ELCANO EXPLORATION INC.

1600, 521 - 3rd Avenue SW Calgary, Alberta T2P T3T Tel: (403) 460 - 4188 Fax: (403) 460 - 4965

August 1, 2019

Manitoba Growth, Enterprise and Trade Petroleum Branch Box 1359, 590 Wellington Street East Virden, MB R0M 2C0

Attention: Petroleum Inspectors

RE: Application for an Oil Battery Permit 02-27-012-27WPM

Elcano Exploration Inc. (Elcano) respectfully submits an application for an oil battery permit under Part 7, section 111(2) of *The Oil and Gas Act* and Part 7, section 75(1) of the *Drilling and Production Regulation*.

As per the section 75(1) of the Drilling and Production Regulation, the following information is provided as part of this application:

- a. the application fee and levy;
- b. the performance deposit;
- c. a survey plan of the battery location;
- d. the names and addresses of all landowners and occupants within 1.5 km of the proposed site of the battery and the applicant's consultations with those landowners and occupants, any concerns raised during the consultation process and all actions taken or proposed to be taken by the applicant to address the concerns of the landowners and occupants;
- e. an estimate of the production rates of oil, water and gas for the battery, including the estimated volume of gas
 - i. used for fuel,
 - ii. flared, or
 - iii. vented;
- f. a representative gas analysis for the battery;
- g. the specifications of any process vessel to be used;
- h. details of well testing facilities associated with the battery;

- i. details of the flare and vapour recovery systems for the battery;
- j. proposal to vent gas containing hydrogen sulphide,
 - i. reasons why the gas cannot be flared,
 - ii. specific actions to be taken to minimize the volume of gas vented, and
 - iii. the method of controlling off-lease odours;
- k. where gas production will contain hydrogen sulphide, a copy of air dispersion modelling results demonstrating that the battery will comply with;
- l. a plot drawing on a scale of not less than 1:125 and showing the location of
 - i. each process vessel, tank and salt water disposal facility,
 - ii. any pit, dyke, flare line or pop tank, and its size, and
 - iii. any other equipment;
- m. a schematic process flow diagram showing
 - i. process vessels, meters, tanks and salt water disposal equipment,
 - ii. valves, pumps and piping,
 - iii. pressure relief valves and settings, emergency shut down systems, and any other equipment intended to prevent a spill or to mitigate the amount of a spill;
- n. plans for the disposal of produced water; and
- o. any other information that an inspector or the director may require.

Should you have any questions or concerns, please contact me at 403.930.7681

Sincerely,

ELCANO EXPLORATION INC.

Darren Rennie, P. Eng

Vice President Engineering & COO

a. Application fee and levy

The application fee (\$750) and levy (\$250) has been mailed in the form of a cheque, payable to the Minister of Finance.

b. Performance deposit

No additional performance deposit is required to obtain this battery operating permit

c. Survey plan of battery location

e. <u>An estimate of the production rates of oil, water and gas for the battery, including the estimated volume of gas used for fuel, flared or vented</u>

The anticipated daily volumes entering the proposed 02-27 battery:

0il: $60 \text{ m}^3/\text{d}$ Water: $3000 \text{ m}^3/\text{d}$

Gas: $300 \text{ m}^3/\text{d} \text{ (GOR at 5 m}^3/\text{m}^3\text{)}$

The above gas rate is used to create the dispersion modelling. All of the gas on site will be gathered through a vapour recovery unit and flared through flare stack.

f. A copy of a representative gas analysis for the battery

GAS ANALYSIS

								GA.	ANALTSIS		
TB1A								1	6GS074435A		
Container Identification Sample Point Code Meter Code				AGAT	AGAT WDMS Number Previous		Number Laboratory Number				
EL CANO EX		NI TO			ELADE STAC	V		03_3/_01	2-27\/\/1		
ELCANO EXPLORATION LTD Operator Name					Sampling Point	FLARE STACK Sampling Point			03-34-012-27W1 Unique Well Identifier		
NODTH HA		A DATTEDY									
Well Name	RGRAVE 3-3	34 BATTERY	14/-	Il License Wei	II Ctatus	MAN EA	id Status	LSD			
well Name			we	ir License Wei	ii Status	well Flu	id Status	LSD			
NORTH HAI	RGRAVE		NOT APPL	CABLE		AGAT/ESTE		JS/JV			
Field or Area		F	ool or Zone		Elevation (m)	Sampler's Comp	any Pressure (kPa) -	Name of Sa	mpler 「emperature (°C) ———		
Test Inter	vai (mk.B)					1	resoure (m a)				
From	То	Test Type	Test	No.	KB GRI		e Recei				
Mar 07, 2016	6 Mar		Mar 17.	2016	Mar 17, 2016	Calgan	/ - Gerny Ec	ker - Reporter			
Date Sampled		Received	Date Analy		Date Reported		Approved By -				
Other FIE Information	LD H2S BY	TUT = 7.88%									
		COMPOS	NTION				PROPER	TIES			
		COMPOS	SITION		Calcula	ted Heating V	/alue @ 15 9	C & 101 335	kDa /M I/m³)		
	Mole F	raction			Calcula	ted Heating V Gross	alue @ 15		Net		
	Air Free	Air & Acid Gas	Liquid Volume	Mole Fraction of Previous	66.13	78.97	1.02	60.24	71.95		
Component	As Received	Free As Received	mL/m³	Analysis	Air Free as	Moisture &	C ₇ + Moisture	Air Free as	Moisture &		
H ₂	TRACE	TRACE			Received	Acid Gas Free	Free	Received	Acid Gas Free		
He	0.0010	0.0012			Calculated Density						
N₂	0.1182	0.1453			11	Relative	0.574	200.0	Absolute		
CO ₂	0.1079	0.0000			1.401 Moisture Free	1.407 Moisture & Acid	3.571	692.6	1.716 Total Sample		
H₂S	0.0788	0.0000			As Received	Gas Free	C ₇ + Moisture Free	C ₇ + Density (kg/m²)	Density (kg/m²)		
C ₁	0.0309	0.0380				Calculated I	Pseudo Crit	ical Propertie	es —		
C ₂	0.2277	0.2800	809.2		A	s Sampled	Î	Acid	Gas Free		
C ₃	0.2607	0.3205	958.0		4897.6	324.7		4171.3	322.7		
iC₄	0.0539	0.0663	235.4		pPc (kPa)	DTc (K)	_	pPc (kPa)	pTc (K)		
nC ₄	0.0788	0.0969	331.5					A/ 5 - 5 - 7 - 6 - 7 - 7			
iC₅	0.0218	0.0268	106.4			— Hydrog	en Sulfide ((H₂S) (ppm)			
nC ₅	0.0086	0.0106	41.6		Field	<i>Value</i>	Lab	oratory Value	g/m³		
Се	0.0069	0.0085	37.9			78800			113.36		
C ₇ +	0.0048	0.0059	30.4		Stain Tube	Tutweiler	Other	GC-SCD	_		
TOTAL	1.0000	1.0000	2550.4			Calcula	ted Molecu	lar Weight			
								eived) (g/mol)		
					40.6			103.4			
					Total S	ample		C ₇ + Fraction	7		
WDMS Data Verification Check					Calculat	Calculated Vapour Pressure Gas Compressibility					
Exceeds normal limits :IC5, N2					101.6	101.62 0.9819					
					C ₃ + (kP		@15 °C & 101.325 kPa				
					-						

g. The specifications of any process vessel to be used

The configuration of the battery will be such that only atmospheric tanks will be used for processing emulsion. No vessels operating above atmospheric pressure will be used in any part of the proposed 02-27 facility.

h. Details of well testing facilities associated with the battery

Each well is to be tested by a mobile production test unit on a monthly basis. The production testing unit will be deployed to each wellsite to conduct a minimum 24 hour production test. Well head samples will be taken during the test period to determine representative oil and water cuts.

i. Details of the flare and vapour recovery systems for the battery

All gas flashed off within the processing tanks will be collected through a vapour recovery system and directed to a flare system. Any atmospheric vents will be fitted with H₂S scrubbers.

j. Proposal to vent gas containing hydrogen sulphide

Since all gas collected will be directed to a flare system, there will be no intentional venting of gas to the atmosphere. As well, H_2S scrubbers will be installed where necessary to further prevent any off lease odours.

k. Air dispersion modelling

Using the Screen3 Emissions Modelling software, the maximum 1 hour concentration from flaring emissions for SO_2 flare is $100.2~\mu g/m^3$ at 260~m. This meets the requirements as defined in Subsection 85.2(1), Schedule G in the Manitoba Drilling and Production Regulations is within the defined limits. The Screen3 model inputs and outputs are below

Air dispersion modelling inputs:

Company: Elcano Exploraiton Inc. Facility: Battery 02-27-012-27W1M

Gas Stream	To Flare	
Flow Rate	0.300	10³ m³/d
Percentage	100.0	%
Reference Temp	15	°C
Flare Gas Stream	Mole Fraction	
H ₂	0.0000	
He	0.0010	
N ₂	0.1182	
CO ₂	0.1079	
H ₂ S	0.0788	
C_1	0.0309	
C ₂	0.2277	
C₃	0.2607	
i C ₄	0.0539	
n C ₄	0.0788	
i C ₅	0.0218	
n C₅	0.0086	
C ₆	0.0069	
	0.0009	
C ₇ + Total	1.0000	
Iotal	1.0000	
Gas Stream Properties		
Molecular Mass	40.5852	g/mole
Net Heating Value	66.1300	MJ/m ³
Net Heat Release Rate	54880	cal/s
		,-
Stack Parameters		
Flare Stack Height	12.2000	m
Flare Stack Diameter	0.0760	m
Actual Exit Velocity	0.7654	m/s
Length of Flame	0.8402	m
Conversion Efficiency	100.00%	%
NO DECEMBER OF THE PARTY OF THE		
Model Input Parameters		
Gas Flow Rate	0.0035	m ³ /s
Effective Stack Height	13.0402	m
Exit Temperature	1273	K
Ambient Temperature	273	K
entatura.		
Emissions	0744257	-/-
SO ₂ Emissions	0.741267	g/s
H ₂ S Emissions	0.000000	g/s

Air dispersion modelling outputs:

08/01/19 15:53:12

```
*** SCREEN3 MODEL RUN ***

*** VERSION DATED 13043 ***
```

C:\Users\drennie\Documents\Engineering\Screen3 View\Models\02-27 Battery - 0716

SIMPLE TERRAIN INPUTS:

SOURCE TYPE	=	FLARE
EMISSION RATE (G/S)	=	0.741267
FLARE STACK HEIGHT (M)	=	12.2000
TOT HEAT RLS (CAL/S)	=	54880.0
RECEPTOR HEIGHT (M)	=	0.0000
URBAN/RURAL OPTION	=	RURAL
EFF RELEASE HEIGHT (M)	=	13.0402
BUILDING HEIGHT (M)	=	0.0000
MIN HORIZ BLDG DIM (M)	=	0.0000
MAX HORIZ BLDG DIM (M)	=	0.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 0.910 M**4/S**3; MOM. FLUX = 0.555 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST	CONC	CEAD	U10M	USTK		PLUME	SIGMA	SIGMA	DEED CH
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
5.	0.000	1	1.0	1.0	320.0	32.63	2.20	1.51	NO
100.	83.12	1	2.0	2.0	640.0	22.84	27.00	14.23	NO
200.	95.21	3	2.0	2.1	640.0	22.76	23.78	14.30	NO
300.	97.39	3	1.5	1.5	480.0	26.00	34.49	20.66	NO
400.	91.78	3	1.0	1.0	320.0	32.48	44.99	27.02	NO
500.	85.55	4	1.5	1.6	480.0	25.83	36.33	18.66	NO
600.	81.48	4	1.0	1.0	320.0	32.22	43.07	21.91	NO
700.	79.10	4	1.0	1.0	320.0	32.22	49.49	24.65	NO
800.	74.15	4	1.0	1.0	320.0	32.22	55.84	27.34	NO
900.	68.32	4	1.0	1.0	320.0	32.22	62.13	29.97	NO
1000.	62.44	4	1.0	1.0	320.0	32.22	68.35	32.56	NO
1100.	57.01	4	1.0	1.0	320.0	32.22	74.51	34.56	NO
1200.	52.18	4	1.0	1.0	320.0	32.22	80.63	36.51	NO
1300.	47.90	4	1.0	1.0	320.0	32.22	86.69	38.39	NO
1400.	44.11	4	1.0	1.0	320.0	32.22	92.71	40.23	NO
1500.	40.74	4	1.0	1.0	320.0	32.22	98.69	42.03	NO
1600.	38.64	6	1.0	1.2	10000.0	35.81	52.40	19.88	NO
1700.	39.39	6	1.0	1.2	10000.0	35.81	55.32	20.57	NO
1800.	39.86	6	1.0	1.2	10000.0	35.81	58.23	21.25	NO

1900. 2000. 2100. 2200. 2300. 2400. 2500. 2600. 2700. 2800. 2900.	40.10 40.14 39.81 39.39 38.91 38.38 37.81 37.22 36.60 35.97 35.33 34.68	6 6 6 6 6 6 6 6 6 6 6 6	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0	35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81 35.81	61.13 64.01 66.87 69.73 72.57 75.40 78.22 81.03 83.82 86.61 89.39 92.15	21.92 22.58 23.14 23.69 24.23 24.76 25.28 25.79 26.29 26.78 27.27 27.75	NO NO NO NO NO NO NO NO NO
MAXIMUM 260.	1-HR CONCENTE 100.2	RATION AT	OR BE	EYOND 1.5	5. M: 480.0	26.00	30.40	18.28	NO

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

**** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	100.2	260.	0.

l. A plot drawing showing the location of

- (i) each process vessel, tank and salt water disposal facility
- (ii) any pit, dyke, flare line or pop tank, and its size, and
- (iii) any other equipment;

m. A schematic process flow diagram showing

- (i) process vessels, meters, tanks and salt water disposal equipment,
- (ii) valves, pumps and piping,
- (iii) pressure relief valves and settings, emergency shut down systems, and any other equipment intended to prevent a spill or to mitigate the amount of a spill

n. Plans for the disposal of produced water

The produced water from the battery will be disposed of in the proposed 100/15-22-012-27WPM. A flowline will be constructed from the 02-27 battery to the 15-22 disposal well.

o. Any other information that an inspector or the director may require

Elcano Exploration Inc. is planning to construct a new battery at 02-27-012-27 WPM as part of the continued development in the North Hargrave area.

The proposed battery at 02-27-012-27 WPM will allow Elcano to continue exploitation of existing wells and potential for economic development of new wells in the area. Elcano has reach water handling limitations at its existing 03-34-012-27WPM battery. Careful analysis indicates that a second 'satellite' battery designed to remove and dispose of a majority of water, prior to the 03-34 battery, is the best solution. Remaining emulsion from the 02-27 battery will still be processed for sales quality oil at the 03-34 facility.

The 02-27 facility will be designed to initially process approximately 3,060 m 3 /d of emulsion (3,000 m 3 /d water; 60 m 3 /d oil) assuming the inlet stream is approximately 98% water. Approximately 95% of the water will be removed and the remaining emulsion volume will be transported to the 03-34 facility via existing flowlines for processing to sales quality oil. No fluids will be routinely trucked from this facility. GOR is estimated at 5 m 3 /m 3 , all gas will be recovered through a vapour recovery unit and flared.