculating annual profits, information is needed on mining costs, processing costs and value per unit of production. As with the geological data, sufficient, information must be provided to enable the program to calculate functions of cost against annual capacity. There are five capital cost functions and two operating cost functions.

Once the program has been provided with the above data, the following sequence of operations occurs. Initially, the program calculates the cost-size and mineral grade-size functions; each function will be either linear, log-linear or hyperbolic. This is done once for each mineral deposit being evaluated. Then initial values for the size and production life of the project are assigned.

Following this, the program begins an iterative process designed to calculate the optimum size and life of a mining operation which would develop the mineral deposit. The steps in this process are as follows: (1) assign the project a pre-production period (based on the size of the project being evaluated) and a total life (this being the sum of the pre-production period and the productive life being tested); (2) calculate the annual revenue the assumed project could expect from the mineral deposit; (3) calculate working capital, distribute the capital investment over the pre-production period, and calculate the annual gross profit; (4) calculate the total royalty the proposed project could anticipate; (5) calculate the capital taxes and income taxes the project could anticipate; (6) calculate four cash flows, each assuming different tax liabilities; (7) calculate the internal rate of return for each of the cash flows; and (8) compare the internal rate of return for the assumed project to the internal rate of return for a project either of different size or of different productive life.

Depending on the results of the comparison, the life or size of the project will be incremented up or down. The process will then be repeated until the maximum IRR is determined. At the discretion of the evaluator, once the size of project yielding the maximum return is determined, the project can be gradually increased in size to test if an additional increment of investment is able to earn the minimum acceptable return. This incrementing would continue so long as each increment of investment earns the minimum return.

After the optimum project is determined, a sensitivity analysis and probabilistic analysis can be carried out. Sensitivity analysis involves varying up to 11 parameters affecting profitability from 5% to 20% to note the effect on the anticipated rate of return. Probabilistic analysis involves using Monte Carlo techniques to generate a rate of return distribution.

CHAPTER 2

DESCRIPTION OF THE COMPUTER PROGRAM

This Chapter will be entirely devoted to a technical description of the computer model. Section 2.1 of this Chapter will describe the activities that take place in the main part of the program while sections 2.2 to 2.7 will describe the various subroutines used.

2.1 The Complete Model

The program is written in standard Fortran. As such it should be compatible with all computers having a Fortran compiler and a memory in excess of 140 K. It is written in double precision for maximum possible accuracy although it could readily be converted to single precision with reduced accuracy where memory core may be a constraint. In situations where reduced capability is quite acceptable many of the subroutines can be simplified, and in one instance, even removed with minimum complications.

A simplified flow chart of the complete program is shown in Figure 2.1. The MAIN compiler listing is provided in the Appendix at the end of the chapter.

2.1.1 MAIN Variables

The REAL variables in the main part of the program are defined alphabetically as follows:

- A 7 element array contains the first constant for each of the two mineral reserve equations.
- AA 7 element array contains the first constant for each of the 7 cost equations.
- B 7 element array contains the second constant for each of the two mineral reserve equations.
- BB 7 element array contains the second constant for each of the 7 cost equations.

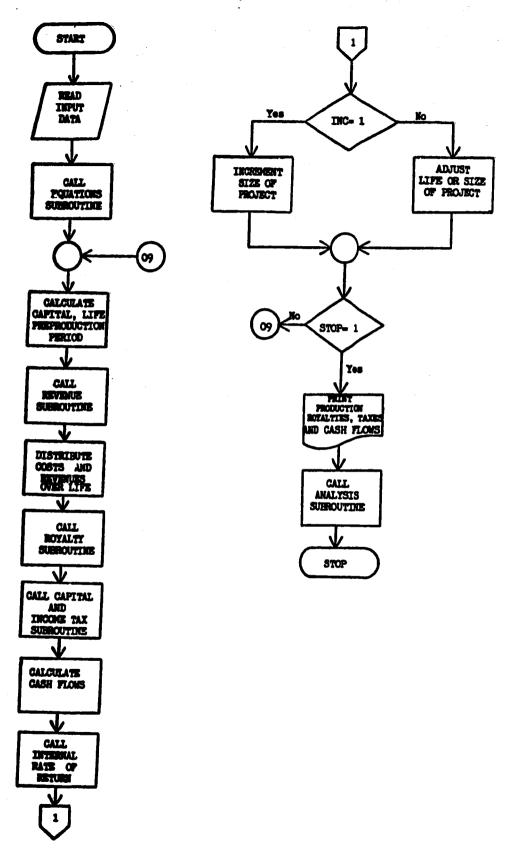


Figure 2.1 Simplified Flow Chart of the Computer Program

BORCAP - 50 element array which contains the assumed borrowed capital by year.

BORROW - total amount of pre-production capital which is assumed to be borrowed.

CAPCOS - 10 by 8 matrix stores the input capital and operating cost data. Each input card will contain the relevant cost data for a particular size of project. The first 7 entries on a card will contain capital and operating cost data and the eighth entry will specify the annual capacity in tons for that project. Up to 10 cards can be read in.

CAPTAX - 50 element array contains the capital tax calculated in the INCTAX subroutine.

CASFLO - 5 by 50 matrix contains the 4 cash flows generated.

CASH - 50 element array contains the cash flow for the current size of project before the investment is incremented.

COST - 7 element array contains the 5 capital cost and a operating cost values calculated for each size of project.

EQUIT - the assumed equity capital for the project.

EXPLOR - 50 element array containing the annual exploration costs.

FEDTAX - 50 element array containing the annual federal income tax liability. This is not being printed by the model in its present form.

G - this is the value for the size increments.

GRADE - 50 element array contains the average grade values calculated for the project.

GROPRO - 50 element array contains the calculated gross annual profit.

INTRST - 50 element array contains the calculated annual interest charges for the payback period.

MAX - maximum tonnage for the ore body as indicated on the options card.

MAXTON - the maximum tonnage for the ore body as calculated from the cut-off grade function.

MCAFLO - 50 element array contains the calculated marginal cash flow for the incremental investment.

MININV - 50 element array contains the calculated annual mining investment.

MINRAL - 10 by 8 matrix stores input mineral reserve data.

Each input card will contain 3 entries. The first will be an average grade figure, the second a cut-off grade figure, and the third the tonnage of mineral above the assumed cut-off grade. Again, up to 10 sets of data can be stored.

OH - overhead operating costs, presently at % of production operating costs.

OLDR - rate of return for previous assumed project.

OLDRM - rate of return on the incremental investment for the previous assumed project.

OPTR - the optimum rate of return value being passed to the ANALYS subroutine.

OSIZE - the size of the project that yeilds the maximum rate of return.

PREPRO - 50 element array containing the annual pre-production values for the project.

PRIN - 50 element array containing the annual amount of principal being paid on the assumed debt.

PROINV - 50 element array containing the annual processing invest-

R - 5 element array containing the rates of return for the four cash flows.

RCVRAT - assumed value for the concentrator recovery rate.

RMIN - assumed value for the minimum acceptable rate of return on incremental investment.

REVENV - 50 element array containing the annual revenue the project could expect.

M, R2 - constants for the concentrator recovery rate function.

5 - interest rate for borrowed capital.

SIZE - the annual capacity of the project in tons of ore.

SIZZ - 50 element array containing the annual production in tons of ore. This array is passed to the ANALYS sub-routine for the sensitivity and probabilistic analysis.

SM. SC - salvage values for the mining and concentrating assets.

SOCINV - 50 element array containing the annual investment in social capital.

T - discount rate for the project; used in the ROYALT subroutine.

TAPCOS - total capital invested during the pre-production period.

TAX - 50 element array containing the anticipated annual income tax for the project.

TL - tons of ore processed in the final year of operation and fraction of final year during which production occurs.

TOTCOS - total capital investment (excluding working capital).

TOTINV - 50 element array containing total annual capital investment.

TOTROY - 50 element array containing the anticipated annual royalty for the project.

VALUE - net smelter return from all recoverable metals expressed as value per pound of the principal recoverable mineral.

WORCAP - 50 element array containing the assumed working capital used for the project.

YX - stores the value for the project size where a tonnage constraint occurs.

yy - stores the value for the project size during normal optimi-

The interger variables listed in alphabetical order are as follows:

BET - used in the SIZE adjustment part of the program to indicate when the size is optimum.

C - first year of production for the project.

CBL - book life of concentrator assets.

D - last year of the pre-production period for the project.

E - second year of production for the project.

F - set at a period of 1 year; used in the part of the program which optimizes the life of the project.

H - 7 element array containing the information as to the kind of equation which best represents each of the 7 various cost functions.

HG - instruction to the program as to how the ore body is to be mined (high-graded or mined at the average grade of the reserves).

- HH 7 element array containing the information as to the kind of equation which best represents each of the 2 mineral grade functions.
- IC instruction to the IRR subroutine that four cash flows will be passed from the MAIN.
- ID instruction to the IRR subroutine that one cash flow will be passed from the MAIN.
- used to indicate that once the maximum rate or return has been calculated, the investment will be incremented (if the average rate of return is sufficiently large).
- instruction to the program as to how secondary ore reserves are to be included in the evaluation.
- ISEN instruction to the program as to whether a sensitivity analysis and/or a probabilistic analysis is to be done.
- years of additional possible production once the primary ore reserves have been mined.
- LET used in the part of the program where project life is optimized to indicate when this has been done.
- LIFE this is the period of production for the primary ore reserves.
- LIM signal to the program indicating that a tonnage constraint is in effect.
- LL stores value of primary ore reserves life is an ore tonnage constraint exists.
- MBL book value of mine assets.
- N this is the life of the complete project.
- P this indicates to the EQUATN subroutine that 7 equations are to be calculated.
- PG instruction to the program that will indicate whether or not the equations are to be printed.
- PP this indicates to the EQUATN subroutine that two equations are to be calculated.
- SET used in the investment increment section of the program to indicate if the marginal cash flow is to be calculated or if the size is to be incremented first.
- stop used to signal that the project has been optimized. All financial data can be printed and the analysis of the project can begin.

WW - second last year of operation for the project.

2.1.2 Input Data

Data is provided to the MAIN routine by statements 0003 through 0008. The first two cards read are a data card and an options card. The anticipated net smelter return (VALUE), debt equity ratio (DER), interest rate (S), the discount rate (T), the maximum size for the ore body (MAX), and the minimum acceptable rate of return (RMIN), are project parameters. L and M indicate the number of cost data cards and mineral reserve data cards respectively. HG is the mining sequence option. OO is instruction to mine the primary ore at average grade of the primary reserves; 01 means mine the primary ore taking the highest grade material first. ISEN is the analysis option. 00 means do not do any analysis; 01 means do a probabilistic analysis; 02 means do a sensitivity and probabilistic analysis, and 03 means do a sensitivity analysis. IOP is the secondary ore reserve option. OO means exclude the secondary ore reserves from all calculations till the very end; O1 means include the secondary reserves in all calculations; O2 means do not include the secondary ore reserves till the maximum rate of return for the project has been calculated. PG is the graph option. 00 means do not print graphs; 01 means print graphs. These will be for the 7 cost equations and 2 mineral reserve equations.

Statements 0005 and 0006 read in the capital and operations cost data. Each card will contain data for 5 classes of capital, mine operating costs, processing operations costs, and the size of operation these costs apply to. There is one card per project size. Because this cost data is used to calculate continuous functions, a minimum of 3 sets of data should be provided.

Statements 0007 and 0008 read in the mineral reserve data. Each card will contain an average grade figure, a cut off grade figure, and the total mineral tonnage to which these figures apply. As with the cost data, a minimum of three sets of data should be pro-

vided. If one data card is provided, the program assumes that the tonnage figure is for the whole deposit so that the average grade figure will be that for the whole deposit. A log-linear relationship between tons of mineral and average grade is assumed.

2.1.3 Calculate Equations

The first time the EQUATN subroutine is called (statement 0015) the seven cost equations are calculated using the data in CAPCOS. I is the number of sets of data, AA and BB will contain the equation constants that are calculated, H will indicate which of three kinds of equation is to be used for each function, P will indicate how many equations are to be calculated, and PG will instruct the subroutine as to whether or not graphs of the equations are to be printed.

MAX is the maximum tonnage of mineral for the deposit.

At statement 0016 this subroutine is called again to calculate the mineral reserve equations. The subroutine parameters have the same meaning as before. In this case, however, only two equations are being calculated rather than seven.

Statements 0019 to 0025 calculate a maximum tonnage for the mineral deposit. Either this or the value MAX will be the total tonnage constraint, depending which is the smaller.

Statements 0026 to 0028 initialize SIZE and LIFE for the project before the iterative process begins.

2.1.4 Calculate Capital, Life, and Preproduction Period

Statement 0031 is the starting point for that part of the program which will be continuously used in the iterative process that will optimise the project.

Statements 0032 to 0040 determine if a tonnage constraint is in effect. If so, this will alter the optimizing sequence for the program.

Statements 0041 to 0048 calculate the total capital costs in the five categories that have been established plus the mine operating costs and the processing operating costs. Note that in each case the cost is a function of SIZE, the annual rated capacity for the project. From statements 0049 to 0054 the appropriate pre-production period is determined. This is a function of the total project size as measured by the total capital investment. Statements 0055 to 0057 identify specific points of time during the complete life of the project. D is the end of the pre-production period; E is the second year of production; N is the sum of the pre-production period and the life of the primary ore reserves.

2.1.5 Calculate Annual Revenue

In statement 0060 the annual revenue subroutine (ANNREV) is called. Parameters fed to the subroutine are: LIFE, the production period for the primary ore reserve; SIZE, the annual capacity of the project in tons of ore; VALUE, the net smelter return; A, B, and HH, the mineral reserve equations; D,C,N; R1, R2, the recovery rate constants for the principal mineral; TOPCOS, the total operating costs per ton of ore, and; MAXTON, the size of the orebody. Information returned from the subroutine is as follows: REVENUE, the annual revenue the project could anticipate; GRADE, the average grade of ore mined each year; IY, the number of years of secondary ore production, and; TL, the tons of ore mined in the assumed final year of operation. Options to the subroutine are: HG, instruction as to whether the deposit is to be high-graded or not, and; IOP, instruction as to how the secondary ore reserves are to be included in the evaluation of the project.

2.1.6 Distribute Costs and Profit Over the Life

In statements 0061 to 0097 costs and revenues are allocated to each

year of the project in preparation for the income tax and royalty calculations. The capital costs are distributed equally over the pre-production period in statements 0065 to 0069. The equality assumption can be changed without much difficulty although many more statements would be necessary. Doing this would alter the rate of return calculation only slightly.

Working capital is assigned to the project in statements 0070 to 0081. Included in the working capital recovered in the final year is any salvage value for the mining and processing assets. Statements 0082 to 0097 are used to assign on-going investment to the project as well as calculate the annual gross profit.

2.1.7 Calculate Royalties

Statement 0098 calls the ROYALT subroutine. This subroutine calculates the royalties that the project could anticipate under the Metallic Minerals Royalty Act. Through proper depreciation claims it also calculates the minimum royalty the project could anticipate. Information fed to the subroutine is: GROPRO, the gross profit; MININV, PROINV, EXPLOR, SOCINV, and PREPRO, the five categories of capital investment, and; N, C, and T, the latter being the discount rate. Information returned is TOTROY, the total annual royalty the project could anticipate.

2.1.8 Calculate Capital and Income Taxes

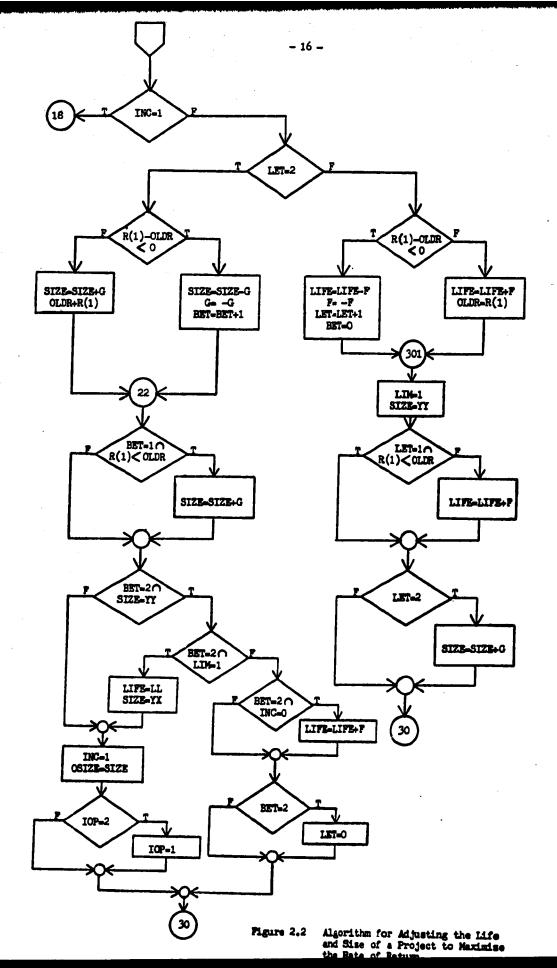
Statement 0099 calls the INCTAX subroutine. This subroutine calculates project income taxes, capital taxes, and the interest and principal per year for the pay back period on any borrowed capital. Information to the subroutine includes: GROPRO, the gross profit; five kinds of capital cost; A, C, and S, the latter being interest rate; WORCAP, working capital; DER, the debt-equity ratio; IY, number of years of secondary ore production, and; SM and SC, the assumed salvage value of mining and processing assets. Information returned is: TAX, the income tax; INTRST, annual interest payments; PRIN, annual payments on the principal, and; CAPTAX, the capital tax.

2.1.9 Calculate Cash Flows

cash flows are calculated in statements 0100 to 0106. Four cash flows are calculated although only three are printed by the program as it is at present. The first cash flow is for the overall project as it would be evaluated by a private investor. The second cash flow is that from the point of view of an investor providing equity capital (add borrowed capital and deduct debt repayment and interest). The third cash flow is the result of adding back royalty and tax payments. Thus it is the cash flow a publicly owned project could anticipate (assuming that the project would not have been otherwise undertaken by a private firm so that taxes and royalties are not a cost to the project either as a direct cost or as forgone revenue to the government from a private firm). The fourth cash flow assumes that the project would be undertaken privately if not done by the government, thus the only gain to the province by doing it would be the federal income tax payable.

2.1.10 Call the IRR Subroutine

Statement 0108 calls the internal rate of return subroutine which calculates the rates of return for the four cash flows. Besides the cash flows, the subroutine is given the total length of the project, N, and it is told the number of cash flows to evaluate, IC. The rates of return are returned in vector R. Statement 0114 terminates the analysis if on the first trial, the rate of return is less than zero. Statement 0115 terminates the analysis if SIZE or LIFE are reduced to 10,000 ton/year or 1 year respectively. In either case, transfer is made to the end of the program where an appropriate statement is printed.


2.1.11 Adjust Life or Size of Project

Statements 0119 to 0158 are used to incremat the size or life of the project depending on the result of the IRR calculation.

The sequence of events in the optimizing process is best understood from Figure 2.2. SIZE and LIFE for the project are initialized at some reasonable value at the beginning of the program (see statements 0026 to 0028). Also OLDR, the previous rate of return, is set at a very low value. Assuming a positive rate of return is generated, then with INC-O and LET-O, the program increases the life of the project by F which is set at +1 year. OLDR is assigned to the value of R(1). Control passes to label (statement 0187) 30 and from there to label 09 (see Figure 2.1). A new rate of return is calculated and compared to the previous rate. If the new rate is larger, the life is again increased by 1 year. This continues till the new rate of return is smaller than the previous one. The life of the project is reduced by 1 year and F is changed to -1. LET is incremented by 1. The life of the project is further reduced by 1 year (since LET=1 and R(1) < OLDR). In this case the new rate of return will still be less than OLDR, so a year is added back to the life and F made equal to +1 again. LET is again incremented by 1 (to a total of 2). The size of the project is now increased by G (equal to 10000 tons per year) and a new evaluation done. Since LET is now equal to 2, the size of the project will be increased or decreased in the same manner as was the life. When a size adjustment no longer results in an increase in the rate of return. the life of the project is again adjusted up or down. When this is optimum, the size is once more adjusted. If no further increase in the rate of return is possible, then INC is set equal to 1 so that the incremental rate of return to a small increase in the size of the project can be determined.

If at this time IOP-2, meaning that marginal ore down to the operating cost cut-off grade has not been included in the evaluation, IOP is now set equal to 1. In the incremental analysis it will now be included.

If a tonnage limit was specified for the deposit, then if this should be exceeded at any time in the process of maximizing the rate of return, a change in the procedure takes place. A year is deducted from the life of the project and only SIZE optimizing takes place. When the rate of return has been maximized, the results of the calculation are printed and sensitivity and probabilistic analysis takes place. No increment is made to the investment.

2.1.12 Calculate the Return to the Incremental Investment

The investment in the project is incremented by small steps and the marginal rate of return determined in statements 0159 to 0186. The algorithm for doing this is shown in Figure 2.3.

Assuming that the maximum rate of return exceeds a specified minimum, the incremental investment analysis occurs automatically. Initially SET will equal 1 so that the size of the project will be increased by G while the cash flow yielding the maximum rate of return will be stored in CASH. The cash flow for the project at its new size is now calculated. The previous cash flow (in CASH) is deducted from this to arrive at the marginal cash flow. So long as the rate of return to the marginal cash flow exceeds the specified minimum, the size of the project continues to be increased in small steps.

When the optimum project is determined the results are printed.

2.1.13 Print Details of Optimum Project

Statements 0190 to 0238 print the details of the optimum size of mine and processing facility.

Statement 0192 calls PRNPRO which is in the REVENU subroutine. This prints the production data for the last calculation. It will show the annual tons of ore milled, the average grade of ore, the mine cut-off grade, the pounds of principal mineral in the concentrate, and the total value of the concentrate. The value will reflect the assumed by-product content.

Statements 0194 to 0203 summarize the financial data. The average and marginal rates of return are printed, the various capital and operating cost totals are printed, and the assumed borrowed capital and equity capital totals are printed.

Statements 0204 to 0211 print the various amounts of capital investment as they are distributed over the life of the project. This will show the amount of investment by year for the 5 classes of capital plus the amount of working capital assumed.

Statement 0212 calls PRNROY. This will print the details of the

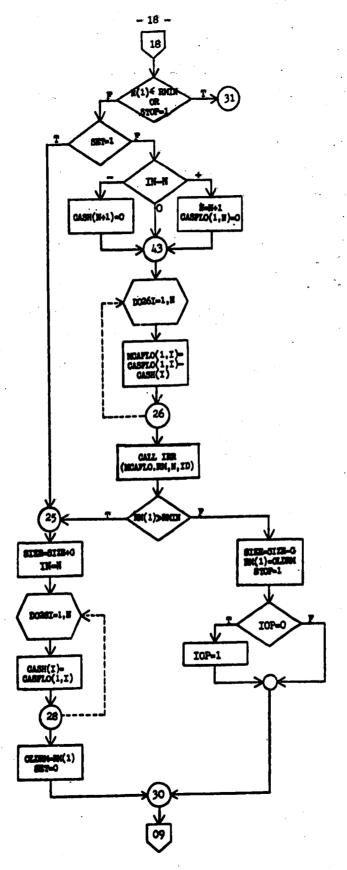


Figure 2.3 Algorithm for Incrementing the Size of a Project and Determining the Marginal Rate of Return.

last royalty calculation in the ROYALT subroutine. The first page of the printout details the royalty calculation; the second page records the investment made and the undepreciated balance for the two classes of capital asset.

Statement O213 calls PRNTAX in the INCTAX subroutine. The first page of this printout will detail the annual capital tax calculation. This is assessed on the firms paid up capital which includes borrowed and equity capital plus any surpluses. The second page of this printout shows the annual allowable deductions from gross profit in order to arrive at the taxable income. The third page shows the annual tax calculation and the undepreciated balances for the various classes of capital.

Statements 0225 to 0238 print the three cash flow calculations. The first page of the printout details the cash flow calculation for the overall project. Deducted from gross profit are all taxes, royalties, and capital expenditures. The second page details the cash flow calculation if taxes and royalties are not a cost to the project as would be the case if the project would only be undertaken by the Crown. The third page details the cash flow to equity calculation. This separates the debt capital from the equity capital and deducts interest and debt repayment from the project cash flow.

2.1.14 Call ANALYS Subroutine

Statement O241 calls the subroutine which will undertake the sensitivity and probabalistic analysis. Parameters fed to the subroutine are all those affecting the economic worth of the project. These are in order: net smelter return (VALUE); tons of ore milled per year (SIZE); the total capital and operating costs (COST); the recovery rate constants (R1,R2), the working capital (WORCAP); the annual exploration costs (EXPLOR); the annual pre-production costs PREPRO); the annual mining investment (MININV); the annual processing investment (PROINV); the annual social capital investment (SOCINV); the annual ore grade (GRADE); the project life (N); the first year of production (C); the year preceeding production (D); the interest rate (S); the debt-equity ratio (DER); instruction as which analysis

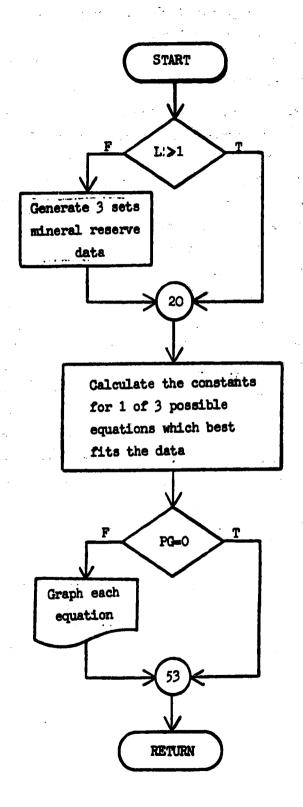


Figure 2.4 Simplified Algorithm for the EQUATN Subroutine.

is to be done (ISEN); the optimum project rate of return (OPTR); the number of years of secondary ore production (IY), the discount rate to be used (T); the salvage values (SM and SC), and; the fraction of the final year during which production occurs (TL).

2.2. The Equations Subroutine (EQUATN)

This is the first subroutine called from the main part of the program. It is called only twice, first to calculate the five capital cost and two operating cost functions, and second, to calculate the two mineral reserve functions. A simplified algorithm for this subroutine is shown in Figure 2.4. The compiler listing is at the end of the Chapter.

2.2.1 EQUATN Variables

The REAL variables in this subroutine are defined alphabetically as follows:

A - 3 by 7 matrix containing the first constant for
 each of three possible equations, up to seven equations.

AA - 7 element array containing the appropriate first constants from A for transfer to the main part of the program.

B - 3 by 7 matrix containing the second constant for each of three possible equations, up to seven equations.

BB - 7 element array containing the appropriate second constant from B for transfer to the main part of the program.

CAPCOS - same as in subsection 2.1.1.

CPACTY - 20 by 3 matrix will contain the independent variable in linear, hyperbolic, and natural log form for up to 20 sets of data.

LABEL - used in the graphing part of the subroutine; this will be assigned the Hollerith string used to label the vertical axis.

MAX - same as in subsection 2.1.1.

MAXTON - same as in subsection 2.1.1.

MINCRA - if only one data card for the mineral reserve is provided (thereby assuming an exponential grade-tonnage
relationship), this will be assigned the average grade
figure for use in calculating the 3 sets of mineral
reserve data.

R - 3 by 7 matrix which will contain the correlation coefficient for each possible kind of function, up to seven equations.

size - in the graphing part of the subroutine this will be assigned the value for the independent variable while the dependent variable is calculated; it is used for all equations.

SUM - 10 by 3 by 7 matrix, used to store the summations necessary in the least squares method of deriving the best equation from the raw data.

TOTMIN - see MINGRA above. This variable will be assigned the total tonnage figure for the deposit.

VALUES - 50 element array; in the graphing part of the subroutine this will contain the values of the dependent variable for the equation being graphed.

Y,YY,YYY - these three variables store the Hollerith strings for the labeling of the vertical axis.

Z,ZZ,ZZZ - in the equation part of the subroutine, these variables are assigned the numerator and denominator values for the equations that determine the correlation coefficients and equation constants.

The integer variables in alphabetical order are:

AST - assigned '*' for the graphing of the various functions.

BLANK - assigned a space for the graphing.

H - 7 element array that is used to pass information to the MAIN as to the kind of equation that best expresses the raw data provided in CAPCOS.

L - number of sets of data being provided.

LINE - 100 element array stores the characters for each line of the graph.

P - number of equations to be derived.

PERIOD - assigned '.' for the graphing.

PG - same as in subsection 2.1.1.

POINTS - the 100 possible real values in VALUE are converted to 50 possible integer values for the graphing.

Q - the last value on each data card (which is the abscissa value for each set of data).

YLARKI - assigned the vertical axis value for the graphs.

2.2.2 Preparation of the Data for Least-Squares Analysis

Statements 0004 to 0021 prepare the data passed from the MAIN for use in the determination of the appropriate equations.

In the case of the mineral reserve data, if only one card is provided, then an exponential grade-tonnage relationship is assumed. Statements 0010 to 0015 will then generate 3 sets of data based on this assumption which will then be used to generate the two constants for the average and cut-off grade functions.

The exponential grade-tomage relationship produces two separate equations as follows:

Given a mineral deposit of size D tons with average grade b, for a cut-off grade c, the amount of ore E will be:

This is rewritten so that c=b Ln(D/E) as in statement 0014. Assuming we choose a cut-off grade greater than zero, the average grade g of the ore will be:

These two functions are then used to generate the 3 sets of data. The equations that will be generated by least squares techniques from the data are:

$$g=a_1 + b \ln E$$

and
$$c=a_2 + b \ln E$$

For both the cost and reserve relationships, three kinds of function are fitted to the raw data. The first will be a simple linear function, the second will be a hyperbolic function, and the third will be a log-linear function. The equation chosen will be the one with the highest correlation coefficient.

The correlation coefficients and constants for each kind of function

can be calculated in exactly the same manner if each is expressed in a linear form. The linear form for the hyperbolic and log-linear functions are:

$$Y = a + bX'$$
 where $X' = \frac{1}{X}$
 $Z = c + dX''$ where $X'' = LnX$

The subroutine does this by converting the abscissa for each set of data to the appropriate form in statements 0020 and 0021.

2.2.3 Calculating the Appropriate Equations

Statements 0022 to 0071 calculate the two constants and the correlation co-efficient for the three functions that are fitted to each set of data. With the exception of the mineral reserve cut-off grade function, all equations are calculated the same way. The constants are determining by solving the normal equations for the least square line Y = a + bX.

$$\begin{bmatrix} \mathbf{n} & \mathbf{\hat{X}_{i}^{*}} \\ \mathbf{\hat{\Sigma}X_{i}^{*}} \mathbf{\hat{\Sigma}X_{i}^{*}}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{\hat{\Sigma}Y_{i}} \\ \mathbf{\hat{\Sigma}X_{i}^{*}} & \mathbf{Y_{i}} \end{bmatrix}$$

where $X_{\underline{i}}^{\bullet}$ can be $X_{\underline{i}}$, $\frac{1}{X_{\underline{i}}}$, or $LnX_{\underline{i}}$

Therefore b =
$$\frac{n\sum X_{i}^{*}Y - (\sum X_{i}^{*}) (\sum Y_{i})}{n\sum X_{i}^{*2} - (\sum X_{i}^{*})^{2}}$$

and a
$$= \frac{\sum Y_i - b \sum X_i^*}{n}$$

Thus:

The correlation coefficient R is:

$$R = \frac{n \sum X_{\underline{1}}^{\bullet} Y - (\sum X_{\underline{1}}^{\bullet}) (\sum Y_{\underline{1}})}{((n \sum X_{\underline{1}}^{\bullet}^{2} - (\sum X_{\underline{1}}^{\bullet})^{2}) (n \sum Y_{\underline{1}}^{2} - (\sum Y_{\underline{1}})^{2}))^{\frac{1}{2}}}$$

Statements OOL8 to OO71 choose the constants for the equation which best fits the raw data, i.e.: the equation with the correlation coefficient closest to 1. These constants are fed back to the MAIN in the AA and BB arrays while the kind of equation is indicated by the H array. If the constants are for a linear function, H(K)=1; if for a hyperbolic function, H(K)=2, and; if for a log-linear function, H(K)=3.

The procedure for calculating the mineral reserve cut-off grade function varies from the procedure for the other equations. This is because the method of calculating both the cut-off grade function and average grade from geological data that is often not too reliable can lead to equations which are logically inconsistent. In the extreme case, one equation could be linear while another could be logarithmic. In a more practical situation, the two linear equations or two logarithmic equations can be inconsistent. In this program, the equation that is calculated in the normal manner is the average grade function. The assumed cut-off grades are entered on the mineral reserve data card but are not normally used. The cut-off grade function which will then be consistent with the average grade function is derived as follows:

Assume an average grade function Y = a + bX. Y is the average grade and X is the total tons of mineral. The metal M in this deposit is the average grade Y times the tonnage X.

That is:
$$M = XY$$

The cut-off grade C, can be expressed as a small change in the quantity of metal divided by a small change in the tons of ore containing the metal or,

$$C = \frac{dM}{dX} = a + 2bX$$

In other words, both the average grade and cut-off grade functions logically have the same intercept "a" but the latter has twice the absolute value of slope (which is 2b). In the program, the cut-off grade function is automatically assigned a first constant "a" equal to that calculated for the average grade function, and a second constant "b" equal to 2 times that calculated for the average grade function.

The same procedure applies if the first equation is log-linear.

Assume
$$Y = a + bLnX$$

$$M = XY = aX + bX \cdot LnX$$

$$\frac{dM}{dX} = a + b(X \cdot 1 + LnX) = a + b(1 + LnX) = C$$

$$1.e. \quad C = (a + b) + bLnX.$$

In the program, the first constant for the cut-off grade function is the sum of the two constants for the average grade function and the second constant is the same as that for the average grade function.

This procedure applied to a hyperbolic function yields a cut-off function C = a. That is, the cut-off grade function consistent with a hyperbolic function is a constant to which the average grade function is asymptotic. This is not realistic, but in the unlikely event the best average grade function should be hyperbolic, the assumed geological cut-off grade data will be used to calculate the cut-off grade function.

2.2.4 Graphing Each Function

If a graph is to be printed for each function, this will be done by statements 0072 to 0186.

The tonnage constraint for the mineral reserve is determined by statements 0099 to 0106. This constraint will be printed as a vertical line on the two mineral reserve graphs.

Statements 0114 to 0123 print the equation for each function after the title on the graph.

Statements 0124 to 0141 determine the interger ordinate values for 100 real abscissa values. Because a vertical space is about twice the width of a horizontal space, only 50 lines are printed for the 100 possible abscissa values. This is accomplished in statements 0136, 0138, and 0140 where the POINTS value (between 1 and 10 or 1 and 100) is further divided by 2.

From statements 0143 to 0186 the actual printing of the graphs takes place. There are three basic kinds of graph each with different labels and size of axis. These are for the capital cost functions, the operating cost functions, and the mineral reserve functions.

2.3 The Annual Revenue Subroutine (ANNREV)

This subroutine is called from the main program every time a change is made in the size or production life of a project. Its main purpose is to calculate the annual gross revenue a project of given size and life could anticipate. Figure 2.5 is a simplified algorithm for this subroutine. The compiler listing is at the end of the Chapter.

2.3.1 ANNREY Variables

The real variables in alphabetical order are as follows:

A - same as in subsection 2.1.1.

AVGRAD - this variable will be assigned the average grade of the primary ore reserves. This value will be used in the part of the sub-routine that is calculating the production of the marginal ore reserves after the primary ore reserves have been depleted.

B - same as in subsection 2.1.1.

CCGRAD - 50 element array containing the value for the ore cut-off grade for each year.

COGRAD - operating cost cut-off grade.

GRAD - 2 element array will be assigned the average and cut-off grades for the ore reserve if it is to be mined at those grades for each year of production (rather than high-graded).

GRADE - same as in subsection 2.1.1.

MAXTON - same as in subsection 2.1.1.

METAL - 50 element array contains amount of recoverable metal per year in the concentrate.

PAVGRA - average grade of total production of ore for previous years.

PCCRAD - cut-off grade of total production of ore for previous years.

PMETAL - metal content of total production of ore for previous years.

PROD - 50 element array, contains annual amount of ore milled.

PTONS - total production of ore for previous years.

R1, R2 - same as in subsection 2.1.1.

RCV - 50 element array, contains recovery rate for each year.

REVENU: same as in subsection 2.1.1.

SIZE - same as in subsection 2.1.1.

TAVGRA - average grade of total ore mineable to operating cost cut-off grade.

TL - same as in subsection 2.1.1.

TORS - total tonnage of primary ore.

TMSTAL - metal content of total ore milled.

TOPCOS - same as in subsection 2.1.1.

TTONS - total ore milled.

VALUE - same as in subsection 2.1.1.

XAVGRA - average grade of secondary ore.

XTORS - tons of secondary ore.

XYEARS - years of secondary ore production.

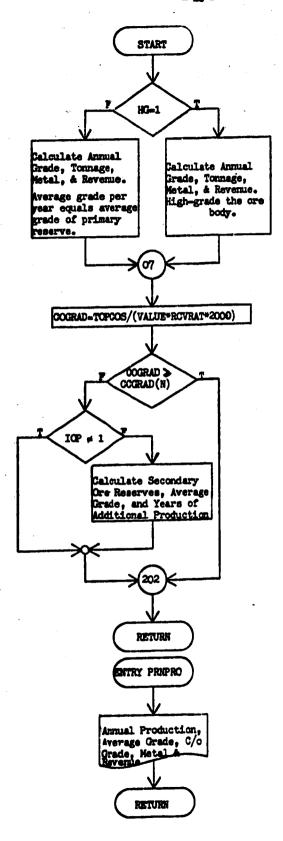


Figure 2.5 Simplified Algorithm for the ATRREV Subroutine

The integer variables are:

C	-	same	85	in	subsection	2.1.1
D	-	**	#	**	**	**
HG	-	**	**	Ħ	17	11
HH	-	**	Ħ	**	**	**
IY	-	**	*	*	*	*
LIFE	-	**	*	Ħ	•	**
W	_	**	**	**	**	11

2.3.2 Production Grade is at Average Grade of Primary Reserves

Assuming that the options card has indicated that the mineral deposit is to be mined so that the average grade of production is at the average grade of the primary reserves, the calculations will be done by statements 0013 to 0028. The average and cut-off grades are calculated by statements 0013 to 0020. Statements 0021 to 0027 place the production figures on the appropriate arrays for transfer back to the main part of the program and for later printing.

2.3.3 The Mineral Deposit is to be High-Graded

If the mineral deposit is to be high-graded the production figures will be calculated by statements 0030 to 0072. The average and cut-off grades for total production prior to the current year are calculated by statements 0033 to 0046. Previous metal production is calculated by statement 0048. The average and cut-off grades for total production including the current year are determined by statements 0053 to 0066. Total metal is calculated by statement 0067. Statements 0068 to 0072 place the production figures in the appropriate arrays for transfer back to the main part of the program and for later printing.

2.3.4 Calculate Production of Secondary Reserves

The operating cost cut-off grade is calculated at statement 0080. Assuming this is less than the cut-off grade of the primary reserves and assuming that the options card or the main part of the program has indicated that the production figures for the secondary ore reserves are to be calculated, this will be undertaken by statements 0082 to 0130.

Since the cut-off grade is a function of the recovery rate (which for the secondary reserves is initially unknown) the value applicable to the primary reserves cut-off grade is used (see statement 0077). The average grade of the secondary reserves is then calculated and the recovery rate re-calculated. If this value differs from the initial assumption by more than .001, then a new recovery rate is used, a new cut-off grade is calculated, and the secondary reserves are re-calculated. This process is repeated 3 or 4 times till the cut-off grade assumption for the cut-off grade is compatable with that for the secondary reserves.

Total tonnage of ore for the deposit is determined by statements 0082 to 0088. The average grade of this ore is determined by statements 0089 to 0095. The secondary ore tonnage, average grade, and years of additional production are determined by statements 0097 to 0109. Statement 0110 converts the year(s) of additional production from a real to an integer variable. Statement 0111 increases the total life of the project by the years of additional production. Statements 0112 to 0130 place the secondary ore production figures at the end of the primary reserve production figures in the appropriate arrays.

2.3.5 Print the Final Production Figures

Statements 0136 to 0144 will print the final production figures for the optimum sized project. This will be printed when called from the main part of the program after the optimum project has been determined.

2.4 The Royalty Subroutine (ROYALT)

This subroutine is also called every time a change is made in the project size and life. The royalty is calculated according to M125, The Metallic Minerals Royalty Act. This subroutine hot only calt culates the annual royalty but attempts to minimize the total or royalty assessment by making the appropriate annual depreciation claims. Since the real rate of return is being calculated for the project, the inflation rate is assumed to be zero. The algorithm for this subroutine is shown in figures 2.6(A), (B), and (C). The compiler listing is at the end of the Chapter.

2.4.1 ROYALT Variables

The real variables in this subroutine are defined alphabetically as follows:

BASROY - 50 element array containing the annual basic royalty payable by the project.

CMPROC - 50 element array containing the cumulative processing investment for each year.

D - the amount by which a depreciation rate is to be varied up or down.

DEPREC - 50 element array containing the annual depreciation claim.

DISROY - 50 element array containing the annual total royalty payable after being discounted by the real opportunity cost of capital, S.

DSUM1 - sum of annual depreciation rates.

EXPLOR - same as in subsection 2.1.1.

GROPRO - same as in subsection 2.1.1.

INCROY - 50 element array containing the annual incremental royalty payable by the project.

MININV - same as in subsection 2.1.1.

MINVB - 50 element array containing the annual undepreciated balance for the mining and service investments.

MSINV - 50 element array containing the annual mining plus social capital investment (in the pre-production period it will also include pre-production plus exploration investment).

MININV - same as in subsection 2.1.1.

MINUB - 50 element array containing the annual undepreciated balance for the mining and service investments.

MSINV - 50 element array containing the annual mining plus social capital investment (in the pre-production period it will also include pre-production plus exploration investment).

NETPRO - gross profit minus the depreciation allowance.

OLDROY - stores value of minimum total discounted royalty.

PALLOW - 50 element array containing the annual processing allowance.

PREPRO - same as in subsection 2.1.1.

PROBAS - the annual profit base; indicates the maximum amount of profit which will be assessed at the low royalty rate.

PROFIT - 50 element array containing the profit after the exploration deduction.

PROINV - same as in subsection 2.1.1

R - 50 element array containing the annual depreciation rates.

ROYPRO - 50 element array containing the annual amount of profit subject to a royalty assessment.

S - discount rate; same as T in subsection 2.1.1.

SOCINV - same as in subsection 2.1.1.

SUMROY - total discounted royalty for the project.

TBASRO - total base royalty for any three year averaging period.

TINCRO - total incremental royalty for any three year averaging period.

TOTINV - 50 element array containing total annual capital investment in a project.

TOTROY - same as in subsection 2.1.1.

TOTUB - 50 element array containing the annual undepreciated balance of total capital invested in the project.

TPROBA - sum of profit bases for any three year averaging period.

TPROF - sum of taxable profit for any three year averaging period.

The integer variables in alphabetical order are:

C - same as in subsection 2.1.1.

H same as D in subsection 2.1.1. K in the depreciation rate adjustment part of the program this will indicate the year in which the rate is being changed. L in the depreciation rate adjustment part of the program. this will indicate the number of years since a depreciation rate change was able to reduce the total royalty - when set equal to 1, indicates that no further reduction LET in total discounted royalty is possible, given the size of the adjustment increment. records how often the depreciation rate adjustment increment P has been halved. this will limit the number of times the depreciation rate Q adjustment increment will be halved. - when set equal to 1, this will indicate that the depre-Set ciation rate R(K) is to be incremented by + D, when set equal to 1, indicates total royalty is at a STOP

minimum

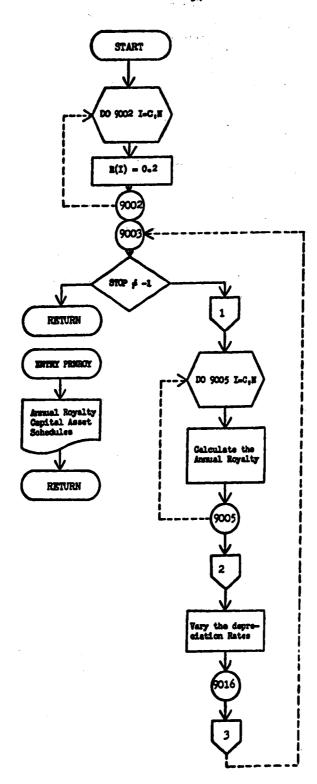


Figure 2.6(A) Simplified Algorithm for Calculating the Annual Royalties and Varying the Depreciation Rates to Minimise the Total Royalty.

Figure 2.6(B) Simplified Algorithm for Calculating the Annual Royalty

Figure 2.6(C) Simplified Algorithm for Changing the Depreciation
Rates to Minimum the Total Royalty.

***************************************	1	2	3	4	5
Year	Mine and Service Investment	Cumulative Processing Investment	Total Investment	Mine and Service U.B.	Total U.B.
1	1,500,000	0•0	1,500,000	1,500,000	1,500,000
2	500,000	500,000	1,000,000	2,600,000	2,500,000
3	0.0	500,000	0•0	1,600,000	2,000,000
4	0.0	500,000	0•0	1,280,000	1,600,000
5	0.0	500,000	0.0	1,024,000	1,280,000
6	0.0	500,000	0.0	819,200	1,024,000

6	7	8	9	10	11	12
Gross Profit	Depreciation on Total Assets	Processing Allowance	Net Profit	Profit Base 18% of M & S Asset	Base Royalty	Incremental Royalty
0.0	0.0	0.0	0.0	0.0	0•0	0.0
0.0	0.0	0.0	0•0	\$270,000	0.0	0.0
500,000	500,000	0.0	0•0	\$360,000	0.0	0•0
500,000	400,000	40,000	60,000	\$288,000	\$9,000	0.0
500,000	320,000	40,000	140,000	\$230,400	\$21,000	0.0
500,000	256,000	40,000	204,000	\$184,320	\$27,648	\$6,888

Table 2.1 Example of Royalty Calculation Assuming no Inflation

2.4.2 Initialization and Preproduction Period

Statements 0004 to 0048 prepare the subroutine for the royalty minimization procedure. Statements 0004 to 0008, 0020, and 0045 to 0048 apply specifically to that part of the subroutine which will be adjusting the annual depreciation rates. Statements 0010 to 0019, and 0027 to 0036 set the preproduction values for the various arrays to zero. Statements 0021 to 0025, and 0037 to 0042 establish the yearly amounts for the mine and service asset undepreciated balance, and determine the cumulative processing investment.

Statements 0043 and 0044 are particularly significant in that they set all depreciation rates at the upper limit of 20% (allowed by the royalty legislation, M125). From this upper limit, they will be systematically reduced to determine if the total royalty payable by the project can be reduced.

2.4.3 Calculating the Annual Royalty

Statements 0049 to 0096 will calculate the annual total royalty a project might anticipate. The algorithm for this is shown in figure 2.6(B). The Metallic Minerals Royalty Act also provides for adjustments in the royalty assessed because of inflation. Since the project is being evaluated in constant dollars, no inflation adjustments are necessary. A sample:calculation is shown in Table 2.1.

During years 1 and 2 investment is made in: (1) mining and service assets, and, (2) processing assets. The mining and service assets include investment in pre-production exploration and pre-production development. Columns 1 through 5 record the investments made, and the undepreciated balances for the two categories of assets. From years 3 through 6, the project is assumed to earn a gross profit of \$500,000 per year (column 6). The assumed annual depreciation rate is 20% (maximum normally allowed) which is applied to the total undepreciated balance for the year (and includes any new investment). The amount of depreciation is shown in column 7. The processing allowance (column 8) is 8% of the cumulative

allowance from gross profit leaves the profit subject to a royalty assessment (column 9). The profit base (column 10) is defined as 18% of the mine and service asset undepreciated balance, as of the end of the previous year (or beginning of the current year). Net profit equal to or less than this amount is assessed at a rate of 15% (column 11) while any net profit in excess of the profit base is assessed at the rate of 35% (column 12).

Three other features of the royalty system should be noted:

- (1) The processing allowance is either 8% of the cumulative processing assets (as above) or 50% of the profit after deducting the depreciation, whichever is the lesser.
- (2) There is a three year averaging feature which moderates the effects of fluctuations in annual gross profit. It is not a moving average however. It functions as follows: In the third year of a three year period: (a) sum the net profit for the 3 years; (b) sum the profit bases for the 3 years; (c) determine total royalty for the three years by multiplying the total net profit up to the amount of the total profit bases by .15 and by multiplying any profit in excess of the total profit bases by .35. The base royalty in the third year is the total base royalty less that paid in the first two years. The incremental royalty in the third year is the total incremental royalty less that paid for the first two years. The total royalty is the sum of the base and incremental royalty (and can be negative).
- (3) The minimum depreciation rate is 10%. This rate must be used so long as there is sufficient gross profit. If there is insufficient gross profit, then the depreciation deduction will be the amount of gross profit in excess of zero.

2.4.4 Varying the Annual Depreciation Rates

The depreciation rates are adjusted and the best rates chosen by statements 0097 to 0151. The algorithm for this is shown in figure 2.6(C).

The depreciation rates used in the total royalty calculation are particularly important because of the two different royalty rates in effect: a low rate for the annual profit which would represent a reasonable before-tax rate of return to the mine and service capital investment, and; a high rate for any profit which would exceed this amount. The amount of profit in a year which may be subject to assessment at the high royalty rate is a function of (i) the gross profit, (ii) the profit base (.18 times the undepreciated balance of mining and service capital assets), and, (iii) the depreciation claim for the current year. However, the size of the profit base, as well as the amount of depreciation which can be claimed in the current year is also a function of the depreciation claims in prior years. If in prior years the maximum depreciation has always been claimed, the undepreciated balance of the total assets will be relatively small. This means that (i) the maximum possible amount of the depreciation claim in the current year (.2 times the undepreciated balance of total assets) will be relatively small, and, (ii) the profit base for the current year will be relatively small. If profit in the current year is relatively high, then a large portion of this profit is going to be assessed at the high royalty rate. If in prior years, in particular those years when profit was low, less depreciation had been claimed, the current profit base would have been larger, and a larger depreciation claim could have been made.

There are three factors which moderate the effect of a relatively small undepreciated balance of total assets in the latter years of a project. The first, and most obvious, is that gross profit can be expected to decline as the average grade of ore mined declines. This occurs in the model in two situations: (i) when the assumption is made that the ore body is to be high graded and, (ii) when the marginal ore is being mined.

The second moderating factor is the 3 year averaging feature. Any unused profit base from the first two years of any period can be used in the 3rd. year to reduce the possible effects of the high royalty rate being assessed in that year. The third moderating factor is the cost of capital over time. A dollar of royalty payable in year 1 of a project

is a greater burden than that dollar being payable during the last year of the project. This means that there is an incentive to claim a large amount of depreciation during the early years of the project even if it means that more incremental royalty may be payable later. The subroutine takes this into account by discounting the annual royalty. What is minimized in the subroutine is the total discounted royalty.

The minimization procedure begins with all the depreciation rates set at 20% (statements 0043 to 0044) and the total discounted royalty at these rates determined. The depreciation rates are then reduced in turn by D beginning at the first year of production. If any depreciation rate reduction results in a reduction of the total discounted royalty, that rate is retained, otherwise the rate is restored to its previous value. Each rate is reduced in turn by D till a complete pass can be made for all years of production without resulting in a further reduction in the total discounted royalty. Then the sign of D is changed and each rate is increased in turn by D (where possible) again checking for a reduction in the total discounted royalty. If a complete pass can be made without a change in any of the royalty rates, then D is halved and the sign changed. The cycle begins again with each depreciation rate reduced by D in turn, so long as the total discounted royalty can be further reduced. D continues to be halved till such time as it is reduced to a predetermined size, at which time the calculation stops and the undiscounted total annual royalty is returned to the main part of the program.

D will normally be halved 19 times during a complete minimization procedure. Since D is initially set at 0.01, it will be at 1.91 x 10⁻⁸ at the end of the calculations. The two exceptions to this are when the maximum depreciation rates (20%) are the applicable rate or there is no royalty payable at all. In the former case, the calculation will stop after only 4 passes, and, in the latter case, only one calculation is necessary.

At the completion of the project optimization procedure, the royalty calculation details will be printed. This is done by statements 0156 through 0163. The first page of the printout will detail the annual royalty calculation; the second page will detail the annual investments

and annual undepreciated balance for the two categories of capital asset.

2.5 The Income Tax Subroutine (INCTAX)

As is the case with the royalty subroutine, this subroutine is called every time a change is made in the project size and/or life. Two taxes are calculated: the first is the capital tax, assessed according to The Corporation Capital Tax Act, G226; the second is the corporate income tax assessed according to the Federal Income Tax Act, as of January 1, 1976. These two taxes are calculated in the one subroutine since the capital tax is an allowable deduction for purposes of the corporate income tax calculation. The INCTAX algorithm is shown in figure 2.7(A) and (B). The compiler listing is at the end of the Chapter.

2.5.1 INCTAX Variables

The REAL variables in this subroutine are defined alphabetically as follows:

ACCA - 50 element array, contains amount of accelerated capital cost allowance.

ACCWOR - accumulated working capital, used in the annual capital tax calculation.

BORCAP - 50 element array, contains assumed borrowed capital per year.

CAPTAX - 50 element array, contains the amount of the capital tax per year.

CAPUB - 50 element array containing the total borrowed capital plus interest for each year.

CMXPLR - 50 element array, contains the cumulative exploration costs for the project.

DEPLAL - 50 element array, contains the annual depletion allowance.

DEPLUB - 50 element array, contains the unclaimed balance of the depletion allowance pool.

DER - assumed debt-equity ratio.

EQUITY - 50 element array containing the assumed amount of capital subject to the capital tax, and which was not borrowed.

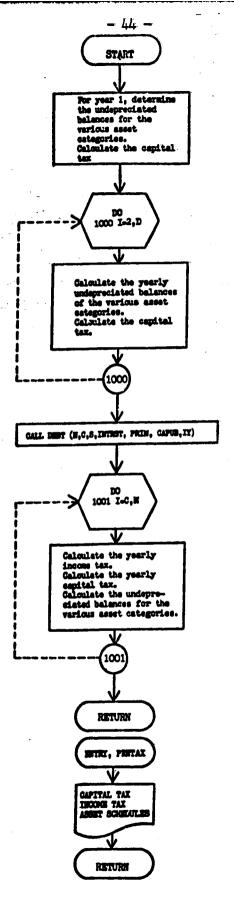
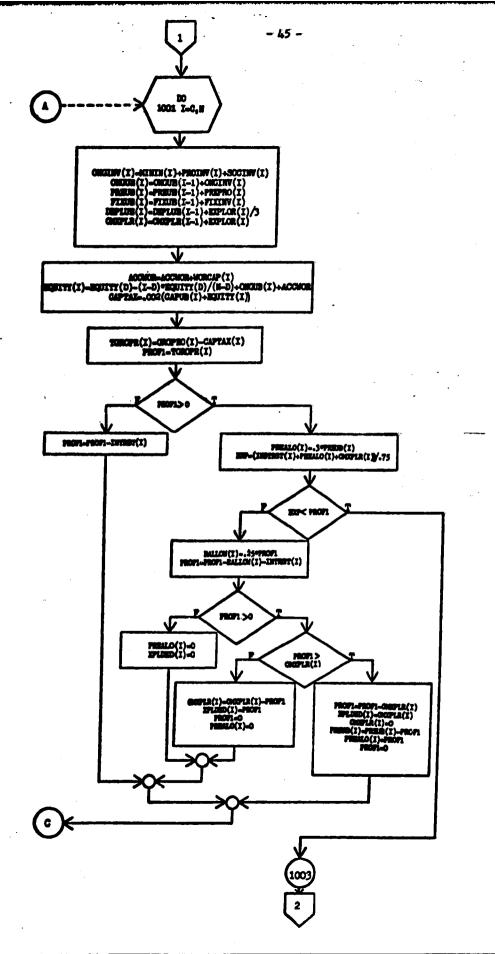
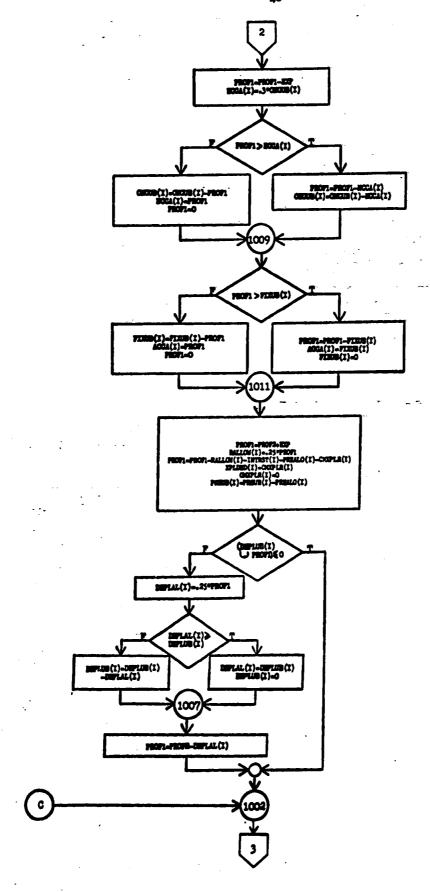
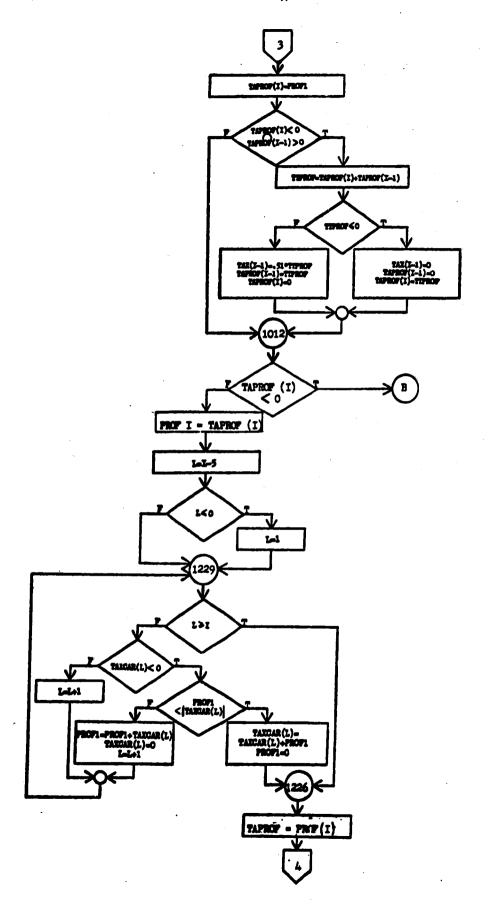





Figure 2.7(A) Simplified Algorithm for Calculating the Capital and Income Taxes.

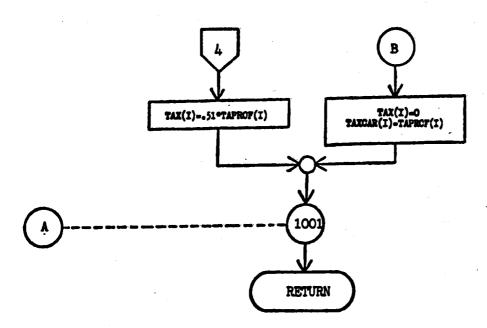


Figure 2.7(B) Algorithm for Calculating the Income Tax and Capital Tax for Years C to N

EXP - 1.33 times the value of deductions allowable following the resource allowance. This will indicate whether or not any capital cost allowances are to be claimed.

EXPLOR - 50 element array containing the annual exploration expenditure.

FIXCAP - 50 element array, contains the year-end total borrowed capital plus accumulated interest.

FIXINV - 50 element array contains the total mining, processing and social capital investment.

FINUB - 50 element array, contains the undepreciated balance of total capital plus interest for the assets which can be written off on an accelerated rate.

GROPRO - same as in subsection 2.1.1.

INTRST - same as in subsection 2.1.1.

MININV - same as in subsection 2.1.1

NCCA - 50 element array, contains the annual capital cost allowance for class 10 assets.

ONGINV - 50 element array, contains the annual total investment in mining, processing, and social capital assets made after the beginning of production (class 10).

ONGUB - 50 element array, contains the undepreciated balance each year for the class 10 assets.

PREALO - 50 element array, contains the annual pre-production allowance claim.

PRECAP - 50 element array, contains the annual accumulated amount of borrowed capital plus interest.

PREPRO - same as in subsection 2.1.1.

PREJE - 50 element array, contains the undepreciated balance by year for the pre-production development investment.

PRIN - 50 element array, contains the portion of debt servicing which is applied against the principal.

PROF1 - throughout the annual tax calculation this is valued at the amount of profit left after each deduction.

PROINV - same as in subsection 2.1.1.

RALLOW - 50 element array, contains the annual resource allowance for the project.

S - same as in subsection 2.1.1.

SC - same as in subsection 2.1.1.

SOCINV - same as in subsection 2.1.1.

SV - net salvage value of mining and processing assets.

TAPROF - 50 element array, contains annual taxable income for the

project.

TAX - 50 element array, contains the annual income tax payable.

TAXCAR - 50 element array, contains the losses for tax purposes which will be carried forward.

TGROPR - 50 element array, contains the annual gross profit after deducting the capital tax and prior lesses.

TTPROF - value of total taxable profit for the current and previous year where a carryback of losses is contemplated.

WORCAP - same as in subsection 2.1.1.

XPICAP - 50 element array, contains the cumulative exploration capital that is assumed to be borrowed, plus interest.

XPLDED - 50 element array, contains the annual amount of exploration deduction.

The integer variables in alphabetical order are:

C; - same as in subsection 2.1.1.

D - same as in subsection 2.1.1.

IY - same as in subsection 2.1.1.

2.5.2 <u>The Pre-production Period</u>

Statements 0004 to 0046 determine the values for the various asset categories and for the various allowances that may be claimed. Since no production will have occurred in these years, the allowances along with the tax payable will be zero

The asset banks which are established in the pre-production period for later write-off in calculating the income taxes are as follows:

(1) Accelerated Capital Cost Bank

This includes class 28 capital investment plus any interest on capital borrowed for these assets. In the program this bank will

contain the sum of mining, processing, and social capital investment, plus interest. Write-off is at up to 100% of the unclaimed balance.

(2) Pre-production Development Cost Bank

Pre-production development costs are accumulated in this bank for later write-off at a rate of up to 30% of the unclaimed balance. Included here will be interest costs on any capital borrowed.

(3) Pre-production Exploration Cost Bank

Surface and underground preproduction exploration costs which have not been expensed elsewhere will be accumulated in the exploration cost bank for later write-off at up to 100% of the unclaimed balance. As in the previous cases, interest on borrowed capital is included.

(4) Ongoing Investment Cost Bank

After the start of production investments made in mining, processing, and social capital assets are accumulated in the ongoing investment bank for write-off at up to 30% of the undepreciated balance.

(5) <u>Depletion Bank</u>

The depletion bank during the pre-production period amounts to onethird of all investments except that for working capital. After production begins, one-third of exploration expenditure is added to the bank. This can be written off at any rate so long as the amount does not exceed 25% of profit remaining prior to this deduction.

In statement 0019 FIXINV is defined. This is the sum of the mining, processing, and social capital investment. In the preproduction period, this will be the basis for an asset bank.

Statement 0020 establishes the total borrowed capital assumed for the year. This will be the total capital invested times the debt-equity ratio. The total borrowed capital, CAPUB, at the end of the year is the amount borrowed plus the interest payable. This is calculated by statement 0022. The total borrowed capital for the fixed investment, including interest for the year, is calculated in

statement 0023.

Statements 0024 and 0025 determine the year-end values for the pre-production borrowed capital and the exploration borrowed capital. In statement 0026 the asset bank for assets which can be depreciated at up to 100% is established. This is the fixed investment, defined above, plus the interest on the borrowed capital for those assets. Statements 0027 and 0028 establish the asset banks for the pre-production investment and the exploration investment. Statement 0029 establishes the depletion bank.

Statements 0030 to 0032 determine the capital tax for the first year. The capital tax in any year is .002 times the taxable capital as of the end of the year. The taxable capital is determined in two steps; first, determine the sum of: (a) paid up capital stock, (b) surpluses, (c) loans and advances, (d) reserves, and (e) indebtedness. From this total deduct: (a) the goodwill allowance, (b) the investment allowance, and (c) deductions allowed in computing taxable income in excess of the amounts recorded on the books. The taxable capital as determined by statements 0030 and 0031 is the equity capital invested in the year and the working capital. The capital tax is .002 times the sum of the equity capital, the working capital and the borrowed capital (including interest).

Because the capital tax is a taxable loss before production begins, this taxable loss will be carried forward (and can be done so for up to 5 years). This is done in statement 0032.

Statements 0034 to 0046 update the various asset banks and set the allowance values to zero for pre-production years 2 to D. Statements 0035 determines the total unamortized balance of borrowed capital for the year. This is: the sum of the borrowed capital for the year and the accumulated borrowed capital for the previous year, both times 1 plus the interest rate S. Statements 0036, 0037, and 0038 determine the total borrowed capital for the fixed investment, the pre-production investment, and the cumulative exploration respectively. Statement 0039 updates the fixed investment bank. This is the sum

of the current fixed investment, the current interest on borrowed capital used to purchase it, the current interest on previously borrowed capital, and the fixed investment bank at the end of the previous year. Statements 0040 and 0041 update the pre-production investment bank and the exploration investment bank respectively. Statements 0042 to 0044 determine the capital tax as before. Finally, statement 0046 updates the depletion bank. This is simply the sum of the depletion bank for the previous year and one-third of current investment (excluding working capital).

A final step before the calculation of taxes payable during the production phase is to calculate the annual interest and principle payable if there is any debt to recover. This is done by statement 0047 which calls the DEBT subroutine. This subroutine calculates a capital recovery factor which is then used to determine the annual payments.

2.5.3 Calculating the Annual Taxes

Statements 0048 to 0173 will calculate the yearly income tax and capital taxes payable by the project. Statements 0056 to 0062 update the capital cost banks prior to the tax calculation.

Statements 0063 to 0067 calculate the capital tax. Because paid up capital stock, surpluses and reserves are not specified anywhere in the program, and because the major capital items are quickly written off by way of the capital cost allowances, it was decided to approximate the taxable capital in any year by way of a formula. The formula is:

$$TC=CB(I) + E(D) - (I-D) * E(D)/(N-D) + O(I) + W$$

TC - taxable capital

CB(I) - unamortized debt

E(D) - equity capital at the beginning of production

I - current year

D - pre-production period

N - total project life

O(I) - undepreciated balance of ongoing investment

W - cumulative working capital

The capital tax is equal to .002 times TC. This tax is payable within six months from the end of the year it is assessed. During the preproduction period the tax may be paid from loan capital or equity capital. The program assumes it is always paid from equity capital.

Assuming there is profit remaining after deducting the capital tax, statement 0083 will commence the actual tax calculation for the current year. From there to statement 0138 the taxable income will be calculated. The taxable income is calculated as follows:

1 From: Gross Profit (after capital tax)

2 Deduct: Accelerated Capital Cost Allowance

3 Deduct: Normal Capital Cost Allowance

4 Leaves: Net Profits 1

. 5 Deduct: Resource Allowance

6 Deduct: Interest Costs

7 Deduct: Pre-production Development Costs

8 Deduct: Exploration Costs

9 Leaves: Net Profits 2

10 Deduct: Depletion Allowance

Taxable Income

The accelerated capital cost allowance can be any amount up to the unclaimed balance in the accelerated capital cost allowance banks. The normal capital cost allowance is any amount up to 30% of the unclaimed balance of the normal capital cost allowance bank. The profit remaining after these two deductions, net profit 1, is the basis for the resource allowance. This allowance is 2% of net profit 1. From the remaining profit is deducted: any exploration costs (preproduction or current); the pre-production development allowance (up to 30% of the unclaimed balance); and, the interest charges on long term debt. This gives net

profit 2. From this is deducted the depletion allowance which is the lesser of 25% of net profit 2 or the amount unclaimed in the depletion bank. The profit remaining is the taxable income.

The subroutine does not derive the taxable income by simply making the allowable deductions in order as above. It minimizes the total tax assessment for the project by posponing any assessment as long as possible. This process begins at statement OOS, where EXP is defined as being the sum of the interest deduction, the pre-production investment allowance, and the cumulative exploration which is then divided by .75. The difference between EXP and gross profit is available for the accelerated capital cost allowance and the normal capital cost allowance. If the difference between EXP and gross profit is claimed by the capital cost allowances, the profit remaining before the depletion allowance (Net Profits 2) will be zero. If the difference between EXP and gross profit cannot be entirely claimed, then Net Profits 2 will be greater than zero and a depletion allowance can be claimed. This will still leave profit which can be taxed.

An important of feature of this procedure for calculating the tax is that it maximizes the benefits from the resource allowance. With marginally profitable projects, it is often possible to reduce taxable income to zero without making any claim from the accelerated capital cost allowance bank. The larger the interest deduction, the more likely this is to occur. Naturally, some marginal projects will never pay income taxes.

If it should happen that the current taxable income is less than zero and the taxable income in the previous year was positive, then a one year carry-back of losses is allowed. This is done by statements 0139 to 0150. The taxable income for the two years will be summed. If it is negative, the tax payable for the previous year will be reduced to zero and the net loss will appear for the current year and be subject to carry forward. If the net taxable income is positive, the previous year's tax will only be on that positive amount and the current year's taxable income will be zero.

Statements 0152-0168 deduct any loss carry forward from current taxable income. As noted before losses can be carried forward for up to 5 years.

The actual tax payable is calculated by statement 0169. The federal tax

rate is 36% and the provincial rate is 15% for a total of 51%.

The detailed tax calculations will be printed by statements 0176 to 0189 if requested from the main part of the program.

2.6 The Analysis Subroutine (ANALYS)

Following the determination of the optimum SIZE of project, the ANALYS subroutine is called. This will undertake two kinds of analysis on the optimum project. The first is a sensitivity analysis. In this analysis, one of 11 factors affecting project profitability is increased or decreased by some percentage in order to measure the effect on the rate of return to the project. This analysis is done three times, each time the factors affecting profitability are varied by a different amount.

The second analysis is a probabilistic analysis in which probabilities are assigned to each of the factors affecting profitability. By way of Monte Carlo techniques a probability distribution is generated for the rate of return.

The compiler listing for this subroutine is at the end of the Chapter.

2.6.1 ANALYS Variables

The real variables for this subroutine are as follows:

A - 50 element array, contains first constant for function of average mine cost versus production.

AA - 50 element array, contains first constant for function of average processing cost versus production

B - second constant for equation of mine cost versus production.

BB - second constant for equation of processing cost versus production.

BORCAP - same as in subsection 2.1.1.

CAPTAX - same as in subsection 2.1.1.

CASFLO - same as in subsection 2.1.1.

COS - 3 by 50 matrix contains random normal values for the mining and processing operating costs.

DATA - 11 by 2 matrix containing the evaluator's estimates for the upper and lower ranges (at the 90% confidence level) of the factors affecting the projects rate of return.

DER - same as in subsection 2.1.1.

DEV - value by which a cost or revenue factor will be changed in the sensitivity analysis.

EXPLOR - same as in subsection 2.1.1.

GRADE - same as in subsection 2.1.1.

GROPRO - same as in subsection 2.1.1.

INTEST - same as in subsection 2.1.1.

MATRIX - 11 by 3 by 50 matrix used in the Monte Carlo analysis to contain the values for each of the 11 project parameters for each year of the project.

MININV - same as in subsection 2.1.1.

OH - same as in subsection 2.1.1.

OPTR - same as in subsection 2.1.1.

PCTCHA - in the sensitivity analysis this value is the percentage change in the rate of return.

PCTDEV - in the sensitivity analysis this value is the percentage change in the variable affecting profitability.

PREPRO - same as in subsection 2.1.1.

PRIN - same as in subsection 2.1.1.

PROINV - same as in subsection 2.1.1.

PT - 1000 element array used to record the number of times a rate of return occurs at each whole percent between 0% and 100%.

R1, R2 - same as in subsection 2.1.1.

R - same as in subsection 2.1.1.

RCV - 50 element arrays; in the analyses, this will contain the annual recovery rates.

RCVRAT - same as in subsection 2.1.1.

S - same as in subsection 2.1.1.

SC - same as in subsection 2.1.1.

SIZ - 50 element array; in the probabilistic analysis this will contain the values for annual ore production.

SM - same as in subsection 2.1.1.

SOCINV - same as in subsection 2.1.1.

T - same as in subsection 2.1.1.

TAX - same as in subsection 2.1.1.

TL - same as in subsection 2.1.1.

TOTINV - same as in subsection 2.1.1.

TOTROY - same as in subsection 2.1.1.

VAL - 50 element array; in the probabilistic analysis this will contain the annual values for the net smelter return.

VALUE - same as in subsection 2.1.1.

WORCAP - same as in subsection 2.1.1.

XX - during the probabilistic analysis this is assigned the value of the standard normal deviate.

YRAN - value of the randon number, between 0 and 1.

Z - during the probabilistic analysis this is the sum of 12 random variables.

ZN - sum of rates of return for all simulations and then the mean rate of return.

The integer variables are:

ASTER - assigned the character ***.

C - same as subsection 2.1.1.

D - same as subsection 2.1.1.

ID - same as subsection 2.1.1.

IS - random number seed.

ISEN - same as subsection 2.1.1.

JI - label value for graph of probability distribution.

JS - integer value of the rate of return plus one; later it is assigned the integer value of the proportion of rates of return at each value between 0 and 100.

L - in probabilistic analysis this indicates which standard deviation (upper or lower) is to be used in deriving the new value for a parameter.

2.6.2 <u>Initial Conditions</u>

Statements 0004 to 0045 establish the initial conditions for the analysis to be undertaken. Statements 0004 and 0005 read a data card which will instruct the probabilistic part of the subroutine as to how many simulations to carry out. Statements 0006 and 0007 will read the data cards containing the evaluators estimates of the upper and lower limits for the various factors affecting project profitability. Statements 0013, 0014 and 0015 are used to generate an odd number between 0 and 100 for use as a seed for the random number generator. Since the seed will be a random number initiated external to the program, the sequence of random numbers will be different each time the program is run.

Statements 0017 to 0045 place the optimum values for 11 variables affecting profitability into a matrix. This matrix will be used in both the sensitivity analysis and probabilistic analysis. At statement 0046, a decision is made as to which analysis is to be done. Both may be undertaken (if ISENS equals 2); either one may be done (if ISENS equals 1 or 3), or; neither may be done (if ISENS equals 0).

2.6.3 <u>Sensitivity Analysis</u>

The sensitivity analysis is undertaken by statements 0048 to 0173. The subroutine alters each variable in turn by DEV and measures the effect of this change on the rate of return. The variables are changed in a manner that will reduce the calculated rate of return. That is, a variable such as VALUE is reduced while variables such as COST(6) or COST(7) are increased. The complete analysis is done three times. The first time DEV is initially set at -.05, the second time at -.1 and the third at -.2.

The percentage change in the rate of return is calculated and printed along with the actual rate of return.

2.6.4 <u>Probabilistic Analysis</u>

The probabilistic analysis is undertaken by statements 0176 to 0256.

Statements 0176 to 0181 use the estimates for the upper and lower limits of each variable to determine the values that represent ± 1 standard deviation. Since split-normal distributions are likely to occur most often, the upper and lower values for each variable will usually be different. (If a point value is to be used for any variable, the upper and lower estimates will be the same as the initial value; if a normal distribution is assumed, the upper and lower estimates will be equal).

Statements 0186 to 0190 will use the random number generator to derive random-normal deviates. These will be multiplied by the standard deviation for each variable and the result added to (or subtracted from) the initial value to arrive at the new value. For each simulation, this is done for each of the 11 variables for each year of the project. The rate of return which is determined for each simulation is rounded off to the nearest percent and its occurrence recorded for later presentation in the graph of the rate-of-return distribution.

The graph is obtained by statements 0229, 0230, and 0231 during the simulations, and by statements 0233 to 0256 following the simulations. Statement 0229 will round the rate of return value plus 1% by means of integer addition. The occurrence of a rate of return at this value is recorded by statement 0230. Statement 0231 accumulates the rates of return for later determination of the mean. This is calculated at statement 0234

Statements 0237 to 0249 actually print the bar graph. At statement 0238 the number of rates of return at each percent is divided by the total to arrive at the probability (times 100) of a rate of return for that value. This is converted to an integer value at statement 0240. The probabilities (in percentage) are accumulated by statement 0241. A check is made later to see if all the rates of return have been taken into account. If so, the graphing stops. The axis value for the percent is determined contact at statement 0242. It is the count value I minus one. This sets the label value at the correct rate of return value which was previously recorded at one more than the actual return (statement 0299). Statement 0243 then prints: JI, the label; PT(I), the portion of the total returns at this value, and; ASTER 1, JS, the whole number of asterisks for PT(I).

Finally, at the bottom of the graph, statement 0252 will print the mean rate of return.

2.6.5 The Interdependence of Variables

One of the problems always encountered whenever sensitivity and probabilistic analyses are undertaken is the interdependence of one or more of the variables. There are a number of possible ways of dealing with it. If the interdependence is weak, it can be safely ignored (in most cases). Where the interdependence produces effects which tend to cancel out, the relevant factors can be excluded from variation in the analysis. Where the effects of interdependence are cumulative, the variables can be aggregated and treated as one. Whichever manner is used to deal with the interdependence, the evaluator should always be conscious of it and should adjust his conclusions accordingly.

In this subroutine, 5 of the 11 variables are assumed to interact to a significant extent. The most important interaction is between the average grade of ore mined and the concentrator recovery rate. The equation which expresses this interaction is:

 $RCV = R1/G + (R2-G)e^{G}$

where RCV = the recovery rate

R1 = a constant of value - .00125

R2 = a constant of value .97

G = the average grade of mill feed

If the average grade of mill feed is 4% copper, the recovery rate is .9367; if the average grade is 1% copper, the recovery rate is .8446. The maximum recovery rate is about 95%. Variables R1 and R2 can be changed to reflect the kind of ore being processed.

The other interaction is between the quantity of ore processed and the average mining cost and the average milling cost. The independent variable for the two linear equations used is quantity of ore (SIZ). The slopes for the two equations, B and BB are fixed but the intercepts are different for each optimum size of project. In general, as SIZ decreases from its optimum, the average mining and milling costs increase. At present B and HB are set at .6 and .7 respectively. When better information is available, they can be revised.

2.7 Other Subroutines

2.7.1 The Debt Amortization Subroutine

This subroutine is called from the INCTAX subroutine prior to the calculation of the annual income taxes. Information supplied to the subroutine includes: the life of the project, N; the year production commences, C; the interest rate, S; the number of years of secondary ore production, IY; and the total borrowed capital (including accumulated interest) as of the beginning of production, CAPUB. The subroutine then calculates: a pay back period; a capital recovery factor; and the total payment. The annual payments are separated into the interest and principal constituent parts before being returned to the INCTAX subroutine.

2.7.2 The Internal Rate of Return Subroutine

After the calculation of the cash flows in the MAIN routine or ANALYS subroutine, the internal rate of return is calculated. Up to four cash flows are passed to this subroutine along with the value for the life of the project, and the value indicating the number of cash flows.

The internal rate of return is that rate of interest which will equate the discounted negative and positive cash flows. That its:

$$\sum_{i=1}^{n} GF_{i} \cdot (e^{r} - 1)/re^{ri} = 0$$

As the equation indicates, continuous discounting is used. This produces a little more realistic result, particularly for the early (and most important) years of the project where capital is not utilized for a whole period but rather is continually invested throughout the year. An example of the effect of this method is as follows. Assume a single investment of \$100 discounted for 1 year using a rate of 10%. Using the continuous method of discounting the present value is \$95.16. Using the period method of discounting the present value is \$90.91. If i=10 years, then the present value by the continuous method is \$38.69 and by the period method is \$38.55. The overall effect of

the continuous method then is to produce a slightly lower internal rate of return for the project.

One of the problems encountered while developing this subroutine was the occurrence of multiple roots. This can become serious, particularly with marginal cash flows where the final two values of a stream may be a large positive value followed by a large negative value. In an actual case of this kind, two positive roots were found, a first at just over 6% and a second root at nearly 13%. Both are realistic so the problem for the subroutine was to select the correct one. The solution was suggested by an article on project evaluation which stated that the rate of return "is the first positive root R of the (discounted cash flow) polynomial" (see bibliography E/MJ - July 1974). This information became the basis for a method of selection in the subroutine. In order to find the correct root, the subroutine starts at an interest rate just over of, calculates the present value, and then increments the rate by 1%. The present value at each rate is calculated and stored. This process continues till such time as the present value switches from a positive value to a negative value or visa-versa. When this occurs, the exact root is determined using the Bolzano-Weirerstrauss method. If no switch over occurs, the incrementing continues till the discount rate equals 1. The calculation is then stopped and if the present value is negative the IRR is set equal to 0%; if the present value is positive the IRR is set equal to 100%.

2.7.3 The Random Number Subroutine

This subroutine is called from the ANALYS subroutine. Its purpose is to provide random values between 0 and 1, which are the basis for deriving the normally distributed values for the various factors affecting project profitability. The value of the random number is fed to ANALYS by way of Y1. IR is the random number seed and N is the continuation indicator. IR can be any value between 0 and 2**29. N=1 means restart and N=2 means continue. The numbers are generated by the Transworthe method. This subroutine was obtained directly from Bennett, J. et. al. Financial Evaluation of Mineral Deposits Using Sensitivity and Probabilistic Methods, U.S. Bureau of Mines, Information Circular 8495.

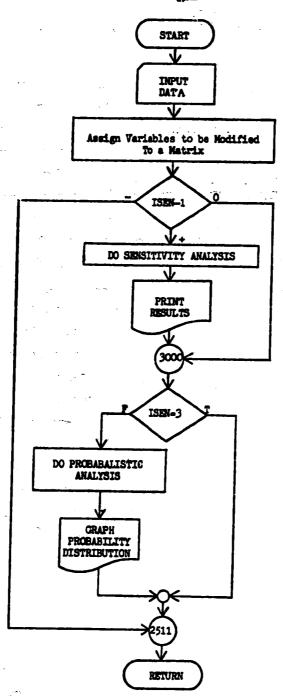


Figure 2.8 Simplified Algorithm for the ANALYS Subroutine

APPENDIX

Compiler Listing For The Complete Program

Subroutine	Page
MAIN	66
EQUATN	72
AMNEEV	76
ROYALT	79
INCTAX	83
DEBT	87
IRR	88
ANALYS	89
RAND	94

```
ORTRAN IV G LEVEL
                                        MAIN
                                                           DATE = 77052
                                                                                                        PAGE OUUT
                                                                                  14/02/02
0001
                    REAL *B CAPCOS(10.8) GROPRO(50) BORCAP(50) DFLOAT. VALUE-AA(7)
                  *SIZE.XR.YX.OPTR.COST(7).PROINV(50).TOTROY(50).TOPCOS.BB(7).DLOG.
                  *TAX(50) *INTRST(50) *MAXTON* PRIN(50) *DEXP*MAX*CASFLO(05*50) *SM*SC*
                  +S.CAPTAX(50).SIZZ(50).OLDRM.DER.FEDTAX(50).RMIN.BORROW.R(5).T.OH.
                  *TOTCOS.EQUIT. YY.MCAFLO(5.50)/250*0.D0/.TOTINV(50).OLDR/0.001DU/.
                  *G/ 10000.D0/.CASH(50).RM(5)/5*0.D0/.TONS.REVENU(50).EXPLOR(50).TL.
                  MININV (50) *WORCAP (50) *SOCINV (50) *TAPCOS*PREPRO (50) *A (7)/7*0*D0/*
                  *B(7)/7*0.D0/.MINRAL(10.8)/80*0.D0/.GRADE(50).OSIZE.
                  •R1/-.00125D0/.R2/0.97D0/
                   INTEGER H(7).C.MBL/5/.D.SET/1/.LET/0/.BET/0/.F/1/.HH(7)/7.0/.E.
0002
                  ◆STOP/0/•IC/4/•INC/0/•CBL/10/•WW•P/7/•PP/2/•HG•PG•ID/1/•LIM/0/•LIFE
0003
                   READ 04.VALUE.DER.S.T.MAX.RMIN.L.M.MG.ISEN.IOP.PG
0004
             04
                   FORMAT(6F12.4+/+6(12+3X))
0005
                   READ 05.((CAPCOS(I.J).J=1.8).[=1.L)
             85
0006
                   FURMAT (5F12.0,2F5.2,F10.0)
0007
                   READ 06.((MINRAL(I.J).J=1.3).I=1.M)
8000
             06
                   FORMAT (3F15.5)
0009
                   PHINT 300
             300
                   FORMAT(*1**//*40X**INPUT DATA**/**** 39X*10(*_*))
0010
0011
                   PRINT D3.VALUE.DER.S.T.MAX.RMIN.L.M.HG.ISEN.IOP.PG.
                  ●((CAPCOS(I.J).J=1.8).I=1.L)
             03
                   FORMAT(//.40X.*TWO OPTIONS CARDS**//.20X.4(F7.4.1X).F9.0.1X.F5.2.
                  *//+25X+6(12+3X)+///+40X+*COST CARUS*+//+((SF12.0+2F5.2+F10.0)/))
0013
                   PRINT303 \cdot {(MINRAL(1 \cdot J) \cdot J=1 \cdot 3) \cdot I=1 \cdot M)}
             303
0014
                   FORMAT(/+40X+ MINERAL RESERVE DATA++//+3(20X+3F15.5+//))
0015
                   CALL EQUATNICAPCOS.L.AA.BB.H.P.PG.MAX)
0016
                   CALL EQUATN (MINRAL . M. A.B. HH. PP. PG. MAX)
0017
                   PRINT01
0018
             01
                   FORMAT(+1++//+61X++PROJECT | TERATIONS++/++++60X+16(+_+)+//+
                  *21%.*PREPRODUCTION*.03%.*PRIMARY*.u6%.*SECONDARY*.07%.*TOTAL*.08%.
                  *'PROJECT''5X'''INTERNAL''6X''''NARGINAL'''/24X''''PERIOD''6X''''ORE LIFE'
                  +.7X..ORE LIFE..7X.LIFE..8X..CAPACITY..2X..RATE OF RETURN..1X.
                  **RATE OF RETURN*)
6019
                   IF (HH (2)-2)210,220,230
0020
             210
                   MAXTON=-A(2)/B(2)
0021
                   GO TO 240
0022
             220
                   MAXTON=-B(2)/A(2)
0023
                   60 TO 240
0024
             230
                   MAXTON=DEXP (-A(2)/B(2))
0025
             240
                   CONTINUE
0026
                   ISIZE=MAXTON/200000.DO
0027
                   SIZE=DFLUAT(ISIZE) -25000.DO
0028
                   L1FE=(1S1ZE+4)/2
0029
                    IF (MAX.LT.MAXTON.AND.MAX.GT.Q.DQ)MAXTON=MAX
0030
                    XR=0.00100
             89
0031
                    CONTINUE
0032
                    TONS=LIFE+SIZE
0033
                    IF (TONS.LE.MAXTON) GO TO 250
0034
                    LIFE=LIFE-1
0035
                    LET=2
 0036
                    BET=0
 0037
                    RMIN=100.D0
 0038
                    OLDR=0.001D0
0039
                    LIM=1
 0040
                    CONTINUE
 0041
                    DO 10 K=1.7
 6042
                    IF (H(K)-2)11,12,13
 0043
             11
                    COST (K) =AA (K) +BB (K) +SIZE
```

```
RTRAN IV 6 LEVEL 21
                                                          DATE = 77052
                                       MAIN
                                                                                 14/02/02
                                                                                                       PAGE GOGZ
60 TO 10
845
           12
                 COST(K)=AA(K)+BB(K)/SIZE
046
                 60 TO 10
347
           13
                 COST(K) =AA(K)+BB(K)+OLOG(SIZE)
048
           10
                 CONT INUE
940
                  TOTCOS=COST (1) + COST (2) + COST (3) + COST (4) + COST (5)
050
                  IF (TOTCOS.LE.1.5D-07) C=3
051
                  IF(TOTCOS.GT.1.5D +07.AND.TOTCOS.LE.5.0D +07)C=4
052
                  IF(TOTCOS.GT.5.OD +07.AND.TOTCOS.LE.2.5D +08)C=5
053
                  IFITOTCOS.GT.2.5D +08.AND.TOTCOS.LE.5.0D +081C=6
054
                  1F(TOTCOS.6T.5.0D +08)C=7
055
                 D=C-1
056
                 E=C+1
057
                 N=D+LIFE
058
                 OH=0.0500+(COST(6)+COST(7))
059
                  TOPCOS=COST(6) . COST(7) . OH
060
                 CALL ANNREY (LIFE.SIZE.VALUE.A.B.M.D.C.M.REVENU.TOPCOS.M.
                 -R1.R2. GRADE.IY.TL.IOP.MAXTON)
061
                 DO 15 I=1.0
062
                 WORCAP(1)=0.00
963
                 GROPHO(1)=0.00
864
                 $122(1)=0.D0
065
                 EXPLOR(I)=COST(1)/D
066
                 PREPRO(I)=COST(2)/D
067
                 MININV(I)=COST(3)/D
968
                 PROINY(I)=COST(4)/D
069
           15
                  SOCINY(1)=COST(5)/0
070
                 WORCAP(D)=0.10D0=TOTCOS
071
                 WORCAP(C)=0.15D0=TOTCOS
072
                 WW=N-1
073
                 DO 46 I=E.WW
074
                  #ORCAP(1)=0.00
075
                  SM=DFLOAT (MBL-N+D)/DFLOAT (MBL)-COST (3)/2.D6
076
                  1F(SM.LT.O.DO)SM=0.DO
077
                  SC=DFLOAT(CBL-N+D)/DFLOAT(CBL)+COST(4)/2.D0
078
                  IF (SC.LT.0.D0)SC=0.D0
079
                 SM=0.00
080
                  SC=0.00
081
                  WORCAP (N) =- (WORCAP (D) +WORCAP (C) +SM+SC)
682
                 DO 16 1=C.N
083
                  BORCAP(1)=0.D0
084
                  SIZZ(I)=SIZE
085
                  IF(I.EQ.N)SIZZ(I)=TL
086
                 EXPLOR(1)=0.00
087
                  PREPRO(I)=0.DO
088
                  IF(1.6E.(N-1Y))60 TO 161
089.
                  IF((I-D)/4-4.EQ.(I-D))60 TO 160
ú90
           161
                 MININY(1)=0.00
091
                  PROINV(1)=0.00
092
                  SOCINV(I)=0.00
093
                  60 TO 16
094
           160
                  MININV(1)=COST(3)=0.10D0
095
                  PROINV(I)=COST(4)=0.06D0
096
                  SOCINV(1)=COST(5)+0.04D0
097
           16
                  GROPRO(I)=REVENU(I)-TOPCOS+SIZZ(I)
098
                  CALL ROYALT (GROPRO.MININV.PROINV.EXPLOR.SOCINV.PREPRO.
                 -N.C.T.TOTROY)
099
                  CALL INCTAX (GROPRO.MININV.PROINV.EXPLOR.SOCINV.PREPRO.BORCAP.
```

```
FORTRAN IV & LEVEL 21
                                                                                 15/07/04
                                                                                                      PAGE 0003
                                                           DATE = 77083
                                        MAIN
                  ◆N.C.S.TAX.INTRST.PRIN.WOHCAP.CAPTAX.DE#.IY.SM.SC)
 0100
                   DO 1/ 1=1.N
                   TOTINV(I) =MININV(I) +PROINV(I) +EXPLOR(I) +SUCINV(I) +PRFPRU(I)
 0101
                   CASFLO(1.1)=GROPRO(1)-TAX(1)-CAPTAX(1)-TOTROY(1)-TUTINY(1)-
 0105
                  -=OHCAP(I)
                    CASFLO(2+1) = CASFLO(1+1) - INTRST(1) - PHIN(1) + HORCAP(1)
 0103
                    CASFLU(3.1)=CASFLU(1.1)+TAX(1)+TOTHUY(1)+CAPTAX(1)
 0104
                    FEUTAX(1)=0.36D0/0.51DU=TAX(1)
 0105
                    CASFLO(4+1)=CASFLO(1+1)+FEDTAX(1)
 0106
             17
 0107
                    TL=TL/SIZE
                    CALL INN(CASFLOOR NO ICOTL)
 9010
 0109
                    IF(R(1).LT.XR)GO TO 60
 0110
                    YX=SIZE
 0111
                    LL=LIFE
 0112
                    XR=#(1)
             60
                    CONTINUE
 0113
                    IF (OLDR.EQ.0.001D0.AND.R(1).EQ.0.D0)G0 TO 5131
 0114
                    IF (LIFE_EU_1_OR_SIZE_EU_10000_D0) GU TO 5133
 0115
 0116
                    IF (INC.EQ.1)60 TO 18
                    PRINT 02.D.LIFE.IY.N.SIZE.R(1).RM(1)
 6117
                    FORMAT (194.4 (6x, 12.6x) + F12.2.2x, 2(F10.5.4X))
 0118
             02
                    IF (LET.EQ.2)60 TO 19
 0119
                    IF(#(1)-ULDR.LT.0.D0)60 TO 20
 0120
 0121
                    LIFE=LIFE+F
 0122
                    OLDR=R(1)
                    60 TO 301
 0123
                    LIFE=LIFE-F
 0124
              20
                    F=-F
 0125
 9510
                    LET=LET+1
 0127
                    BET=0
              301
                    CONTINUE
 0128
 0129
                    YY=SIZE
 0130
                    IF (LET.EQ.1.AND.R(1).LT.OLDR)LIFE=LIFE+F
 0131
                    IF (LET_EQ_2) SIZE=SIZE+G
 0132
 0133
                    GO TO 30
              19
                    CONTINUE
 0134
                    IF (H(1)-ULDR.LT.0.D0)60 TO 21
 0135
 0136
                    SIZE=SIZE+6
 0137
                    OLUR=R(1)
                    60 TO 22
 0138
              21
 0139
                    SIZE=SIZE-G
 0140
                    G=-6
 0141
                    BET=BET+1
              22
                    CONTINUE
 0142
                    IF (BET.EQ.1.AND.R(1).LT.OLDR)SIZE=SIZE+6
 0143
                    IF (BET.EQ.2.AND.SIZE.EQ.YY) GO TO 23
 0144
                    IF (BET.EQ.2.AND.LIM.EQ.1)60 TO 50
 0145
                    GO TO 24
 0146
 0147
                    CONTINUE
  0148
                    LIFE=LL
                    SIZE=YX
  0149
  0150
              23
                    INC=1
                    1F(10P.EQ.2)10P=1
  0151
                    IF (IOP.EQ.G.AND.R(1).LE.RMIN) IOP=1
  0152
  0153
                    OSIZE=SIZE
  0154
                     60 TO 30
              24
                    CONTINUE
  0155
```

```
FORTRAN IV 6 LEVEL 21
                                        MAIN
                                                           DATE = 77083
                                                                                 15/07/04
                                                                                                      PAGE 0804
 0156
                   IF (BLT.EU. 2. AND. INC.EU. O) LIFE=LIFL.F
 0157
                   IF (HET.EU.2)LET=0
 0156
                   10 10 JU
 0159
             18
                   CONTINUE
 0410
                   IF (#(1).LE.RMIN.OR.STOP.EQ.1)60 TU JT
 0161
                   IF (567.EU.1)GO TO 25
 0162
                   1F(IN-N)+0.43.42
 6610
             40
                   CA>H(N+1)=0.00
 0164
                   6U 10 43
 0165
             42
                   N=N+1
 0166
                   CASFLO(1.N)=8.DO
 8167
             43
                   CONTINUE
 0168
                   DO 26 1=1.N
 0169
             26
                   MCAFLO(1.1)=CASFLO(1.1)-CASH(1)
 0170
                   CALL INR (MCAFLO-RM-N-1D-TL)
 0171
             37
                   CONTINUE
0172
                   PRINT 07.D.LIFE.IV.N.SIZE.R(1).RM(1)
 0173
             87
                   FUMMAT (144.4 (64.12.64) .F12.2.24.2(F14.5.44))
 0174
                   IF (H(1).LE.RMIN.OR.STOP.EQ.1)60 TO 31
 0175
                   IF (RM(1).GT.RMIN)60 TO 25
0176
                   SIZE=SIZE=6
 0177
                   MM(1)=OLDRM
 0178
                   STUP=1
 0179
                   1F(10P.EQ.0)10P=1
0180
                   60 TO 30
0101
             25
                   SIZE=SIZE+&
0182
                   INEN
0183
                   DO 28 1=1.N
0144
             28
                   CASH(1)=CASFLO(1.1)
0185
                   OLDRHERM(1)
0186
                   SET=0
0187
             30
                   GO TO 09
9148
             31
                   CONTINUE
0189
                   IF (R(1).LE.RMIN.OR.SIZE.EO.OSIZE)RM(1)=R(1)
0190
                   PRINT32
0191
             32
                   FORMAT (414.39X. *DETAILED DATA FOR OPTIMUM RETURN*./.
                  •••••39x•32('_•)•//•45x••PRODUCTION DATA*•/••••44X•15('_*)•//)
0142
                   CALL PRNPRO
0193
                   PHINT33
0194
             33
                   FORMAT("1".//.44x."FINANCIAL DATA"./.".+3x.14("_"))
0195
                   PHINT34.H(1).HM(1)
0196
             34
                   FORMAT ( *- * + 32X + AVERAGE RATE OF RETURN: * + F10.5 + S* +
                  0197
                   TAPCOS=TOTCOS+WORCAP(D)
0198
                   PRINT35.(COST(I).I=1.5).WORCAP(D).TAPCOS.COST(6).COST(7).OH.TOPCOS
0199
             35
                   FORMAT( -- +. 38X + * EXPLORATION COSTS + +F15.5 -/ +25X + PREPRODUCTION DEVE
                  *LOPMENT COSTS**F15.5./.
                  *39A. *MINING INVESTMENT *. F15.5./.35A. *PHOCESSING INVESTMENT *.
                  *F15.5./.J1X. *SOCIAL CAPITAL INVESTMENT .. F15.5./ .27X.
                  **PREPRUDUCTION MORKING CAPITAL***F15.5*/****55X*15(*_*)*/*51X*
                  **TOTAL ** F15.5*// *36X ** MINING COSTS PEH TON* ** F15.5*/ *35X **
                  **PROCESS COSTS PER TON**F15.5*/*ZUA**ADMINISTRATIVE COSTS PER TON*
                  *.F15.5./.'+'.55%.15('_')./.51%.*TOTAL'.F15.5)
0200
                   BORROW=TAPCOS+DER
0201
                   EQUIT=TAPCOS-BORROW
0202
                   PRINT36.DER.EQUIT.BORROW
0203
            36
                   FOHMAT (//+39X+*DEBT-EQUITY RATIO*+ F15.5+/+
                  *42% . FQUITY CAPITAL .F15.5./.40% . BOHROWED CAPITAL .F15.5)
```

5

```
FORTRAN IV G LEVEL 21
                                         MAIN
                                                            DATE = 77043
                                                                                  15/07/04
 4050
                    DO 149 1=1.N
 0205
              199
                    TOTINV(I)=TOTINV(I)+WORCAP(I)
 0206
                    PH1M1200
 0207
             200
                    FORMAT("1"+)//+5JX+ "ANNUAL CAPITAL INVESTMENT"/++++7X+25("_")+//+
                   *15A.*PREPRODUCTION*+1X.*PREPHODUCTION*.DX+*MINING*+6X+*PROCESSING*
                   *+3x+*SOCIAL CAPITAL*+2X+*#OHKING CAP+*+4X+*TOTAL*+/+16x+*EXPLUHATI
                   *ON*, 32. *DEVELOPMENT *, 4x. * INVESTMENT *, 4x. * INVESTMENT *, 44, * INVESTMEN
                   *T*****AND SALVAGE VAL** 24.*CAPITAL**//)
 0208
                   PHINIZUL+(I+EXPLOR(I)+PREPRO(I)+MININY(I)+PROINY(I)+
                   *SUCINV(I) + WORCAP(I) + TOTINV(I) + I=I+N)
 0209
             201
                   FORMAT((1X-12-12X-7(F12.2-2X))/)
 0210
                   DO SOS 1=1.N
 1150
             202
                   TOTINY(I)=TOTINY(I)-WORCAP(I)
 0212
                    CALL PRNHOY
 0213
                   CALL PRNTAX
 0214
                    S=5-100.000
 0215
                   PHINT 5117
 0210
             5117 FORMAT(*1**//*53%**INTERNAL RATE OF HETUHN**/****52%*23(*_*1)*//*
                  *56X+*PROJECT CASH FLOW*+/ )
 0217
                   PRINT 5118
 0218
             5118 FORMAT(15X. *OPERATING * 9X. *CAPITAL **11X. *INCOME **11X. *MINING **11X.
                  **TOTAL ** BX. * WORKING CAPITAL ** 7X. * CASH ** /* 16X. * PROFIT ** 11X. * TAX ** 16
                  *X. TAX . 12X, ROYALTY . 7X. INVESTMENT . OGX, AND SALVAGE VALUE . 6X.
0219
                   PRINT5119+(I+GROPRO(I)+CAPTAX(I)+ TAX(I)+TOTROY(I)+TOTINV(I)+
                  -WORCAP(1) + CASFLO(1+1) + I=1+N)
0220
             5119 FORMAT((1X+12+07X+7F17.5)/)
0221
                   PRINT5120.R(1)
0222
             5120 FOHMAT (//+055X+*IRR IS*+F12.6+**+//+5X+*NOTE: 1 THE CALCULATION I
                  *S STOPPED IF THE IRR IS LESS THAN ZERO OR GREATER THAN 1005.*)
0223
0224
            5125 FORMAT(+1+,//+56x++PUBLIC CASH FLOW1+)
0225
                   PRINT5126
            5126 FORMAT( /+31x+*PROJECT*+/+32x+*CASH*+11X+*CAPITAL*+12X+*INCOME*+
9220
                  *11X.*MINING**12X.*CASH**/*32X.*FLOW**14X.*TAX**14X.*TAX*.
                  *11x . "ROYALTY . 12X . "FLOW . /)
0227
                   PRINT5127 ( ( + CASFLO ( 1 + 1 ) + CAPTAX ( 1 ) + TAX ( 1 ) + TOTROY ( 1 ) + CASFLO ( 3 + 1 ) +
                  •I=1.N)
0228
            5127 FORMAT((1X+12+21X+5F17.5)/)
0229
                   PRINT5128+R(3)
0230
            5128 FORMAT (//-055x. FIRR IS. F12.6. B. // DX. NOTE: 1 THE CALCULATION I
                  S STOPPED IF THE IRR IS LESS THAN LENG OR GREATER THAN 1005. ....
                  *11x+ * PUBLIC CASH FLOW! ASSUMES THAT THE PROJECT WOULD NOT HAVE B
                  TEEN UNDERTAKEN BY 10/1013X. A PRIVATE COMPANY SO THAT TAKES AND ROY
                  *ALTIES ARE NOT A COST TO THE PROJECT.*)
0231
                  PRINT5121
0232
            5121 FORMAT (*1 .. // . 57x . EQUITY CASH FLOW!)
0233
                   PRINT5122
0234
            5122 FORMAT( /+32x+*PROJECT*+/+33x+*CASH*+12X+*BORROWED*+10X+*DEBT*+
                 *10%.*INTEREST*.13%.*CASH*./.33%.*FLUW*.12%.*CAPITAL*.9%.
                 **REPAYMENT**BX**ON DEBT**13X**FLOW**/)
0235
                  PRINT5123. (I.CASFLO(1.1).BORCAP(1).PHIN(I).INTRST(I).
                 *CASFLO(2.1).[=1.N)
0236
            5123 FORMAT ((1X+12+23X+5F17-5)/)
0237
                  PHINT5124.R(2).S
0238
            5124 FORMAT (//.056X. IRR IS. F12.6. S. //.5X. NOTE: 1 THE CALCULATION I
                 *S STOPPED IF THE IRR IS LESS THAN ZERO OH GREATER THAN 100%. * *//*
                 *11%. *2 EQUITY CASH FLOW IS THAT AFTER ADDING BORROWED CAPITAL AND
```

70

5130 CONTINUE

STOP

END

0248

0249 0250

. 77

PAGE 0006

```
FORTRAN IV & LEVEL 21
                                         EQUATN
                                                             DATE = 77053
                                                                                    14/59/17
                                                                                                          PAGE 0001
0001
                    SUBROUTINE EQUATN (CAPCOS.L.AA.BB.H.P.PG.MAX)
0002
                    REAL+8 CAPCOS(10.8) + CPACTY(20.3) + A(3.7) + B(3.7) + R(3.7) + DABS+
                   +SUM(10.3.7).MINGRA. DLOG.DSQRT.AA(7).BB(7).Z.ZZ.ZZ.TOTMIN.SIZE.
                   *VALUES(100). Y/*CAPITAL*/. YY/*COST($)*/.YYY/*GRADE($)*/.
                   *DFLOAT+LABEL+MAX+MAXTON/0.DO/+DEXP
0003
                    INTEGER LINE(100) - YLABEL - POINTS(100) - PERIOD/ - - / - AST/ - - / -
                   *BLANK/ 1/.H(7).P.Q.PG
 0004
                    Q=P+1
 0005
                    DO 15 K=1.7
0006
                    00 15 J=1.3
 0007
                    DO 15 1=1-10
0008
             15
                    SUM(I.J.K)=0.D0
6009
                    IF(L.6T.1)60 TO 20
0010
                    MINGHA=CAPCOS(1.1)
 0011
                    TOTMIN=CAPCOS(1.3)
 0012
                    E.1=1 00
 0013
                    CAPCOS (J+3)=TOTMIN/(5-J)
0014
                    CAPCOS(J.2)=MINGRA+DLO6 (TOTMIN/CAPCOS(J.3))
8015
             25
                    CAPCOS (J.1) = CAPCOS (J.2) + MINGRA
0016
                    L=3
0017
             20
                    CONTINUE
                    DO 01 1=1.L
0018
0019
                    CPACTY(1.1)=CAPCOS(1.Q)
0020
                    CPACTY(1.2)=-1.000/CAPCOS(1.0)
0021
             01
                    CPACTY(1.3)=DLOG(CAPCOS(1.0))
0022
                    DO 02 K=1.P
0023
                    DO 03 J=1.3
0024
                    DO 04 I=1.L
0025
                    SUM(1.J.K)=SUM(1.J.K)+CPACTY(I.J)
0026
                    SUM(2.J.K)=SUM(2.J.K)+CAPCOS(I.K)
 0027
                    SUM(3.J.K) = SUM(3.J.K) + CPACTY(1.J) -- 2
 0028
                    SUM(4.J.K)=SUM(4.J.K)+CPACTY(I.J)+CAPCOS(I.K)
 0029
                    SUM (5+J+K) = SUM (5+J+K) + CAPCOS (I+K) ++2
 0039
                    SUM(6.J.K)=SUM(1.J.K)==2
 0031
                    SUM (7+J+K) = SUM (1+J+K) *SUM (2+J+K)
 0032
                    SUM(8.J.K)=SUM(2.J.K)=+2
 0033
                    Z=L=SUM(5.J.K)-SUM(8.J.K)
                    ZZ=L=SUM(3.J.K)-SUM(6.J.K)
 0034
 0035
                    ZZZ= LOSUM(4.J.K)-SUM(7.J.K)
 0036
                    B(JoK)=222/22
 0037
                    A (J.K) = (SUM(2.J.K)-B(J.K)-SUM(1.J.K))/L
 003A
                    IF (J.EQ.2)B(J.K) =-B(J.K)
 0039
                    IF(Z)13-12-13
 8046
              13
                    IF (ZZ) 11 • 12 • 11
 0041
              12
                    R(J.K)=1.00
 0042
                    60 TO 03
 0043
              11
                    R(J_0K) = 222/DSQRT(Z^0ZZ)
 0044
                    CONTINUE
 0045
                    IF (P.NE.2.OR.K.NE.2)60 TO 200
 0046
                    IF (H(K-1)-2)300,200,301
 0047
              200
                    CONTINUE
 0048
                    IF (DABS (R(1.K))-DABS (R(2.K)))05.06.06
              05
 0049
                    IF (DABS (R(2+K))-DABS (R(3+K)))47-48-48
 0050
              06
                    IF (DABS (R(1+K))-DABS (R(3+K)))07,09,09
 0051
              09
                    AA(K)=A(1.K)
 0052
                    88(K)=8(1.K)
 0053
              300
                    CONTINUE
 0054
                    H(K)=1
```

.

i.,

```
FORTRAN IV & LEVEL 21
                                         EQUATN
                                                            DATE = 77053
                                                                                  14/59/17
 0055
                    IF (P.NE.2.OR.K.NE.2) GO TO 42
 0056
                    AA(K)=AA(K-1)
 0057
                    88(K)=2.D8+88(K-1)
 8858
                    60 TO 82
 0059
             .
                    AA(K)=A(2.K)
 8068
                    88 (K)=8 (2.K)
 6061
                   H(K)=2
 8862
                   60 TO 02
0063
             87
                   AA(K)=A(3.K)
0064
                   88 (K) =8 (3.K)
4065
             301
                   CONTINUE
8066
                   H(K)=3
0067
                   IF (P.NE.2.OR.K.NE.2)60 TO 92
8068
                   AA (K) = AA (K-1) +88 (K-1)
8069
                   68(K)=88(K-1)
0070
             82
                   CONTINUE
0071
                   IF (P6.E0.8)60 TO 53
0072
                   DO 35 K=1.P
0073
                   PRINT 29
0074
             29
                   FORMAT (+1+)
2075
                   IF (P.EQ.2) 60 TO 76
6076
                   60 TO (81.82.83.84.85.86.87).K
0077
             81
                   PRINT61
0072
             61
                   FORMAT (SOX. PREPRODUCTION EXPLORATION ./. +++49x.25(1_1))
8079
                   GO TO 71
6086
             82
                   PRINT62
8081
             62
                   0082
                   80 TO 71
0083
             83
                   PRINT63
0084
             63
                   FORMAT (50% . MINING INVESTMENT ..
                                                            /+*+*+49X+17(*_*))
2085
                   60 TO 71
8500
             24
                   PRINT64
0u87
             64
                   FORMAT (50% . PROCESSING INVESTMENT ..
                                                            /+*+*+49X+21(*_*)}
8088
                   60 TO 71
....
             85
                   PRINT65
0099
             65
                   FORMAT (50% + SOCIAL INVESTMENT + )
                                                            /+***+49X+17(*_*))
0091
                   60 TO 71
0092
             86
                   PRINT66
8093
             66
                   FORMAT (50% . MINING COSTS (PER TON) ..
                                                            /·*·*·49X-21(*_*))
0094
                   60 TO 71
0095
             87
                   PRINT67
8896
             67
                   FORMAT (50% . PROCESSING COSTS (PER TON) . / . * * * 49% . 25 ( _ 1) )
0047
                   GO TO 71
8398
             70
                   CONTINUE
0099
                   IF (H(2)-2)100-101-102
0100
             100
                   MAXTON=-AA(2)/BB(2)
0101
                   60 TO 103
0102
             101
                   MAATON=-88(2)/AA(2)
0103
                   60 TO 103
0104
             102
                   MAXTON=DEXP (-AA (2) /86 (2))
0105
             103
                   CONTINUE
0106
                   IF (MAX.LT.MAXTON.AND.MAX.NE.O.DO) MAXTON-MAX
0107
                   60 TO (88.89) .K
0108
             88
                   PRINT 72
0109
             72
                   FORMAT (50X. *AVERAGE ORE GRADE *./. ** . 49X.17(*_*))
0110
                   60 TO 71
0111
             89
                   PRINT 73
0112
             73
                   FORMAT(50X+*CUTOFF ORE GRADE*+/+*+49X+17(*_+))
```

PAGE GGG2

(1)

C

....

```
0113
            71
                   CONTINUE
0114
                   IF(H(K)-2)90.91.92
0115
                   PRINT93+AA(K)+BB(K)
             93
                   FORMAT(/ +43x++Y=++F15.5+ ++(++F16.32++)X++/)
0116
0117
                   60 TO 99
             91
                   PRINT94.AA(K).BB(K)
0118
                   FORMAT(/ +43x+1Y=1+F15.5+ 1+(1+F15.5+1)/X1+/)
0119
             94
0120
0121
             92
                   PRINT95.AA(K).BB(K)
                   FORMAT(/ +43x+17=1+F15.5+ 1+(1+F15.5+1)LN(X)1+/)
0122
             95
0123
                   CONTINUE
0124
                   DO 34 I=1.100
0125
                   SIZE=DFLOAT(I)=10.D0==4
                   IF (P.EQ.2) SIZE=DFLOAT (1) -10.D0--5
0126
                   IF (H(K)-2)36.31.32
0127
0128
             30
                   VALUES(I)=AA(K)+BB(K)+SIZE
                   60 TO 33
0129
0130
             31
                   VALUES(1)=AA(K)+BB(K)/SIZE
0131
                   60 TO 33
             32
                   VALUES(1)=AA(K)+BB(K)+DLOB(S1ZE)
0132
0133
             33
                   CONTINUE
                   IF (P.EQ.2)60 TO 47
0134
0135
                   IF (K.GT.5)GO TO 48
0136
                   POINTS(I)=(VALUES(I)/10.D0--5)/2.D0-0.5D0
0137
                   60 TO 34
0138
             48
                   POINTS(I)=VALUES(I)/2.D0+0.500
0139
                   60 TO 34
0140
             47
                   POINTS(1)=VALUES(1) -1000.D0/2.D0+0.500
             34
0141
0142
                   LIMIT=MAXTON/100000.D0+0.500
0143
                   00 36 J=1-10
0144
                   DO 36 L=1.5
0145
                   I=51-(5+(J-1)+L)
0146
                   DO 37 M=1.100
             37
0147
                   LINE (M) =BLANK
0148
                   DO 38 M=1.100
0149
                    IF (POINTS (M) .EQ. I) LINE (M) =AST
0150
                    IF (P.EQ.2.AND.I.LE.25) LINE (LIMIT) = AST
0151
                    IF (L.EQ.1)60 TO 39
0152
                    IF(I.EQ.26.AND.P.NE.2.AND.K.LE.5)60 TO 55
                   PRINT 40 .LINE
0153
0154
                   FORMAT (19x . . . 100Al)
0155
                    60 TO 36
0156
             55
                    PRINT S6.LINE
0157
             56
                   FORMAT(6X, MILLIONSS , 4X, ... , 100Al)
0158
                    60 TO 36
0159
             39
                    CONTINUE
                    IF (P.EQ.2)60 TO 46
0160
0161
                    IF(K.GT.5)60 TO 44
0162
                    LABEL=BLANK
0163
                    IF (1.EQ.25) LABEL=Y
0164
                    YLABEL=2-1/10
0165
                    60 TO 45
0166
                    LABEL=BLANK
                    IF (I.EQ.25)LABEL=YY
0167
0168
                    YLABEL=2+1
0169
                    60 TO 45
0170
                    LABEL=BLANK
```

DATE = 77053

14/59/17

PAGE 0003

EQUATN

. . . .

FORTRAN IV 6 LEVEL 21

```
FORTRAN IV 6 LEVEL 21
                                          ANNREV
                                                             DATE = 77053
                                                                                     14/59/17
0001
                    SUBROUTINE ANNREY (LIFE+SIZE+VALUE+A+B+MH+D+C+N+REVENU+TOPCOS+MG+
                   PRIORZO GRADEOIYOTLOPOMAXTON)
0002
                    REAL *8 METAL (50) +PROD (50) +DABS+SIZE+VALUE+TL+
                   PREVENU (50) . GRADE (50) . CCGRAD (50) . TONS. RCV (50) . DLOG. MAXTON. R1. R2.
                   PPTUNS.PCGRAD.PAVGRA.PHETAL.TONS.AVGRAD.THETAL.COGRAD.TAVGRA.
                   *TOPCOS.XTONS.
                                      XAVGRA+XYEARS+DEXP+GRAD(02)+A(7)+B(7)
0003
                    INTEGER C.D.N.LIFE.HH (7) .HG
0004
                    TONS=LIFE+SIZE
0005
                    TL=SIZE
0006
                    DO 10 I=1.D
0007
                    METAL (1)=0.00
0008
                    PROD (1)=0.00
0009
                    GRADE (1)=0.00
0010
                    REVENU(I)=0.DO
0011
             10
                    CCGRAD(I)=0.DO
0012
                    IF (HG.EQ.1)GO TO OB
0013
                    DO 100 J=1.2
0014
                    1F (HH(J)-2)110.120.130
0015
             110
                    GRAD (J) =A (J) +B (J) +TONS
0016
                    60 10 100
0017
             120
                    GRAD(J) =A(J)+B(J)/TONS
0018
                    60 TO 100
0019
             130
                    GRAD (J) =A (J) +B (J) +DLOG (TONS)
0020
             100
                    CONTINUE
0021
                    DO 09 I=C.N
0022
                    GRADE (1)=GRAD(1)
0023
                    CCGRAD(I)=GRAD(2)
0024
                    PROD(I)=SIZE
0025
                   RCV(1)=R1/GRADE(1)+(R2-GRADE(1))*DEXP(GRADE(1))
0026
                   METAL (1) = SIZE + HCV(1) + GRADE (1) + 2000.00
0027
             89
                    REVENU (1) = METAL (1) = VALUE
0028
                    AVGRAD=GRAD(1)
0029
                    60 TO 07
0030
             08
                    CONTINUE
0031
                    DO 11 1=C+N
0032
                    IF (I.EQ.C) GO TO 102
0033
                    PTONS =SIZE=(I-C)
0034
                    IF (HH(1)-2)107,108,109
0035
             107
                   PAVGRA=A(1)+B(1)+PTONS
0036
                    60 TO 106
0037
             108
                   PAVGRA=4(1)+B(1)/PTONS
0038
                   60 TO 106
0039
             109
                   PAVGRA=A(1)+B(1)+DLOG(PTONS)
0040
             106
                   CONTINUE
0041
                   IF (Hh(2)-2)111+121+131
0042
             111
                   PCGRAD=A (2)+8 (2) *PTONS
0043
                   60 TO 101
0044
             151
                   PCGRAD=A(2)+B(2)/PTONS
0045
                   60 TO 101
0046
             131
                   PCGRAD=A(2)+B(2)+DLOG(PTONS)
0047
             101
                   PHETAL=PTONS-PAYGRA
0048
                   60 TO 103
0049
             102
                   PTONS=0.DO
0050
                   PCGRAD=0.D0
0051
                   PAVGRA=0.00
0052
                   PMETAL=0.00
0053
             103
                   TTONS=SIZE+(I-D)
0054
                   IF (HH(2)-2)140,150,160
```

```
DRTRAN IV O LEVEL 21
                                        ANNREV
                                                            DATE = 77053
                                                                                  14/59/17
                                                                                                         PAGE 0002
0055
            140
                   CCGRAD(1)=A(2)+B(2)+TTONS
0056
                   60 TO 135
0057
            150
                  CCGRAD(1)=A(2)+B(2)/TTONS
0058
                   60 TO 135
0059
                   CCGRAD (1) =A (2) +B (2) +DLOG (TTONS)
            160
1060
            135
                  CONTINUE
1906
                   IF (HH(1)-2)170.180.190
0062
            170
                   AVGRAD=A(1)+B(1)+TTONS
1063
                   60 TO 136
1064
            180
                   AVGRAD=4(1)+B(1)/TTONS
1065
                  60 TO 136
1066
            198
                  AVGRAD=A(1)+B(1)+DLOG(TTONS)
1067
            136
                  TMETAL=TTONS-AVURAD
068
                  GHADE (1) = (TMETAL-PHETAL)/SIZE
969
                  RCV(I)=R1/GRADE(I)+(R2-GRADE(I))+DEXP(GRADE(I))
070
                  METAL(1)=(TMETAL-PHETAL)=RCV(1)=2000.D0
0071
                  PROD(I)=SIZE
1072
            11
                  REVENU(I) = METAL(I) • VALUE
0073
                  CONTINUE
1074
                  IY=0
1075
                  TTONS=TONS
1076
                  IF(10P .NE.1)60 TO 202
1077
                  RCV(N)=R1/CCGRAD(N)+(R2-CCGRAD(N))+DEXP(CCGRAD(N))
078
            300
079
                  RCV(N+1)=RCV(N)
1080
                  COGRAD=TOPCOS/(VALUE=RCV(N)=2000.0D0)
0081
                  IF (COBRAD.GE.CCGRAD(N))60 TO 202
1082
                  IF (HH(2)-2)141-151-161
1083
            141
                  TTONS= (COGRAD-A(2))/8(2)
                                                                                                                                         ı
1084
                  60 TO 50
1085
            151
                  TTONS=8(2)/(COGRAD-A(2))
280
                  GO TO 50
087
            161
                  TTONS=DEXP((COGRAD-A(2))/8(2))
1088
            50
                  CONTINUE
1089
                  IF (TTONS.GT.MAXTON) TTONS=MAXTON
1098
                   IF (HH(1)-2)171-181-191
1600
            171
                  TAVGRA=A(1)+B(1)+TTONS
1092
                  60 TO 51
EP0
            101
                  TAVGRA=A(1)+B(1)/TTONS
1094
                  GO TO 51
1095
            191
                  TAVGRA=A(1)+B(1)+DLOG(TTONS)
1096
                  CONTINUE
1097
                  ATONS= TTONS-TONS
0098
                   IF (XTONS.LE.0.DO )60 TO 202
099
                  XAVGRA= (TTONS=TAVGRA-TONS=AVGRAD)/XTONS
100
                  IF (XAVGHA.LE.COGRAD) GO TO 203
101
                  RCV(N)=R1/XAVGHA+(R2-XAVGRA)+DEXP(XAVGRA)
1102
                  IF (DABS (RCV (N) -RCV (N+1)).LE.0.001D0)60 TO 301
103
                  IF (RCV(N)-RCV(N+1))302,301,303
1104
                  RCV(N)=RCV(N+1)-(RCV(N+1)-RCV(N))/2.00
            302
105
                  GD TO 300
106
            303
                  RCV(N)=RCV(N+1)+{RCV(N)-RCV(N+1)}/2.00
1107
                  60 TO 300
108
            301
                  CONTINUE
109
                  XYEARS=XTONS/SIZE
1110
                  IY=XYEARS+0.99D0
111
                  N=N+IY
1115
                  IF (IY.EQ.1)60 TO 201
```

```
۾. <sup>بي</sup>ائي.
FORTRAN IV & LEVEL
                     51
                                          ROYALT
                                                             DATE = 77053
                                                                                    14/59/17
                                                                                                           PAGE 0001
 0001
                    SUBROUTINE ROYALT (GROPRO.MININV.PROINV.EXPLOR.SOCINV.PHEPRO.N.C.S.
                   .TOTROY)
2000
                    REAL®B MSINV(50). PHOINV(50).MININV(50).R(50).S.DEPREC(50).
                   +GROPRO(50) .TPROF.TPROBA.TBASRO.TINCHO.
                   *DISRDY(50) *BASRDY(50) *INCRDY(50) *PALLOW(50) *ROYPRO(50) *TOTROY(50) *
                         PROBAS (50) . TOT INV (50) . TOTUB (50) . MINUB (50) . EXPLOR (50) .
                   •CMPROC (50) •SOCINV (50) •PREPRO (50) •PROFIT (50) •DEXP•D•NETPRO•DSUM1
 0003
                    INTEGER C.H.P.Q.K.I. LET.SET.STOP
 0004
                    K=l
 0005
                    LET=0
 0006
                    P=1
 0007
                    0=40
 -
                    SET=0
 -
                     1=1
 ...
                    R(I)=0.00
 0011
                    DEPREC(1)=0.D0
 0012
                    PALLOW(1)=0.00
 0613
                     ROYPRO(I)=0.00
 4014
                     TOTROY (1) =0.06
 0015
                     INCROY(1)=0.00
 0016
                    BASROY(I)=0.D0
 0017
                    DISROY(1)=0.00
 0018
                    PROBAS(1)=0.0D0
 0019
                    PROFIT(1)=0.00
 0020
                     R(N-1)=1
 0021
                     MSINV(I)=MININV(I)+PREPRO(I)+EXPLOR(I)+SOCINV(I)
 0022
                     TOTINY(1) = MSINY(1) +PROINY(1)
 0023
                     TOTUR(I)=TOTINV(I)
 8024
                     MINUH(I) = MSINV(I)
 0025
                     CMPROC(I)=PROINV(I)
 0026
                     H=C-1
 8027
                     DO 9001 1=2.H
 0028
                     PROFIT(I)=0.D0
 1029
                     INCROY(I)=0.00
 0030
                     BASROY(1)=0.00
 0031
                     DISROY(I)=0.DO
 0032
                     TOTROY (1) =0.00
 0033
                     ROYPRO(1)=0.00
 0034
                     PALLOW(I)=0.D0
 0035
                     DEPREC(I)=0.DO
 6036
                     K(I)=0.00
 6037
                     MSINV (I)=MININV(I)+PREPRO(I)+EXPLOR(I)+SOCINV(I)
 0038
                     TOTINV(I) = MSINV(I) + PROINV(I)
 0039
                     TOTUB(1)=TOTUB(I-1)+TOTINY(I)
  0040
                     MINUB(I)=MINUB(I-1)+MSINV(I)
  0041
                     CMPHOC(I)=CMPROC(I-1)+PROINV(I)
 0042
                     PROBAS(1)=0.18D0+MINUB(1-1)
 0043
                     DO 9002 I=C.N
  8044
              9002
                     R(I)=0.200
  8045
                     D=0.01000
 0046
                     OLDROY=1.0D+12
  0047
                     STOP=-1
 0048
                     II=N-C+1
  0049
                     CONTINUE
  0050
                     IF(STOP.NE.-1)60 TO 9004
  0051
                     DO 9005 1=C.N
  0052
                     PROFIT(I)=GROPRO(I)-EXPLOR(I)
  0053
                     IF (PROFIT(I).LT.G.DG) PROFIT(I)=0.D0
```

Ġ

į.

6,

```
FORTRAN IV 6 LEVEL
                                         ROYALT
                                                            DATE = 77053
                                                                                  14/59/17
 0054
                    MSINV(I)=MININV(I)+SOCINV(I)
 0055
                    TOTINV(I) = HSINV(I) + PROINV(I)
 0056
                    TOTUB(I)=TOTUB(I-1)+TOTINV(I)
 0057
                    MINUB(I)=MINUB(I-1)+MSINV(I)
 0058
                    CMPROC(1)=CMPROC(1-1)+PROINV(I)
 0059
                    IF(R(I).LT.0.100)GO TO 9041
 0060
                    DEPREC(I)=R(I)+TOTUB(I)
 0061
                    IF (DEPREC(1)-PROFIT(1))9006.9041.9041
 0062
                    DEPREC(I)=PROFIT(I)
 0063
                    R(I)=DEPREC(I)/TOTUB(I)
 0064
             9006
                    NETPROSPROFIT(I)-DEPREC(I)
 0065
                    PALLOW(I) = CMPROC(I) +0.0800
 0066
                    IF (NETPRO.LE.2.DO PALLOW(I))60 TO 9007
 0067
                    ROYPHO(I)=NETPRO-PALLOW(I)
 0068
                    60 TO 9008
 0069
                   ROYPRO(I)=NETPRO/2.U0
 0070
                    PALLOW(I)=ROYPRO(I)
 0071
                   PROBAS(1)=0.18D0-MINUB(1-1)
 0072
                    IF(I.GT.C.AND.(I+1-C)/3+3.EQ.(I+1-C))60 TO 9225
 0073
 0074
             9225
                    TPROF=ROYPRO(1) +ROYPRO(1-1) +ROYPRO(1-2)
 0075
                    TPROBA=PROBAS(I)+PROBAS(I-1)+PROBAS(I-2)
 0076
                    IF (TPROF.GT.TPROBA)GO TO 9010
 8077
                    TBASRO=0.15D0+TPROF
 0078
                    TINCRO-0.DO
 0079
                    60 TO 9011
 0060
             9010
                   TBASRO=0.15D0+TPROBA
 0081
                    TINCRO=0.35D0+(TPROF-TPROBA)
 0082
                    BASROY(I)=TBASRO-BASROY(I-1)-BASROY(I-2)
 0083
                    INCROY(I)=TINCRO-INCROY(I-1)-INCROY(I-2)
 0084
                    60 TO 9012
 0085
                   CONTINUE
 0086
                    IF(ROYPRO(I).GT.PROBAS(I))GO TO 9013
 0087
                    BASROY(1)=0.15D0-ROYPRO(1)
 8800
                    INCROY(1)=0.00
 0089
                    60 TO 9012
 0090
                    BASROY(I)=0.15D0*PROBAS(I)
 0091
                    INCROY([)=0.3500+(ROYPRO([)-PROBAS([))
 0392
                    TOTROY(1)=BASROY(1)+INCROY(1)
 0093
                    DISROY([]=TOTROY([)*(DEXP(S)-1.000)/(S*DEXP(S*1))
 6094
                    MINUB(I)=MINUB(I)-(MINUB(I)/TOTUB(I)-DEPREC(I))
 0095
                    TOTUB(1)=TOTUB(1)-DEPREC(1)
 0296
             9005
                    CONTINUE
 0097
                    SUMROY=0.00
 0698
                    DO 9014 J=C.N
 1099
                   SUMROY=SUMROY+DISROY(J)
 0100
                    IF (SUMROY.6T.0.00)60 TO 9015
 0101
                    STOP=+1
0102
                    60 TO 9016
0103
             9015
                    CONTINUE
0104
                    IF (LET.NE.0)60 TO 9017
0105
                    IF (OLDROY-SUMROY.LE.O.DO)60 TO 9018
0106
                    ULDROY=SUMROY
0107
                    L=0
0108
                    60 TO 9019
0109
                    CONTINUE
0110
                    IF(SET.NE.1)60 TO 9019
0111
                    R(K)=R(K)+D
```

(9

```
. . .
FORTRAN IV & LEVEL 21
                                         ROYALT
                                                            DATE - 77053
                                                                                  14/59/17
                                                                                                        PAGE 9883
 0112
             9019
                    K=K+1
 0113
                    L=L+1
 0114
                    SETEO
 0115
                    IF (L.LT.N) 60 TO 9020
 0116
                    LET=1
 0117
                    60 TO 9016
 0118
                   CONTINUE
 0119
                    IF ((R(K)-D.LT.0.100.0R.R(K)-D.GT.0.200).AND.K.LE.N)60 TO 9222
 0120
                    60 10 9021
 0121
             9222 L=L+1
 0122
                    K=K+1
 0123
                    60 TO 9020
 0124
             9021
                   CONTINUE
 0125
                    IF (K.LE.N) 60 TO 9022
 0126
                    K=C
0127
             9022 CONTINUE
0128
                   IF (R(K)-D.GE.O.1DO.AND.R(K)-D.LE.O.2DO.AND.(R(K)-D)+(TOTUB(K-1)+
                  STOTINY(K)).LE.PROFIT(K))60 TO 9223
0129
                    60 TO 9016
0130
             9223
                   R(K)=R(K)-D
0131
                   SET=1
0132
                   60 TO 9016
0133
                   CONTINUE
0134
                   IF(P.6E.Q)60 TO 9023
0135
                   PEP+1
0136
                   IF (P/2-2.NE.P) 80 TO 9024
0137
                   D=-D/2.00
0138
                   60 TO 9025
0139
             9024
                   D==0
0140
             9025 LET=0
8141
                   K=C-1
0142
                   OLDR0Y=1.0D+12
0143
                   DSUM1=0_D0
0144
                   DD 8000 J=C.N
0145
                   DSUM1=DSUM1+R(J)
0146
                   ISUM1=DSUM1=1000000.D0
0147
                   ISU42=11-0.200-1000000.Do
0148
                   IF (ISUM) .EQ. ISUM2.AND.P.EQ.5) STOP=1
8149
                   GO TO 9016
0150
             9023
                   STOP=+1
0151
             9016
                   CONTINUE
0152
                   60 TO 9003
8153
             9004
                   CONTINUE
0154
                   RETURN
0155
                   ENTRY PRNROY
0156
                   PRINT9030
0157
             9030 FORMAT("1".54%. "ROYALTY HINIMIZATION"./. ".54%.20("_")./.
                  **-*.9X.*PROFIT*.10X.*ANNUAL*. 8X.*PROCESSING*.7X.*ROYALTY*.09X.
                  **PHOFIT*+12X+*BASIC*+BX+*INCREMENTAL*+BX+*TOTAL*+/+
                  *6X. *AFTER EXPLOR***X.*DEPRECIATION**6X.*ALLOWANCE**08X.*PROFIT**
                  *8X. BASE (18%) .. 9X. ROYALTY .. 9X. RUYALTY .. 08X. ROYALTY ../)
0158
                   PRINT9031. (I.PROFIT(I).DEPREC(I).PALLOW(I).ROYPRO(I).PROBAS(I).
                  *BASROY(I) . INCROY(I) . TOTROY(I) . I=1.N)
0159
             9031 FORMAT((1X+12+1X+8(F16.5))/)
0160
                   PRINT9032
0161
             9032 FORMAT(*1**///*9X**YEARLY**7X**MINING AND**6X**CUNULATIVE**11X*
                  **ANNUAL*+07X+*ANNUAL*+10X+*TOTAL*+9X+*MINING*+10X+*DISCOUNTED*+/+
                  .. .. .. TOTAL INVEST .. 2X. . SERVICE INVEST .. 3X. . PROCESS INVEST .. 5X.
```

FORTRAN IV & LEVEL 21 ROYALT DATE = 77053 14/59/17 PAGE 0004 **DEPREC RATE + . 2X , *DEPRECIATION + . 2X . * UNDEPREC BALANCE * . *1X. UNDEPREC BALANCE ROYALTY . //) _{#..}0162 PRINT9033.(1.TOTINV(I). MSINV(I).CHPROC(I).R(I).DEPREC(I).TOTUB(I) *. MINUB(1) . DISROY(1) . I=1.N) 0163 9033 FORMAT ((1%,12,1%,3(F16,5),F16,12,4(F16,5))/) 0164 RETURN 0165 END

```
FORTRAN IV 6 LEVEL 21
                                         INCTAX
                                                            DATE = 77234
                                                                                   11/24/05
                                                                                                         PAGE 0001
0001
                    SUBPOUTINE INCTAX(GROPRO.MININV.PHUINV.EXPLOR.SOCINV.PREPRO.BORCAP
                   ++N+C+S+TAX+INTRST+PRIN+#ORCAP+CAPTAX+DEH+IY+SM+SC)
                    REAL=R GROPRO(50).EXPLOR(50).wORCAP(50).PREPRO(50).RORCAP(50).
2000
                   ONGINY (50) .FIXU4 (50) .PREUR (50) .DEPLUG (50) .CAPUB (50) .INTRST (50) .
                   #ONGUH (50) •RALLOW (50) •TAPHOF (50) •TAX (50) •PRIN (50) •SM•SC•SV•
                   *DEM+NCCA(50)+ACCA(50)+DEPLAL(50)+ACCHOR(50)+ PROF1+EXP+TTPROF+S+
                   *DABS*PREALO(50)*TAXCAR(50)*EQUITY(50)*CAPTAX(50)*TGROPR(50)*
                   ●F IXCAP (50) • PRECAP (50) •
                                                       CMXPLR (50) . XPLCAP (50) . XPLDED (50) .
                   MININY(50).PROINY(50).SOCINY(50).FIXINY(50)
 0003
                    INTEGER C.D
 8004
                    D=C-1
 0005
                    DO 1100 1=1.D
 0006
                    T4x(I)=0.D0
 0007
                    TAPROF (1)=0.DO
 0008
                    RALLOW(1)=0.D0
 0009
                    ONGINY(1)=0.00
 0010
                    PREALO(1)=0.00
 0011
                    TGROPR(1)=0.00
 0012
                    MPLDED(I)=0.D0
 0013
                    NEPLAL ( I ) =0.00
 0014
                    ACCA (1)=0.D0
 0015
                    NCCA (1)=0.D0
 8016
                    ONGUR (1)=0.00
 0017
                    PR1~(1)=0.D0
 0018
                    INTAST(I)=0.DO
 8019
                    FIXINV(I)=MININV(I)+PROINV(I)+SOCINV(I)
 0020
                    BOHCAP(I)=(FIXINV(I)+ PREPRO(I)+WORCAP(I)+EXPLOR(I))+DER
 0021
                    1=1
 0022
                    CAPUH (1) = BORCAP(1) = (1.D0+S)
 0023
                    FIXCAP(1)=FIXINV(1)=DER=(1.D0+S)
 0024
                    PRECAP(I)=PREPRO(I)*DER*(1.D0+S)
 0025
                    XPLCAP(I)=EXPLOR(I)*DER*(I.DO+S)
 0026
                    FIXUH (1)=FIXIN+(1)+(1.00+DER+S)
 0027
                    PREUR ([)=PREPRO([)*(1.00+DER*S)
 0028
                    CMXPLR(1)=EXPLOR(1)=(1.D0+DER+S)
 0029
                    DEPLUB(1) = (F1x1my(1) + PREPRO(1) + EXPLOR(1))/3.D0
 0030
                     ACCHOR(I)=WORCAP(I)
 0031
                    EQUITY(I) = (1.0D0-DEH) + (FIXINV(I) + PREPRO(I) + EXPLOR(I))
 0032
                    CAPTAX(1)=0.00200*(CAPU8(1)*EQUITY(1)*ACCWOR(1))
 0033
                     TAXCAR(I)=-CAPTAX(I)
 0034
                    DO 1000 I=2.D
 0035
                    CAPUB (1)=(RORCAP(I)+CAPUB (1-1))*(1.D0+5)
 0036
                     FIXCAP(1)=FIXINV(1) *DER*(1.DO+S) *FIXCAP(1-1)*(1.DO+S)
 0037
                     PRECAP(1)=PREPRO(1)*DER*(1.D0+5)*PRECAP(1-1)*(1.D0+5)
 0038
                     XPLCAP(I)=EXPLOR(I)*DER*(1.D0+S)*XPLCAP(I-1)*(1.D0+S)
 0039
                    FIXUH (I)=FIXINV(I)=(1.D0+DFR=S)+FIXCAP(I=1)=S+FIXUA (I=1)
 0040
                    PREUR (I)=PREPRO(I)*(1.00+0ER*S)*PRECAP(I-1)*S*PREUB (I-1)
 0041
                     CMXPLR(I) = EXPLOR(I) = (1.D0 + DEH = S) + XPLCAP(I-1) = S + CMXPLR(I-1)
 0042
                     ACCHOR(1)=ACCVOR(1-1)+WORCAP(1)
 0043
                     EQUITY(I) = EQUITY(I-1) + (1.0D0-DEH) + (FIXINY(I) + PREPRO(I) + EXPLOR(I))
 0044
                     CAPTAX(1)=0.002D0+(CAPUB(1)+EQUITY(1)+ACCUOR(1))
 0045
                     TAXCAR(I)=-CAPTAX(I)
 0046
                     DEPLUB(I)=(FIXINV(I)+PREPRO(I)+EXPLOR(I))/3.00+DEPLUB(I-1)
                     CALL DEBT (N.C.S.CAPUB.INTRST.PRIN.IY)
  0047
  0048
                     DO 1001 I=C+N
  0049
                     ACCA(I)=0.D0
  0050
                     NCCA(I)=0.D0
  0051
                     XPLDED(1)=0.D0
```

```
FORTRAN IV G LEVEL 21
                                         INCTAX
                                                            DATE = 78023
 0053
                   DEPLAL(I)=0.00
 0053
                   GG.O=(I)RASKAT
 0054
                   PPEALO(I)=0.DG
 9055
                    PALLOW(I)=0.00
 0055
                   CNGINV(I)=MININV(I)+PROINV(I)+SOCINV(I)
 0057
                   GNGUB(I)=ONGUB(I-1)+ONGINV(I)
 6658
                    PREUS (1) = PREUS (1-1) - PREPAG (1)
 0059
                   F1XINV(I)=0.D0
0060
                   FIXUB(I)=FIXUB(I-1)*FIXINV(I)
 0061
                    DEPLUB(I) = DEPLUB(I-1) + EAPLOR(I) /3.00
 0062
                    CMXPLR(I)=CMXPLR(I-I)+EXPLOR(I)
 0063
                    ACCHOR(I)=ACCHOR(I-1)+WORCAP(I)
 0064
                    IF (I.EQ.N.AND.ACCWOR(I).NE.O.DO)ACCWOR(I)=0.DO
 0065
                    EQUITY(I)=EQUITY(D)-(I-D)+EQUITY(D)/(N-C+1)+ONGUB(I)
0066
                    IF(I.EO.N)EQUITY(I)=0.00
 0067
                    CAPTAX(I)=0.002D0*(CAPUB(I)*EQUITY(I)*ACCWOR(I))
 0568
                    TGHOPP(I)=GROPHO(I)+CAPTAX(I)
 0055
                    IF (I.NE.N) GO TO 1060
 0070
                    SV=SM+5C-FIXUB(N)-ONGUB(N)
 0071
                    IF(SV.LE.0.D0)G0 TO 1061
 0072
                    TGROPR (N) =TGROPR (N) +SV
 0073
                    ONGUB(N)=0.00
 0074
                    FIXUB(N)=0.00
 0075
                    GO TO 1066
 0076
             1061
                    SV=0.00
 6077
             1060
                    CONTINUE
 0078
                    PROFI=TGROPR(I)
 0479
                    IF (TGROPR(I).LT.O.DO)TGRCPR(I)=0.DO
 0030
                    IF (PROF1.GT.0.D0)GU TO 1224
 0081
                    PRGF1=PROF1-INTRST(I)
 0062
                    60 TO 1002
                    PREALO(I)=0.3D0*PREUH(I)
 0083
 0084
                    EXP=(INTRST(I)+PREALO(I)+CHXPLR(I))/0.7500
 0085
                    IF(EXP_LT_PROF1)GO TO 1003
 0036
                    RALLOW(I) = 0.25DU + PROF1
 0027
                    PROF1=PROF1-RALLO#(I)-INTRST(I)
 6300
                    IF (PROF1.GT.0.D0)GO TO 1225
 0089
                    PREALO(I)=0.DO
 0090
                    XPLDED(I)=0.DO
 0091
                    60 TO 1002
 9092
                    CONTINUE
 0093
                    IF (PROF1.GT.CMAPLR(I))GO TO 1051
 0094
                    CMXPLR(I)=CMXPLR(I)-PROF1
 0095
                    XPLDED(I)=PROF1
 0096
                    PROF1=0.00
 0057
                    PREALO(1)=0.00
 8900
                    GO TO 1002
 0099
                    PROF1=PROF1-CHXPLR(I)
 0100
                    XPLDED(I)=CMXPLR(I)
 0161
                    CHXPLR(I)=0.00
 0102
                    PREUB(I)=PREUB(I)-PROF1
 0103
                    PREALO(I)=PROF1
 0104
                    PROF1=0.00
 0105
                    60 TO 1002
 0106
                    PROF1=PROF1-EXP
 0107
                    NCCA(I)=0.3D0+ONGUB(I)
 0168
                    IF (PROF1.GT.NCCA(I)) GO TO 1008
 0109
                    ONGUB(I)=ONGUB(I)-PROF1
```

11/50/03

```
FORTRAN IV 6 LEVEL 21
                                         INCTAX
                                                            DATE = 78023
                                                                                  11/50/03
                                                                                                        PAGE 0003
 0110
                    NCC4(I)=PROF1
 0111
                    PROF1=0.LC
 0112
                    GO TO 1009
 0113
             1008
                    PROFI=PROFI-NCCA(I)
 0114
                    GNGUH(I)=ONGUB(I)-NCCA(I)
 0115
             1009
                   CONTINUE
0116
                    IF (PGOF1.GT.FIXU8(I))GO TO 1010
 0117
                    FIXUR(I)=FIXUB(I)-PROF1
 0116
                    ACCA(I)=PROF1
0119
                    PROF1=0.00
0123
                    69 TO 1011
0121
             1010 PROFI=PROFI-FIXUB(I)
0122
                    ACC4(I)=FIXUB(I)
6123
                    FIXJH(1) =0.00
6124
             1011 PROFI=PROFI+EXP
0125
                    PALLO#(1)=0.2500*PROF1
0126
                   PROF1=PROF1=RALLOW(I)-INTRST(I)-PREALO(I)-CMXPLR(I)
0127
                    XPLDED(I)=CMXPLR(I)
0128
                    CMXPLR(I)=0.DO
0129
                   PREUB(I) = PREUB(I) - PREALO(I)
0130
                   IF (DEPLUS(I).LE.O.DO.OR.PROF1.LE.O.DOIGO TO 1002
C131
                   DEPLAL (1)=0.2500-PROF1
0132
                   IF (DEPLAL(I).GE.DEPLUB(I))GO TO 1006
0133
                   DEPLUB(I) = DEPLUB(I) - DEPLAL(I)
0134
                   GO TO 1007
0135
             1006
                   CEPLAL (1) = DEPLUS(1)
9136
                   DEPLU8(1)=0.D0
0137
             1007
                   PROF1=PPOF1-DEPLAL(I)
0238
             1002 TAPROF(I)=PROF1
0139
                   IF (TAPROF (I) .LT.0.D0.AND.TAPROF (I-1).GT.0.D0)G0 TO 1223
0140
                   60 TO 1012
0141
             1223 TTPHUF=TAPROF(I)+TAPROF(I-1)
0142
                   IF(TTPROF.LE.0.00)60 TO 1013
0143
                   TAX(I-1)=0.51D0+TTPHOF
0144
                   TAPROF ( [-1) = TTPROF
0145
                   TAPROF(I)=0.00
0146
                   60 TO 1012
0147
             1013 TAX(I-1)=0.D0
0148
                   TAPROF (I-1) =0.00
0149
                   TAPROF (I) = TTPROF
0150
             1012 CONTINUE
0151
                   IF(TAPROF(1).LT.0.D0)G0 TO 1015
0152
                   PROF1=TAPROF(I)
0153
                   L=1-5
0154
                   IF(L.LE.U)L=1
0155
             1229
                   CONTINUE
0156
                   IF(L.GE.I)60 10 1226
0157
                   IF (TAXCAR(L).LT.0.D0)GO TO 1230
0158
                   L=L+1
0159
                   GO TO 1229
0160
                   CONTINUE
0161
                   IF(PROF1.LT.DABS(TAXCAR(L)))GO TO 1231
0162
                   PROF1=PROF1+TAXCAR(L)
0163
                   TAXCAR(L)=0.D0
0164
                   L=L+1
C165
                   60 TO 1229
0156
             1231 TAXCAR(L)=TAXCAR(L)+PROF1
0167
                   PROF1=0.DO
```

£:

₹;

ŧ)

*8%.*EXPLORATION*, 4%,*PREFRO-DEVELOP**4X**DEPLETION**//)
PRINT1027*(I*TAPROF(I)*TAX(I)*FIXUB(I)*ONGUB(I)*CAPUB(I)*C

*MXPLR(I) *PREUB(I) *DEPLUB(I) *I=1 *N)

1027 FORMAT((1X-12-1X-8(F16.5))/)

RETURN

END

0188

0189

0190

0191

8

PAGE 0004

14/59/17

PAGE 0001

- 87 -

```
FORTRAN IV & LEVEL 21
                                        IRR
                                                           DATE = 77083
                                                                                 15/07/04
                                                                                                       PAGE 0001
0001
                   SUBHOUTINE IRR(CASFLO-R-N-IC-FY)
0002
                   HEAL®R CASFLO(5.50).DISS(102).R(5).G/1.D-08/.A.B.DISSUM.DABS.DEXP.
                   *AL-DFLOAT.FY
6003
                   DO 50 K=1-1C
0004
                   R(K)=1.D-08
0005
                   DISSUM=1.000
0006
                   DISS(1)=0.000
0007
                   DO 10 1=1.N
8000
                   AI=OFLUAT(I)
0009
                   IF (I.EU.N) AI=DFLOAT (I-1) .FY
0010
             10
                   DISS(1)=DISS(1)+CASFLO(K+1)+(DEXP(R(K)+1+00)/(R(K)+DEXP(R(K)+AI))
0011
                   H(K)=0.01000001D0
0012
                   00 1+ J=2+101
0013
                   DISS(J)=0.000
0014
                   00 11 I=1.N
0015
                   AI=DFLOAT(1)
0016
                   IF (I.EQ.N) AI=DFLOAT (I-1) .FY
0017
                   DISS(J)=DISS(J)+CASFLO(K+I)+(DEXP(H(K))-1.D0)/(R(K)+DEXP(R(K)+AI))
             11
0018
                   1F(DISS(J-1).GT.0.DO.AND.DISS(J).LE.0.DO)GO TO 15
0019
                   1F(DISS(J-1).LT.0.D0.AND.DISS(J).GE.0.D0)60 TO 15
0020
                   H(K)=H(K)+0.01D0
1500
             14
                   CONTINUE
0022
                   IF (DISS(101).LE.0.D0)60 TO 12
0023
                   IF (DISS(101).67.0.00)60 TO 13
0024
             15
                   CONTINUE
0025
                   8=R(K)
0026
                   A=H(K)-0.01D0
0027
                   GO TO 04
0028
             16
                   CONTINUE
0029
                   A=R(K)
0030
                   B=R(K)-0.0100
0031
             04
                   CONTINUE
0032
                   IF (DABS (A-B) .LE.G) 60 TO 02
0033
                   R(K)=(A+B)/2.D0
0034
                   DISSUM=0.000
0035
                   DO 07 I=1.N
0036
                   AI=DFLOAT(1)
0037
                   IF (I.EQ.N) AI=DFLOAT (I-1) .FY
0038
                   DISSUM #DISSUM +CASFLO(K+1)+(DEXP(R(K))-1.00)/(R(K)+DEXP(R(K)+AI))
             07
0039
                   IF (DISSUM) 05.02.06
0040
             05
                   B=R(K)
0041
                   60 TO 04
0042
             06
                   A=R(K)
0043
                   60 TO 04
0044
             12
                   R(K)=0.D0
0045
                   60 TO 02
0046
             13
                   # (K) =1.00
0047
             02
                   CONTINUE
0048
                   R(K)=R(K)-100.D0
0049
            20
                   CONTINUE
0050
                   RETURN
0051
                   END
```

61

đ

I.

```
FORTRAN IV 6 LEVEL 21
                                          ANAL YS
                                                             DATE = 770H3
                                                                                    15/07/04
 0001
                    SUBROUTINE ANALYSIVALUE.SIZ .COST.MI.HZ. WURCAP.EXPLOR.PREPRO.
                   OMININV. PHOINV. SOCINV. GRADE . N. C. D. S. DEH. ISEN. UPTH. IV. T. LIM. SM. SC. TL.)
 0002
                    WEAL PH VALUE - VAL (50) - OH - SIZ (50) - CUST (7) - CUS (3-50) - WONCAP (50) -
                   * TPLOR (50) * PREPHO (50) * MININY (50) * PROINY (50) * SOCINY (50) * GRADE (50) *
                   *MATRIX(11+3+50)+DATA(11+2)+Z+YRAN+XX+DEXP+ RCV(50)+TOTROY(50)+
                   #GPOPPO (50) . TAX (50) . INTRST (50) . PRIN(50) . CAPTAR (50) . HORCAP (50) . ZN.
                   *DEH+5.CASFLO(5.50)/250*0.00/.TOTINV(50)+T+ PT(1000)/1000*0.00/+
                   *#PTH.PCTCHA.PCTDEV.DLV/-0.0500/.#(5)/5*0.00/.SM.SC.R1.H2.TL.
                   *A(50)+AA(50)+B/0.600/+BB/0.700/
 6003
                    INTEGER C.D.ASTER/101/. ID/1/
 0004
                    HEAD 499.45
 8005
                    FORMAT (14+1X)
 0006
                    PEAD500+((DATA(I+J)+J=1+2)+I=1+11)
 0007
                    FORMAT (2F10.5)
 0008
                    PRINT501.NS.((DATA(I.J).J=1.2).I=1.11)
 8009
                    FOPMAT("1"-///+40X+"VARIABILITY DATA*+/+*+39X+16("_*)+//+46X+14+
             501
                   •//+(35x+2(f10.5+2x))+//)
 0010
                    S=5/100.00
 0011
                    00 400 I=C.N
 0012
                    GRADE (1) = GRADE (1) /100.DD
 0013
                    CALL ICLOCK(11.12.13)
0014
                    IS = IAUS (MOD (13.100))
 0015
                    IF (IS/2-2.EQ. IS) IS=IS-1
0016
                    NRAN=1
0017
                    00 600 I=1.0
0018
                    MATRIX(1.3.1)=0.DG
0019
                    OG.0=(1.E.S) XIRTAM
0020
                    MATRIX(3.3.1)=0.D0
0021
                    MATRIX(4+3+1)=0.00
0022
                    MATRIX(5.3.1)=EXPLOR(I)
0023
                    MATRIX(6.3.1)=PREPRO(1)
8024
                    MATHIX(7.3.1)=MININV(I)
0025
                    MATRIX(8.3.1)=PROINV(I)
0026
                    MATRIX(9.3.1)=SOCINV(I)
0027
                    MATRIX(10+3+1)=0.00
0u28
                    MATRIX(11-3-1)=0.D0
0029
                    DO 601 J=C.N
0030
                    MATRIX(1.3.1)=GRADE (I)
8031
                    #CV(1) #R1/GRADE(1) + (R2-GRADE(1)) *ULAP(GRADE(1))
0032
                    MATRIX(2.3.1)=KCV(1)
0033
                    MATRIX(3.3.1)=VALUE
0034
                    MATRIX(4+3+1)=SI2 (1)
0035
                    MATRIX(5.3.1)=EXPLOR(I)
0036
                    MATRIX(6+3+1)=PREPRO(1)
0037
                    MATRIX(7.3.1)=MININV(I)
0038
                    MATRIX(8.3.1)=PROINV(1)
0039
                    MATRIX(9.3.1)=SOCINV(1)
0040
                    MATRIX(10+3+1)=COST(6)
0041
                    MATRIX(11+3+1)=COST(7)
0042
                    COS(1+1)=COST(6)
0043
                    COS(2.1)=COST(7)
0044
                    A(I)=MATRIX(4.3.1)+(MATRIX(10.3.1)-B)
0045
             601
                    (88-(1,E.11)XIRTAM)*(1,E.4)XIRTAM=(1)AA
0046
                    IF (ISEN-1)2511,3000,2512
0047
             2512 CONTINUE
0048
                    DO 3998 J=1.3
0049
                    L.PPE THIRS
0050
                   FORMAT("1"+///+51X+"SENSITIVITY ANALYSIS #"+12+/+"++50X+20("_")+
```

PAGE COCI

8

```
ORTRAN IV 6 LEVEL 21
                                       ANALYS
                                                          DATE = 77052
                                                                                14/02/02
                                                                                                      PAGE 0002
                 *///•36X• PARAMETER CHANGE ••3X• IRR CHANGE ••6X• PRATE OF RETURN••//)
0051
                  DO 4201 I=1.D
0052
                  COS(1.1)=0.00
0053
                  COS(2.1)=0.00
0054
                  GROPRO(1)=0.00
0055
                  DO 3001 K=1.11
0056
                  GO TO(4001-4002-4003-4004-4005-4006-4007-4008-4009-4010-4011)-K
0057
            4001 CONTINUE
0058
                  DO 4160 I=C.N
0059
                  GRADE (1) = GRADE (1) = (1.D0 + DEV)
0060
            4100 RCV(I)=R1/GRADE(I)+(R2-GRADE(I))+DEXP(GRADE(I))
0061
                  60 TO 3002
0062
            4002
                  CONTINUE
0063
                  DO 4012 I=C.N
0064
            4012 RCV(I)=RCV(I)+(1.D0+DEV)
0065
                  GO TO 3002
0066
            4003
                 VALUE=VALUE*(1.D0+DEV)
0067
                  60 TO 3002
0068
            4004
                  CONTINUE
0069
                  DO 4106 I=C+N
0070
                  SIZ (I)=SIZ (I)=(1.D0+DEV)
0071
                  COS(1+1)=(A(1)+B+SIZ(1))/SIZ(1)
0072
            4106 COS(2+1)=(AA(1)+86*SIZ(1))/SIZ(1)
0073
                  60 TO 3002
0074
                  DEV=-DEV
            4005
0075
                  DO 4161 I=1.N
0076
            4101 EXPLOR(1)=EXPLOR(1)+(1.00+DEV)
0077
                  60 to 3002
0078
                  CONTINUE
0079
                  DO 4102 I=1.N
0088
                  PREPRO(1)=PREPRO(1) + (1.D0+DEV)
0081
                   60 TO 3002
0082
            4007
                  CONTINUE
0083
                   DO 4103 I=1.N
0084
                  MININY(I)=MININY(I)=(1.DG+DEV)
0085
                   60 TO 3002
0086
            4008
                  CONTINUE
0087
                   DO 4104 I=1.N
0088
                   PROINV(I)=PROINV(I)+(1.D0+DEV)
0089
                   60 TO 3002
0098
                  CONTINUE
0091
                   DO 4105 I=1.N
0092
                  SOCINY(1)=SOCINY(1)=(1.DO+DEV)
0093
                   60 TO 3002
0094
            4010
                   CONTINUE
0095
                   DO 4013 I=C+N
0096
            4013 COS(1.1)=COS(1.1)+(1.DO+DEV)
0097
                   60 TO 3002
0098
            4011 CONTINUE
0099
                   DO 4014 I=C.N
0100
            4014
                  COS(2.1)=COS(2.1)*(1.DO+DEV)
0101
            3002 CONTINUE
0102
                   DO 4200 I=C.N
            4200 GROPRO(I)=VALUE=RCV(I)=SIZ (1)=2000.D0=GRADE(I)-SIZ (I)=(COS(1.1)+
0103
                  *COS(2.1))-OH*MATRIX(4.3.1)
0104
                   CALL ROYALT (GROPRO.MININV.PROINV.EXPLOR.SOCINV.PREPRO.N.C.T.
                  *TOTROY)
0105
                   CALL INCTAX(GROPRO.MININV.PROINV.EXPLOR.SOCINV.PREPRO.BORCAP.N.C.
```

```
FOHTRAN IV & LEVEL 21
                                        ANALYS
                                                          DATE = 77083
                                                                                15/07/04
                  S.TAX.INTRST.PRIN.BORCAP.CAPTAX.DER.IY.SM.SC)
 0106
                   110 4300 I=1.N
 0107
                   f()| Inv(|) = MININV(|) + PHOINV(|) + EXPLOK(|) + SUCINV(|) + PHEPHO(|)
 010B
             4309 CASFLD(1+1)=GROPRO(1)-TAX(1)-CAPTAX(1)-TO!HOY(1)-
                  TOTINY(I)-WORCAP(I)
 0109
                   CALL IRR(CASFLOORONOIDOTL)
 0110
                   PCTCHA=(H(1)-OPTR)/OPTR-100.D0
 6111
                   PCIDEA=UEA-100.00
 9112
                   60 TO (5001-5002-5003-5004-5005-5000-5007-5000-5009-5010-5011)-K
 0113
             SOOL PHINT SIUL-PCTDEV-PCTCHA-R(1)
 0114
             5101 FORMAT(19X. AVERAGE ORE GRADE ..
                                                           5X.F5.1.181.9X.F7.2.181.
                  -4x.fl0.5.***.//)
 0115
                   DO >201 I=1.W
 0116
                   HCV(I)=MATRIX(2.3.1)
 0117
             5201 GRADE (I)=MATRIX(1.J.I)
 0118
                   60 TO 3001
             5002 PHINT 5102.PCTDEV.PCTCHA.R(1)
 0119
 0150
             5102 FORMATIZAT. RECUVERY RATE.
                                                           5X+F5.1+***+9X+F7.2+***
                  -8x.F10.5.*$*.//)
 0121
                   DO 5012 I=C.N
 0122
             5012 RCV(1)=MATRIX(2.3.1)
 0123
                   60 TO 3001
 0124
             5003 PRINT 5103,PCTDEV,PCTCHA,R(1)
 0125
             5103 FORMAT (27X+ NET VALUE +
                                                           5X.F5.1.4.9X.F7.2.18.
                  -HX.F10.5.***.//)
 0126
                   VALUE=MATRIX(3.3.C)
 0127
                   60 TO 3001
 0128
             5004 PRINT 5104.PCTDEV.PCTCHA.R(1)
 0129
             5104 FORMATIZSA. ORE TONNAGE ..
                                                           5X.F5.1.481.9X.F7.2.461.
                  *8X+F10.5+*$*+//)
 0130
                   00 5210 I=1.N
 0131
                   COS(1+1)=MATRIX(10+3+1)
 0132
                   COS(2.1) = MATRIX(11.3.1)
 0133
             5210 SIZ (1)=MATRIX(4+3+1)
 0134
                   60 10 3001
 0135
                   PRINT 5105.PCTDEV.PCTCHA.R(1)
 0136
             5105 FORMAT(11X. PREPRODUCTION EXPLORATION .5X.F5.1. 8.94.F7.2. 8.
                  *HX.F10.5. '8'.//)
 0137
                   DO 5205 I=1.N
 0138
             5205 EXPLOR(1)=MATRIX(5.3.1)
 0139
                   60 10 3001
 0140
             5006 PRINT 5106.PCTDEV.PCTCHA.R(1)
 0141
             5106 FOHMAT(11X. PREPRODUCTION DEVELOPMENT .. 5X.F5.1. . 8. . 9X.F7.2. . 9.
                  -8X.F10.5. %..//)
 0142
                   00 5206 I=1.N
 0143
             5206 PREPHO(1)=MATRIX(6.3.1)
 0144
                   60 10 3001
             5007 PRINT 5107.PCTDEV.PCTCHA.R(1)
 0145
 0146
             5107 FORMAT (21x, MINE INVESTMENT ..
                                                            54.F5.1.181.9X.F7.2,181.
                  -8x.F10.5.***.//)
 0147
                   DO 5207 I=1.N
 0148
                   MININV(I)=MATRIX(7.3.1)
 0149
                    60 10 3001
 0150
             5008 PRINT 5108-PCTDEV-PCTCHA-R(1)
             5108 FORMAT(15X. PROCESSING INVESTMENT". 5X.F5.1.181.9X.F7.2.161.
 0151
                  -84.F10.5. %..//)
 0152
                   DO 5208 I=1.N
 0153
             5200 PROINV(1)=MATRIX(8.3.1)
```

1

22

```
FORTRAN IV 6 LEVEL 21
                                        ANALYS
                                                          DATE = 77059
                                                                                15/31/58
                                                                                                      PAGE 0004
0154
                   GO TO 3001
0155
                   PRINT 5109.PCTDEV.PCTCHA.R(1)
 0156
             5109 FORMAT (22X. SOCIAL CAPITAL.
                                                           5X.F5.1, 151,9X.F7.2,151,
                  *8X+F10.5+*$**//)
0157
                   DO 5209 I=1.N
0158
             5209 SOCINV(1)=MATRIX(9.3.1)
0159
                   GO TO 3001
0160
                   PRINT 5110.PCTDEV.PCTCHA.R(1)
             5110 FORMAT (16X. MINE OPERATING COSTS.
0161
                                                           5x.f5.1, 181,9x.f7.2,151,
                  -8X+F10.5+151+//)
0162
                   DO 5013 1=C+N
0163
             5013 COS(1+1)=MATRIX(10+3+1)
0164
                   GO TO 3001
0165
                   PRINT 5111.PCTDEV.PCTCHA.R(1)
             5111 FORMAT (13X. PROCESS OPERATING COSTS. 5X.F5.1.18.9X.F7.2.18.
0166
                  48X+F10.5+*5++///)
0167
                   DO 5014 I=C.N
0168
             5014 COS(2.1)=MATRIX(11.3.1)
0169
                   PRINT6000.OPTR
0170
                   FORMAT (51X. *OPTIMUM RETURN*.F10.5.*5*)
0171
             3001 CONTINUE
0172
                   DEV=-DEV-2.DO
0173
             3998
                   CONTINUE
0174
             3000 CONTINUE
0175
                   IF (ISEN.EQ.3)60 TO 2511
0176
                   DO 700 I=1.N
0177
                   DO 700 J=1.11
0178
                   MATRIX(J.1.1)=DATA(J.1)
                                               *HATRIX(J.3.I)
0179
                   (S.L) ATAQ=(I.S.L) XISTAM
                                               -MATRIX(J.3.1)
0180
                   MATRIX(J.1.1)=(MATRIX(J.3.1)-MATRIX(J.1.1))/1.6400
                                                                                                                                 8
0181
             700
                   MATRIX(J.2.1)=(MATRIX(J.2.1)-MATRIX(J.3.1))/1.6400
0182
                   ZN=0.00
0183
                   DO 800 M=1.NS
0184
                   DO 925 I=1.N
0185
                   DO 924 J=1.11
0186
                   Z=0.00
0187
                   DO 950 K=1.12
0188
                   CALL RAND(IS.NRAN.YRAN)
0189
             950
                   Z=Z-YRAN
0190
                   XX=Z-6.D0
0191
                   L=1
0192
                   IF (XX.67.0.D0)L=2
0193
                   60 T0(901,902,903,904,905,906,907,908,909,910,911),J
0194
                   GRADE (1)=XX=MATRIX(J+L+1)+MATRIX(J+3+1)
             901
0195
                   GO TO 924
0196
             902
                   CONTINUE
0197
                   IF(I.LE.D)60 TO 924
0198
                   RCV(1)=R1/GRADE(1)+(R2-GRADE(1))+DEXP(GRADE(1))
0199
                   RCV(I)=RCV(I)+XX-MATRIX(J.L.I)
0200
                   60 TO 924
0201
            903
                   VAL
                         (I)=XX*MATRIX(J.L.I)+MATRIX(J.3.I)
0202
                   60 TO 924
0203
            904
                        (I)=XX=HATRIX(J.L.)>MATRIX(J.3.I)
                   SIZ
0204
                   IF(I.LE.D)GO TO 924
0205
                   COS(1+1)=(A(1)+B+SIZ(1))/SIZ(1)
9050
                  COS(2+1)=(AA(1)+BB+SIZ(1))/SIZ(1)
0207
                   60 TO 924
8050
                  EXPLOR(I)=XX*MATRIX(J+L+I)*MATRIX(J+3+I)
```

```
FORTRAM IV 6 LEVEL 21
                                       ANALYS
                                                         DATE = 77083
                                                                              15/07/04
                                                                                                   PAGE 0005
 8209
                   60 TO 924
 0210
                   PREPHO(I)=XX-MATRIX(J.L.I)+MATRIX(J.J.I)
 0/11
                   100 10 974
 0212
             907
                   MININV(I)=XX=MATRIX(J+L+I)+MATRIX(J+J+I)
 0213
                   60 TO 924
 0214
             905
                   (I.L.(J.XISTAM+(I.L.) AISTAM-XX=(I) VAIOSA
 0215
 0216
                   SOCINVII)=XX+MATRIX(J-L-1)+MATRIX(J-1-1)
 0217
                   60 TO 424
 0218
             910
                   COS (1-1)=XX-MATRIX(J-L-1)+COS(1-1)
 0219
                   60 TO 924
 0220
             911
                   COS (2-1)=XX-MATRIX(J+L+1)+COS(2-1)
 1550
             924
                   CONTINUE
 1222
                   GHOPHO(1)=VAL(1)=RCV(1)=SIZ(1)=GHADL(1)=2000.D0-SIZ(1)=(COS(1-1)+
                  COS(2.1))-OHPMATRIX(4.3.1)
 0223
                   CALL ROYALT (GROPRO.MININV.PHOINV.EXPLOR.SUCINV.PREPRO.N.C.T.
                  CYORIUTO
 0224
                   CALL INCTAX (GROPRO.MININV.PROINV.EXPLON.SUCINV.PREPRO.BORCAP.N.C.
                  SOTAXOINTRSTOPRINOHORCAPOCAPTAZOUEHOIYOSMOSC)
 0225
                   DO 1000 I=1.N
 0226
                   TOTINY(I)=PININY(I)+PROINY(I)+EXPLOR(I)+SOCINY(I)+PREPHO(I)
 0227
             1000 CASFLO(1.1)=GROPRO(1)-TAX(1)-CAPTAX(1)-TOTHOY(1)-
                  TUTINV(1)-WORCAP(1)
 0228
                   CALL IRR(CASFLOORONOIDOTL)
 0229
                   J5=R(1)+1.5D0
 0230
                   PT(JS)=PT(JS)+1.00
 0231
                   ZN=2N+R(1)
 0232
             800
                   CONTINUE
 0233
                   Z=0.D0
 0234
                   ZN=ZN/NS
 0235
                   PRINT 2000-NS
 0536
             2000 FORMAT( 11 . // . 40% . EXPECTED RATE OF HETURN DISTRIBUTION . / .
                  0237
                   DO 2500 [=1.10]
 0238
                   PT(I)=PT(I)/NS+100.D0
 0239
                   IF (PT(I))2501-2501-2502
 0240
             2502 JS=PT(1)+0.5D0
 0241
                   Z=Z+PT(1)
 0242
                   J1=1-1
 0243
                   PRINT 2503.JI.PT(I).(ASTER.K=1.JS)
 0244
             2503 FORMAT (30X.12. 181.2X. OCCURS . 14.F6.2.181.2X.+(1.100A1)
 0245
                   60 TO 2508
 0246
             2501
                  IF(Z-99.9999D0)2504.2506.2506
 0247
             2504 PRINT 2505
 0248
             2505 FORMAT(51x++1++++)
 0249
             2500
                   CONTINUE
 u250
             2506 PHINT 2508
 0251
             2508 FORMAT (5(51X. + [ +./ ))
 0252
                   PRINT 2507.ZN
 0253
             2507 FOHMAT (///.45%. MEAN RATE OF RETURN .F10.5. %)
 0254
                   PRINT2510.15
 0255
                   FORMAT (//+45x+ RANDOM NUMBER SEED + 15)
 0256
             2511 CONTINUE
 0257
                   RETURN
 025B
                   END
```

1

(i

```
FORTRAN IV & LEVEL 21
                                          RAND
                                                             DATE = 77053
                                                                                    14/59/17
                                                                                                           PAGE 0001
 0001
                    SUBROUTINE RAND (IR+N+Y1)
 0002
                     REAL B Y1.POW (30)
 0003
                    INTEGER 1A1 (30) + 1A2 (30) + 1A3 (30)
....
                     N1=29
 0005
                     Y1=0.D0
 0006
                     MAX=26+IR
 0007
                     IF (N-2) 10,40,40
 8000
              10
                     00 20 I=1.29.2
 0009
                     1A2(1)=0
 0010
                    IA2(1+1)=1
 0011
                     PO=(1)=0.500001
 0012
              20
                     POw(1+1)=0.50000(1+1)
 0013
                     IA2(29)=1
 0014
              30
                    N1=N1+29
 0015
                    AAH-IN=SM
 0016
              40
                    00 110 I=1,29
 0017
                    IF(I-2)50.60.70
 0018
              50
                    ITEMP=1A2(28)
 0019
                    60 to 80
 0020
              60
                    1TEMP=1A2(29)
 0021
                    60 TO 60
 0022
              70
                    ITEMP=IA3(I-2)
 0023
              80
                    (I)SAI+9M3TI=(I)EAI
 0024
                    IF (IA3(I)-2)100.90.90
 0025
              90
                    IA3(1)=0
 9026
              100
                    (I) SAI=(I) IAI
 0027
              110
                    (I) EAI=(I) SAI
 0028
                    IF (N-2) 120, 176, 170
 0029
              120
                    IF (N2)30,170,130
 0030
              130
                    N1=29-N2
 0031
                    N2=N1+1
 0032
                    N=2
 0033
                    1Z=0
 0034
                    DO 140 I=N2.29
 0035
                    IZ=1Z+1
 0036
              140
                    (I) [A]=(SI) SAI
 0037
                    IF (N1) 150, 170, 150
 0038
              150
                    DO 160 [=1.N]
 0039
                    12=1Z+1
 0040
              160
                    1A2(12)=1A3(1)
 0641
              170
                    DO 180 1=1,29
 0042
                    12=30-1
 0043
                    ITEMP=IA2(12)
 0044
              180
                    Y1=Y1+POW(I)+ITEMP
 0045
                    RETURN
0046
                    END
```

diei,

. .

CHAPTER 3

USING THE COMPUTER PROGRAM TO EVALUATE A MINING PROJECT

3.1 <u>Introduction</u>

This Chapter will describe in detail the procedures to follow in order to carry out an economic evaluation of a mineral deposit using the computer program. The mineral reserve data and the capital cost data were derived from two consultants' feasibility studies that were carried out on a small mineral deposit in the Province, however, the evaluation undertaken here should not be considered as anything more than a demonstration of how to use the computer program.

The description that follows will be done in three parts. The first part will outline the kinds of data that must be obtained; the second part will discuss the results of a successful optimization, and; the final part will discuss the analyses undertaken by the program.

3.2 Input Data

Two basic kinds of data are necessary for an evaluation. The first kind of information needed is mineral reserve data. This should indicate the tonnages and grade of material available. The second kind of information needed is the capital and operating costs that would be incurred in order to mine and process the mineral into a saleable product.

In addition to this basic information, the evaluator will be required to instruct the program on such things as the amount of information being provided, the amount of information to print out, the constraints in effect, and so on. This information is provided on options cards.

3.2.1 The Options Cards

The first two cards in the data deck are options cards. An example of

each is shown in Figure 3.1. The 6 entries on the first card occupy fields of width 12. A decimal point for each number should be provided. The six entries on the second occupy fields of width 2 followed by 3 spaces. The digit in each field is right justified.

The first entry on the first data card is the anticipated revenue per pound of principal metal. It takes into account the value of all by-products which may be recovered from the ore. An example will illustrate how it is to be derived. Table 3.1 contains the grades, recovery rates, and values of the metals in the concentrate produced from a ton of ore.

Metal	Ore Grade	Concentrator Recovery Rate	N.S.R.	Value/ton
Copper	2.0%	92%	\$ 0.59/lb	\$21.712
Zinc	2.0%	75%	\$ 0.22/16	\$ 6.600
Silver	0.60 oz/ton	56 %	\$ 5.52/oz	\$ 1.855
Gold	0.04 oz/ton	50%	\$138.00/oz	\$ 2.760

TOTAL \$32	2.927
------------	-------

Table 3.1 Value of a Ton of Ore in Concentrate

The net smelter return (N.S.R.) takes into account the costs of smelting and refining each metal as well as the associated losses while doing this. The value of the concentrate produced from a ton of ore is \$32.927. This is converted back to the value for the principal metal, copper. Thus:

N.S.R.* = \$32.927/(.02x2000x.92) = \$.89475

1	2	3	4	5	6	
0.89475	•••	1.08	0.00	750000.0	20.0	
123416741		1000 10 100000 2000 10 100000	*******	*****	00 0 000000000000000000000000000000000	ſ
22221222	222222222	i11111111111111	222222222222	222222222222	2 2222222222222222222	
4444 -4444	4444444444	444444444444	44444444444	444444444444	333	
666666666	66866666666	8668688888888	•	1666666666666	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	99999999999	99999999999999 nnn=n=n=n=n=	1	9999999999999 ««««««««»	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ر

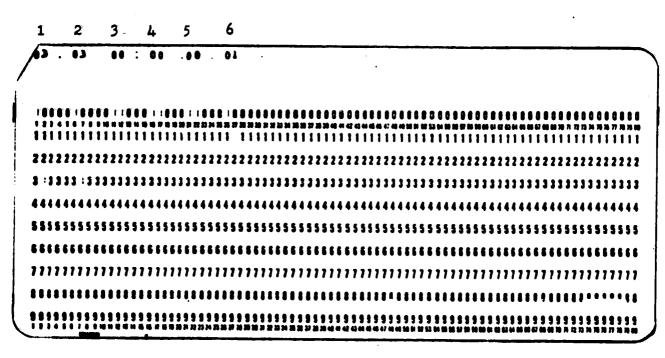


Figure 3.1 First Two Options Cards

The value of the metal in the concentrate, expressed in terms of the principal metal, is unique to the mineral deposit being evaluated. An implicit (and sometimes dubious) assumption in this method of concentrate valuation is that when a higher grade of principal metal is mined, the grades of the other metals are assumed to be correspondingly higher. However, this method does provide simplicity while taking into account the values and recovery rates for by-products.

The second entry on the options card is the assumed portion of the investment which will be financed by debt capital. It will be some value between 0 and 1. Again, a decimal point should be used. This value is only used during the pre-production development stage of the project and will be the same for each year.

The third entry is the assumed rate of interest on borrowed capital. In the pre-production phase of the project it will be used to calculate the interest on any borrowed capital. This will be accumulated for later recovery when the debt is to be repaid and it will also become part of the capital asset banks for income tax purposes. After production commences, interest will be payable on the unamortised part of the debt.

The fourth entry is the discount rate to be used in the ROYALT subroutine. It might represent the opportunity cost of capital for an investor in the project. As such it could be set equal to the value in entry three, but it could also be different. It will be a value between 0 and 1, again with a decimal point.

The fifth entry is the tomnage constraint for the mineral deposit. There frequently will be one where the mineral exists in sharply defined lenses or pockets. In this kind of deposit, the average ore grade will remain relatively high right to the boundary with the host rock and then drop sharply. If there is no tomnage constraint except that specified by the cut-off grade function, then the constraint should be set equal to 0.

The sixth entry on the options card is the minimum rate of return which would be desirable on any incremental investment in the project.

Normally, it would be more than the rate at which capital could be borrowed at. Note that the value here is expressed as a percent rather than a value between 0 and 1. As before, a decimal should be used.

The first entry on the second options card is the number of data cards containing capital cost data for different sizes of project.

O3 means there are 3 cards for 3 different possible size of project.

The second entry is the number of data cards containing mineral reserve data.

The third entry is instruction to the program as to the mining sequence to use. 00 means that mining is to take place in a manner that the average grade of ore mined each year will equal the average grade of the total primary ore reserves. 01 means that mining will commence with the highest grade material first. The average grade of material mined will decline year by year. The former sequence is normally used. It will provide a more conservative rate of return estimate than the high-grading assumption.

The fourth entry is instruction to the ANALYS subroutine as to the kind of analysis to undertake. 00 means do no analysis; 01 means do only a probabilistic analysis; 02 means do both, a sensitivity analysis and a probabilistic analysis; and, 03 means do only a sensitivity analysis. Normally, neither kind of analyses would be undertaken the first time a new project is evaluated. It could be undertaken after the evaluator is satisfied that the "optimum" project reflects the best information that is reasonably obtainable and that the possible profitability is sufficient to warrant further analysis.

The fifth entry instructs the program as to how secondary ore reserves are to be treated in the evaluation. Secondary ore reserves will be any ore remaining after the primary ore reserves are depleted. The secondary reserves cut-off grade is determined by the operating costs alone while the primary ore cut-off grade will also allow for a profit. On here means that secondary ore reserves will not be included in the optimizing stage of the evaluation. On means that the secondary ore

reserves will be included throughout the evaluation while 02 means that the secondary reserves will only be included if and when the investment would be incremented.

The sixth entry will instruct the EQUATN subroutine as to whether or not a graph of each function is to be printed. Normally, graphs would be printed the first time or two that an evaluation is made since they provide the evaluator with the equation for each function as well as a graph of the function. This information will usually tell the evaluator if the derived functions are realistic and therefore if the solution is realistic. Upon examination of the functions, it may be the case that the evaluator will want to obtain more data or improve on the accuracy of available data. OO means do not print graphs while O1 means that graphs are to be printed.

3.2.2 The Capital Cost Cards

Following the options card will be a series of capital cost cards. An example is shown in Figure 3.2. The first five entries occupy fields of width 12; the next two entries occupy fields of width 5, and; the last entry occupies a field of width 10. Each card will contain the capital cost and operating cost data for one size of mine and concentrator project that could be used to develop the mineral deposit being evaluated. This data will be used by the program to derive 7 functions of size versus cost. A minimum of three cards will be needed to derive non-linear functions. If these few are used, however, the costs needed to be determined to a high degree of accuracy if the function that will be derived is to be reliable.

The first entry on each card will be the cost of the pre-production exploration needed to cutline sufficient one for a project of the size indicated (entry 8). An important point here is that this entry will contain only estimated <u>future</u> expenditure necessary. Expenditures already made do not enter the evaluation except to the extent that they may be included in capital asset banks for purposes of calculating the taxes and royalties payable by a future

	سر	_	_	_	•	_		_	_	_		_			_	-	2	•	_				_						3	•									1	+•									5	5.							6	•				7	ď				ε	}.				
	/	4	•	8	6	0	•	0					3	3	0) (9 (•	• (3			1	4	0	•) (0	0	•	0			1	34	•	0	0	0	0	•	0			2	8	0 (D C	0	0	• (6			ı,	5	•		3	• 1)		3	5	0 (0 0	0	• (0	
			1	!	8	•	7	•	•	10	Ħ	4	ų	H			1	1		,	• 1	1	2 2	×	1	1	1	1	12	10	2	2			81	4 2		1	-	-	40	•				•	-	•		: 8 10		-			it	_	8 () (1	ľ	0	•	1	8 1	0	2 1	í 7		•		•
																																																							ī	-						-	-	-	-		•		•	•]]] 2	•
	1																																																																						: Z : 3	
	4																																																																	_	_	-				-
	5 9																																																																			_			-	-
	71																																																										-	-	-	_	-	_		_	_	•	-		•	•
		1																																																					8 (-			1	11	ı
١,	39	3	3	9		9			9	1 5	1 2	9	. 1	9	9	9	9	9	9	9	9 71	9 12	3	9 M :	9 15 2	9	9	9	9	9 9	1) <u>{</u>	9	9	9	31 8	9	9	9	9 9	1	9	9	9	9	9 !	3 5) 9 631	9	9 !	9	9	5	9	9 9	9	9	9	9	9 9	9	9	9 !		9	9	9	9 9	19	9	3 5)

Figure 3.2 Capital Cost Data Card

possible project. At present, the program is not able to include such sunk costs in the analysis.

The second entry on the card is the estimated pre-production development costs necessary for a project of the size indicated. The largest part of this entry will be the labor costs necessary for mine shaft and stope development, the installation of machinery and equipment, and concentrator construction.

The third entry on the card is the mine equipment costs. This would include underground crushers, underground transport systems and the head frame and hoist.

The fourth entry is the processing capital costs. This will be the concentrator and contained equipment.

The fifth entry is the social capital investment. This will include a wide variety of investment necessary to the operation of the project and not included in other categories. Included here could be a power plant, roads, living quarters for employees, and so on.

The sixth and seventh entries are the estimated mining and processing costs for this size of project. Mining costs will usually be the most difficult to estimate since they will vary widely with the mining method used and the scale of operation. Also more uncertainty exists here than in the processing part of the operation. For example, unexpected poor ground conditions could require changes in mining methods which frequently tend to be more costly.

The final entry is the mill (and mine) capacity for this size of project. The mill capacity will be in tons of ore per year.

3.2.3 Mineral Reserve Cards

Following the capital cost cards are the mineral reserve cards. An example is shown in Figure 3.3. The three entries occupy fields of width 15. Again, note that a decimal point is required. As with the cost cards, a minimum of three should be provided in order that the

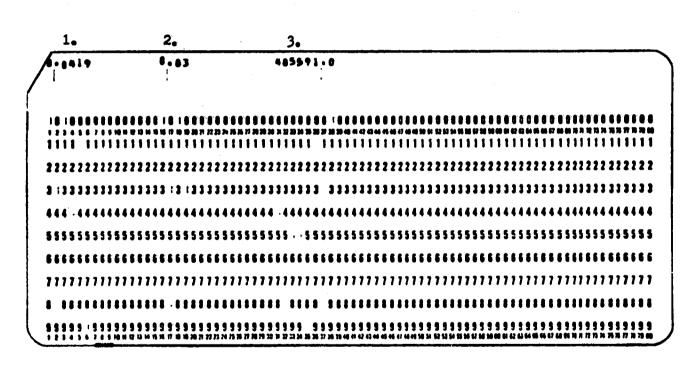


Figure 3.3 Mineral Reserve Data Card

program can derive non-linear functions where applicable. An exception to this would be if the mineral reserve average grade is estimated to vary directly as the log of the tons of material included in the grade calculation. In this instance, one data card is sufficient showing the total tons of ore in the mineral deposit and the average grade of the deposit. The cut-off grade in this case is 0.0

The first entry on the data card is the average grade of the tons of material in entry three.

The second entry is the assumed cut-off grade. This figure will be the first chosen (arbitrarily) after which the total tonnage and average grade figures will be calculated using geologist's estimates of the amount of mineral at each assay value.

The final entry is the total amount of material in tons above the specified cut-off grade.

It is important that the tonnage and grade figures estimated reflect the mineable material in the deposit. Estimates of mineable material will take into account dilutionnof the possible ore by waste rock, and it will take into account possible pillars and support structures which cannot be removed even though they may be of a mineable grade.

3.2.4 Data for the Probabilistic Analysis

Following the mineral reserve cards is a third options card. This has; one entry occupying a field of width 4. It will indicate the number of simulations to carry out in the probabilistic analysis. An example is shown in Figure 3.4. No decimal point is required but the entry must be right justified.

The evaluator's estimates of the variability of any of the factors affecting profitability is provided on the final series of cards. Since the program in its present form will modify 11 factors, 11 data cards must be provided. A sample is shown in Figure 3.5. There are two entries on the card, each occupying a field of width 10. A decimal

Figure 3.4 Third Options Card

point should be used.

A normal probability distribution is assumed for the values of all factors in this analysis. To represent a skewed distribution (the most likely), a split-normal distribution is used. An example of the split-normal distribution is shown by the estimates in Figure 3.5.

The evaluator is required to obtain estimates for the upper and lower limits for values of a factor at the 90% confidence level. If a point value for, say, concentrating costs is \$3.00, and the evaluator is 90% confident that the cost will not be less than \$2.85 or more than \$3.30, then the two values to be entered on the data eard are: \$2.85/. \$3.00 = .95 and; 3.30/3.00 = 1.1 respectively.

The 11 cards in order are: Average Grade of Ore; Concentrator Recovery: Rate, Net Smelter Return; Tons of Ore Mined/year; Pre-production Exploration Costs; Pre-production Development costs; Mine Investment; Processing Investment; Social Capital Investment; Mine Operating Costs, and; Concentrator Operating Costs.

3.3 The Evaluation of a Mineral Deposit

The data for this evaluation undertaken here is based on information from two feasibility studies on a proposed project in Northwestern Manitoba. The studies are somewhat out-of-date; also, they contain different estimates of probable ore reserves and project costs. However, they were useful in that they indicated what the relative capital and operating costs would be. The estimates of probable mineable ore were the most uncertain. The ore reserve data used in this evaluation only approximates that contained in the studies. The information was summarized and re-arranged in order to indicate the probable grade-tonnage relationship in the deposit. Where the studies made very conservative estimates of ore grades and tonnages, these estimates were relaxed somewhat.

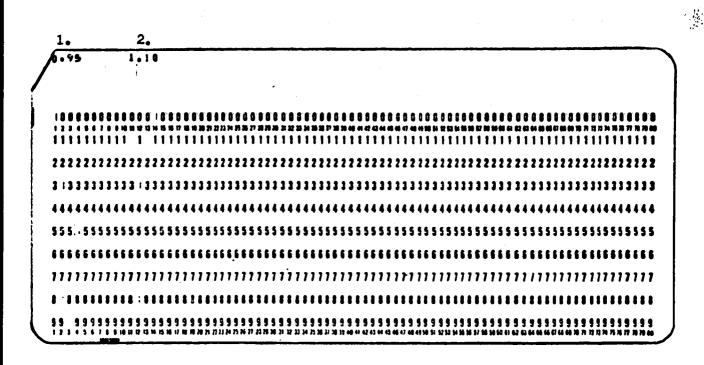


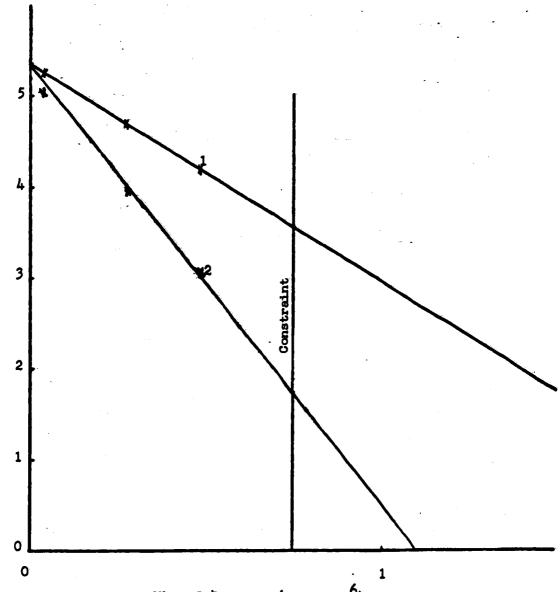
Figure 3.5 Variability Estimates Data Card

3.3.1 Mineral Reserve Data

For this evaluation, the ore reserve data was summerized to 3 cards, plus a tonnage constraint entered on the first options card. This is shown in the following table. The estimates include dilution by waste rock and exclude high grade material which may be unmineable because of location or possible use as a pillar.

	Average Grade	Cut-off Grade	Total Tons
Card 1	0.0525	0•05	44899.0
Card 2	0.047	0.04	270000.0
Card 3	0.0419	0.03	485591.0
Constraint			7•5 × 10 ⁵
 	4		

Table 3.2 Mineral Reserve Data


The grade-tonnage functions calculated by the program are shown in Figure 3.6 (also see Appendix I to this chapter). Note that the functions are linear over the range of possible quantities of ore and at the constraint tonnage the cut off grade drops to zero. The extensions of the linear functions beyond the constraint are of no significance.

3.3.2 Capital and Operating Cost Data

Cost data is estimated for 3 possible size of projects. This is shown in Table 3.3

	Doploration	Development	Mining	Processing	Social	Mine Op.	Process Op.	Capacity
Card 1 Card 2 Card 3	\$170,000	1	\$700,000 \$1,100,000 \$1,800,000	\$2,000,000	\$1,400,000 \$1,900,000 \$2,800,000	\$23.00 \$18.00 \$15.00	\$15.00 \$ 8.00 \$ 3.00	87,500 175,000 350,000

Table 3.3 Capital and Operating Cost Data

Mineral Reserves (tons x 10⁶)

Figure 3.6 Average Grade and Cut-off Grade Functions

1. Average Grade Y=.05355 - .000000024056 X

Grade (%)

2. Cut-off Grade Y=.05355 - .000000048112 X

The 7 equations derived by the program from this data are shown in Figure 3.7 and 3.8. Note that the capital cost functions are linear with total costs directly proportioned to annual capacity while the operating cost functions are hyperbolic with costs per ton of capacity decreasing as capacity is increased.

All these costs are specific to the mineral deposit being evaluated. Exploration and development costs, for example, were low because some of this work had been done by a previous owner. The social capital costs reflected the fact that Manitoba Hydro could supply power for the project relatively cheaply. If more generalized use is to be made of the model, cost data will have to be accumulated which pertains to a wide variety of possible mining situations. Geographic location, deposit size, deposit type, and mining methods are all factors which have significant effects on capital and operating costs.

3.3.3 First Options Data Card

The options cards for the first evaluation of the mineral deposit is shown in Figure 3.1. The principal metal value was determined to be \$0.89475 per pound of copper in concentrate form. The procedure for arriving at this value is shown in Table 3.1 and the accompanying text.

For the first evaluation, it was assumed that equity capital was the only source of financing. This generally produces a lower IRR than when we assume capital is borrowed.

The real interest rate, the third entry, was assumed to be %. This was also the value assumed for the opportunity cost of the capital, the fourth entry.

The fifth entry is the tonnage constraint for the deposit. Such a constraint will normally occur for massive sulphide deposits in Manitoba. The constraint should express the evaluator's estimate of the mineable material.

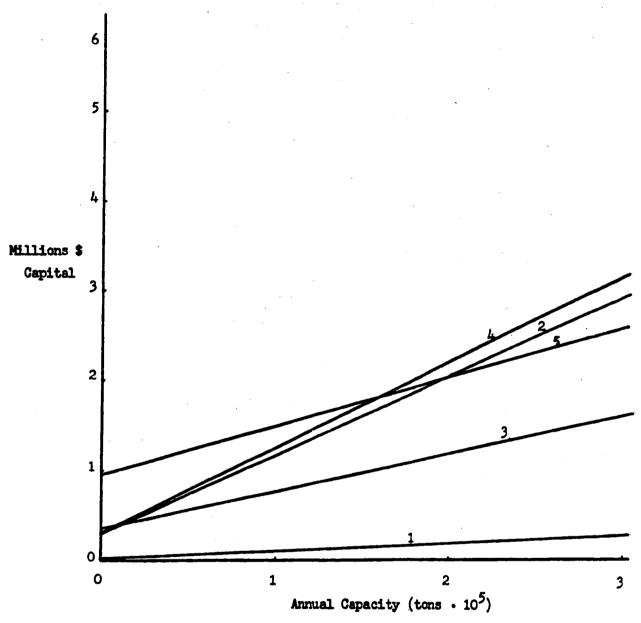
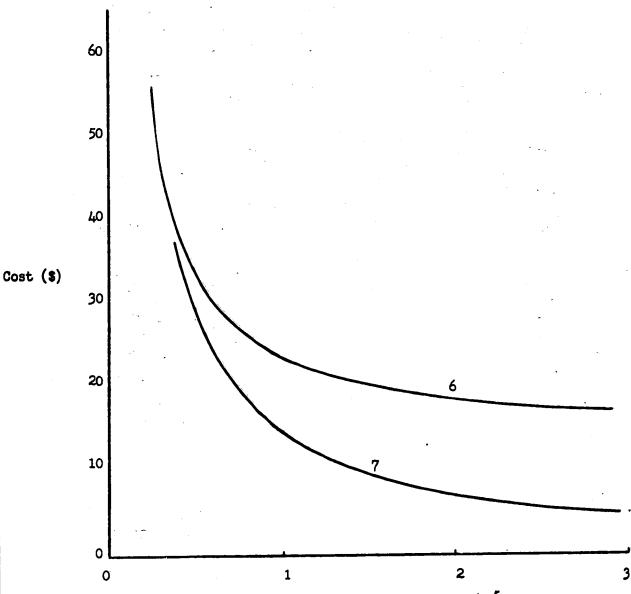



Figure 3.7 Capital Cost Functions

1.	Exploration	Y = 1500 + .9665.'X
2.	Development	Y = 300,000 + 8.6531 X
3.	Mine	Y = 350,000 + 4.1633 X
4.	Processing	Y = 300,000 + 9.4694 X
5.	Social	Y = 950,000 + 5.3061 X

Annual Capacity (tons x 10⁵)

Figure 3.8 Operating Cost Functions

6. Mining Costs $Y = 12.5 + \frac{925000}{X}$

7. Processing Costs Y = $.5 + \frac{1.375.000}{.X}$

The minimum acceptable rate of return was assumed to be 20%. This happens to be higher than the maximum return from this project so the investment is not incremented. (Because a constraint is in effect for this mineral deposit, incremental investment would not occur anyway). Based on past reported company behavior, a rate of return of about twice the prime interest rate would be typical. A real rate of return this high can mean that the risk element is large and/or that the expected return in alternate projects is high.

Entries one and two on the second options card indicate the number of cost and mineral reserve data cards respectively. The minimum number of 3 each was provided.

Entry three is zero indicating that the ore is to be mined at the average grade of the primary ore reserves.

Entry four is two indicating that both sensitivity and probabilistic analyses are to be undertaken.

Entry five is zero indicating that secondary ore reserves will not be included in the optimizing stage of the evaluation but will be included in the final calculation which will subsequently be printed. 01 should not normally be used here. If it were to be used, the program would proceed to reduce the life of the primary reserves (and total primary tomage) so that the highest grade material would be mined first with the lower grade material being relegated to the later years of secondary ore production. In effect, the resulting solution is one of high-grading the ore body. Since this would not likely be practical, or at most, only possible to a limited extent, the use of O1 as a code should be avoided. It can be used (but not in all cases) if the assumption is made that the ore body is to be high-graded in the first place (entry three). Ol can also be used when the assumption is made that the project is to be financed by a large proportion of debt capital. Since debt capital is only recovered over the life of the primary reserves, the program will, in effect, calculate the optimum pay back period.

Entry six is 01 indicating that we want to print graphs of all the functions. When we are satisfied that we have the best data available and a plausible optimum solution exists, then this entry would be changed to 00 while further analysis is undertaken.

3.3.4 Data for the Probabilistic Analysis

The third options card will head the part of the data deck concerned with the probabilistic analysis. This card will indicate the number of simulations to undertake. The number is mainly a function of the number of variables subject to variation. A project with 11 variables subject to variation, will require more simulations in order to provide a reliable probabilistic distribution for the rate of return than would a project with only 3 or 4 variables subject to variation. 500 simulations were done for this evaluation. Because of the uneveness of the rate of return distribution generated for this project, this number would appear to be a minimum.

The proportional variability estimated for each of the 11 factors affecting profitability are shown in the following table.

Factor	Lower Range	Upper Range
Average grade	0.90	1.10
Recovery rate	0.90	1.05
Net smelter return	. 0.80	1.20
Annual tone processed	0.80	1.05
Exploration costs	0.95	1.20
Development costs	0.95	1.20
Mine equipment costs	0.95	1.20
Process equipment costs	0.95	1.20
Social capital costs	0.95	1.30
Mine operating costs	0.95	1.10
Process operating costs	0.95	1.10

Table 3.4 Factor Variability

These estimates are at the 90% confidence level. That is, the evaluator is 90% certain that the probable value of a factor, F, in any year will be within the range, say, $.95F \le F \le 1.1$ F.

3.3.5 Results of the Evaluation

The series of iterations leading to the optimum solution for this evaluation are shown in Table 3.5 below, and in Appendix 1 to this Chapter.

Primary Ore Life	Project Capacity	Average Return (%)
L	125,000	18.714
5	125,000	17.956
3	125,000	17.125
4	135,000	19.101
4	145,000	19.327
4	155,000	19.415
4	165,000	19.385
4.	145,000	19.327
4	155,000	19.415
4	165,000	19.385
4	145,000	19.327
4	155,000	19.743

Table 3.5 Optimizing Iterations

The program automatically assigned a primary ore life of 4 years to the project and an initial size of 125,000 tons/year. Then it proceeded to increase the life 1 year at a time, and would continue to do so as long as a higher rate of return could be realised. For this initial size of project, the optimum life proved to be 4 years yielding a rate of return of 18.71%. With the life of 4 years, the size of the project was increased in size by increments of 10,000 tons/year. The maximum rate of return was obtained with a size of 155,000 tons/year. The LIFE was increased to 5 years but then the tonnage constraint of 750,000 tons was exceeded. The primary ore

life was reduced by 1 year and the size incrementing continued. At a life of 4 years for the primary ore reserves, and a SIZE of 155,000 tons/year, the maximum rate of return which could be achieved was 19.42%. This solution required a total of 11 iterations.

The detailed production data is provided in Table 3.6. This is from the actual computer printout. Note that in addition to the primary ore of 620,000 tons, there is some secondary ore amounting to 130,000 tons. The cut-off grade for the secondary ore was 1.73% while the cut-off grade for the primary ore was 2.37%.

The financial data summary is shown in table 3.7. This shows the total capital and operating costs for the project, the assumed debt and equity capital, and the average and marginal rate of return. Since the average rate of return is at maximum, the marginal rate of return will also be this value.

Table 3.8 shows the detailed calculation for arriving at the cash flow. for the project. Note that the internal rate of return here is 19.74% whereas the maximum rate of return was initially determined to be 19.42%. This difference results from including secondary ore in the final calculation whereas it was excluded in previous calculations. The inclusion of extra revenue (and net profit) has increased the rate of return.

Table 3.9 shows the cash flow for the project if taxes and royalties are added back as might be the case for a Crown corporation. An important assumption here is that the project would not have been undertaken by a private firm in the absence of the Crown. In this case, taxes and royalties are not a cost to the project. Note that the rate of return to the project approximately doubles.

Appendix II to this Chapter contains a detailed printout for the project under completely different assumptions. Firstly, the tonnage-grade function for the deposit is assumed to be logarithmic. Secondly, 50% of the project would be financed by debt capital. Thirdly, incremental investment occurs so long the marginal rate of return exceeds %.

The project yielding the maximum rate of return is one of SIZE 120,000 tons/year with LIFE equal to 3 years. The size is then incremented to a size of 160,000 tons of ore per year where the marginal rate of

	TONS OF ORB	AVERAGE GRADE	CUTOFF GRADE	RECOVERABLE METAL (LBS)	CONCENTRATE VALUE(\$)
1	0.0	0.0 \$	0.0 \$	0.0	0.0
2	0.0	0.0 🐔	0.0 \$	0.0	0.0
3	155000.0	3.86%	2.37%	11207472.85	10027886.33
4	155000.0	3.86%	2.37%	11207472.85	10027886.33
5	155000.0	3.86%	2.37%	11207472.85	10027886.33
6	155000.0	3.86%	2.37%	11207472.85	10027886.33
7	130000.0	2.06%	1.73%	4064719.43	4352707.71

PRIMARY ORB PRODUCTION 620000.0 TONS
TOTAL ORB PRODUCTION 750000.0 TONS

Table 3.6 Production Data for Optimum Project

FINANCIAL DATA

EXPLORATION COST	s 151312.24490
PREPRODUCTION DEVELOPMENT COST	S 1641224.48980
MINING INVESTMEN	T 995306.12245
PROCESSING INVESTMEN	T 1767755.10204
SOCIAL CAPITAL INVESTMEN	T 1772448.97959
PREPRODUCTION WORKING CAPITA	L 632804.69388
TOTA	L 6960851.63265
MINING COSTS PER TO	N 18.46774
PROCESS COSTS PER TO	N 8.37097
ADMINISTRATIVE COSTS PER TO	N 1.34194
TOTA	L 28.18065
DEBT-EQUITY RATI	0.0
EQUITY CAPITA	L 6960851.63265
BORROWED CAPITA	T 0.0
AVERAGE RATE OF RETURN	r: 19.74337 %
MARGINAL RATE OF RETURN	19.74337

Table 3.7 Financial Data Summary

	OPERATING PROFIT	CAPITAL TAX	INCOME TAX	MINING ROYALTY	TOTAL INVESTMENT	WORKING CAPITAL AND SALVAGE VALUE	Cash Flow
1	0.0	6328.05	0.0	0.0	3164023.47	0.0	-3170351.52
2	0.0	13921.70	0.0	0.0	3164023.47	632804.69	-3810749.87
3	5659886.33	13288.90	62208.33	1324329.28	0.0	949207.04	3310852.78
4	565 9886. 33	10757.68	1488762.43	1445756.04	0.0	0.0	2714610.19
5	56 59886. 33	8226.46	1529037.98	1542897.45	0.0	0.0	2579724.45
6	5659886.33	5695.24	2030942.33	1620610.57	0.0	0.0	2002638.19
7	·689223.84	0.00	203337.25	12812.2	0.0	-1582011.73	2055086.06

IRR IS 19.743374%

Table 3.8 Project Cash Flow

	PROJECT CASH FLOW	CAPITAL TAX	INCOME TAX	MINING ROYALTY	CASH FLOW
1	-3170351.52	6328.05	0.0	0.0	-3164023.47
2	-3810749.87	13921.70	0.0	0.0	-3796828.16
3	3310852.78	13288.90	62208.33	1324329.28	4710679.29
4	2714610.19	10757.68	1488762.43	1445756.04	5659886.33
5	2579724.45	8226.46	1529037.98	1542897.45	5659886.33
6	2002638.19	5695.24	2030942.33	1620610.57	5659886.33
7	2055086.06	0.00	203337.25	12812.27	2271235.58

IRR IS 41.504660%

NOTE: This cash flow assumes that the project would not have been undertaken by a private company so that taxes and royalties are not a cost to the project.

Table 3.9 Cash Flow After Adding Back Taxes and Royalties

return is 8.72% and the average is 16.7%

Note that although there are 1.2 million tons of material in the deposit, only 507,641 tons of it are ore. Had the project been financed entirely by equity capital, the calculated ore reserves would have been even less.

Table 3.10 shows the project cash flow and equity cash flow under the assumption of 50% borrowed capital. The rates of return are 16.7 and 21.4% respectively. This illustrates the leverage effect of borrowing capital which costs less than the project can yield.

3.4 The Sensitivity and Probabilistic Analyses

Analyses were carried out on the project shown in Appendix I to this Chapter. This project assumed that financing was by equity capital alone and that the grade-tonnage relationship was linear.

3.4.1 Sensitivity Analysis

Tables 3.11, 3.12 and 3.13 contain the results of 3 separate sensitivity tests done on each of the 11 factors affecting project profitability. In the first test, each parameter is changed by 5%. As the table shows, profitability is least sensitive to changes in the capital investment. Operating cost changes result in larger changes in the rate of return, with the largest changes occurring when factors affecting gross revenue are varied.

Doubling the amount of change in the capital cost parameters as in Table 3.12 and again in Table 3.13, results in roughly a doubling of the change in the rate of return. Doubling the change in factors affecting gross profit such as average ore grade or tonnage of ore processed more than doubles the change in the rate of return. This is because of the interaction between some of the parameters. This interaction affects 5 of the 11 variables. First, a change in the anticipated grade of concentrator feed leads to a significant change in the recovery rate. Second, a shortage of ore results in higher than normal average mining and processing costs.

•	
•	4
V	j
V	١
_	

	OPERATING PROFIT	CAPITAL TAX	INCOME TAX	MINING BOYALTY	TOTAL INVESTMENT	WORKING CAPITAL AND SALVAGE VALUE	CASH FLOW
1	0.0	6729.67	0.0	0.0	3235419.39		
2	0.0	15731.90	0.0	0.0		0.0	-3242149.06
3	5834213.76	13601,37	0.0	1370586.72	3235419.39	647083.88	-3898235.17
4	5834213.76	9333.27	1300744,94		0.0	970625.82	3479399.85
5	5834213.76	4853.13	1527953.60	1494699.77	0.0	0.0	3029435.78
6	24227.83			1593990.21	0.0	0.0	2707416.82
		0.0	0.0	0.0	0.0	-1617709.69	1641937.53
			IRR I	S 16.652563%			
		PROJECT CASH FLOW	BORROWED CAPITAL	DBBT REPAYMENT	interest On dest	CASH FLOW	
1		-3242149.06	1617709.69	0.0	0.0	-1624439.37	1
2		-3897588.08	1941251.63	0.0	0.0	-1956336 _• 45	
3		3479399.85	0.0	1227035.59	318675.87	1933688.39	1
4		3029435.78	0.0	1325198.44	220513.02	·	
5		2707416.82	0.0	1431214.32		1483724.32	
6		1641937.53	0.0		114497.15	1161705.36	
			0.0	0.0	0.0	1641937.53	
			TRR 1	N 21 122407			

IRR IS 21.432497%

NOTE: 1 EQUITY CASH FLOW IS THAT AFTER ADDING BORROWED CAPITAL AND SUBTRACTING DEBT REPAYMENT AND INTEREST.

2 THE INTEREST RATE IS 8.00%

Table 3.10 Project Cash Flow and Equity Cash Flow Assuming Borrowed Capital

The magnitude of the change in the rate of return can be used to indicate these factors which require special care when values are determined. As these tables suggest, ore grade, concentrator recovery rates, and the net smelter return are the most important parameters.

3.4.2 The Probabilistic Analysis

The results of the probabilistic analysis are shown in Figure 3.9.

500 simulations were carried out using the parameter variabilities contained in Table 3.4. Most of the factors were assumed to have a value distribution that was skewed. As the rate of return distribution shows, the mean rate of return of 16.7% is well below the point estimate. The mean or expected return is the proper one to use in project evaluation. Note that the point value (or greater) for the rate of return of 19.7% could be expected to occur only 1% of the time. In other words, it is most probable that the project would not achieve the optimum rate of return that was originally calculated. An important consequence of using the expected rate of return determined here is that the risk factor in the minimum acceptable return for the project can be reduced. This has important implications for total calculated ore reserves and the optimum size of project.

As was the case with the sensitivity analysis, there is interdependence between (i) the concentrator recovery rate and average ore grade, and (ii) the quantity of material processed per year and average mining and processing costs. The effect of this interdependence has been to increase the difference between the calculated point value for the rate of return and the expected value. In one series of trials, the increase amounted to a little over one half of one percent.

: ·	PARAMETER CHANGE	IRR CHANGE	RATE OF RETURN
AVERAGE ORE GRADE	-5.0%	-10.37%	17.69%
RECOVERY RATE	-5.0%	-10.00%	17.76%
net value	-5.0%	-10.00%	17.76%
ORE TONNAGE	-5.0%	-9.76%	17.81%
PREPRODUCTION EXPLORATION	5.0%	-0.08%	19.72%
PREPRODUCTION DEVELIPMENT	5.0%	-1.07%	19.52%
MINE INVESTMENT	5.0%	-0.63%	19.61%
PROCESSING INVESTMENT	5.0%	-1.11%	19.52%
SOCIAL CAPITAL	5.0%	-1.11%	19.52%
MINE OPERATING COSTS	5.0%	-3.02%	19.14%
PROCESS OPERATING COSTS	5.0%	-1.37%	19.47%

OPTIMUM RETURN 19.74

Table 3.11 Sensitivity Analysis #1

	PARAMETER CHANGE	IRR CHANGE	RATE OF RETURN
AVERAGE ORE GRADE	-10.0%	-21.45%	15.50%
RECOVERY RATE	-10.0%	-20.66 %	15.66%
NET VALUE	-10.0%	-20 .66%	15.66%
ORE TOWNAGE	-10 .0%	-20.17%	15.75%
PREPRODUCTION EXPLORATION	10.0%	-0.16%	19.70%
PREPRODUCTION DEVELOPMENT	10.0%	-2.12%	19.32%
HINE INVESTMENT	10.0%	-1.24	19.49%
PROCESSING INVESTMENT	10.0%	-2.19%	19.30%
SOCIAL CAPITAL	10.0%	-2.20%	19.30%
NINE OPERATING COSTS	10.0%	-6.1%	18.51%
PROCESS OPERATING COSTS	10.0%	-2.74	19.19%

OPTIMUM RETURN 19.74

Table 3.12 Sensitivity Analysis #2

	PARAMETER CHANGE	IRR CHANGE	RATE OF RETURN
AVERAGE ORE GRADE	-20.0%	-49.79%	9.91%
RECOVERY RATE	-20.0%	-47.74%	10.31%
NET VALUE	-20.0%	-47.74%	10.31%
ORE TONNAGE	-20.0%	-46.50%	10.56%
PREPRODUCTION EXPLORATION	20.0%	0.32%	19.67%
PREPRODUCTION DEVELOPMENT	20.0%	-4.16%	18.91%
MINE INVESTMENT	20.0%	-2.46%	19.25%
PROCESSING INVESTMENT	20.0%	-4.41%	18.86%
SOCIAL CAPITAL	20.0%	-4.42%	18.8 6%
MINE OPERATING COSTS	20.0%	-12.91%	17.19%
PROCESS OPERATING COSTS	20.0%	-5.57%	18.63%

OPTIMUM RETURN 19.74

Table 3.13 Sensitivity Analysis #3

7%	OCCURS	0.20%	#
8%	OCCURS	0.80%	*
9%	OCCURS	1.20%	*
10%	OCCURS	1.60%	**
11\$	OCCURS	2.40%	**
12%	OCCURS	5.60%	*****
13%	OCCURS	5.20%	****
14\$	OCCURS	5.40%	****
15%	OCCURS	9.20%	******
16%	OCCURS	12.40%	********
17%	OCCURS	12.20%	********
18%	OCCURS	14.40%	********
19%	OCCURS	10.80%	*******
20%	OCCURS	7.40%	*****
21\$	OCCURS	5.40%	****
22%	OCCURS	3.00%	***
23%	OCCURS	1.40%	*
24\$	OCCURS	0.80%	*
25%	OCCURS	0.40%	•
26%	OCCURS	0.20%	*
		1]

NUMBER OF SIMULATIONS 500

MEAN RATE OF RETURN 16.74111\$

Figure 3.9 Expected Rate of Return Distribution

APPENDIX I

COMPUTER PRINTOUT

Grade-Tonnage Relationship - Linear with Constraint

Graphs of Functions - Yes

Financing - Equity Capital Only

Sensitivity Analysis - Yes

Probabilistic Analysis - Yes

Incremental Investment - No

ANNUAL CAPACITY (TONS 10005)

••••••••••

••••••••••••••

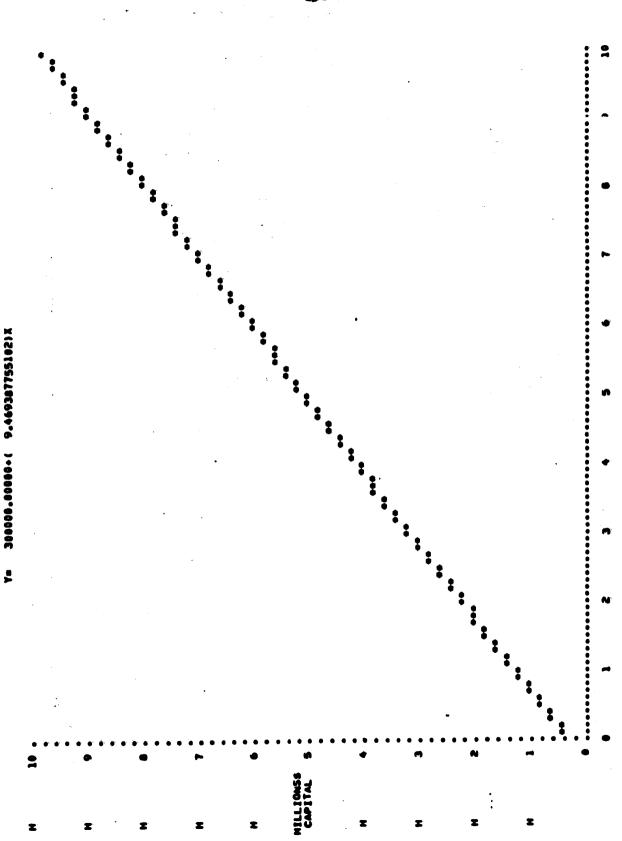
1500.00000+(0.966530612245)X

PREPRODUCTION EXPLORATION

-

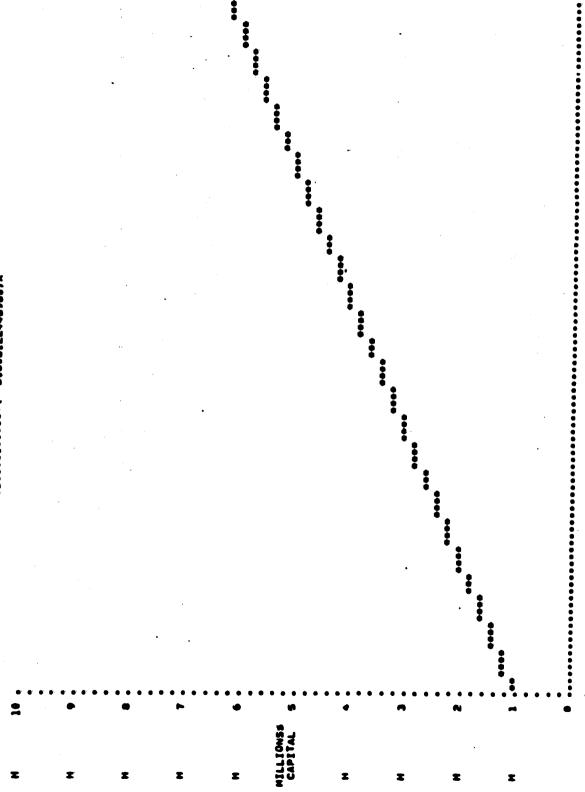
MILLIONSS CAPITAL

MILL IONSS CAPITAL


¥

2

MILL IONSS CAPITAL



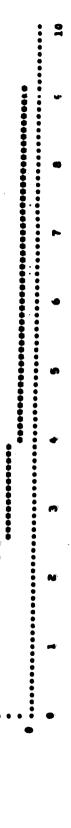
PROCESSING INVESTMENT

ANNUAL CAPACITY (TONS 10005)

MINING COSIS/PER TON1 12.5000001 925000.00001/X

2

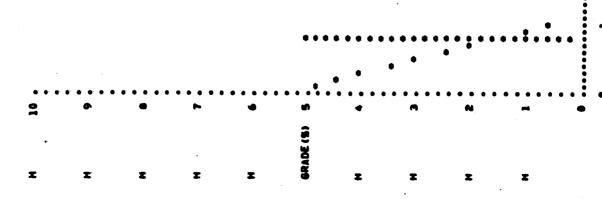
COST(\$) 50


AMMUAL CAPACITY (TOMS 10005)

COST(\$1) 50

ANWUAL CAPACITY (TONS 16005)

GRADE (%)



AVERAGE ORE GRADE

MINERAL RESERVES (TONS 10006)

MINERAL RESERVES (TONS 10006)

0.05355+(-0.00000048112)X

0.8948 0.0 0.0800 0.0808 750008. 20		•	N	•	n	•
	750000. 20	0.000		ė	:	?

	,	COST CARDS		
100000.	70000	1100000	140000.23.0015.00	.00510
1000000	110000.	200000.	1900000.18.00 0.00 175000.	175000.
3300000	1000001	360000	200000.15.00 3.00 350000.	35000.
	ř	MINERAL BESERVE DATA	LFAVE DATA	

17.000

27000.0000

0.05250

465591.00000

PHOJECT ITERATIONS

PREPRODUCTION	PRIMARY	SECONDARY	TOTAL	PROJECT	INTERNAL	MARGINAL
PERIOD	ORE LIFE	ORE LIFE	LIFE	CAPACITY	RATE OF RETURN	RATE OF RETURN
2	4	0	6	125000.00	18.71351	9.0
Ž	5	0	7	125000.00	17.95553	0.0
2	3	G	5	125000.00	17.14254	0.0
Ž	•	0	6	135000.00	19.10077	0.0
2	•	0	6	145000.00	19.32668	0.0
2	•	Ó	6	155000.00	19.41545	0.0
2	•	Q	6	165000.00	19.36534	0.0
Ž	4	Ó	6	145000.00	19.32668	0.0
2	4	0	6	155000.00	14.41545	0.0
2	•	Q	6	165000.00	19.38534	0.9
2	•	0	6	145000.00	19.32668	0.0
2	•	1	7	155000.00	19.74337	0.0

DETAILED DATA FOR OPTIMUM RETURN

PRODUCTION DATA

	TONS OF ORE	AVERAGE GRADE	CUTOFF GRADE	RECOVERABLE METAL (LBS)	CONCENTRATE VALUE (S)
1	•.•	0.0	0.0	•.•	0.0
2	•••		•.0	•••	0.0
3	155000,00000	3.86375%	2.372296	11207472.05261	10027006.33407
•	155000.0000	3.86375%	2.372298	11207472.05261	10027006.33407
5	155000.00000	3.86375%	2.372296	11207472.05261	10027686.33487
6	155000.0000	3.863758	2.372298	11207472.05261	10027866.33407
7	130000.00000	2.05956%	1.731500	4864719.43364	4352707.71325

PRIMARY ORE PRODUCTION 62000.0TONS
TOTAL ORE PRODUCTION 75000.0TONS

- 140 .

AVERAGE RATE OF RETURN: 19.743378

MARGINAL RATE OF RETURN: 19.743376

EXPLORATION COSTS
PREPRODUCTION DEVELOPMENT COSTS
MINING INVESTMENT
PROCESSING INVESTMENT
SOCIAL CAPITAL INVESTMENT
PREPRODUCTION WORKING CAPITAL 632864-93388
TOTAL 6960651-63265

MINING COSTS PER TON 18.46774
PROCESS COSTS PER TON 6.37097
ADMINISTRATIVE COSTS PER TON 1.36194
TOTAL 26.18065

DEST-EQUITY RATIO
EQUITY CAPITAL 0960851.03265
BORROWED CAPITAL 0.0

MANNUAL CAPITAL THESTHENT

*	PREPRODUCTION EXPLORATION	PREPRODUCTION DEVELOPMENT	MINING INVESTMENT	PROCESSING INVESTMENT	SOCIAL CAPITAL INVESTMENT	WORKING CAI	
1	75656.12	# 820612.24	497653.06	883877.55	886224.49	0.0	3164023.47
S	75656.12	820612.24	497653.06	883877.55	886224.49	632804.69	3796828.16
3	0.0	0.0	0.0	0.0	•.0	949207.04	949207.04
•	0.0	0.0	0.0	0.0	•.•	0.0	0.0
5	0.0	0.0	0.0	•••	0.0	•.0	0.0
6	0.0	0.0	0.0	•.0	•.0	0.0	•.0
7	0.0	0.0	0.0	0,0	0.0	-1582011.73	-1582011.73

BOYALTY MINIMIZATION

	PRUFIT AFTER EXPLOR	ANNUAL DEPRECIATION	PROCESSING ALLOWANCE	ROYALTY Profit	PROFIT BASE (18%)	BASIC ROYALTY	INCREMENTAL ROYLTY	TOTAL
ļ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ş	0.0	0.0	0.0	6.0	410426.2653]	0.0	0.0	0.0
3	5659886.33487	1265609.38776	141420.40816	4252856.53895	020652.53061	123127.87959	1201201.40292	1324329,28251
4	5659886.33487	1012487.51020	141420.40816	4505978.41650	656682.02449	98502.30367	1347253.73720	1445756.04048
5	5659886.33487	809990.00816	141420.40816	4708475.91854	525345,61959	78801.84294	1464095.60463	1542897.44757
6	5659886.33487	647992.00653	141420.40816	4870473.92017	420276.49567	63041.47435	1557569.09858	1620610.572+3
7	689223.84226	516393.60522	85415.11853	85415,11853	336221.19654	12812.26778	0.0	12012.26770

	YEARLY TOTAL INVEST	MINING AND SERVICE INVEST	CUMULATIVE PROCESS INVEST	ANNUAL Deprec rate	ANNUAL DEPRECIATION	TOTAL Undeprec Balance	MINING UNDEPREC BALANCE	DISCOUNTED ROYALTY
1	3164023,46939	2280145.91837	883677.55102	0.0	0.0	3164023,46939	2200145.91837	0.0
2	3164023.46939	2280145.91837	1767755.10204	0.0	0.0	6328046.93878	4560291.83673	0.0
3	•.•	0.0	1767755.10204	0.20000000000	1265609.38776	5062437.55102	3648233.46939	1084558.27235
•	0.0	0.0	1767755.10204	0.200000000000	1012487.51020	4049950.04082	2914586.77551	1092970.31416
5	0.0	0.0	1767755.10204	0.20000000000	809990.00816	3239960.03265	2334869.42041	1076730.09716
6	0.0	0.0	1767755.10204	0.200000000000	647992.00653	2591968.02612	1867895.53633	1044010.58422
7	0.0	0.0	1767755.10204	0.20000000000	518393.60522	2073574.42090	1494316.42906	7619.18787

- 144 -

CAPITAL TAX CALCULATION

	UNAMORTIZED DEBT	EQUITY Capital	ACCUMULATED	CAPITAL TAX
j	0.0	3164023.46939	0.0	6328.04694
Ş	0.0	6328046.93878	632804.69388	13921.70327
3	0.0	5062437.55102	1582011.73469	13288.89857
•	0.0	3796828.16327	1582011.73469	10757.67980
5	0.0	2531218.77551	1582011.73469	8226.46102
6	0.0	1265609.38776	1582011.73469	5695.24224
7	0.0	0.0	0.0	0.0

INCOME TAX CALCULATION

	GROSS PROFIT AFTER CAPITAL TAX	ACCELERATED Capital Cost Allowance	NORMAL Capital cost Allohance	RESOURCE ALLOWANCE	INTEREST ON LONG TERM DEAT	EXPLORATION DEDUCTION	PREPROD-DEVELOP ALLOWANCE	DEPLETION ALLOWANCE	\$ 1
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ŕ
3	5646547.43630	4535510.20408	0.0	277771.80805	0.0	151312.24490	492367.34694	47408.95808	3
•	5649128.65507	0.0	0.0	1+12282.16377	0.0	0.0	344657.14286	973047.33711	i
5	5651659.87385	0.0	0.0	1412914.96846	0.0	0.0	2+1260.00000	999371.22635)
6	5654141.09262	0.0	9.0	1413547.77316	0.0	0.0	168882.00000	89521.45805	<u> </u>
7	689223.84228	0.0	0.0	172305.96057	0.0	0.0	118217.40000	0.0	

	AXABLE PROFIT FTER PRIOR LOSSES)	INCOME Tax	UNDEP-BALANCE ACCEL-CC1	NORMAL CCA	UNAMORTIZED Debt	CUMULATIVE EXPLORATION	UNDEP-BALANCE PREPRO-DEVELOP	UNDEP-BALANCE Depletion
1	0.0	0.0	2267755.10204	0.0	0.0	75656.12245	620612,24490	1054674.48980
2	0.0	0.0	4535510.20408	0.0	0.0	151312.24490	1641224.48980	2109348.97959
3	121977.12404	62208.33326	0.0	0.0	0.0	0.0	1146857.14286	2061940.02151
•	2919142.01134	1488762.42578	0.0	0.0	0.0	0.0	\$3\$230. 00000	1088892.68440
5	2998113.67904	1529037.97631	0.0	0.0	0.0	0.0	562940.00000	69521.45805
6	3982239.86142	2030942.32932	0.0	0.0	0.0	0.0	394058.00000	0.0
7	398700.48171	203337.24567	0.0	0.0	0.0	0.0	275840.60000	0.0

١,

INTERNAL RATE OF RETURN

PROJECT CASH FLOW

	OPERATING Profit	CAPITAL Tax	INCOME TAX	MINING ROYALTY	TOTAL INVESTMENT	WORKING CAPITAL AND SALVAGE VALUE	CASH Flow
ì	0.0	6328.04694	0.0	0.0	3164023.46939	0.0	-3170351.51633
2	0.0	13921.70327	0.0	9.0	3164023.46939	632804.69388	-3819749.86653
3	5659886.33487	13288.89857	62208.33326	1324329.28251	0.0	949207.04082	3310852.77971
•	5659886.33487	10757.67980	1488762.42578	1445756.04088	0.0	0.0	2714610.18841
5	5659886.33487	8226.46102	1529037.97631	1542897.44757	0.0	0.0	2579724.44997
6	5659886.33487	5695.24224	2030942.32932	1620610.57293	0.0	0.0	2002638.19038
7	489223.84228		203337.24567	12812.26778	0.0	-1582011.73469	2055086.06352

IRR IS 19.7433748

NOTE: 1 THE CALCULATION IS STOPPED IF THE IRR IS LESS THAN ZERO OR GREATER THAN 100%.

PUBLIC CASH FLOW!

	PROJECT Cash Flow	CAPITAL TAX	INCOME Tax	MINING ROYALTY	CASH FLO#
1	-3170351.51633	6328.04694	0.0	0.0	-3164023.46939
2,	-3810749.66653	13921.70327	0.0	0.0	-3796828.16327
3	3310852.77971	13288.99857	62208.33326	1324349.28251	4710679.29405
•	2714610.18841	10757.67980	1488762.42578	1445756.04088	5659886.33487
5	2579724.44997	8226.46102	1529037.97631	1542897.44757	5659886.33487
6	2002638.19038	5695.24224	2030942.32932	1620610.57293	5659886.33487
7	2055086.06352	6.0	203337.24567	12812.26778	2271235.57697

IRR IS 41.504660%

- NOTE: 1 THE CALCULATION IS STOPPED IF THE IRR IS LESS THAN ZERO OR GREATER THAN 100%.
 - 2 PUBLIC CASH FLOWS ASSUMES THAT THE PROJECT WOULD NOT HAVE BEEN UNDERTAKEN BY
 - A PRIVATE COMPANY SO THAT TAXES AND ROYALTIES ARE NOT A COST TO THE PROJECT.

EQUITY CASH FLOW

	PROJECT CASH Flow	BORROWED Capital	DEBT REPAYMENT	INTEREST ON DEBT	CASH FLOW
1	-3170351.51633	0.0	0.0	0.0	-3170351,51633
2	-3810749.86653	0.0	0.0	0.0	-3810749.86653
3	3310852.77971	9.0	0.0	0.0	3310852.77971
•	2714610.18841	0.0	0.0	0.0	2714610.18841
5	2579724,44997	0.0	0.0	0.0	2579724.44997
6	2002638.19038	0.0	0.0	.0.0	2002638.19038
7	2055086.06352	0.0	0.0	0.0	2055086.06352

IRR IS 19.7433749

- MOTE: 1 THE CALCULATION IS STOPPED IF THE IRR IS LESS THAN ZERO OR GREATER THAN 100%.
 - 2 EQUITY CASH FLOW IS THAT AFTER ADDING BORROWED CAPITAL AND SUBTRACTING DEBT HEPAYMENT AND INTEREST.
 - 3 THE INTEREST RATE IS 8.00%.

YABIABILITY DATA 500	1.10000	1.05000	1.2000	1.05000	1.2000	1.2000	1.2000	1.2000	1.3000	1.10000	1.1000
VABIABLE	• • • • • • •	0.9000	0.000	0.000	•••	0.9500	• . 9500	. 9500	0.9500	•• 95000	0.0500

E RATE OF RETURN

	PARAMETEH CHANGE	INN CHANGE	RATE OF RETURN
AVERAGE ORE GRAD	E -5.0%	-10.37%	17.687324
RECOVERY RAT	E -5.0%	-10.00%	17.762004
NET VALU	E -5.0%	-10.004	17.702004
OPE TONNAS	E -5.0*	-9.76%	17.808415
PHEPRODUCTION EXPLONATION	N 5.08	-0.96%	19.718984
PHEPRODUCTION DEVELOPMEN	T 5.0%	-1.076	19.52326*
MINE INVESTMEN	T 5.0%	-0.632	19.0111#6
PROCESSING INVESTMENT	T 5.0%	-1.116	19.51626%
SOCIAL CAPITA	L 5.0%	-1.116	19.51570+
MINE OPERATING COST	S 5.0%	-3.02*	19.13789%
PROCESS OPERATING COST	5.06	-1.37%	19.465244

OPTIMUM RETURN 10.72

SENSITIVITY ABALYSIS # 1

- 152

153 -

SENSITIVITY ANALYSIS . ?

	PARAMETER CHANGE	IHH CHANGE	HATE UF RETURN
AVERAGE THE GRAD	E -10.0±	-21.454	15.50110*
HECOVERY HAT	E -10.04	-20.66%	15.65/304
NET VALUE	E -10.0%	-20.66%	15.057304
ORE TONNAG	E -10.0s	-20.175	15.753705
PHEPRODUCTION EXPLONATION	N 10.0%	-0.100	19.703345
PREPRODUCTION DEVELOPMENT	T 10.0%	-2.124	14.315954
MINE INVESTMENT	T 10.0%	-1.24%	19.48904%
PROCESSING INVESTMENT	T 10.0%	-2.198	19,302095
SOCIAL CAPITAL	10.04	-2.204	19.30091%
MINE OPERATING COST	5 10.0%	-6.198	18.512744
PROCESS OPERATING COSTS	5 10.05	-2.74%	19.144034

OPTIMUM RETURN 19.73

154 -

SENSITIVITY ANALYSIS # 3

	PARAMETER CHANGE	IHH CHARGE	RATE OF HETUNA
AVERAGE ORE GHADI	E -20.0s	-49.744	9.909156
RECOVERY RATE	-20.04	-47.74%	10.312364
MET VALUE	-20.0%	-47.74%	10.312364
ORE TONNAGE	-20.0s	-46.50%	10.558774
PREPRODUCTION EXPLORATION	20.08	-0.32*	19.672164
PREPRODUCTION DEVELOPMENT	20.0%	-4.168	18.913065
MINE INVESTMENT	20.05	-2.40%	19.248664
PROCESSING INVESTMENT	20.05	-4.41%	18.86403%
SOCIAL CAPITAL	20.05	-4.42%	18.861485
MIME OPERATING COSTS	20.0%	-12.91%	17.187656
PROCESS OPERATING COSTS	20.05	-5.57%	18.634686

OPTIMUM RETURN 19.73

```
7% OCCURS
            0.20% 19
8% OCCURS
            £08.0
94 OCCURS
            1.20% (*
10% OCCUPS
            1.60%
11% OCCURS
            2.40% 100
12%
   OCCURS
            5.60% | *****
13% OCCURS
            5.20%
145
   OCCURS
            5.46%
15% OCCURS
           9.205 |-----
   OCCURS 12.404
16%
175 OCCURS 12.20%
18% OCCURS 14.40%
19% OCCURS 10.80%
20% OCCURS
            7.40%
21% OCCURS
            5.40%
22% OCCURS
            3.00%
235 OCCURS
            1.40% |*
24% OCCUHS
            0.80% 10
25% OCCURS
            0.40% 1*
26% OCCURS
            *I #05.0
```

MEAN RATE OF RETURN 16.741119

RANDOM NUMBER SEED 17

- 155 -

APPENDIX II

COMPUTER PRINTOUT

Grade-Tonnage Relationship - Log-Normal

Graphs of Functions - Mineral Reserves Only

Financing - 50% Debt Capital

Sensitivity Analysis - No

Probabilistic Analysis - No

Incremental Investment - Yes

INPUT DATA

TWO OPTIONS CARDS

0. 8.00 0.8948 0.5000 0.0600 0.0800

COST CARDS

1400000.23.0015.00 1100000. 700000 1100000.

10000001 1900000. 3300000

86500. 170000.

87500. 175000. 350000.

2000000

1900000.18.00 8.00

28000000.15.00 3.00

3600000

1800000.

1200000.00000 0.0

0.020.0

MINEMAL RESERVE DATA

340000.

0.29996.

0.27996.6

-0.02000)LN(X)

· •

. .

.

.

GRADE (%)

I

I

I

T

I

. ;

MINE

PROJECT ITERATIONS

PREPRODUCTION	PRIMARY	SECONDARY	TOTAL	PROJECT	INTERNAL	MARGINAL
PERIOD	ORE LIFE	ORE LIFE	LIFE	CAPACITY	RATE OF RETURN	
2 ,	5	0	7	150000.00	12.10505	0.0
2	6	Ö	8	150000.00	8.82324	6.0
2	4	Ó	6	150000.20		0.0
ź	3	ő	Š	150000.00		0.6
2	2	Ó		150000.00		0.0
2	3	Ŏ	Š	160000.00		0.0
2.	3	ă	Ę	140000.00		0.0
2	3	ă	2	130000.00	0	0.0
5	3	Ä	ž	120000.00		0.0
2	3	ă,	ž	110006.00		0.0
2	T T			120600.00		
5	•	<u> </u>	7	120000.00		6. 0
2	i	Ž.	7			0.0
•		<u>.</u>		130000.00		0.0
E	3	Ÿ	>	110000.00		0.0
Ζ .	3	•	5	130000.00	17.53082	16.53693
2	3	0	5	140000-00	17.35718	13.84800
2	3	6	5	150000.00	17.08724	11.24092
2	3	•	5	160000.00	16.73973	8.72105
2	3	•	5	170000.00	16.32922	6.25984
2	3	1.	6	160000.00		8.72105

HE CALLED DAY FOR OP THUM RETURN

PRODUCTION DATA

	TONS of ore	AVERAGE GRADE	CUTOFF GRADE	HECOVERABLE HETAL (LBS)	CONCENTRATE VALUE (\$)
1	0.0	0.0 \$	0.0 %	0.0	0.0
2	0.0	0.0 5	0.0	0.0	0.0
3	160000.00000	3.83258%	1.832585	11472717.25255	10265213.76172
•	160000.00000	3.632566	1.032565	11472717.25255	10265213.76172
5	160000.00000	3.832584	1.032566	11472717.25255	10265213.76172
•	27640.72543	1,77607%	1.720618	882596.45110	789703.17462

PRIMARY ORE PRODUCTION 480000.0TONS
TOTAL ORE PRODUCTION 507640.7TONS

EINANCIAL DATA

AVERAGE	RATE	0F	RETURN:	16.65256%
MARGINAL	RATE	OF	RETURN:	8.721054

	EXPLOR	ATION	COSTS	156144.89796
PREPRODUCTION	DEVELO	PHENT	COSTS	1684489.79592
	MINING	INVE	STMENT	1016122-44898
PRO	CESSING	INVE	STHENT	1815102.04022
SOCIAL	Capital	INVE	STMENT	1794974.5014.
PREPRODUCTIO	DN WORK	ING C	APITAL	647083.87755
			TOTAL	
MI	NING CO	STS P	ER TON	10.28125
	CESS CO			

PROCESS COSTS PER TON 8.09375
ADMINISTRATIVE COSTS PER TON 1.31675
TOTAL 27.69375

DEST-EQUITY RATIO 0.50000 EQUITY CAPITAL 3558961.32653 BORROWED CAPITAL 3558961.32653

ANNUAL CAPITAL INVESTMENT

	PREPRODUCTION EXPLORATION	PREPRODUCTION DEVELOPMENT	MINING INVESTMENT	PROCESSING INVESTMENT	SOCIAL CAPITAL INVESTMENT	WORKING CAP AND SALVAGE	·
1	78072.45	842244,90	508061.22	907551.02	899489.80	0.0	3235419.39
2	78072.45	842244,90	508061.22	907551.02	899489.80	647083.88	3882503.27
3	0.0	0.0	0.0	0.0	0.0	970625.82	970625.82
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0	0.0	-1617709.69	-1617709.69

ROYALTY MINIMIZATION

	PROFIT AFTER EXPLOR	ANNUAL DEPRECIATION	PROCESSING ALLOWANCE	PROFIT	PROFIT BASE (18%)	BASIC ROYALTY	INCREMENTAL ROY.LTY	TOTAL ROYALTY
1	•.•	0.0	0.0	0.0	•.0	•.•	(.0	•.•
2	0.0	0.0	0.0	0.0	419814.30612	•.•	•.•	• •••
3	5834213.76172	1294167.75510	145208.16327	4394837.84335	636032.61224	125704.09104	124460:.03069	1370506.72272
•	5634213.76172	1035334.20408	145208.16327	4653671.39437	670426,88980	100563.91347	1394135.85660	1494699.77007
5	5034213.76172	020267.36327	145208.16327	4860738.23519	536340.87184	00451.13070	1513539.67717	1593990.20795
6	24227.83474	24227.83474	•.0	0.0	429072.69747	•.•	•.•	•.•

	YEARLY Total invest	MINING AND SERVICE INVEST	CUMULATIVE PROCESS INVEST	ANNUAL Deprec rate	ANNUAL DEPRECIATION	TOTAL Undeprec Balance	MINING UNDEPREC BALANCE	DISCOUNTED ROYALTY
L	3235419.38776	2327868.36735	907551.02041	0.0	0.0	3235419.38776	2327863.36735	0.0
2	3235419.38776	2327868.36735	1815102.04082	0.0	0.0	6470838.77551	4655736.73469	0.0
3	0.0	0.0	1815102.04082	0.20000000000	1294167.75510	5176671.02041	3724589.38776	1122440.76133
•	0.0	0.0	1815102.04082	0.20000000000	1035334.20408	4141336.81633	2979671.51020	1129971.05395
5	0.0	0.0	1815102.04082	0.20000000000	828267.3632	3313069.45306	2383737.20816	1112385.81293
6	0.0	0.0	1015102.04062	0.007312806169	24227.83474	3288841.61833	2366305.40000	0.0

CAPITAL TAX CALCULATION

	UNAMORTIZED DEBT	EQUITY CAPITAL	ACCUMULATED WORKING CAPITAL	CAPITAL Tax
ĵ	1747126.46939	1617709.69388	•.•	6729,67233
2	398344#.35020	3235419.38776	647083.87755	15731.90323
3	2756412.75687	24265 64.540 82	1617709.69388	13601.37398
•	1431214.31607	1617709,69366	1617709,69300	9333.2674]
5	-0.00000	88854.84694	1617709.69300	4053.12900
•	•••	•••	•.•	•.•

INCOME TAX CALCULATION

	GROSS PROFIT AFTER CAPITAL TAX	ACCELERATED CAPITAL COST ALLOBANCE	NORMAL Capital cost Allowance	RESOURCE ALLOWANCE	INTEREST ON LONG TEAM DEAT	EXPLORATION DEDUCTION	PREPROD-DEVELOP ALLOGANCE	DEPLETION ALLOWANCE
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0		
3	5820012.38773	4459391.58521	0.0	340305.20063		-	G.0	0.0
4	503484A 4040	•		349303.20063	318675.86802	165763.42367	536476.31020	0.0
•	5824880.49431	456033.06785	0.0	1342211.85661	220513.02055	0.0	375533.41714	857547.28304
5	5829300.63264	0.0	0.0	1457340.15816	114497.14529	-		031241.50384
6	24227 85474			0.0000000000000000000000000000000000000	114431.14253	0.0	262873.39200	998662.48430
•	24227.83474	0.0	0.0	6056.95868	0.0	0.0	18170.87605	٥.٨

. (TAXABLE PROFIT AFTER PRIOR LOSSES)	INCOME TAX	UNDEP-BALANCE ACCEL-CCA	UNDEP-BALANCE NORMAL CCA	UNAHORTIZED DEBT	CUMULATIVE EXPLORATION	UNDEP-BALANCE PREPRO-DEVELOP	UNDEP-BALANCE DEPLETION
1	0.0	0.0	2407706.12245	0.0	1747126,46939	81195.34694	875934.69388	1678473.12925
2	0.0	0.0	4915424.65306	0.0	3983448.35020	165763,42367	1788254.36735	2156946.25650
3	-0.0000	0.0	456033.06785	0.0	2756412.75687	0.0	1251778.05714	2156946.25850
•		1300744.93951	0.0	0.0	1431214.31607	0.0	876244.64000	1299298.97547
5	2995987.45289	1527953.60098	0.0	0.0	-0.0000	0.0	613371.24800	300636.49117
•	•.•	0.0	0.0	0.0	0.0	0.0.	595200.37195	300636.49117

INTERNAL RATE OF PETURN

PROJECT CASH FLOW

	OPERATING PROFIT	CAPITAL TAX	INCOME Tax	MINING Royalty	TOTAL INVESTMENT	#ORKING CAPITAL AND SALVAGE VALUE	CASH Flow
1 .	0.0	6729.67233	0.0	0.0	3235419.36776	0.0	-3242149.06008
2	0.0	15731.90323	G.Ç	0.0	3235419.36776	647083.87755	-3898235.16854
3	5834213.76172	13601.37398	0.0	1370586.72272	0.0	970625.81633	3479399.84868
•	5834213.76172	9333.26741	1300744.93951	1494699.77007	0.0	0.0	3029435.78473
5	5834213.76172	4853.12908	1527953.60098	1593990.20795	0.0	0.0	2707416.62371
6	24227.83474	0.0	0.0	0.0	0.0	-1617709.69388	1641937.52861

IRR IS 16.652563%

NOTE: 1 THE CALCULATION IS STOPPED IF THE IRR IS LESS THAN ZERO OR GREATER THAN 100%.

PUBLIC CASH FLOW!

PROJECT CASH Flow	CAPITAL TAX	INCOME TAX	MINING Royalty	CASH Flow
-3242149.06008	6729.67233	0.0		-3235419.38776
-3898235.16854	15731.90323	0.0	0.0	-3682503.26531
3479399.84868	13601.37394	0.0	1370586.72272	4863587.94539
3029435.70473	9333.26741	1300744.93951	1494699.77007	5634213.76172
2787416.82371	4853.12908	1527953.60098	1593990.20795	5834213.76172
1641937.52861	0.0	0.0	0.0	1641937.52861

IRR IS 37.032534%

NOTE: 1 THE CALCULATION IS STOPPED IF THE IRP IS LESS THAN ZERO OR GREATER THAN 100%.

2 PUBLIC CASH FLORI ASSUMES THAT THE PROJECT WOULD NOT HAVE BEEN UNDERTAKEN BY

A PRIVATE COMPANY SO THAT TAKES AND ROYALTIES ARE NOT A COST TO THE PROJECT.

EQUITY CASH FLOW

	PROJECT Cash Flow	RORROWED Capital	DEBT REPAYMENT	INTEREST ON DEBT	CASH Flo#
	-3242149.06008	1617709.69388	0.0	0.0	-1624439.36620
2	-3898235.16854	1941251.63265	0.0	0.0	-19569#3.53588
3	3479399.84868	0.0	1227035.59334	318675.86802	1933688.38733
	3029435.78473	0.0	1325198.44080	220513.02055	1483724.32337
	2707416.82371	0.0	1431214.31607	114497.14529	1161705.36236
S	1641937.52861	0.0	0.0	0.0	1641937.52861

IRR IS 21.432497%

- NOTE: 1 THE CALCULATION IS STOPPED IF THE IRR IS LESS THAN ZERO OR GREATER THAN 100%.
 - 2 EQUITY CASH FLOW IS THAT AFTER ADDING BORROWED CAPITAL AND SUBTRACTING DEBT REPAYMENT AND INTEREST.
 - 3 THE INTEREST RATE IS 8.00%.

CHAPTER 4

SOG EXTENSIONS

4-1 Introduction

A computer model capable of determining the optimum size of a project needed to develop a mineral deposit also has applications in the analysis of a variety of related economic problems. This Chapter will suggest some problems the model could aid in solving. Since modifications to the model would be necessary for most tasks, no attempt will be made here to actually demonstrate any of the suggested analysis. This is left for other monographs and perhaps other economists.

The most important information needed for the analyses proposed here is the capital and operating costs data applicable to both the region and the kind of mineral deposit being evaluated. This information could be obtained from two sources. The first source would be producers already in the region or in similar regions who are mining the desired mineral. Such information would have to be updated and modified to reflect current costs and possible changed geographic location. (The assembling of this information is a separate study in itself).

The second source of information would be from a consulting firm which specializes in the evaluation of mining projects of the kind under consideration. The firm would be asked to undertake feasibility studies of a range of project sizes that would mine and process the target mineral in the desired region. The information might be costly initially but could serve as the basis for a variety of economic studies on a region for a considerable period of time.

4.2 Economic Problems for the Model

The problems are discussed in order of increasing difficulty for the model. As presented here, the most difficult problems are those

requiring the most modifications to the model. Six kinds of problem are discussed.

4.2.1 Target Grade and Tonnage of a Deposit for a Region

The model is normally provided with data on a mineral deposit to be evaluated. Given the capital and operating costs which would be applicable for a deposit in that region, the optimum rate of production is then calculated. This procedure can be reserved in that if information exists on the costs of mining and processing in a region, it is possible to hypothesize a mineral deposit of some size and grade and then determine if that hypothetical mine is profitable or not. Grade and tonnage can both be adjusted until a profitable deposit is outlined. This procedure can be continued so that a family of profitable deposits is determined, each of different size and grade. The target deposits are those that are most likely to occur in a region based on experience in that region and in regions of a similar kind.

A variation of this analysis would be to determine the size and grade of deposit needed to support investment in a new townsite in a potential mining region. In this instance, a number of deposits could be evaluated together (see 4.2.4 below).

4.2.2 Compare Different Mining and Processing Methods for a Given Project

Projects of different size can frequently employ significantly different mining and processing methods. A possible implication to the model of this is a discontinuity in one or more of the capital and operating cost functions. That is, after a project would reach a given size, there could result a sudden drop in, say, mining costs with the possible introduction of a much more efficient mining method. For the model to handle this properly, the evaluation would have to be undertaken repeatedly using data applicable to the different kind of process or method being evaluated.

A similar kind of analysis to this would be applicable in the evaluation of different kinds of antipollution devices. Some devices could entail a large capital investment but small operating costs while others might entail the reserve. It may well be that separate evaluations for the two possible methods would be the only way of determining which is preferable in terms of economic efficiency.

4.2.3 Evaluate Taxation and Royalty Policy

A completely different area of analysis for the model concerns
Government policy with regard to income taxes and royalties. For this
kind of analysis, different tax and royalty systems would be used in
the evaluation of a given size of mineral deposit. Different rates
of tax, different allowable deductions, and different rates for the
capital cost allowances could be expected to result in different
optimum solutions for the evaluation. A different optimum solution would
mean one or more of the following: a different size of project (which
means a different rate of extraction and a different level of investment);
different amounts of primary and secondary ore; different amounts of tax
and royalty revenue; a different total life for the project; and, of
course, a different return to the invested capital. For a marginal
project, the kinds of tax and royalty systems in effect are critical
since a small change in, say, a tax rate can mean the difference between
a viable project and an unviable one (ore or no ore).

In order that the model could undertake such an analysis, completely new tax and royalty subroutines would have to be provided and substituted for the old subroutines. This would be relatively easy to do however.

4.2.4 Undertake The Economic Evaluation of a Whole Region

The evaluation of individual deposits in a region may not prove fruitful but the evaluation of a group of deposits together could lead to further development. The procedure here would be to hypothesise a central

concentrator doing custom processing for the potential mines being evaluated. As before, a range of concentrator sizes would be used to derive a processing capacity — processing cost function. Each deposit would be evaluated in turn at an assumed processing change. (Mining costs here would include transportation to the concentrator). If total optimum production was different from concentrator capacity, the concentrator size would be changed and all deposits re-evaluated. This procedure would continue till concentrator size matched the total optimum production. Note that deposits not earning the minimum desired rate of return would not be contributing to the total production while the investment in profitable mineral deposits would be incremented till the last increment of investment earned the minimum rate of return. By this means all mining investment would be earning at least the assumed opportunity cost of capital, yet the maximum possible amount of ore would be determined.

An important assumption here is that all concentrate produced could be further processed at the prevailing processing costs (and then sold).

4.2.5 Social Cost - Benefit Analysis

The evaluation undertaken in the previous Chapter and the evaluations proposed above assumed that any divergence between money costs and social costs were of little consequence. This assumption is frequently incorrect. Proper resource management from the Province's point of view should not exclude any significant level of external effects which may result from mining activity.

The determination of social costs and benefits is usually much easier to propose than to carry out, particularly for large projects. For a small project, the divergence between private and social costs may not be significant but for a large project, there is almost certain to be a divergence. This is because of the large amounts of capital, human, and natural resources involved. Since a large project would naturally employ a large number of people, within this number are people who are likely to be otherwise unemployed. Also, such a project would import

significant amounts of labor. These consequences can lead to a significant increase in the gross provincial income and tax revenues, yet an evaluation from a private point of view would not include these benefits.

A large project can also generate significant costs and benefits which do not appear in either a public or private accounting procedure. The costs can be in the form of pollution and foregone use of resources in other activities (including recreation). Additional benefits might include improved health, school, and transportation facilities, particularly in less developed parts of the Province.

For the model to handle many of these costs and benefits at its present level of development, shadow prices (costs) would have to be determined and the actual costs and revenues adjusted accordingly. In other cases, proxies could be used for the external effects and the capital and operating costs suitably adjusted. Any other Government objectives might be included by the suitable weighing of some costs and benefits.

4.2.6 Determine the Market Price of a Mineral Deposit

Another application for this model would be to determine the market price for a mineral deposit. In order for the model to do this, it would have to be modified so that it would maximize the present value of a possible project rather than maximize the internal rate of return. The cash flow would be calculated in the same manner but a fixed discount rate would be used, as assigned by the evaluator. The discount rate would be the real opportunity cost of capital for the potential buyer(s) (and would include a risk element). Assuming that the opportunity cost of capital would be the same for the seller and the buyers, the seller would be indifferent between developing the mineral deposit himself or selling it for the calculated value. Note that the present value (if positive) is the economic rent that could be anticipated for the deposit being evaluated. If the province owned the mineral deposit, it could calculate a selling price that would be a substitute for a royalty on production. In this case the present value would be cal-

culated exclusive of any other royalty deduction. Alternately, it could assume a production royalty and sell the deposit for any economic rent calculated with the royalty included.

4.3 Conclusion

The six suggested areas of analysis for which the model may be of use are by no means exhaustive. For one thing, the use of a model such as this is not limited to mineral deposits. Also, other analysts will find applications in their own area of interest that have not been hinted at here.

It is hoped that this model will prove to be as valuable an analytical tool for other economists as the experience in developing it proved to be for the author.

APPENDIX

Comments by Professor B.W. MacKensie

Professor MacKenzie's comments are presented in the order they were made and are followed by the author's discussion.

1. Professor MacKenzie:

It appears that the estimates used in the model are in constant money terms and that the effects of inflation are not considered. This may result in significant errors for the rate of return and net present value criteria evaluated. Tax considerations overvalue and debt financing under-values the criteria evaluated if inflation is present but not considered. Escalation (differential inflation) among the cost and price parameters if it exists also introduces an important source of error. For a complete description of these effects see:

"Treatment of Inflation in Mine Evaluation"
K.C.G. Heath, G.D. Kalcov and G.S. Inns
IMM Transactions, January 1974.

Discussions

The estimates are in constant money terms as noted. The authors of the article referred to above recommend that "in the early stage of evaluation - of a prospect for a target evaluation, in a hypothetical model prepared for planning purposes - the parameters should not normally be inflated, i.e. the evaluator should work in constant money terms", (P.A 30). The reason for this is that good estimates of inflation are costly and time consuming to obtain, while poor estimates are likely to give results that are less reliable than those obtained by using uninflated parameters. The authors also point out the effects of two possible sources of error - in taxation and project financing - tend to cancel one another (P.A 24). In the case of taxation, accelerated rates of

capital recovery (as are applicable here) tend to reduce the effects of inflation since the capital from a profitable project is recovered in the first couple of years of operation. The adverse effects of inflation on borrowed capital can be reduced by using an interest rate that includes an inflationary element. Of course the principal will still be repaid in current dollars.

The model in its present form cannot take into account the effects of differential inflation although it could do so with a relatively minor modification. The problem is to reliably estimate what the amount of the differential would be for a number of years. Of the three areas of concern, the latter would appear to be the most significant.

2. Professor MacKenzie:

The optimization of capacity and cut-off grade variables in the model is based on single point estimates. It is not clear whether these are expected or most-likely estimates. Risk analysis is carried out only after the optimum project has been determined. In my experience, uncertainity has an important effect on the optimization of mining project specifications. Therefore, it is suggested that consideration be given to incorporating risk analysis in the optimization stage of the evaluation process.

Discussion:

The final values for the parameters could be called "most likely" estimates. To incorporate risk into the optimizing part of the model in its present form would require the inclusion of a risk factor in the discount rate and the rate selected as the minimum acceptable (if the latter is different from the discount rate). Doing this would lead to a different optimum solution. The amount of risk to include in the rate(s) is suggested by determining the optimum project without a risk element and doing a probabilistic analysis on that project.

Another possible solution is to do a probabilistic analysis on each

project tested during the optimization phase. However, this would be very costly in terms of computer time. It would certainly result in a different optimum (so long as some of the parameters have possible values whose distribution is skewed) than would the use of point estimates and a real discount rate. Also, it would likely result in a slightly different optimum than would be the case by using an inflated discount rate. Only testing would determine if the increased accuracy could be justified in light of the increased costs involved.

3. Professor MacKenzie:

The townsee-grade functions are assumed to be continuous. This is realistic where there are gradual and continuous grade trends through a deposit. However, often the grades within a deposit are sharply soned. Also, extraction can only be carried out in terms of discrete mineable units of the deposit. Therefore, an inventory of the townsee available and the average grade of such townsee above particular levels of cut-off grade is more realistically an aggregation of discrete mining blocks.

Discussion:

Professor MacKensie's comment is correct. It implies that the model would have limited use in a final feasibility study. However, I believe that the model is useful for the kinds of analysis discussed in chapter 4 of this report. It will also provide a guide to evaluators on the likely size and cost of a project needed to develop a particular mineral deposit.

4. Professor MacKensie:

In the model, capital and operating costs are expressed as functions of installed capacity. These costs are also a function of cut-off grade which dictates the degree of selectivity required in the mining operation. The shape of these cost functions should reflect both economies of scale and, beyond some point, diminishing returns as the build-up of capital and manpower begin to force the fixed deposit limits.

Discussion:

The mine operating cost functions referred to would be "typical" for a range of deposit sizes and a particular mining method. The average mining cost declines as the size of mine increases reflecting the usual economies of scale. Diminishing returns can be expected in any mine as rate of mining is increased beyond some normal amount. However, this effect defines an entirely different function than is provided in the model. That is, the function in the model could be considered similar to a long run average cost curve. A short run average cost curve for that size of mine would be needed to show the effect of diminishing returns. At present, the model does have a short run average cost curve of sorts but it only reflects economies of scale. In the ANALYS subroutine, as the optimum value for the mining and concentrating rate is increased or decreased, the average mining and concentrating costs decrease or increase respectively.

5. Professor MacKenzie:

Two factors should be considered in optimizing rate of extraction. The most important (considered in the model) is obviously the overall capacity of extraction and processing equipment which is to be installed. Within an installed system of a specified capacity some degree of over and under capacity operation is possible with a premium cost being incurred with respect to the variable component of operating costs. Thus, the second factor is the degree to which the installed capacity will be utilized over time. While this factor is of lesser importance, it becomes a significant optimization element once the uncertainity dimension is considered.

Discussion:

This point is somewhat related to the previous one. As was pointed out, average operating costs do change as the optimum size is changed in the ANALYS subroutine.

6. Professor MacKenzie:

It seems to me that the description of the model underestimates the importance of variation in the grade mined over mine life. This aspect of the optimisation should embody two decision variables the sequence of extraction and the cut-off grade. The sequence of extraction of the various mineable units of the deposit (i.e. the order in which they are mined) is usually from highest to lowest grade subject to the technical constraints imposed by the deposit and the mining system. The sequencing variable often has an important effect on optimisation and a high to low grade sequence does not constitute "high-grading". The cut-off grade variable determines how much of the material within each of the mineable units will be extracted. An improved optimum can be achieved if the cut-off grade is allowed to vary over the life of the deposit. For example, if mineral price and operating cost are constant an improvement in the optimisation criteria will be achieved if cut-off grade is initially set somewhat above the fixed cut-off grade optimum and then decreased over the exploitation life down to the point where marginal revenue per unit extracted is equal to marginal operating cost per unit extracted.

Discussion:

The model is able to optimize a project using either two mining sequences. The deposit can be mined with the average grade of annual production at the average grade of the deposit or it can be mined from highest grade to lowest grade. I used the term "high-grading" in this report to refer to the latter case. This term should not be interpreted in any derogatory sense.

I did not include an example in the report of the high-grading sequence simply to keep the report from becoming any larger than it already is. Professor MacKensie is quite correct in pointing out that a higher rate of return can be achieved by mining the highest grade ore first where this is practical.

7. Professor MacKenzie:

The taxation routine appears to assume that taxation is on an individual project basis. This will under-value the decision criteria in cases where integrated companies with existing sources of income may take their tax allowances earlier and more fully than the time stream of project income.

Discussion:

This comment is correct but it was outside the scope of the study to build any particular kind of corporate model prior to the project - evaluation model. Each firm evaluating a project would likely have a unique income tax situation which could affect the optimum size and profitability of the project from their point of view. The model would have to be modified to reflect any different tax situation than that assumed.

8. Professor MacKenzie:

The types of probability distribution assumed where three point estimates have been made for an uncertain parameter does not appear to be discussed.

Discussion:

The probability distribution is referred to (perhaps too briefly) in Chapter 2 in the description of the ANALYS subroutine. The distributions are assumed to be normal with a split normal distribution used to represent a skewed distribution. Chapter 3 has been amended to clarify this point.

BIBLIOGRAPHY

- Bennet, H.J., et. al., Financial Evaluation of Mineral Deposits Using Sensitivity and Probabilistic Analysis Methods, U.S. Department of the Interior, Bureau of Mines, Information Circular 8495.
- Blackwell, M., Some Aspects of the Evaluation and Planning of the Bougainville Copper Project in CTMM, Decision-Making in the Mineral Industry, Special Volume No. 12, 1971.
- Edge, C.G., A Practical Manual on the Appraisal of Capital Expenditures, The Society of Industrial and Cost Accountants of Canada, Special Study No. 1
- Halls, M.C., et. al., Determination of Optimum Ore Reserves and Plant Size by Incremental Financial Analysis, Paper presented at the 98th. Annual Meeting of AIME, Washington, D.C., February 1969.
- Lampiette, F.J., and Marcus, L.F., Computer Model Predicts Acceptable Risk for Commercial Nodule Mining Projects, In Engineering and Mining Journal, July 1974.
- MacKensie, B.W., Evaluation the Economics of Mine Development in Canadian Mining Journal, December 1970.
- MacKensie, B.W., and Schwellmus, J., Tonnage-Grade Estimation for Mineral Deposits and the Assessment of Ore Reserves, Paper Presented at United Nations Inter-Regional Seminar on Advanced Mining Technology, 1973.
- Pouliquen, L.Y., Risk Analysis in Project Appraisal, International Bank for Reconstruction and Development, World Bank Staff Occasional Papers Number Eleven.
- Tessaro, P.J., Factors Affecting the Choice Of a Rate of Production in Mining, Transactions, Institute of Mining and Metallurgy, 1960, pp.573-581.
- WU, NESA, Business Programming in Fortran IV, W.C. Brown Company, Dubuque, Iowa, 1973.