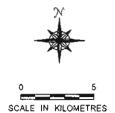
SITE ASSESSMENT

FOR LARGE LIVESTOCK OPERATION PROPOSALS (300 ANIMAL UNITS OR MORE)

1.0 Purpose

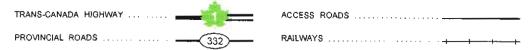

The establishment or expansion of a livestock operation that has 300 Animal Units or more is subject to Part 7 of <u>The Planning Act</u>. When such proposals are considered a conditional use by a municipal council or planning district board, approval of a conditional use permit is required. This includes a review by the Technical Review Committee (TRC) appointed by the Minister of Indigenous and Municipal Relations. The <u>Technical Review Committee Regulation</u> requires a site assessment be undertaken by the proponent to help the committee complete its review and allow the public affected by the livestock operation to comment on the proposal.

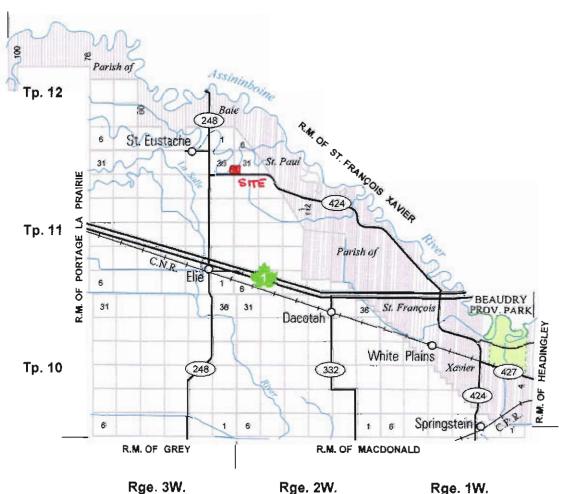
2.0 Assistance

For assistance in completing the Site Assessment Form, the following resources are available:

- Glossary of Terms for definitions
- Manitoba Agriculture for animal unit and suitable spread field acreage calculations
- Manitoba Sustainable Development for information on regulatory requirements
- Government agencies to obtain any required reports. For example, a
 Conservation Data Centre report is required as per Section 12.0 of the Site Assessment
- Contact the Technical Review Coordination Unit for additional help.

3.0 **Description of Livestock Operation** Operation legal name, if other than the owner's name: Rosedale Colony-Hog Barn Development Operation location (project site)¹: 12017 Assiniboine Road Rural Municipality (RM): Cartier Legal description: quarter, section, township, range, meridian or river lot(s): SE 36-11-3W, SW 31-11-2W Manitoba Premises Identification Number: MB 1016020 Municipal Tax Roll Number(s): 0129-600.000 Illustrate the location of the operation (project site) on a map. (See Location Map for example). Location Map Attached Nature of Project² 4.0 Please indicate if the proposal is for a new or expanding livestock operation. If the operation is expanding, please identify when the operation was established. ☐ New Operation **Expansion** of Existing Operation 1980 Date Established: Describe what is being proposed: Existing 600 sow Farrow to Finish operation proposed to be increased to 1,000 sows Farrow to Finish inclusive of replacing existing buildings.


R.M. OF **CARTIER**


PROVINCE OF MANITOBA INFRASTRUCTURE

HIGHWAY PLANNING AND DESIGN BRANCH GEOGRAPHIC & RECORDS MANAGEMENT SECTION

MNNIPEG JANUARY 1, 2015 REVISED: APRIL 2015

LEGEND

Rge. 2W.

Rge. 1W.

State if any existing buildings will be replaced or demolished. If existing buildings will be reused or expanded, state how they will be reused or expanded.

Existing north finisher barn to be utilized until useful life has been expended.

Proposed barn to be expanded to replace this finishing space in future.

5.0 Current and Proposed Type and Size of Operation³

Using the Manitoba Agriculture <u>Animal Units Calculator</u>, indicate the total number of animals and animal units for each animal category associated with the <u>current</u> and <u>proposed</u> operation (if applicable).

Table 5-1: Current and Proposed Operation Animal Unit Summary

	Current (Operation	Proposed Operation		
Animal Categories (Column B from Animal Units Calculator)	Current Number of Animals (Column D)	Current Number of Animal Units (Column E)	Proposed Number of Animals (Column F)	Proposed Number of Animal Units (Column G)	
Mature cows (lactating and dry)	45	61	45	61	
Heifers (0 to 3 months) Heifers (4 to 13 months)	4 8	1 3	4 8	1 3	
Heifers (>13 months) Sows - farrow to finish	3 600	3 750	3 1,000	3 1,250	
Layer hens Layer pullets	14,000 6,000	116 20	14,000 6,000	116 20	
Heavy hens	10,000	100	10,000	100	
	Total Current	1,054	Total Proposed	1,554	

Manitoba Agriculture Animal Units Calculator attached

6.0 Animal Confinement⁴

Based on the nature of the proposed project indicate the type of animal confinement. (Note: Please check more than one category if applicable)

Animal Confinement Facility – means a barn or an outdoor area where livestock are confined by fences or other structures, and includes a seasonal feeding area but does not include a feedlot or a grazing area.

Animal Units Calculator

			Current	Operation	Proposed Operation	
A	В	C	D	E	F	G
Operation Type	Animal Categories	Animal Units per Head	Current Number of Animals ¹	Current Animal Units	Proposed Number of Animals ²	Proposed Number of Animal Units
	Mature cows (lactating and dry) including associated livestock	2				
Dairy ³	Mature cows (lactating and dry)	1.35	45	61	45	61
	Heifers (0 to 3 months)	0.16	4	1	4	1
	Heifers (4 to 13 months)	0.41	8	3	8	3
	Heiffers (> 13 months)	0.87	3	3	3	3
	Bulls	1.35	STATE OF LABOR			
	Veal calves	0.13		-		-
	Beef cows including associated livestock	1 25		. 1		-
Beef	Backgrounder	0.5				
	Summer pasture / replacement heifers	0.625		-		social a
	Feeder cattle	0.769				
Pigs	Sows - farrow to finish (234-254 lbs)	1.25	600	750	1,000	1,250
	Sows - farrow to weanling (up to 11 ibs)	0.25		-		
	Sows - farrow to nursery (51 lbs)	0.313	The little is the		P	
	Boars (artificial insemination units)	0.2				-
	Weanlings, Nursery (11-51 lbs)	0.033		-		-
	Growers / Finishers (51-249 lbs)	0.143				
	Brollers	0.005				
	Roasters	0.01				
	Layers	0.0083	14,000	116	14,000	116
Chickens	Pullets	0.0033	6,000	20	6,000	20
	Broiler breeder pullets	0.0033		-		-
	Broiler breeder hens	0.01				
	Brollers	0.01				
Turkeys	Heavy Toms	0.02		-	U.S. HALLES	
	Heavy Hens	0.01	10,000	100	10,000	100
Horses	Mares	1.333				
Sheep	Ewes	0.2				
วและห	Feeder lambs	0.083			State of the Line	
Cther Livestock	Type:			-		
Outer FINASIOCK	Type:		Salah Care		- 0 - 1 LE 1 - 1 - 1	- N-
			Total Current	1.054	Total Proposed:	1,554

Factnotes:

For all other livestock or operation types please inquire with the Manitoba Agriculture Contacts



¹ Enter the current number of animals on the farm based on the operation's capacity (animal places) or previous Conditional Use Approval.

² Enter the total number of animals associated with the operation post construction or expansion.

There are 2 methods for calculating animal units for dairy (Farm Practices Guidelines for Dairy Producers in Manitoba, 1995). You can enter the total number of mature cows in the milking herd under the "Mature cows (lactating and dry) including associated livestock" category and the animal units will be calculated by multiplying this number by 2. This calculation assumes 85 factating, 15 dry, 12 heifers (0 to 3 months), 36 heifers (4 to 13 months) and 50 heifers (> 13 months) for an operation with 100 mature cows. "Associated livestock" includes all of the heifer calves and replacement heifers. Alternatively, you can enter animal numbers in the individual categories (mature cows, heifers (0 to 3 months), heifers (4 to 13 months) and heifers (> 13 months)) and they will be summed at the bottom of the table. Bulls and year calves are always calculated separately.

Confined Livestock Area ⁵ – means an outdoor, non-grazing area where livestock are confined by fences or other structures, and includes a feedlot, paddock, corral, exercise yard, holding area and hoop structures. (Applicable to dairy enly)
Other (Describe what is being proposed)
Does the operation currently use a confined livestock area: Yes No
If yes, what is the current capacity (livestock places and animal units)? 4, 8, & 3 heifers of 0-3 months, 3-13 months & >13 months (1AU, 3AU & 3AU)
To ensure the proposed livestock operation can be built in a way the environment is protected, a permit is required for construction and expansion of confined livestock area(s) for operations with 300 Animal Units or more. Permits are required by the Livestock Manure and Mortalities Management Regulation (M.R. 42/98), under The Environment Act .
A permit under the <u>Livestock Manure and Mortalities Management Regulation</u> (M.R. 42/98) is not required for an indoor housing area or barn unless there is a manure storage facility within the building (an under barn storage capable of storing manure for 30 days or more).
Note that agricultural buildings such as barns over 600 meters (6,458 sq ft) require a building permit from the Fire Commissioner's Office under <i>The Building and Mobile Home Act</i> and the Manitoba Building Code. Show all existing, proposed buildings and additions to existing buildings on the project site plan. See Project Site Plan example and the Project Site Plan Guide for help creating your site plan ⁶ .
Project Site Plan attached
7.0 Water
7.1 Project Sites Unsuitable for Development To protect water quality, the Nutrient Management Regulation (M.R. 62/2008), under The Water Protection Act, prohibits the construction or expansion of nutrient generating facilities in Nutrient Management Zone 4 (Agriculture Capability Class 6, 7 and unimproved organic soils) and Nutrient Buffer Zones. Nutrient generating facilities include barns, confined livestock areas and manure storage facilities.
A Nutrient Buffer Zone, as defined in section 3(3) of the regulation, includes areas of land along water bodies such as rivers, lakes, streams and drains.
The proposed indoor housing area, barn, confined livestock area and/or manure storage facility: will will not be located within Nutrient Management Zone 4 (Class 6, 7 and unimproved organic soils) or any Nutrient Buffer Zone.

Determine the agriculture capability class(es), including their limitations, of the soils for the project site. Individuals with GIS mapping software can access information through Manitoba Land Initiative (MLI) website. In addition, information from MLI can also be viewed on Google Earth. Both the download for Google Earth and the registration for MLI are free. Click here for instructions under the MLI website. Water Source7 7.2 To be sustainable, a livestock operation must have access to a sufficient quantity and quality of water for livestock. Water source for operation: Pipeline (public) ☐ Water cooperative Proposed well Existing well River Lake ☐ Dugout - dimensions: x x If using an existing well, provide a copy of the water well log⁸ and logs for other wells on the property. Logs can be obtained from Manitoba Sustainable Development by calling (204) 945-6959 in Winnipeg; 1-800-214-6497 toll free. Source Water Analysis Reports Annual livestock source water quality monitoring reports must be submitted to Manitoba

7.3

Sustainable Development for any operations of 300 Animal Units or more.

Has the operation submitted an annual sou	rce water monitoring report?
Yes No	☐ N/A (new operation or existing operation <300 AU currently)
If yes, please indicate year of last submiss	ion:
Will livestock have direct access to surface	water (not including dugouts)?
If yes, identify the name of the surface wa	ter feature:

List any steps that will be taken to prevent direct access of livestock to the water body:

Well PID: 41181

ROSEDALE COLONY CLOVERLEAF DRILLING Owner: Driller:

Well Name: TH#4
Well Use: PRODUCTION
Water Use: Domestic UTMX: 590293.599 UTMY: 5535409.9

Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1981 Jul 22

WELL LOG

From To Log (ft.) (ft.) 8.0 BROWN CLAY 8.0 13.0 MEDIUM FINE BROWN SAND 13.0 17.0 CLEAN GREY SAND 17.0 19.0 DIRTY GREY SAND, ORGANIC MATERIAL

WELL CONSTRUCTION

From To Casing Inside Outside Slot (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) Type Material (ft.) (ft.) Type 0 15.0 casing 30.00 CORRUGATED METAL 15.0 17.0 perforations 0.018 WIRE WOUND GALVANIZED 17.0 19.0 casing 30.00 CORRUGATED METAL 15.0 gravel pack 0 15.0 17.0 gravel pack PEA SIZE SILICA S. 17.0 19.0 gravel pack

Top of Casing: 1.0 ft. below ground

PUMPING TEST

1981 Jul 22 Date:

Pumping Rate: 37.0 Imp. gallons/minute Water level before pumping: 8.0 ft. below ground Pumping level at end of test: 14.0 ft, below ground Test duration: 2 hours, 10 minutes

Water temperature: ?? degrees F

41180

Well_PID: Owner: 41180 ROSEDALE COLONY Owner.
Driller:
Well Name: CLOVERLEAF DRILLING

TH#3

PRODUCTION Well Use: Water Use: Domestic UTMX: 590293.599 UTMY: 5535409.9

Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1981 Jul 23

WELL LOG

From	$_{\mathrm{T}\circ}$	Log
(ft.)	(ft.)	
0	5.0	BROWN CLAY
5.0	6.0	VERY FINE BROWN SAND
6.0	12.0	MEDIUM FINE BROWN SAND, CLEAN
12.0	16.0	MEDIUM FINE GREY SAND, CLEAN
16.0	18.0	COARSE GREY SAND, VERY ORGANIC

WFDW. COMSTRUCTION

From	To	Casing	Inside	Outside	Slot	Type		Material
(ft.)	(ft.)	Type	Dia.(in)	Dia.(in)	Size(in)			
0	14.0	casing	30.00			CORR	UGATED	METAL
14.0	16.0	perforations			0.018	WIRE	WOUND	
GALVANIZI	ΞD							
16.0	18.0	casing	30.00			CORR	UGATED	METAL
O	14.5	gravel pack						
14.0	16.0	gravel pack				NO.	20-40	SILICA
s.								
16.0	18.0	gravel pack						

Top of Casing: 2.0 ft. below ground

PUMPING TEST

1981 Jul 23 Date:

40.0 Imp. gallons/minute Pumping Rate: Water level before pumping: 8.0 ft. below ground Pumping level at end of test: 14.0 ft. below ground Test duration: l hours, 20 minutes

Water temperature: ?? degrees F

60068 Well PID:

Owner: ROSEDALE COLONY

Driller: Paddock Drilling Ltd.
Well Name: SOUTH WELL
Well Use: PRODUCTION
Water Use: Domestic, Livestock

UTMX: 590293.599 UTMY: 5535409.9 Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1987 May 05

WELL LOG

From To Log (ft.) (ft.) 0 8.0 BROWN CLAY
8.0 13.0 MEDIUM FINE BROWN SAND
13.0 17.0 MEDIUM FINE GREY SAND
17.0 19.0 ORGANICS GREY SAND
19.0 20.0 CLAY

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) CORRUGATED

FIBERGLASS

11.0 17.0 perforations 30.00 0.040 SAW CUT

FIBERGLASS

0 19.0 gravel pack WASHED

S.

Top of Casing: 1.0 ft. below ground

PUMPING TEST

1987 May 05 Date:

Pumping Rate: 75.0 Imp. gallons/minute Water level before pumping: 4.0 ft. below ground Pumping level at end of test: 15.0 ft. below ground

Test duration: l hours, minutes

Water temperature: ?? degrees F

REMARKS

PUMP TEST IS RECOVERY

Well_PID: 106863

Owner: ROSEDALE COLONY

Driller: Paddock Drilling Ltd.

Well Name: NEW NORTH WELL
Well Use: PRODUCTION
Water Use: Domestic, Livestock

UTMX: 590293.599 UTMY: 5535409.9

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 1998 Aug 25

WELL LOG

From	To	Log
(ft.)	(ft.)	
0	1.0	TOPSOIL
1.0	8.0	BROWN CLAY
8.0	10.0	SILTY SOFT STICKY BROWN CLAY
10.0	13.0	FINE BROWN SAND
13.0	20.0	MEDIUM FINE GREY SAND, CLEAN
20.0	23.0	GREY CLAY

WELL CONSTRUCTION

From	To	Casing	Inside	Outside	Slot	Туре	Material

(ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 0 10.5 CASING 30.00

CORRUGATED

FIBERGLASS

10.5 22.5 PERFORATIONS 0.040 SAW CUT

FIBERGLASS

0 22.5 GRAVEL PACK WASHED

SAND

Top of Casing: 1.5 ft. above ground

PUMPING TEST

1998 Aug 25 Date:

Pumping Rate: 66.0 Imp. gallons/minute Water level before pumping: 9.0 ft. below ground Pumping level at end of test: 18.0 ft. below ground

Test duration: 1 hours, minutes Water temperature: ?? degrees F

REMARKS

PUMP TEST IS RECOVERY

Well PID: 106864

Owner: ROSEDALE CCLONY
Driller: Paddock Drilling Ltd.
Well Name: MIDDLE WELL

Well Use: PRODUCTION

Water Use: Domestic, Livestock UTMX: 590293.599

UTMX: 590293.5 UTMY: 5535409.9

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 1998 Aug 27

WELL LOG

From	To	Log
(ft.)	(ft.)	
0	1.0	TOPSOIL
1.0	8.0	BROWN CLAY
8.0	12.0	FINE BROWN SAND
12.0	15.0	MEDIUM BROWN SAND
15.0	17.0	MEDIUM GREY SAND
17.0	20.0	GREY CLAY

WELL CONSTRUCTION

From	To	Casing	Inside	Outside	Slot	Type	Material
(ft.)	(ft.)	Type	Dia (in)	Dia. (in)	Size(in)		

0 10.0 CASING 30.00 CORRUGATED

FIBERGLASS

10.0 19.0 PERFORATIONS 0.040 SAW CUT

FIBERGLASS

0 19.0 GRAVEL PACK WASHED

SAND

Top of Casing: 1.0 ft. above ground

PUMPING TEST

Date: 1998 Aug 27

50.0 Imp. gallons/minute 8.0 ft. below ground Pumping Rate: Water level before pumping: Pumping level at end of test: 14.0 ft. below ground

Test duration: 1 hours, minutes

Water temperature: ?? degrees F

REMARKS

PUMP TEST IS RECOVERY

7.4 Water Requirements

Protecting the interests of domestic users and the environment, in addition to existing licensees, is the intended purpose of the water rights licensing scheme.

In order to protect the sustainability of water sources, all operations using more than 25,000 litres (5,499 imperial gallons) per day must possess a Water Rights License required by the Water Rights Regulation (MR 126/87) under The Water Rights Act.

For more information on the Water Rights Licensing process, contact the Water Use Licensing Section at (204) 945-3983 in Winnipeg; 1-800-214-6497 toll free.

Water Use9

To calculate the total water use for non-dairy operations, go to the <u>Water Requirement</u> <u>Calculator</u>.

For dairy operations, go to the Dairy Barn Water Requirement Estimator.

Maximum daily use for the operation:	48,516				
imperial gallons	☐ litres				
Maximum annual use for the operation:	17,708,261				
imperial gallons	cubic decameters				
■ Water Requirement Calculator attack	hed				
■ Dairy Barn Water Requirement Estim	nator attached				

7.5 Groundwater (Contamination Risk Protection)

Improper storage and handling of manure or mortalities increases the risk of contaminating groundwater. Beneficial management practices (BMP), mitigation measures and requirements for the permit process reduce this risk. Soil testing, manure management planning and proper engineering, along with construction and management of manure storage structures, reduce the risk of contaminating groundwater.

All unused or abandoned well(s) on site and spread fields should be properly sealed and a seal well report filed with the Groundwater Management Section of Manitoba Sustainable Development. Information on well sealing is available from Manitoba Sustainable Development at (204) 945-6959 or refer to the <u>technical information document</u>. It is recommended that all but the most basic wells should be sealed by a well drilling professional.

Water Requirement Calculation Table

Livestock	Number	IG/day per animal in winter	IG/day per animal in summer	IG/day (Imperial gallons per day)
Beef/Dairy/Bison			医表达型 发射	
Feeder/heifer/steer (600 lb.)	15	5	9	135
Feeder (900 lb.)		7	12	
Feeder (1250 lb.)		10	15	-
Cow/calf pair		12	15	-
Dry cow	5	10	12	60
Milking cow	40	25	30	1,200
Bison		8	10	-
Horses				
Horses		8	11	-
Hogs				
Sow (Farrow/wean)	192	6	5.5	1,248
Dry Sow/Boar	1,044		4	4,176
Feeder	9,600		3	28,800
Nursery (33 lb.)	4,200		2	8,400
Chickens				Market Salt Brown
Broilers	Constant of the	0.1	035	-
Roasters/Pullets	6,000	0	.04	240
Layers	14,000	0.	055	770
Breeders		0,	.07	
Turkeys				
Turkey Growers		0	.13	
Turkey Heavies	10,000	0.16		1,600
Sheep/Goats		A A STATE OF		
Sheep/Goats			2	
Ewes/Does			3	The Committee of the Co
Lambs/Kids (90 lb.)		1	.6	-
		TOTAL	(IG/day)	46,629

For beet, dairy, bison and horse enterprises:

Use summer numbers if appropriate for the operation. Otherwise base projections on winter values.

Always use the greater of the two values.

Enter this number on page 7 of Application Form.

Other consumption values:

Normal household consumption: 40-55 IG/day per person or (180-250 I/day/person)

Hydrant flow: 10 imperial GPM (45 l/min)

U	nit Conversior	ıs
Total per day	Total per year	Unit
46,629	17,019,585	IG
211,975	77,371,033	litres
0.212	7 7	cubic
		decametres
		(dam³)

Enter this number on page 7 of Application Form.

Conversion Factor: 1 IGPM = 4.546 I/m

Dairy Barn Water Requirement Estimator*

Enter the following farm data:

Number of lactating/milking cows	40
Average milk production (litres)	33 *
Parlor or tie stall (P/TS)	Р
Collection yard if free stall (Y/N)	N
Plate cooler (Y/N)	N
Milkings per day	2
Plate cooler water reused? (Y/N)	N

Total water needs es	timate per day:
Litres	8566
Imperial gallons	1887
Cubic decametres	0.01

Total water needs est	imate per year:
Litres	3126590
Imperial gallons	688676
Cubic decametres	3.13

^{*}Calculations are based on Manitoba AVERAGES for
• Feed composition

Check off the mitigation measures used for the existing components of the operation that may pose a risk of contamination. Also check off any measures that may be used with the proposed components for this expansion, if applicable:

	Existing	Proposed	Not Applicable
Manure is stored in a storage facility built by permit or is registered by Manitoba Sustainable Development	✓		
Storage includes leak detection system			\checkmark
Earthen storage has between 400 and 500 days storage		\checkmark	
Steel/concrete tank has between 250 and 500 days storage	✓		
Manure storage facility meets required setbacks	√		
Field storage (solid manure) locations are changed annually	✓		
Field storage meets required setbacks	\checkmark		
All fields to receive manure are soil tested annually for nitrate-N and Olsen phosphorus	✓		
All manure is applied according to a registered manure management plan	\checkmark		
Licensed commercial manure applicator is used to apply manure			✓
Operator applies manure	V		
Abandoned wells have been properly sealed			\checkmark
Other:			

7.6 Building in Flood Areas:

The <u>Livestock Manure and Mortalities Management Regulation</u> prohibits an operator from constructing a manure storage facility within the boundaries of the 100-year flood plain elevation. <u>Manure storage facilities</u> that are constructed with protection for a flood-water level at least 0.6 meters higher than the 100-year flood water level are exempt.

The <u>Designated Flood Area Regulation</u> under *The Water Resources Administration Act* requires a Designated Flood Area Permit before a proposed structure (such as a barn) can be built within a Designated Flood Area

The flood protection level for structures located within a Designated Flood Area is the site specific design flood level plus freeboard, as provided by the Hydraulic Forecasting Branch of Manitoba Infrastructure. Contact the Hydrologic Forecasting Branch at (204) 945-2121 in Winnipeg; 1-800-214-6497 toll free, for more information.

The proposed site:		
☐ is		is not
located in a Designated Flood Area:	Upper Red River Valley D	<u>esignated Flood Area</u> o
Lower Red River Designated Flood A	rea.	

Note: At the time of permit issuance, verification is needed to ensure any proposed structure(s) are located within the 100-year flood plain elevation; or at an elevation set by Manitoba Infrastructure.

7.7 Watershed Management Planning

Integrated watershed management planning is a co-operative effort by local residents, stakeholders and governments to create a long term plan to manage water and land-based activities for watersheds.

What are the names of the watershed and sub-watershed where the livestock operation and the fields identified for manure application are located?

Name of watershed(s):	Assiniboine
Name of sub-watershed(s)	La Salle River Watershed - La Salle Redboine Conservation District

Name of Integrated Watershed Management Plan for the proposed project site, if applicable:

For more on Integrated Watershed Management Planning, call Watershed Planning and Programs at (204) 945-7408 in Winnipeg; 1-800-214-6497 toll free.

8.0 Manure

The <u>Livestock Manure and Mortalities Management Regulation</u> (M.R. 42/98) sets requirements for the use, management and storage of livestock manure in agricultural operations, to ensure it is handled in an environmentally sound manner. For more information on this, call Manitoba Sustainable Development at (204) 945-4384 in Winnipeg.

Improper storage, handling and/or land application of manure can contaminate water and soil, as well as potentially cause unacceptable odours for neighbours. The following is used to assess the manure management system.

8	3.1	Manure Ty	oe e	
			generated and used by the operation options available.	n influences storage, handling
١	What ty		nure will be generated?	Liquid
8	3.2	Manure Vo	lume or Weight	
6 6 6 6	of the raccordand concentrates according to the concrete facility What wivestoo	manure stora ance with the astruction of a manure sto te storage tar has sufficient will be the tot ck operation?	can be estimated using the Manure Page is the responsibility of the operator Livestock Manure and Mortalities Manure and South and South and South Andrews Manure and Mortalities Mortalities Manure and Mo	or and must be constructed in anagement Regulation. Design nt on the type of structure; 0 and 500 days capacity, a steel or lays capacity. This ensures the nter application of manure.
	So	lid volume: ्		
	■ Mo	nure Produc	tion Calculator attached	
8.3	ħ	/lanure Stora	ge Type and Capacity	
		of storage sys field storage	stem used will affect the capacity requarea.	uirements for the manure storage
		ration plann nanure storag	ing to construct, modify or expand a ge facility?	manure storage facility or use an
		Construct		Use existing
		Expand		☐ Not applicable

☐ Modify

			Dany M	Daily manual a reconcine					Total Manure Volume
Animal Type (A)	Animal Sub-type (B)	References	Manure Type	Default Manure Production	Operation Manure Production	Production Period	* (Capacity) * (Capacity) * (Capacity)	Total Manure Volume (ft²) (FxGxH)	for Semi-Solid and Liquid Manure (Imp
		(c)	(a)	(ft³/animal/day) (E)	(ft³/animal/day) (F)	(<u>5)</u>	(L)		(Gal)
			Semi-Solld 5	3,5					0.0
	Free Stall		Solid	3.4					The second secon
			Liquid 8	3.5	3.5	400	45	63,000.00	392,490.0
Dalry (milking cows*		Table 6, pg 59,	Semi-Solid 5	3.6					0.0
and associated	Tie Stalf	PPGS for Dary	Solid	3.5				1	
Ilvesiock)	200000000000000000000000000000000000000	Cess	Liquid	3.6			7		0.0
	Loose Housing		Solid	3.0					
	Miking Parlota Manure and Washwater		Liguid	0.5					
	Beef cows including associated iivestock		Solid	1.2					
	Backgrounder (200 day)	pg 117, FPGs for	Solid	0.73				,	
Beef	Summer pasture / replacement heifers	Hogs 1998	Solid	0.85					
	Feeder cattle		Solid	1.1	1.1	400.00	35	15,400.00	
	Sows - farrow to finish (234 - 254 lbs)		Uquid	2,3	2.3	400.00	1,000	820,000,00	5,731,600.0
	Sows - farrow to wean (up to 11 lbs)	MAFRI websile.	Liquid	9.0					0.0
Plgs	Sows - farrow to nursery (51 lbs)	FPGs for Pigs	Liquid	-					0.0
	Weanings, Nursery (11 - 51 lbs)	2002	Liquid	0.1					0.0
	Grower / Finisher (51 - 249 lbs)		Liquid	0.25					0.0
				Yearly Manure Production	uction			Total Manure	Total Manure Volume
Animal Type	Type of Operation		Default Man (ft³/year	Default Manure Production (It ² /year/bird space)	Operation Manure Production ¹ (ft³/year/bird space)	Production Period 7 (Days)	Number of Birds ⁷ (Capacity)	Volume (ft³) (F/365xGxH)	for SemI-Solid and Liquid Manure (imp Gal)
	Broilers - Accr			1.23					
	Bioler breeder hers			2.3					
	Broiler breeder puliets 8			0.99					
	Reasters - floor 6			1.16					
	Cavers - Cape 0	Table 3, pg 85,		2.33	2.33	400	14,000	35,748	222,709.7
Chickens	Lavers - Roof	FPGs for Poultry		1.68					
	Layers – solid pack ii	2007			The state of the s				
	Pullets - cage B			0.71	0.71	400	6,000	4,668	29,084.7
	Pullets - floor ⁶			0.75					
	Pullets - solid pack 9	OFFICE AND SECTION							
	Brollers	Table 3, pg 85,		2.83					
Turkeys	Heavy torns ⁶	FPGs for Pouttry		5.58				•	
	Heavy heps	2000		3.32	3.32	ADD .	100001	26.384	

Stzing of a manure storage facility in accordance with all requirements of the Livestock Manure and Mortalitles Management Regulation (M.R. 42/98) is the responsibility of the operator.

Instructions and footnotes:

9 Poultry operations using litter (solid pack) must provide an estimate of yearly manure production

PANTER the number of days worth of manure that will be produced. For earthen manure storage facilities the minimum storage requirement is 400 days. For steel and concrete manure storage facilities the minimum storage requirement is 250 ENTER the manure production estimate for your operation. If no estimate is available, use the default value provided in colum E. References for default daily and yearly manure production are provided in column C.

ENTER the total number of animals or birds that the operation can hold (e.g. barn or feedlet capacity). 4 Milking cows includes all factating and dry cows.

Default manure production estimates for semi-solid and liquid dairy manure include manure and washwater from the milking parlour.

^{* 2} inches of wood shavings or 4 inches of straw placed on floor. Manure and litter removed from harn at 25% moisture content, with a density of 20 lb/ft

² One-third litter floor, two-thirds slatted floor. Manure and litter removed from barn at 40% moisture content, with a density of 25 lb/it² Manure removed from barn at 90% moisture content with a density of 59 lb/it²

What type of manure stora	ge will be used by the c	operation?	
Concrete tank(s) ma	nure storage	☐ Molehill manure storage	
facility Earthen manure sto	vrage facility	facility	
Engineered solid ma		Steel tank(s) manure storag facility	е
facility	mare storage	Under-barn concrete manu	re
Field storage		storage facility	
		e an existing manure storage facility for the mber or facility registration number:	e
LM-0021-R01			
	the proposed operation	posed manure storage facilities that will bon or expansion. (See <u>Existing and Propose</u>	
If an existing manure stora proposed expansion has a sampling and reporting to	ge facility that will be u leak detection system (Manitoba Sustainable D	ty Dimensions Table attached used to store any of the manure from the (monitoring wells or sump pit), annual Development is required. Has the system a Sustainable Development?	
Not applicable			
If yes, please indicate year	of last submission:		
If a manure storage facility system may be required.	is proposed in a geolog	gically sensitive area, a leak detection	
	-	rage facility permit, please contact ntal Approvals Branch at (204) 945-5081.	
8.4 Odour Control Me	easures (project site)		
	_	cant sources of livestock odours. The use o ce this, particularly for neighbours in the)f
What odour control measur Manure storage cover:	ires are you planning to	o use?	
☐ Yes	₩ No	☐ Not Applicable	
If yes, type of cover:		<u> </u>	
Shelterbelt planting:	□ No	☐ Existing shelterbelt	

Existing and Proposed Manure Storage Facility Dimension Table

If applicable, indicate the dimensions of any <u>existing</u> manure storage facility (MSF) that will be used to store manure from the proposed project:

	Existing Manure Storage Facility Dimensions					Storage		
6511	Width	Length	Depth Height		D 41-	Slope (H:L)		Capacity (days)
CELL	(Above Grade)	(Above Grade)	Inside	Outside				
Primary	277 ft	248 ft	16 ft	6 ft	1:3	1:5	243	
Secondary	279 ft	265 ft	16 ft	6 ft	1:3&1:4	1:5	233	
Tertiary	ft	ft	ft	ft				
Circular	Tank	Diameter	Height	Depth (Above Grade)				
		ñ	ft	ñ				

Permit/Registration #	LM-00	021-R01

Other meas	sure (specify):	
Planting sl	heiterbelt around the barn	
8.5 Ma	anure Treatment	
Pig operatio	ns:	
expansion, number of another en digestion, treatment I new or exp	or construction of a manure storage animal units for <u>pigs</u> , unless the man environmentally sound treatment that according to Manitoba Sustainable has been defined in the Hog Production	not issue a permit for the modification, facility accommodating an increase in the ure is treated using anaerobic digestion or is similar to, or better than, anaerobic Development. Environmentally sound on Pilot project. For more information on ements of the Hog Production Pilot project.
 Subject Subject Havegen Mai Inject 	ding pig operations must: ject the manure to treatment using ar aration including multi-celled manure s re access to sufficient suitable land erated by the operation; intain soils below 60 ppm Olsen P; and	to accommodate all of the phosphorus
New and exp	panding pig operations should also cons	sider odour control practices.
	Assessment is for a <u>pig</u> operation, does Production Pilot Protocol?	your proposal meet all the criteria outline
Yes	Todaction Filot Frotocor:	□ No
	Assessment is for a pig operation, have cil under the Hog Production Pilot Protoc	you included a letter from the Manitoba col?
√ Lette	er from Manitoba Pork Council attached	(if applicable)
Manure tre	eatment:	
Is manure	treatment proposed for the operation?	
Yes		□ No

January 30, 2017

Mr Elie Waldner Manager Rosedale Colony Box 130 Elie, MB ROH 0H0

E-mail: eliewaldner@hotmail.com

SENT BY E-MAIL

Dear Mr Waldner:

Manitoba Pork Council 28 Terracon Place Winnipeg, Manitoba Canada R2J 4G7

Tel: (204) 237-7447 Fax: (204) 237-9831 www.manitobapork.com

This is CONFIRMATION that in the opinion of *Manitoba Pork*, the proposed expanded pig operation described below, appears to meet the criteria of the *Pig Production Special Pilot Project – Evaluation Protocol*, based on the information provided by the applicant.

Re: Proposal to rebuild and expand the existing pig barns, Manitoba Pork File Number: 005-17/01-Rosedale Colony.

Please accept this as your confirmation letter stating that in the opinion of Manitoba Pork, your proposed pig barn, meets the criteria of the *Pig Production Special Pilot Project — Evaluation Protocol (Protocol)*. This confirmation is based upon the information you provided as outlined below. Submit this letter along with your conditional use application to the TRC review.

In accordance with the Protocol, we understand the following about your proposed new pig operation:

- 1. That your existing pig operation is proposed to be rebuilt and expanded.
- 2. Owner of the pig barns: Rosedale Colony.
- 3. Applicant's name: Elei Waldner, rosedale Colonly.
- 4. Location of proposed operation: SE 36-11-3 WPM, RM of Cartier.
- 5. Type of operation being proposed: Expansion of an existing farrow to finish operation.
- 6. The animals are proposed to be marketed: At a Manitoba processing plant.
- 7. Size of the proposed operation by number of AUs: Existing barns, currently of 750 AUs, are proposed to be phased out, rebuilt on a new site and expanded to 1000 sows farrow-to-finish (1250 AUs).
- 8. Approximate size of the proposed two new barns: 341' x 147' (104m x 45m) for an approximate area of 50,127 sq ft (4662 sq m), and, 137' x 521' (42m x 159m) for an approximate area of 71,377 sq ft (6638 sq m).

- 9. Type of manure storage facility being proposed: Existing 2-cell earthen manure storage.
- 10. Size of manure storage facility: Existing manure storage of 9 million gallons has sufficient capacity (over 400 days) to accommodate the expected additional pigs without expanding the storage.
- 11. Type of odour control measures being proposed: Shelter belts and significant distance from neighbouring residences.

It is understood that you will comply with the attached *Protocol* in the ongoing management of your operation, including that:

- all manure from your operation will be injected and/or incorporated within 48 hours of application,
- you will require long term access to manure spread fields at a 1x phosphorous application rate (even though you do not have to apply the manure at that rate) and all of these fields must be identified as a part of your full application process,
- all manure spread fields will be permanently maintained below 60 ppm, and
- other requirements as outlined in the *Protocol*.

If you make any significant changes to your proposed project during the application process which alters any of the information as stated above, or alters any of the numbers by 10% or more, please notify our office.

As we understand it, your next step is to apply for a Conditional Use permit from the municipality which will include a Technical Review Committee (TRC) process — you will need considerably more detailed information for that process. You may wish to contact **Don Malinowski**, Technical Review Coordinator (204-945-8353), for the requirements of the TRC review — or you can go to their website: gov.mb.ca/ia/livestock/index. For additional information, see our booklet 'Building a Pig Barn in Manitoba-A Step by Step Guide', on our website (www.manitobapork.com) which outlines the main steps of what is required to build a new barn.

Yours sincerely,

Andrew Dickson General Manager

a.T. Dolum

Pig Production Special Pilot Project EVALUATION PROTOCOL

In December 2014, the Government of Manitoba agreed to review a pilot project proposal for limited expansion of the pig industry in the province under a Pilot Project that incorporates a number of strengthened environmental criteria. Meetings between industry and government officials were held between January and March of 2015 to further clarify the criteria.

New and expanding operations will be encouraged to lead to the production of **market hogs** to assist the existing pig processing plants in Manitoba.

New sites must be located **west of the Red River** and outside of the major flood zone. Expansion of existing sites will be considered province-wide, except in the Rural Municipalities of Hanover and La Broquerie, but will be strongly encouraged to occur **west of the Red River** and outside of the major flood zone.

Any potential site within the pilot project will be **vetted through** *Manitoba Pork*. *Manitoba Pork* will <u>not</u> approve proposals, nor will it act as an agent or applicant. However, the provincial government has indicated that it wants all proposals to be reviewed first by *Manitoba Pork*. *Manitoba Pork* has agreed to do so, but only to state whether or not in its opinion the proposal meets the criteria as stated herein. *Manitoba Pork* believes its evaluation will have a very quick turn-around (targeted at 10 working days or less). After evaluating a proposal against these criteria, *Manitoba Pork* will issue a letter to the applicant stating in its opinion whether or not the proposal appears to meet these criteria. If the proposal appears to meet the criteria, the letter will indicate that *Manitoba Pork* would like the proposal to be considered as part of the pilot project. This letter is to be submitted by the applicant to Manitoba Conservation Water Stewardship (Director of Environmental Programs & Strategies). Applicants are requested to submit the letter prior to participating in the provincial livestock technical review.

Strengthened Environmental Criteria for new and expanding pig barns in Manitoba within the Pilot Project

The following criteria are in addition to existing regulatory requirements for new and expanding pig barns.

- Proposals for expansion must include manure treatment using anaerobic digestion, mechanical separation OR gravity separation. A two (or more) cell earthen manure storage is an acceptable gravity separation treatment system for the purpose of the Pilot Project.
- 2. Soils for all manure spread fields are to be maintained at levels of less than 60 ppm Olsen phosphorus.

- Manure must be injected into tilled soils, or manure may be otherwise applied as long as
 it is incorporated into the soil within 48 hours (excluding established perennial forages
 and no-till fields).
- 4. The land base required for manure application must equal or exceed the crop land required to remove all phosphorus generated by the pigs.
- 5. Site-specific odour control measures should be a part of any expansion proposal. These might include shelter belts, covers, separation distances, etc.

Special Pilot Project Permit and other requirements

Other than the normal manure storage permit(s) required, applicants will be required to obtain a special pilot project permit from Manitoba Conservation and Water Stewardship in order to be approved by the Province as a part of the overall pilot project. The application for a special pilot project permit must include the above criteria. The proponent must also commit to submitting at least 2 annual manure analysis reports and calculating a minimum of 2 manure application rates in order to be issued the permit. A permit for construction or expansion of a manure storage facility will not be issued unless the proponent has been issued a Special Pilot Project Permit. Details are provided below:

- A minimum of two composite manure samples must be collected and analysed each
 year during pump out of the manure storage facility. Analysis reports must be submitted
 in the next crop year's Manure Management Plan.
- A minimum of two manure application rates per manure storage facility must be included
 in future manure management plans which will consider anticipated nutrient composition
 of the manure. Anticipated phosphorus application rates shall be provided in the manure
 management plan as the number of years worth of P2O5 applied (i.e. multi-year
 application rate).

All other usual permits and approvals will still be required, such as, but not necessarily limited to:

- Local (municipal) approvals including Conditional Use approval, and if the application will
 result in an operation involving 300 or more animal units, a provincial review by the
 Technical Review Committee will be required;
- A provincial building permit for the barn(s) will be required from the Office of the Fire Commissioner:
- The barn and manure storage facilities must be engineered by a professional engineer;
- Annual manure management plans must be filed for the operation; and
- A water license will be required from Manitoba Conservation and Water Stewardship if the operation will be using more than 25,000 litres of water per day.

If yes, please describe treatment process, including intended end use of treated manure: Two cell manure storage treatment system is used and the treated manure is applied to agricultural land. Some manure treatment systems will trigger the requirement for an Environment Act License depending on the type of treatment or intended use of the treated products. The requirement for a license is determined by Manitoba Sustainable Development during their review of the permit application for the construction, modification or expansion of a manure treatment facility. If treated manure is directed to a retailer, additional approvals may be required in advance of establishing the treatment process. Producers should note that no discharge or burning of treated manure products is allowed. Manitoba Sustainable Development may require additional supporting documentation to be completed by the operator with respect to the treatment facility. Please contact (204) 945-4384 to determine what information will be required. 8.6 Manure Application Method The Livestock Manure and Mortalities Management Regulation requires the registration of annual manure management plans for new or expanding operations with 300 Animal Units or more. Does the operation currently file an annual Manure Management Plan (MMP) with Manitoba Sustainable Development? Yes ■ N/A (new operation or existing operation <300 AU currently) □ No If yes, please indicate most recent MMP Registration #: 2017-285 Manure application methods and the season in which manure is applied affect odour, nutrient availability, crop response, land base requirements and the risk of water

Injection

contamination.

☐ Broadcast

hours

Proposed application method:

☐ Broadcast and incorporate within 48

8.7 Land Available for Manure Application

Using the Manure Application Field Characteristics Table provide the information requested.
Total land available for manure application: 5060acres
Suitable Land:
Sufficient <u>suitable</u> land must be available for all of the manure generated by the operation that is to be land applied. Suitable land can be owned, leased or under agreement.
Under the <u>Livestock Manure and Mortalities Management Regulation</u> and the <u>Nutrient Management Regulation</u> , application of nutrients is not permitted on Agriculture Capability Class 6, 7 and unimproved organic soils (Nutrient Management Zone 4) and within Nutrient Buffer Zones. In addition, only fields with less than 60 parts per million (ppm) Olsen phosphorus (P) in the top six inches (15 centimeters) of soil will be considered suitable.
The Nutrient Buffer Zones and manure application setback requirements are outlined in the Nutrient Management Regulation (62/2008) and the Livestock Manure and Mortalities Management Regulation (42/98). They have been consolidated in the <u>Setback Requirements</u> from Water Features Table.
Have the setback areas for all water features been observed and excluded from land base calculations for this operation?
■ Yes □ No
Total <u>suitable</u> area available for manure application: $4,978$ acres
For all suitable lands, copies of <u>soil test reports</u> that are no more than 12 months old and that demonstrate that soil phosphorus levels are below 60 ppm Olsen P in the top six inches (15 centimeters) of soil must be included with this submission.
 Manure Application Field Characteristics Table attached Soil test reports for the required land base for manure application attached
8.8 Land Required for Manure Application
Long term land has a requirements for manura application are calculated based on estimates of

Long term land base requirements for manure application are calculated based on estimates of the quantity of nutrients (nitrogen and phosphorus) excreted by livestock and the utilization or removal of nutrients by the proposed crops.

The quantity of nitrogen and phosphorus excreted by the livestock depends on the type, number and size of livestock, the quantity and availability of nitrogen and phosphorus fed to the livestock, the amount retained by the livestock and the amount contained in milk and eggs.

The utilization of nitrogen and removal of phosphorus by crops depends on the crops grown and the historical crop yield averages. (See <u>Crop Rotation Table</u>).

MANURE APPLICATION FIELD CHARACTERISTICS TABLE

Registrogeneral Plant Richard Restating Registrogeneral Plant Received Registrogeneral Plant Restating Registrogeneral Plant Received Registrogeneral Plant Registrogeneral Plan		¥	80	o	۵	ш	щ	O	I	-	7
Contrier O 80 Property line and workercounts 78 2W, 3W 16 BY-LAW NO. 1-2016. AG Protection Landward O 80 Property line & Franciscusta My 78 3W, 2DM 14 BY-LAW NO. 1-2016. AG Post role Landward O 80 Property line & Franciscusta My 78 3W, MRS 0 BY-LAW NO. 1-2016. AG Post role Landward O 260 Property line & Franciscusta My 778 3W, MRS 0 BY-LAW NO. 1-2016. AG Conflict O 260 Property line & Franciscusta My 251 3W and 2M 41 BY-LAW NO. 1-2016. AG Conflict O 260 Property line & Franciscusta My 251 3W and 2M 40 BY-LAW NO. 1-2016. AG Conflict O 260 Property line & Tomic Constitut 435 3W and 2M 40 BY-LAW NO. 1-2016. AG Conflict O 261 Property line and Property line 41 3W, 3W 3W BY-LAW NO. 1-2016. AG Conflict O 262 A 3	Field	Legal Description	Rurai Municipality	O/C/L/	Total	Setbacks, Including features	Net Acreage for Manure Application	Agriculture Capability Class and Subclass	Soil Phosphorus (ppm Olsen P) 0-6 inches	Development Plan Designation	Zoning
Properties O 80 Property line 8 Tares Cannot help The Canton The Cant		RL-0020-BP	Cartier	0	80	Property line and watercourse	78	ZW, 3W	16	BY-LAW NO. 1-2016; AG	BY-LAW NO, 1620-11: AG
Propertice of the State Property line 78 3W, ARTS 14 BY LAW NO. 1-2006; AG	_	E1/2 SW 27-11-4W	PORTAGE LA PRARME	0	90	Property tine & Trans-Cameria Hwy	78	3W, 2DW	15	BY-LAW NO. 1-2006: AG	BY-LAW NO. 3096; AG
Property line 78 3W, MRS 8 DY LAW NO. 1-2006, AG Property La Property Line 78 2DW 12 BY-LAW NO. 1-2006, AG Carrier 0 266 3W and 2W 31 BY-LAW NO. 1-2016, AG Carrier 0 460 Property line and TransCanable May 456 3W and 2W 40 BY-LAW NO. 1-2016, AG Carrier 0 460 Property line and TransCanable May 456 3W and 2W 40 BY-LAW NO. 1-2016, AG Carrier 0 416 Property line and watercourse 266 2W, 3MW 39 BY-LAW NO. 1-2016, AG Carrier 0 42 Property line 78 3W, 3MW 39 BY-LAW NO. 1-2016, AG Carrier 0 42 Property line 78 3W, 3MW 34 BY-LAW NO. 1-2016, AG Carrier 0 160 Property line 158 3W, 3MW 34 BY-LAW NO. 1-2016, AG Carrier 0 160 Property line and Roaddale loop 157 3W, 3MW and 2W	_	W112 of SW 27-11-4W	PORTAGE LA PRABBE	O	80	Property line	78	3W, 2DW	14	BY LAW NO. 1-2006; AG	BY-LAW NO. 3086: AG
Performer In Property 60 80 Property line & Trans-Cannible Ney 78 2DW 12 BY-LAWN NO. 1-2016. AG Carriller O 266 Property line & Trans-Cannible Ney 456 3W and 2W 40 BY-LAWN NO. 1-2016. AG Carriller O 440 Property line and watercourse 206 2W, 3W 3W BY-LAWN NO. 1-2016. AG Carriller O 42 Property line and watercourse 206 2W, 3W 3W BY-LAW NO. 1-2016. AG Carriller O 42 Property line and watercourse 206 2W, 3W 3W BY-LAW NO. 1-2016. AG Carriller O 42 Property line 78 3W, 3WW and 2W 34 BY-LAW NO. 1-2016. AG Carriller O 180 Property line 158 3W, 3WW and 2W 36 BY-LAW NO. 1-2016. AG Carriller O 180 Property line and Roadsle loop 16 3W, 3WW and 2W 36 BY-LAW NO. 1-2016. AG Carriller O 187 Property line and Roadsle loop	_	E1/2 of SE 28-11-4W	PORTAGE LA PRAINE	0	08	Property line	78	3W, MRS	0	BY-LAW NO. 1-2006; AG	BY-LAW NO. 3096; AG
Cartier O 265 Property line 261 3W and 2W 31 BY-LAW NO. 1-2016-AG Cartier O 460 Property line and watercourse 456 3W and 2W 40 BY-LAW NO. 1-2016-AG Cartier O 215 Property line and watercourse 206 2W, 3W 39 BY-LAW NO. 1-2016-AG Cartier O 215 Property line and watercourse 206 2W, 3W 39 BY-LAW NO. 1-2016-AG Cartier O 42 Property line and watercourse 41 3W, 3WW 39 BY-LAW NO. 1-2016-AG Cartier O 80 Property line 78 3W, 3WW 34 BY-LAW NO. 1-2016-AG Cartier O 160 Property line and Roadials loop 158 3W, 3WW and 2W 38 BY-LAW NO. 1-2016-AG Cartier O 160 Property line and Roadials loop 158 3W, 3WW and 2W 38 BY-LAW NO. 1-2016-AG Cartier O 120 Property line and Roadials loop 167 2W 3W,		N1/2 of NE 21-11-4W	PORTAGE LA PRAINE	0	680	Property line & TransCanuda Hwy	78	WO2	12	BY-LAW NO. 1-2006; AG	BY-LAW NO. 3096: AG
Cartier O 460 Property line and TransChemable Hey 456 3W and 2W 40 BY-LAW NO. 1-2016: AG Cartier O 440 Property line and TransChemable Hey 436 3W and 2W 9 BY-LAW NO. 1-2016: AG Cartier O 215 Property line 41 3W, 3WW 38 BY-LAW NO. 1-2016: AG Cartier O 42 Property line 78 3W, 3WW 44 BY-LAW NO. 1-2016: AG Cartier O 42 Property line 158 3W, 3WW and 2W 13 BY-LAW NO. 1-2016: AG Cartier O 180 Property line 158 3W, 3WW and 2W 3B BY-LAW NO. 1-2016: AG Cartier O 180 Property line and Rosedale loop 70 3W, 3WW and 2W 3B BY-LAW NO. 1-2016: AG Cartier O 177 Property line and Rosedale loop 70 3W, 3WW and 2W 3B BY-LAW NO. 1-2016: AG Cartier O 157 Property line and Rosedale loop 70 3W, 3WW and 2W		E1/2 30-11-2W	Cartier	0	265	Property line	261	3W and 2W	31	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Cartier O 440 Property line and TransCande New 436 3W and 2W 9 BY-LAW NO. 1-2016: AG Cartier O 215 Property line and watercourse 206 ZW, 3W 39 BY-LAW NO. 1-2016: AG Cartier O 42 Property line 7e 3W, 3NW 34 BY-LAW NO. 1-2016: AG Cartier O 160 Property line 156 3W, 3NW, 2W 34 BY-LAW NO. 1-2016: AG Cartier O 160 Property line 158 3W, 3NW, 2W 34 BY-LAW NO. 1-2016: AG Cartier O 160 Property line and Rosadals loop 34 3W, 3NW, 2W 34 BY-LAW NO. 1-2016: AG Cartier O 171 Property line and Rosadals loop 34 3W, 3NW, 2W 34 BY-LAW NO. 1-2016: AG Cartier O 177 Property line and Rosadals loop 70 3W, 3NW, 2W 38 BY-LAW NO. 1-2016: AG Cartier O 177 Property line and Rosadals loop 175 3W, 3NW and 2W	_	W1/2 30-11-2W	Carller	0	460	Property line & TransCarada Hwy	456	3W and 2W	40	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11; AG
Cartier O 42 Property line 41 3W, 3MW 38 BY-LAW NO. 1-2016. AG Cartier O 42 Property line 41 3W, 3MW 34 BY-LAW NO. 1-2016. AG Cartier O 80 Property line 78 3W, 3MW 44 BY-LAW NO. 1-2016. AG Cartier O 160 Property line 158 3W, 3MW, 2W 34 BY-LAW NO. 1-2016. AG Cartier O 38 Property line 158 3W, 3MW, 2W 34 BY-LAW NO. 1-2016. AG Cartier O 72 Property line and Rosedals loop 70 3W, 3MW, 2W 34 BY-LAW NO. 1-2016. AG Cartier O 171 Property line and Rosedals loop 70 3W, 3MW and 5W 46 BY-LAW NO. 1-2016. AG Cartier O 157 Property line 175 3W, 3MW and 2W 26 BY-LAW NO. 1-2016. AG Cartier O 150 Property line 175 3W, 3MW and 2W 24 BY-LAW NO. 1-2016. AG <		E1/2 28-11-3W	Cartier	0	440	Property line and TransCanada Hwy	436	3W and 2W	6	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11; AG
Cartier O 42 Property fine 41 3W, 3NW 34 84 BY-LAW NO. 1-2016: AG Cartier O 160 Property line 78 3W, 3NW and 2W 13 BY-LAW NO. 1-2016: AG Cartier O 160 Property line 158 3W, 3NW and 2W 36 BY-LAW NO. 1-2016: AG Cartier O 38 Property line and Resedate loop 70 3W, 3NW and 2W 36 BY-LAW NO. 1-2016: AG Cartier O 72 Property line and Resedate loop 70 3W, 3NW 2W and 5W 46 BY-LAW NO. 1-2016: AG Cartier O 157 Property line and Resedate loop 70 3W, 3NW 2W and 5W 49 BY-LAW NO. 1-2016: AG Cartier O 157 Property line and Resedate loop 157 3W, 3NW and 2W 26 BY-LAW NO. 1-2016: AG Cartier O 157 Property line and Property line 178 3W, 3NW and 2W 24 BY-LAW NO. 1-2016: AG Cartier O 240 Property line and pond 1	_	RL-0020-BP	Cartier	0	215	Property line and watercourse	206	ZW. 3W	39	BY-LAW NO. 1-2016. AG	BY-LAW NO. 1620-11, AG
Cardier O 80 Property line 78 3W, 3WW and 2W 13 BY-LAW NO. 1-2016. AG Cardier O 160 Property line 158 3W, 3NW and 2W 38 BY-LAW NO. 1-2016. AG Cardier O 38 Property line and Readable loop 70 3W, 3NW, 2W and 5W 46 BY-LAW NO. 1-2016. AG Cardier O 171 Property line and Readable loop 70 3W, 3NW, 2W and 5W 46 BY-LAW NO. 1-2016. AG Cardier O 157 Property line and Readable loop 167 2W 3W, 3NW, 2W and 5W 49 BY-LAW NO. 1-2016. AG Cartier O 157 Property line and pond 154 3W, 3NW and 2W 26 BY-LAW NO. 1-2016. AG Cartier O 180 Property line and pond 154 3W, 3NW and 2W 24 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 38 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237		NW 17-11-2W	Cartier	0	42	Property fine	4.1	3W, 3NW	34	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Cardier O 160 Property line 158 39V, 3NW, 2M and 5M 44 BY-LAW NO. 1-2016. AG Cardier O 160 Property line and Research loop 34 3V, 3NW, 2W 34 BY-LAW NO. 1-2016. AG Cardier O 72 Property line and Research loop 70 3W, 3NW, 2W and 5W 46 BY-LAW NO. 1-2016. AG Cardier O 171 Property line and Research loop 167 2W 49 BY-LAW NO. 1-2016. AG Cardier O 157 Property line and pond 154 3W, 3NW and 2W 26 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 175 3W, 3NW and 2W 24 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 38 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 38 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 38 </td <td>_</td> <td>W1/2 of NE 18-11-2W</td> <td>Cartier</td> <td>0</td> <td>80</td> <td>Property line</td> <td>78</td> <td>3W, 3NW and 2W</td> <td>13</td> <td>BY-LAW NO. 1-2016: AG</td> <td>BY-LAW NO. 1620-11: AG</td>	_	W1/2 of NE 18-11-2W	Cartier	0	80	Property line	78	3W, 3NW and 2W	13	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Cardier O 160 Property line 158 39V, 3NW and 2W 36 BY-LAW NO 1-2016 AG Cardier O 72 Property line and Readable loop 70 3W, 3NW, 2W 34 BY-LAW NO 1-2016 AG Cardier O 171 Property line and Readable loop 70 3W, 3NW and 5W 49 BY-LAW NO 1-2016. AG Cardier O 157 Property line and Readable loop 154 3W, 3NW and 2W 26 BY-LAW NO 1-2016. AG Cardier O 157 Property line 175 3W, 3NW and 2W 26 BY-LAW NO 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 38 BY-LAW NO 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 39 BY-LAW NO 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 39 BY-LAW NO 1-2016. AG		SW 20-11-2W	Cartier	0	160	Property line	158	3W, 3NW, 2W and 5M	44	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Cartier O 72 Property line and Rosedate loop 70 3W, 3NW, 2W 34 BY-LAW NO 1-2016 AG Cartier O 171 Property line and Rosedate loop 70 3W, 3NW 2W and 5W 46 BY-LAW NO 1-2016 AG Cartier O 171 Property line and Rosedate loop 167 2W 49 BY-LAW NO 1-2016. AG Cartier O 157 Property line 175 3W, 3NW and 2W 26 BY-LAW NO 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 36 BY-LAW NO 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 30 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 30 BY-LAW NO. 1-2016. AG		NW 20-11-2W	Cartier	0	160	Property ine	158	3W, 3NW and 2W	38	BY-LAW NO 1-2016: AS	BY-LAW NO. 1628-11: AG
Cartier O 72 Property line and Rosedate loop 70 3W,3NW,2W and 5NV 46 BY-LAW NO. 1-2016: AG Cartier O 171 Property line and Rosedate loop 167 2W 49 BY-LAW NO. 1-2016: AG Cartier O 157 Property line 175 3W, 3NW and 2W 26 BY-LAW NO. 1-2016: AG Cartier O 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016: AG Cartier O 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016: AG Cartier O 240 Property line 237 3W, 3NW and 2W 30 BY-LAW NO. 1-2016: AG		NW 36-11-3W	Cartier	0	38	Property line and Rosedale loop	34	3W, 3NW, 2W	A	BY-LAW NO 1-2016: AG	BY-LAW NO. 1620-11: AG
Cartier O 171 Property line and Rosendate loop 167 2W 49 BY-LAW NO. 1-2016; AG Cartier O 157 Property line 175 3W, 3NW and 2W 26 BY-LAW NO. 1-2016; AG Cartier O 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016; AG Cartier O 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016; AG Cartier O 240 Property line 237 3W, 3NW and 2W 30 BY-LAW NO. 1-2016; AG		NE 36-11-3W	Cartier	0	72	Property fire and Rosedale toop	70	3W, 3NW, 2W and 5NW	46	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11; AG
Cartier O 157 Property line and bond 154 3W, 3NW and 2W 26 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016. AG Cartier O 240 Property line 237 3W, 3NW and 2W 30 BY-LAW NO. 1-2016. AG		NW-31-11-2W	Cartier	0	171	Property line and Rosedale loop	167	ZW	49	BY-LAW NO. 1-2016; AG	BY-LAW NO. 1620-11: AG
Cartier 0 240 Property line 175 3W, 3NW and 2W 24 BY-LAW NO. 1-2016. AG Cartier 0 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016. AG Cartier 0 240 Property line 237 3W, 3NW and 2W 30 BY-LAW NO. 1-2016. AG		NE W1/2 of SE 19-11-2W	Cartier	0	157	Property line and pand	154	3W, 3NW and 2W	26	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11; AG
Cartier O 240 Property line 237 3W, 3NW and 2W 18 BY-LAW NO. 1-2016: AG Cartier O 240 Property line 237 3W, 3NW and 2W 30 BY-LAW NO. 1-2018: AG		NW 19-11-2W	Cartier	0	180	Property line	178	3W, 3NW and 2W	24	BY-LAW NO. 1-2016: AG	BY-ŁAW NO. 1620-11: AG
Cartier O 240 Property line 237 3W, 3NV and 2W 30 BY-LAW NO. 1-2018: AG		SE24-11-3W	Cartier	0	240	Property line	237	3W, 3NW and 2W	18	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Taked Mark Accessed 622		Miy 25-11-3W	Cartier	0	240	Property line	237	3W, 3NW and 2W	30	BY-LAW NO. 1-2018; AG	BY-LAW NO. 1620-11; AG
						Total Net Acresoe for	3,261				

Enter the legal description for each parcel of land that will receive manure: Sec. Twp. Rge or River Lot (including panish).

Identify the Rural Municipality in which the parcel is located.

Indicate how the land has been secured for manure application: 0 - Own / C-Crown / L - Lease / A - Agreement. Multiple designations may be used as appropriate (ex. C/A for Enter the total acceage for the parcel.

Enter the total acceage for the parcel.

Enter the total acceage for manure application for the land available for manure application; include identification of type of feature (ex. 8m. Order 3 drain).

Enter the net acceage evaliable for manure application for the parcel after taking into account setbacks and excluding Class 6, 7 and unimproved organic soils.

Enter the net acceage evaliable for manure application for the acreage available for manure application.

Enter the agriculture capability class and subclass ratings for the acreage available for manure application.

Provide soil test results for phosphorus in ppm Olsen P for soil samples taken at the 0-6 inch depth. Soil test results more than 12 months old and must be completed by CBY

Manure Application:

OMFOL

Indicate the Development Plan and its by-law number in addition to the map designation for each field (ex. By-law #1/2008: AG). Indicate the Zoning By-law and its by-law number in addition to the zoning for each field (ex. By-law 12/2009: AG 80). an accredited soil-testing laboratory

MANURE APPLICATION FIELD CHARACTERISTICS TABLE

Runicipality A	Runicipality	٧	8	o	Q	ш	_	စ	I		
Curtier	Confider	gal Description		O/C/IU A	Total Acreage	Setbacks, Including features	Net Acreage for Manure Application	Agriculture Capability Class and Subclass	Soil Phosphorus (ppm Olsen P) 0-6 inches	Development Plan Designation	Zonlng
Carrier Countier Countier	Cardier	NW 7-11-2W	Cardor	0	172	Property line	170	3W, 3NW and 2W	11	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Curtier O 166 Property line and waterconne 159 2W 19 BV-LAW NO 1-2016-AG	Carrier O 160 Properly line and varianceurses 159 3W, 2M and 5W 15 BY-LAWN NO. 1-2016; AG	NE 33-11-3W	Cartier	Q	125	Property line	123	3W, 2W	13	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Cartier O 153 Property free and Recorded Loop 150 3W, 2W and 5W 15 BY-LAW NO 1-2016. AG	Cardier O 153 Property free and Remediate Loop 150 394, 294 and 519 150 15	NE 27-11-3W	Cartier	0	160	Property line and watercourse	158	2W	19	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Cartier O 2005 Property fine 281 394, 294 5.2 BY-LAW NO 1-2016 AC	Confess O 286 Property line 281 3W, 2W and 5W 52 BY-LAW NO 1-2016. AG	SW 36.11-3W	Cartier	0	153	Property line and Rasedale Loop	150	3W, ZW and SIW	16	BY-LAW NO. 1-2018: AG	BY-LAW NO. 1620-11; AG
Cartier O 390 Property line 286 344, 3kW and 32W 7 Bry LAW MO 1-2016 AG	Cartier O 3900 Property line 296 394, 3MW and 2MY 7 BYLAMY NO 1-2016. AG	E1/2 25-11-3W	Cartier	0	285	Property line	281	3W, 2W	52	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
Cartier O 85 Property line and watercourse B3 3W, 2W and 5W 12 BY-LAW NO. 1-2016: AG	Cartillor O BS property line and watercourse BS 39W, 2W and 5W 12 BY-LAW NO. 1-2016: AG	E1/2 13-11-3W	Carler	0	300	Property line	296	3W, 3NW and 2W	7	BY-LAW NO. 1-2016. AG	BY-LAW NO. 1620-11: AG
### Cartion	### Cantilor O 85 property line and watercourse 63 3W, 2W and StW 8 BY LAW NO 1-2016: AG BY LAW NO 1-2016: AG	\$1/2+NE 7-11-2W	Cartier	0	460	Properly line and TrensCarada Hay	456	3W, 3NW and 2W	12	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11: AG
		NW 32-11-2W	Cartier	0	85	property line and watercourse	83	3W, 2W and 5IV	00	BY-LAW NO. 1-2016: AG	BY-LAW NO. 1620-11; AG
							1.717				
						Manure Application:					
		۵		й	oter the legal de	Scription for each parcel of 6	and that will receive	manume. Sec. Two. Rde of	r River Lot (including a	pansh).	

Crown lands that are under a spread agreement with the producer that holds the agricultural Crown land lease).

Enter the total acreage for the parcel.

Enter the total acreage for the parcel.

Enter the total acreage agricultural reduces that reduce the land available for manure application; include identification of type of feature (ex. 8m, Order 3 drain).

Enter the suppose from surface water or groundwater features that reduce the land available for manure application from a grant and a subject of the acreage available for manure application.

Enter the agriculture capability class and subclass ratings for the acreage available for manure application.

Provide soil test results for phosphorus in ppin Olsen P for soil samples taken at the 0-6 inch depth. Soil test results must be no more than 12 months old and must be completed by an accredited soft testing laboratory.

Indicate the Development Plan and its by-law number in addition to the map designation for Each field (ex. By-law #1/2008: AG). Indicate the Zoning By-law and its by-law number in addition to the zoning for each field (ex. By-law 12/2008: AG 80).

MANURE APPLICATION FIELD CHARACTERISTICS TABLE

	4	æ	U	a	E E	ΙŁ	9	ı į	_	7
	Legal Description	Rural Municipality	O/C/L/ A	Total Acreage	Setbacks, including features	Net Acreage for Manure Application	Agriculture Capability Class and Subclass	Soil Phosphorus (ppm Olsen P) 0-6 inches	Development Plan Designation	Zoning
	SE 36-11-3W	Cartier	0	68	Reservation inter and property line.	86	ZW, 3W, 5IW, 34		BY-LAW NO. 1-2016 AG	BY:LAW NO. 1620-11: AG
	S1/2 31-11-2W	Cartler	0	400	Resellating ever and property fine	396	2W		BY-LAW NO. 1-2018: AG	BY-LAW NO, 1620-11: AG
	NE31-11-2W	Cartier	0	115	Recederation tives and property line.	113	2W, 3W		BY-LAW NO. 1-2016; AG	BY-LAW NO. 1620-11; AG
	S1/2 of SE 35-11-3/W	Cartier	0	90	Property line	78	3W, 3NW and 2W		BY-LAW NO. 1-2016: AG	BY-LAW NG. 1620-11; AG
	SE19-11-2W	Cartier	0	50	Property line and pond	48	392, 384#		BY-LAW NO. 1-2018: AG	BY-LAW NO. 1620-11; AG
- 1										
	R. S. I. D. L. W. C.									
					Total Net Acreage for Manure Application:	721	Alternake	land audi	Alternate land available for manure application but not qualified by	
					-		soil testin	jo jo		
	4, 89		교 후	nter the legal desemble the solity the Rural P	Enter the legal description for each parcel of land that will receive manure: Sec. Twp, Rge or River Lot (including parish). Identify the Rural Municipality in which the parcel is located	and that will receive	manure: Sec, Twp, Rge or	r River Lot (including	parish).	
	1		Inc	dicate how the I	and has been secured for n	nanure application:	0 - Own / C-Crown / L -	Lease / A – Agreem	Indicate how the land has been secured for manure application: O - Own / C-Crown / L - Lease / A - Agreement Multiple designations may be used as appropriate (ex. C/A for	used as appropriate (ex C/A
	Crown lands	that are under a s	spread agre	sement with the	Crown lands that are under a spread agreement with the producer that holds the agricultural Crown land lease).	cultural Crown land	lease).	•		
	2 12		163	Her setbacks fro	m surface water or groundly	aler features that re	whice the land available for	r manure application.	droundwater feature, that reduce the land available for manure application; include identification of type of feature (ex. 8m. Order 3 drain)	linte fex. 8m. Order 3 drain)
	l L		E E	the net acre.	age available for manure ap	plication for the part	zel after taking into accoun	it setbacks and exclu-	Enter the net acreane available for manure application for the parcel after taking into account setbacks and excluding Class 6, 7 and unimproved organic soils.	panic soils.
	9		En	the agriculture	Enter the agriculture capability class and subc	lass ratings for the s	and subclass ratings for the acreage available for manure application.	ire application.		,
	Ŧ			ovide soil test re	esuits for phosphorus in ppri	Olsen P for soil sa	mples taken at the 0-6 inch	h depth. Soil test res	Provide soit test results for phosphorus in ppm Olsen P for soil samples taken at the 0-6 inch depth. Soil test results must be no more than 12 months old and must be completed by	hs old and must be completed b
	an accredite	an accredited solf-lesting laboratory.		dicate the Develo	indicate the Development Plan and its by-law number in addition to the map designation for each field (ex. By-law #1/2008; AG)	sumber in addition b	o the map designation for	each field (ex. By-ław	v #1/2008: AG).	
			Sus	licale the Zonin	Indicate the Zoning By-law and its by-law number in addition to the zoning for each field (ex. By-law 12/2009; AG 80)	ber in addition to the	s zoning for each field (ex.	Bv-law 12/2009: AG	20)	

CROP ROTATION TABLE

4	œ	S	0	ш
Expected Crops in the Rotation	Acreage	Historical Yield	Units	Source of Yield Information
Barley	759	74	bu/acre	MASC data
Canola	898	47.05	bu/acre	MASC data
Soybeans	2144	43.8	bu/acre	MASC data
Red Wheat Spring	809	49.9	bu/acre	MASC data
Wheat-Winter	569	79.5	bu/acre	MASC data
Total Net Acreage for Manure Application	4,978			

A. List all of the crop(s) to be grown in the rotation on the acreage that will receive manure.

B. Indicate the average acreage for each crop over the rotation. For example, if there are 720 suitable acres available for manure and approximately 40 these acres will be used to grow canola, enter 286. The total of column B should add up to Total Net Acreage for Manure Application provided in the Manure Application Field Characteristic Table.

The total of column B should add up to Total Net Acreage for Manure Application provided in the Manure Application Field Characteristic Table.

C. Enter the historical yield average for each please provide copies.

D. Enter the units for the yields provided (e.g. bullette).

E. Enter the obstacle of the historical yield average provided.

E. Enter the source of the historical yield average provided.

"Certain Areas":

The Livestock Manure and Mortalities Management Regulation requires the proponent demonstrate sufficient land is available, to the satisfaction of the director, in order to implement an appropriate manure management plan before Manitoba Sustainable Development will issue a permit for a manure storage facility or confined livestock area. Sufficient suitable land must be available for the manure nitrogen and phosphorus that will land applied.

"Certain Areas" are defined by the Livestock Manure and Mortalities Management Regulation (M.R. 42/98) as areas where the amount of phosphorus in the manure produced annually by livestock in an area of not less than 93.24 km² is greater than two times the annual crop removal rate of P₂O₅ in that area.

In "certain areas" it is Manitoba Sustainable Development's policy to consider a manure storage facility permit if the operation can demonstrate it has access to sufficient suitable land, within a reasonable distance¹⁰, to apply manure at a rate equivalent to one times the crop removal rate of phosphorus. In areas which are not considered to be "certain areas", Manitoba Sustainable Development may consider a manure storage facility or confined area permit, subject to all applicable legislation, if the operation demonstrates it has access to sufficient suitable land to apply manure at a rate equivalent to two times the crop removal rate of phosphorus.

Currently the rural municipalities of Hanover and La Broquerie are considered to be "certain" areas". A livestock operation is considered to be located within a "certain area" if any part of the operation is located within the defined area. This may include, but not limited to, barn(s), confined livestock area(s), field storage location(s), manure storage facility(ies), and/or spread field(s).

Is the livestock operation located in	"certain areas" (i.e. Hanover or La Broquerie)?
☐ Yes	■ No

Land Base Requirement Calculation:

It is recommended that proponents use Manitoba Agriculture's Land Base Calculator to calculate the minimum area required for manure application and contact Manitoba Agriculture at (204) 945-3869 in Winnipeg for assistance with the land base calculator prior to submitting their site assessments.

Table	8-1:	Land	Base	Requireme	ents
			_		

Table 8-1: Land Base Requirer	nents	اأمايح
Total acres required for crop utilization of the manure	acres 254 (all other), 1708 (hog)	10tas
N ^a	254 (all other), 1708 (hog)	refur
Total acres required for two times crop P ₂ O ₅ removal ^a	acres (467 (all other)) 1991 (hog)	4,450
	(467 (all other)) 1991 (hog)	based
Total acres required for one times crop P₂O₅ removalb,c	acres	3983
	934 (all other), 3983 (hg	hogs
		- C - 2 - 3 - 1

 $^{\circ}$ All operations must demonstrate sufficient suitable land for crop N utilization and two times all other crop P_2O_5 .

Due to high livestock density and reduced land availability for manure application, all livestock species (2) operations proposed in "certain areas" (i.e. Hanover and La Broquerie) must demonstrate

acres fo

sufficient suitable land to balance phosphorus over the long-term (one times crop P_2O_5).

^c Under the Hog Production Pilot Project, pig operations must also demonstrate enough land to balance phosphorus over the long-term (one times crop P_2O_5). \square Crop Rotation Table attached \square Manitoba Agriculture's Land Base Calculator attached

8.9 Land Base Requirement Summary

By comparing the total suitable land available for manure application with the land required for manure application, state whether sufficient suitable land for manure application:

☐ has not been identified
has been identified to meet nitrogen utilization
has been identified for two times the crop removal rate of phosphorus
las been identified for one times the crop removal rate of phosphorus (for pi
operations and operations in "certain areas" [i.e. Hanover and La Broquerie])

8.10 Long-Term Environmental Sustainability

The Government of Manitoba has included phosphorus as a nutrient by which applications of manure, synthetic fertilizer and municipal waste sludge to agricultural lands may be limited.

Over the short-term for fields with low phosphorus, regulations allow manure to be applied to meet the nitrogen requirements of the crop. This often results in over- application of phosphorus and a build-up of phosphorus in soils. When soil test phosphorus levels reach 60 ppm Olsen P, manure application rates must consider how much phosphorus will be removed in the harvested portion of the crop. At 60 ppm, but less than 120 ppm Olsen P, the amount of phosphorus that can be applied cannot exceed twice (two times) what the crop can remove in order to slow the build-up of soil phosphorus. Once soil test phosphorus levels reach 120 ppm Olsen P, applications of phosphorus are restricted to no more than what the crop can remove (one times) in order to stop further soil test phosphorus build-up. At 180 ppm Olsen P, no additional phosphorus may be applied.

It should be noted that soil-test phosphorus levels of 60 ppm Olsen P or greater are agronomically very high and at these levels most crops will not benefit from additional phosphorus beyond starter phosphorus. As phosphorus levels build up in soils, the concentration of phosphorus in runoff to waterways increases.

Therefore, to remain environmentally sustainable over a long-term planning horizon of 25 years or more, phosphorus applications from applied manure and other nutrient sources such as commercial fertilizers must be balanced with crop removal to avoid further build-up in soils. Consequently, sufficient land must be available in relatively close proximity to the operation so that manure can be applied at no more than one times the crop removal rate.

Manitoba Agriculture Food and Rural Development Land Base Calculator

Colour Conventions:

Farm specific data can be entered in the yellow cells of each tab. Where appropriate, default values have been provided but can be changed.

Fixed data are provided in the grey cells of each tab.

Calculated values are shown in the green cells of each tab.

The land base requirements for nitrogen (N) and phosphorus (P2O5) are provided in the amber cells on tab 4.

Data Entry and Tab Information:

Enter all of the livestock for your farm and associated data in the yellow cells under tabs 1a to 1e.

Enter all of the crop rotation data on tab 2. Long-term crop yield averages using MASC records are required for Provinical Technical Review Site Assessments. Total nitrogen (N) and total phosphorus (P2O5) excreted by the livestock are summarized on tab 3.

Nutrient excretion, crop nutrient use and acres required for nitrogen (N) and phosphorus (P2O5) are summarized on tab 4.

For assistance, contact:

Clay Sawka, Nutrient Management Specialist, MAFRD, (204) 750-3066 Petra Loro, Livestock Environment Specialist, MAFRD, (204) 945-3869

Last revised January 27, 2016

Туре	Storage Type	Volatilization	Animal Numbers	Weight In	Weight Out	Average Animal WI	Days on Feed per Cycle (days)	Number of Cycles per Year	N Excretad Per Herd Adjusted for Storage N Loss (Iblycherd)	P205 Excreted per Herd Por Year (byshed)
Lactating Cows	Liquid Ungovered Earthen	30%	40	1400	1440	1420	365	1	9859	5281
Dry Cows	Liquid Uncovered Eartheil	30%	3	1440	144D	1440	365	1	645	258
Calves, 0-3 months	Liquid Uncovered Earthan	30%	4	90	275	183	385	1	15	22
Calves, 4-13 months	Liquid Unsovered Earthers	30%	8	275	810	543	385	1	329	185
Replacements, >13 months	Liquid Uncovered Earthern	37%	3	810	1250	1030	365	1	248	119
Mature Cows, plus associated Ilvestock	Liquid Unicovered Earthan	304	0	nia	n/a	21/8	n/a	n/e	0	0

Last revised August 20, 2014

Species / Commodity	Type of Operation	Storage Type	Volatilization	Bird Places	Weight In	Weight Out	Average Weight (lb)	Days on Feed	Cycles per Year	N Excreted Adjusted for N Loss Itrilicklys	P205 Excreted
Chickens	Brokers	Field Storage	40%	0	0.05	4.36	2.20	33	7.4	0	0
Chickens	Broder Breeder Pullets	Field Storage	40%	0	0.05	4.40	2.23	140	2	0	0
Chickens	Broiler Breeder Hens	Field Storage	40%	0	4,40	8.67	6.53	272	4	0	0
Eggs	Layer Pullets	Liquid Uncovered Earthen	30%	6000	0.05	3.04	1.54	133	2	1898	1881
Eggs	Layer Hens	Liquid Unbovered Earthen	30%	14000	3.03	3.74	3.38	355	1	13393	13145
Eggs	Breeder Pullets	Liquid Covered	10%	0	0.05	3.04	1.54	133	2	0	8
Eggs	Breeder Hans	Liquid Covered	10%	0	3.03	3.74	9.38	251	1	0	0
Turkey	Broiler Hens (0-9 wks)	Field Storage	40%	0	0.06	12.39	6.22	63	4	0	0
Turkey	Hens (0-11 w/ks)	Field Storage	40%	0	0.06	16.46	8.26	77	3.5	0	0
Turkey	Heavy Hens (0-14 wks)	Liquid Uncovered Earther	30%	10000	0.06	21.19	10.62	68	3	15741	14304
Turkey	Light Toms (0-12 wks)	Field Storage	40%	0	0.06	21.19	10.82	54	3	0	- 6
Turkey.	Toms (0-13 wks)	Field Storage	40%	0	0.06	26.84	13.45	91	3	0	0
Turkey	Heavy Toms (0-15 wks)	Field Storage	40%	0	0.05	30.29	15.18	105	2.5	8	0
Turkey	Breeding Hen Growers (0-30 wks)	Field Storage	40%	0	0.06	26.95	13.51	210	1	0	0
Turkey	Breeding Hens (30-60 wks)	Field Storage	40%	0	26.95	24.95	25.95	210	+	0	0
Turkey	Breeding Tom Grower (0-18 wks)	Field Storage	40%	0	0.05	33.92	15.99	128	2	0	8
Turkey	Breeding Tom Grower (0-30 wks)	Field Slorage	40%	0	0.06	50.89	25.47	210	1	0	5
Turkey	Breeding Tom (30-60 wks)	Field Storage	40%	0	80 88	61.86	58.38	210	1	0	-0

	Rem	oval	Uptake					Rem	oval	Uptake
Crop	P205	N	N	Units	Yield	Units	Acreage	P205	N	N
								(lb)	(lb)	(lb)
Alfalfa	13.8	58	58	lb/ton		ton/ac			ATTENTION OF	
Barley Grain	0.42	0.97	1.39	lb/bu	74	bu/ac	759	23590	54481	78071
Barley Silage	11.8	34.4	34.4	lb/ton		ton/ac				
Canola	1.04	1.93	3.19	lb/bu	47.05	bu/ac	898	43941	81544	134780
Corn Grain	0.44	0.97	1.53	lb/bu		bu/ac				40.1
Corn Silage	12.7	31.2	31.2	lb/ton		tons/ac				
Dry Edible Beans	1.39	4.17		lb/cwt		cwt/ac		H IN SE		
Fababeans	1.79	5.02	8.4	lb/cwt		cwt/ac				in u.
Flax	0.65	2.13	2.88	lb/bu		bu/ac				
Grass Hay	10	34.2	34.2	lb/ton		tons/ac				
Lentils	1.03	3.39	5.08	lb/cwt		cwt/ac				
Oats	0.26	0.62	1.07	lb/bu		bu/ac		160		
Pasture (grazed)	10	34.2	34.2	lb/ton	0.5	ton/ac				
Peas	0.69	2.34	3.06	lb/bu		bu/ac				
Potatoes	0.09	0.32	0.57	lb/cwt		cwt/ac				
Rye	0.45	1.06	1,67	lb/bu		bu/ac			Teles.	
Soybeans	0.84	3.87	5.2	lb/bu	43.8	bu/ac	2144	78882	363421	488317
Sunflower	1.1	2.8		lb/cwt		cwt/ac				
Wheat - Spring	0.59	1.5	2.11	lb/bu	49.9	bu/ac	608	17900	45509	64016
Wheat - Winter	0.51	1.04	1.35	lb/bu	79.8	bu/ac	569	23157	47222	61298
						Sub Total	4978	187470	592177	826483
			Estimate	d Average F	- ADETHUM TO THE SECOND	ptake (lb/ac)		37.7	119.0	166.0
						itional Acres				
				Crop Plan		itional Acres	And in column 2 is not a second			
					1	otal Acreage	4978			

Last revised August 20, 2014

Species	Animal Category/Operation type	N Uh/yansh	P205
Pigs	Gestating Sow	(fb/year)	(lb/year)
. 183	Nursing Sow	0	0
	Nursing Litter	0	0
	Live Cull Sows	0	0
	Bred Gilts	0	0
	Gilts	0	0
	Boars	0	0
		0	
	Weanlings	1011 1511	0
	Growers/finishers	0	0
	Sows, farrow to 5 kg	0	0
	Sows, farrow to 23 kg	0	0
Doof	Sows, farrow to finish	0	0
Beef	Mature Cows (>2 years old)	0	0
	Bred Heifer (14 mo - 2 years)	0	0
	Replacement Heifers (7 mo-14 mo)	0	0
	Unweaned Calves (0-7 mo)	0	0
	Bulls	0	0
	Mature Cows and Bred Heifers, plus associated livestock	0	0
	Feedlot Cattle - long keep	0	0
	Feedlot Cattle - short keep	0	0
	Backgrounders - pasture	0	0
	Backgrounders - confined	0	0
Dairy	Lactating cow	9859	5281
	Dry cow	645	258
	Calf, 0-3 months	15	22
	Calf, 4-13 months	329	180
	Replacements, >1.3 months	248	119
	Mature Cows, plus assoc livestock	0	0
Sheep	Ewes	0	0
	Replacement Ewes	0	0
	Rams	0	0
	Lambs	0	0
1000	Ewes, plus assoc livestock	0	0
	Feeder	0	0
Chickens	Broilers	0	0
	Broiler Breeder Pullets	0	0
	Broiler Breeder Hens	0	0
Layers	Layer Pullets	1896	1861
	Layer Hens	13393	13145
11111	Breeder Pullets	0	0
	Breeder Hens	0	0
Turkeys	Broiler Hens (0-9 wks)	0	0
	Hens (0-11 wks)	0	0
1000	Heavy Hens (0-14 wks)	15741	14304
0.500	Light Toms (0-12 wks)	D	0
	Toms (0-13 wks)	0	0
	Heavy Toms (0-15 wks)	0	0
100	Breeding Hen Growers (0-30 wks)	0	0
	Breeding Hens (30-60 wks)	0	0
	Breeding Tom Grower (0-18 wks)	0	0
	Breeding Tom Grower (0-30 wks)	0	0
	Breeding Tom (30-60 wks)	0	0
		tal 42127	35169

Note: Be sure all I vestock species on your farm are represented in this table, not just the livestock in the proposed expansion.

Nutrients Excreted	lbs
Nitrogen	42127
P2O5	35169
Crop Nutrient Use	lb/ac
Nitrogen Uptake	166.0
P2O5 Removal	37.7
Land Base Requirements	acres
Acres for Nitrogen Uptake	254
Acres for 2 x P2O5 Removal	467
Acres for 1 x P2O5 Removal	934

Summary For Non-Hog Species

Manitoba Agriculture Food and Rural Development Land Base Calculator

Colour Conventions:

Farm specific data can be entered in the yellow cells of each tab. Where appropriate, default values have been provided but can be changed.

Fixed data are provided in the grey cells of each tab.

Calculated values are shown in the green cells of each tab.

The land base requirements for nitrogen (N) and phosphorus (P2O5) are provided in the amber cells on tab 4.

Data Entry and Tab Information:

Enter all of the livestock for your farm and associated data in the yellow cells under tabs 1a to 1e.

Enter all of the crop rotation data on tab 2. Long-term crop yield averages using MASC records are required for Provinical Technical Review Site Assessments. Total nitrogen (N) and total phosphorus (P2O5) excreted by the livestock are summarized on tab 3.

Nutrient excretion, crop nutrient use and acres required for nitrogen (N) and phosphorus (P2O5) are summarized on tab 4.

For assistance, contact:

Clay Sawka, Nutrient Management Specialist, MAFRD, (204) 750-3066

Petra Loro, Livestock Environment Specialist, MAFRD, (204) 945-3869

Last revised January 27, 2016

									Feed		NExcreted		
Pia/Operation Type	Storacts Type	Votatilization	Animal	Weight In	Weight Out	Average Animal	Days on Feed	Number of Cycles for the Place per Year	Consumed Per Pig Per Day	Protein	Per Herd Adjusted for Storage N	Phosphorus Content of Feed (DM)	P205 Excreted Per Herd Per Year
			(Places)	(gp)	(46)	(10)	(days)	(days)		%	(Bayer/heart)	%	(loyetherd)
Gestaring Sow	Ligard Uncovered Earthen	360		447	000	629	121	3		14%	0	0.53%	0
Nursing Sow	Liquid Uncovered Earther	30%		539	539	500	21	15.2		20%	0	0.63%	0
Nursing Litter	Ciquid Uncovered Earthen	30%		3.1	13.6	9	21	15.2		ri/a	0	e/u	- P-100
Live Cut Sow	Ciguid Unicovered Earther	30%		630	630	630	14	26.1		14%	0	0.46%	. 0
Bryd Gilt	Liquid Uncovered Earthury	No.		340	447	394	121	6		14%	0	0.53%	0
City (Pashased)	Diquid Uncovered Earthein	300%		290	340	315	28	13.0		16%	0	0.46%	0
Boars (Purchased)	Charlet Carposphered Earthan	30%		270	000	465	365	-		14%	0	0.46%	0
Westfags	Liquid Uncavined Earthen	100		13.6	616	189	52	6.9		20%	0	0.64%	0
Grownraffenshars	Liquid Uncayenid Earthen	30%		61.6	280	111	112	m		16%	0	0.46%	0
Sows, factory to 5.2 kg	Liquid Onenymed Earther	30%		n/a	ıva	n/a	365		n/a	n/a	0	n/s	0
Sours, farrow to 28 kg	Ligad Decoyana Carban	30%		n/a	e/u	nia	366	-	n/a	riva	0	eju	0
Course faction to facility	the seal to be consisted Earthan	200	1000	4	ofer	- Tale	365		e'u	10/10	989899	n/u	TACOUR

Last Ruvised April 13, 2016

	Rem	oval	Uptake					Rem	oval	Uptake
Crop	P2O5	N	N	Units	Yield	Units	Acreage	P205	N	N
								(lb)	(lb)	(lb)
Alfaifa	13.8	58	58	lb/ton		ton/ac		T. REED		
Barley Grain	0.42	0.97	1.39	lb/bu	74	bu/ac	759	23590	54481	78071
Barley Silage	11.8	34.4	34.4	lb/ton		ton/ac				
Canola	1.04	1.93	3.19	lb/bu	47.05	bu/ac	898	43941	81544	134780
Corn Grain	0.44	0.97	1.53	lb/bu		bu/ac		P. COL		
Corn Silage	12.7	31.2	31.2	lb/ton		tons/ac				
Dry Edible Beans	1.39	4.17		lb/cwt		cwt/ac				
Fababeans	1.79	5.02	8.4	1b/cwt		cwt/ac				
Flax	0.65	2.13	2.88	lb/bu		bu/ac				
Grass Hay	10	34.2	34.2	lb/ton		tons/ac		n Edit		
Lentils	1.03	3.39	5.08	lb/cwt		cwt/ac				
Oats	0.26	0.62	1.07	lb/bu		bu/ac		可能發展		
Pasture (grazed)	10	34.2	34.2	lb/ton	0.5	ton/ac				
Peas	0.69	2.34	3.06	lb/bu		bu/ac				
Potatoes	0.09	0.32	0.57	lb/cwt		cwt/ac				
Rye	0.45	1.06	1.67	lb/bu		bu/ac				
Soybeans	0.84	3.87	5.2	lb/bu	43.8	bu/ac	2144	78882	363421	488317
Sunflower	1.1	2.8		lb/cwt		cwt/ac		建設		
Wheat - Spring	0.59	1.5	2.11	lb/bu	49.9	bu/ac	608	17900	45509	64016
Wheat - Winter	0.51	1.04	1.35	lb/bu	79.8	bu/ac	569	23157	47222	61298
	The state of the s					Sub Total	4978	187470	592177	826483
			Estimate	ed Average F	Removal/U	ptake (lb/ac)		37.7	119.0	166.0
					Add	litional Acres				
				Crop Plan	ned on Add	litional Acres				
			441-14		Т	otal Acreage	4978	1		

Note: Additional acres include acres for which crop removal or soil data is limited or unavailable.

Last revised August 20, 2014

Species	Animal Category/Operation type	N (Hb/year)	P2O5 (lb/year)
Pigs	Gestating Sow	(in) years	0
	Nursing Sow	0	0
	Nursing Litter	0	0
	Live Cull Sows	0	0
	Bred Gilts	0	0
	Gilts	0	0
	Boars	0	0
	Weanlings	0	0
	Growers/finishers	0	0
	Sows, farrow to 5 kg	0	0
	Sows, farrow to 23 kg	0	0
Beef	Sows, farrow to finish	283622	149986
веет	Mature Cows (>2 years old)	0	0
	Bred Heifer (14 mo - 2 years)	0	0
	Replacement Heifers (7 mo-14 mo)	0	0
	Unweaned Calves (0-7 mo)	0	0
	Bulls	0	0
	Mature Cows and Bred Heifers, plus associated livestock	0	0
	Feedlot Cattle - long keep	0	0
	Feedlot Cattle - short keep	0	0
	Backgrounders - pasture	0	0
	Backgrounders - confined	0	0
Dairy	Lactating cow	0	0
	Dry cow	0	0
	Caif, 0-3 months	0	0
	Calf, 4-13 months	0	0
	Replacements, >13 months	0	0
	Mature Cows, plus assoc livestock	0	0
Sheep	Ewes	0	0
	Replacement Ewes	0	0
	Rams	0	0
	Lambs	0	0
	Ewes, plus assoc livestock	0	0
	Feeder	0	0
Chickens	Broilers	0	0
	Broiler Breeder Pullets	0	0
	Broiler Breeder Hens	0	0
Layers	Layer Pullets	0	0
	Layer Hens	0	0
	Breeder Pullets	0	0
	Breeder Hens	0	0
Turkeys	Broiler Hens (0-9 wks)	0	0
	Hens (0-11 wks)	0	0
	Heavy Hens (0-14 wks)	0	0
3	Light Toms (0-12 wks)	0	0
	Toms (0-13 wks)	0	0
	Heavy Toms (0-15 wks)	0	0
	Breeding Hen Growers (0-30 wks)	0	0
	Breeding Hens (30-60 wks)	D	0
		0	
	Breeding Tom Grover (0-18 wks)		0
	Breeding Tom Grower (0-30 wks)	0	0
	Breeding Tom (30-60 wks)	0	0

Be sure all I vestock species on your farm are represented in this table, not just the livestock in the proposed expansion.

Note:

Nutrients Excreted	lbs
Nitrogen	283622
P2O5	149986
Crop Nutrient Use	lb/ac
Nitrogen Uptake	166.0
P2O5 Removal	37.7
Land Base Requirements	acres
Acres for Nitrogen Uptake	1708
Acres for 2 x P2O5 Removal	1991
Acres for 1 x P2O5 Removal	3983

Summary For Hogs Only

	I acknowledge that up to table above) may be required operation.	4917 d for the long	_acres (one times crop P_2O_5 removal from term environmental sustainability of the
9.0	Mortalities (Dead Ani	mal) Dispos	sal
use, lives betv	management and storage of li stock mortalities are handled in	vestock mort an environm	nent Regulation establishes requirements for the alities in agricultural operations. This helps ensure entally sound manner. Winter application, of the following, of composted mortalities is
	e of Disposal: Rendering Composting Burial		Incineration (in approved incinerator only)
	es the proposal include a perma Ves	anent site for	composting mortalities?
utili	zes a substantial amount of ma	anure (>15% l	nt facility is required if the composting process by weight) as a primary substrate. Please (204) 945-5081 for more information.
9	0.1 Mass Mortalities		
	A plan for mass mortalities	is in place	
٧	What steps will be taken in the	case of mass	moralities?
F _	Previously (15 years back), there	e was inciden	ce of mass mortalities in the agricultural operation.
ŀ	n this case, burial site SE of lagoo	n was utilized	for mass mortalities. It is planned to use similar means
i	n the future. Manitoba Sustainable	Development	will be contacted in the event of a future incident.
_			

10.0 Project Site Description: Land Use Planning Considerations

For assistance contact your Community and Regional Planning Regional Office.

10.1 Development Plan and Zoning Bylaw

The Planning District or Municipal Development Plan and Zoning By-law adopted under <u>The Planning Act</u>, set policy and regulations for the use and development of land. A proposed livestock operation must comply with the requirements of both documents. In the absence of such documents, the <u>Provincial Planning Regulation</u> under <u>The Planning Act</u> applies.

10.2 Development Plan

Every Development Plan must contain a livestock operation policy (LOP) that identifies areas where new or expanded livestock operations may be allowed. It must also set general standards for the location and setback of livestock operations. Identifying the Development Plan's land use designation and policies (for the planning district or municipality that affect the site) will help confirm the project site's compliance. The Development Plan designations for the spread fields (if something other than agricultural) will indicate the potential loss of the fields in the future due to possible development.

Table 10-1: Development Plan

Name of Planning District	White Horse Plains Planning District
Development Plan by-law number	1-2016
Land use designation of project site	Rural General Policy Area
Livestock operation policies – quote supportive policy numbers	3.1.18
Other Development Plan policies – quote supportive policy numbers	1.3.2 Goal 2, 3.1.8, 3.1.9
Non-supportive Development Plan policies	3.1.21 Variance required for minimum mutual separation distances

The Development Plan livestock operation policies support the size and location of the proposed operation.

The Development Plan designations support the long term use of the proposed spread fields.

10.3 Zoning By-law

Identifying the zoning for the project site, the proposed spread fields and the related zoning provisions, helps determine the project's compliance and the minimum separation distances needed between the operation and property boundaries and other natural features and land uses. The Zoning By-law contains specific regulations that govern location and setback of livestock operations.

Identify the minimum project site requirements stated in the Zoning By-law.

Table 10-2: Zoning By-law

	Project Site Dimensions	Minimum Zoning By-Law Site Requirements
Minimum Site Area	620 acres	80 acres
Minimum Site Width	5,280 ft	600 ft
Minimum Front Yard	620 ft	125 ft
Minimum Side and Rear Yard	888 ft and 4,157 ft	50 ft

If any project (front, side or rear) yard site dimensions are less than the Zoning Bylaw minimum, a Variation Order from the Municipality will be required.

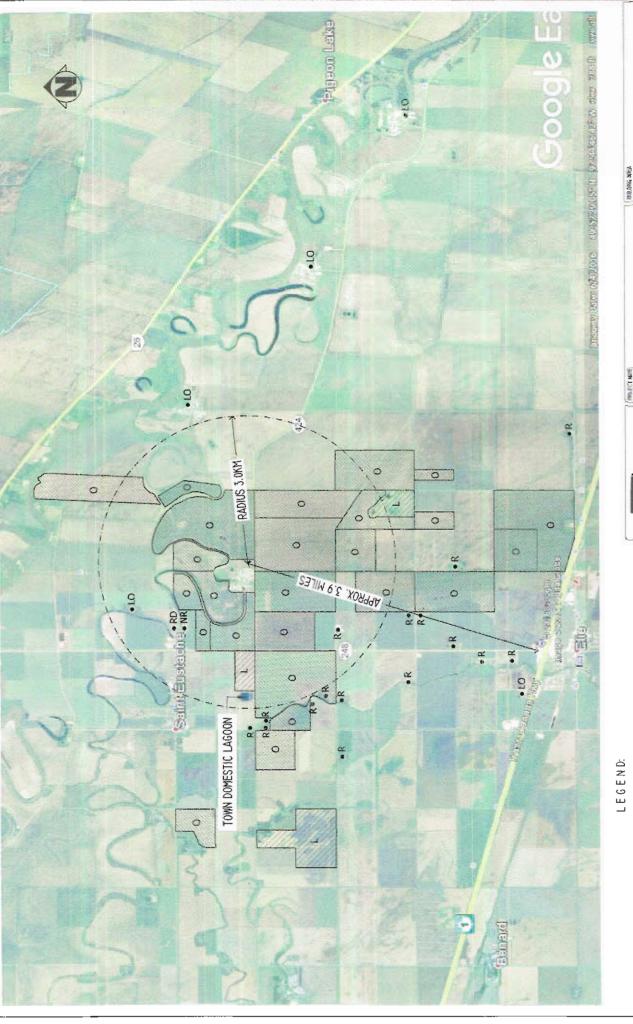
10.4 Separation Distances (Zoning By-law or Provincial Planning Regulation)¹¹

Using the proposed size of the operation (see <u>Animal Units Calculator</u>) and the type of animal housing and manure storage facility, complete the following table.

Indicate the distance from:

A. earthen manure storage facility OR B. feedlot and

C. animal confinement facility OR D. non-earthen manure storage facility...


Table 10-3: Separation Distances

to the following land use features (if	distance requ By-law or Pro Regulation	imum separation ired in the Zoning ovincial Planning (If applicable)	If land use feature is less than the minimum separation distance required in the Zoning By-law or Provincial Planning Regulation					
applicable)	■ A □ B			Provide location or name of feature (e.g. Red River)				
Residence/ dwelling	2,264 ft	1,132 ft	5,677 ft	NW 36-11-3W; Rural residence				
Designated area 12(non- agricultural)	9,055 ft	6,037 ft	5,924 ft	North portion of NW 36-11-3W sub-division				
Livestock N/A operation		N/A	5,676 ft	Iberville Colony located in RL-0013-BP				
Other significant features/land uses								

In cases where minimum separation distances are not stated in the Zoning By-law or Development Plan, the minimum separation distances in the Provincial Planning Regulation apply. If any separation distance is less than the Zoning By-law minimum, a Variation Order will be required from the Municipality.

Indicate on a Land Use and Spread Field Map (See Land Use and Spread Field Map Example 13):

- a) location of the project site, location and ownership of spread fields
- b) land uses and significant features including dwellings
 - i) within a 1 mile radius of the project site
 - ii) within and adjacent to each spread field.

SPREAD FJELDS (OWNED) - LEASED/AGREEMENT

- LIVESTOCK OPERATIONS

- NEAREST NEIGHBOR (5,677') RESIDENCE

FOR THE PUBLIC CONDITIONAL USE HEARING RESIDENTIAL DEVELOPMENT 3KM NOTIFICATION AREA

South

ROSEDALE COLONY SOW BARN	LAND USE & SPREAD SW 31-11-2W	FEBRUARY 2017
2	-Mai	gering e

	ROSEDALE COLONY SOW BARN	-
III.	LAND USE & SPREAD FIELD MAP SW 31-11-2W	
100		1

N/A

INEERING	SHET NUMBS	S
R. FLORES SOUTH-MAN ENGINEERING	MARKE SCA.E	N.T.S.

SP-2 THIS BRAKING IS THE PROPERTY OF SOUTH-HAN ENGINCERING, WINNIPEG, MANITOBA, CANADA.

10.5 Buffer Area from Crown Lands

Indicate in the table below if the proposed <u>livestock operation</u> (project site and spread fields) is located within 1 mile of any designated parcel of Crown land which would include: Provincial Park, Wildlife Management Area, Ecological Reserve, Provincial Forest, and Wildlife Refuge/Sanctuary. If applicable, also indicate the name of the Designated Crown Land.

Please complete the following table.

Table 10-4: Buffer Areas

Type of Designated Crown Land	Distance from perimeter of Designated Crown Land	Name of Designated Crown Land (e.g. Spruce Woods Provincial Park)
Provincial Park	☐ 1 mile or less ☐ Greater than 1 mile	Beaudry Provincial Park
Wildlife Management Area	☐ 1 mile or less ☐ Greater than 1 mile	N/A
Ecological Reserve	☐ 1 mile or less ☐ Greater than 1 mile	N/A
Provincial Forest	☐ 1 mile or less ☐ Greater than 1 mile	N/A
Wildlife Refuge/Sanctuary	☐ 1 mile or less ☐ Greater than 1 mile	N/A

If any Crown land parcel is to be utilized as part of the proposed planned works where the proposed works will involve the installation of infrastructure (e.g., pipe/hose) that will be placed on the surface of the land, the appropriate Crown land disposition may be required (e.g., General Permit/Work Permit²⁴). The proponent is encouraged to contact the Regional Lands Manager with Manitoba Sustainable Development for further discussion. Contact the Crown Lands and Property Agency at http:\clp.gov.mb.ca or toll free at 1-866-210-9589 or 1-204-239-3510.

10.6 Setback Distances

Use the following table to indicate setback distances, as required under the <u>Livestock Manure</u> and <u>Mortalities Management Regulation</u> (M.R. 42/98).

Table 10-5: Setback Distances

Feature	Structures	Minimum setback distance required (m)	Actual Setback distance (m)	Provide location or name of feature (e.g. Red River)
	Manure storage facility	100 m	170 m	Rosedale Loop
Surface watercourses,	Field storage	100 m	100 m	Property line
sinkholes, spring or well	Composting site	100 m	168 m	Rosedale Loop
	Confined livestock area	100 m	244 m	Rosedale Loop
	Manure storage facility	100 m	68 m	E property line
Property Line	Composting site	100 m	367 m	E property line
	Confined livestock area	100 m	71 m	E property line

If any setback distances have not been met, please provide explanation below:

The properties adjacent to the manure storage facility and confined livestock area are owned by the proponent.

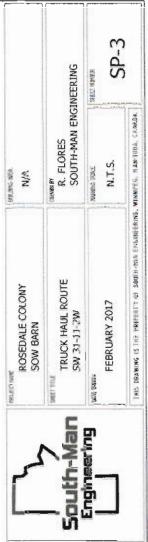
11.0 Truck Haul Routes and Access Points¹⁵

One consideration with new or expanding livestock operations is the potential impact on existing public roads (municipal and provincial), access and the need for improvements or mitigation. Complete the following table.

Access from PTH/PR onto Access onto PTH/PR from Estimated Average site will mainly require a site will mainly require a Number of Times per Left or Right Hand Turn Left or Right Hand Turn Day Accessing Please check one Please check one Vehicle Provincial Provincial Type Provincial Provincial Trunk Provincial Trunk Provincial Trunk Road (PR) Highway Road (PR) Highway Road (PR) Highway (PTH) (PTH) (PTH) LEFT RIGHT LEFT RIGHT RIGHT LEFT RIGHT **LEFT** 2 Truck X X Tractor 0.5 X X Trailer Other, specify

Table 11-1: Truck Haul Routes and Access Points

Identify what roads and access points will be used for the proposed operation? (See <u>Truck Haul</u> Routes and Access Points Map for an example).


☐ Truck Haul Routes and Access Point Map attached

12.0 Conservation Data Centre Report

A Conservation Data Centre Report must be requested and the response attached to this site assessment. The request may be submitted electronically at: www.gov.mb.ca/conservation/cdc.

Were rare species identified	in the Conservation	Data Centre	Report?
☐ Yes			■ No

Rosedale Colony - Hog Barn Development

1 message

Friesen, Chris (SD) < Chris.Friesen@gov.mb.ca>

Wed, Mar 1, 2017 at 1:07 PM

To: "desalegn.southmaneng@gmail.com" <desalegn.southmaneng@gmail.com>

Desalegn

Thank you for your information request. I completed a search of the Manitoba Conservation Data Centre's rare species database and found no occurrences at this time for your area of interest.

The information provided in this letter is based on existing data known to the Manitoba Conservation Data Centre at the time of the request. These data are dependent on the research and observations of CDC staff and others who have shared their data, and reflect our current state of knowledge. An absence of data in any particular geographic area does not necessarily mean that species or ecological communities of concern are not present; in many areas, comprehensive surveys have never been completed. Therefore, this information should be regarded neither as a final statement on the occurrence of any species of concern, nor as a substitute for on-site surveys for species as part of environmental assessments.

Because the Manitoba CDC's Biotics database is continually updated and because information requests are evaluated by type of action, any given response is only appropriate for its respective request. Please contact the Manitoba CDC for an update on this natural heritage information if more than six months pass before it is utilized.

Third party requests for products wholly or partially derived from Biotics must be approved by the Manitoba CDC before information is released. Once approved, the primary user will identify the Manitoba CDC as data contributors on any map or publication using Biotics data, as follows as: Data developed by the Manitoba Conservation Data Centre; Wildlife & Fisheries Branch, Manitoba Sustainable Development.

This letter is for information purposes only - it does not constitute consent or approval of the proposed project or activity, nor does it negate the need for any permits or approvals required by the Province of Manitoba.

We would be interested in receiving a copy of the results of any field surveys that you may undertake, to update our database with the most current knowledge of the area.

If you have any questions or require further information please contact me directly at (204) 945-7747.

Chris Friesen
Coordinator
Manitoba Conservation Data Centre
204-945-7747
chris.friesen@gov.mb.ca
http://www.manitoba.ca/conservation/cdc/

----Original Message-----

From:

Sent: February-22-17 1:12 PM

To: Friesen, Chris (SD)

Subject: WWW Form Submission

Below is the result of your feedback form. It was submitted by WWW Information Request () on

Wednesday, February 22, 2017 at 13:11:31

Document(D: Manitoba Conservation

Project Title: Rosedale Colony - Hog Barn Development

Date Needed: 2017/03/03

Name: Desalegn Edossa

Company/Organization: Soth-Man Engineering

Address: 15-1599 Dugald Rd

City: Winnig

Province/State: MB

Phone: (204) 668-9652

Fax: (204) 668-9204

Email: desalegn.southmaneng@gmail.com

Project Description: The information will be used to determine the impacts on species by a proposed increase in herd capacity from 600 to 1000 sow farrow-finish. Although additional building area will be required to house the increased animal inventory, no modifications to the existing earthen manure storage will be required.

Information Requested: Would like to know if there are any species at risk or endangered in region that may be impacted by the livestock operation.

Format Requested: Microsoft Word Document, Email attachment

Location: SE 36-11-3W and SW 31-11-2W in the RM of Cartier.

action: Submit

13.0 Supporting Documents

Check the supporting documents included in this submission:

	Contact Information and Privacy and Publication Notice
150	Location Map (shows proposed project within rural municipality)
	Project Site Plan (proposed operation showing current and proposed structures)
***	Animał Units Calculator
	Water Requirement Calculator
	Dairy Barn Water Requirement Estimator
_	Manure Production Calculator
	Existing and Proposed Manure Storage Facility Dimension Tables (if applicable)
	Manure Treatment Supporting Documentation (if applicable)
2	Manure Application Field Characteristics Table
	Crop Rotation Table
22	Recent manure application field soil sample results (Olsen Phosphorus – ppm at 0-6 inch
	depth)
	Manitoba Agriculture Land Base Calculator
	Letter from the Manitoba Pork Council under the Hog Production Pilot Protocol (pigs
on	
	Land Use and Spread Field Map (location and ownership of operation, location and
	distance to non-agricultural uses, development plan designation, zoning for project site and spread fields)
	Truck Haul Routes and Access Points Map (with routes and access points on
	municipal/provincial roads and/or provincial trunk highways)
	Response from the Conservation Data Centre
	Other, please specify:
	·

14.0 Additional Information:

Please include any additional information you deem necessarily in order for the Technical Review Committee to review your proposal.

Due to the aging infrastructure of the existing hog operation, it is proposed to replace these existing buildings and at the same time increase the capacity from 600 sows Farrow to Finish to 1,000 sows Farrow to Finish. To facilitate the expansion, no modifications to the earthen manure storage will be required as the current capacity is sufficient to accommodate the new manure production. The proposed new buildings will be situated to increase the separation from the nearest residential development. However, as the separation distance of the manure storage from the designated residential area in NW 36-11-3W is less than the Zoning By-law minimum, a Variation Order will be required from the municipality. An existing finisher barn will remain at its current location until such time that its useful life has been expended. An addition to the proposed facility will then be constructed to replace it in the future. Sufficient land base has been identified for 1xP2O5 to ensure sustainability of the operation. Filing of an annual manure management plan will ensure monitoring of the sustainability. The existing Water Rights license will be expanded to facilitate the increase in additional consumption due to the increase in animal numbers.

15.0 Declaration

I do hereby verify that the information contained in the Site Assessment, and all required Supporting Documents, are accurate and complete to my knowledge.

Date: 2017/03/i3 (YYYY/MMM/DD)

Name: Peter Grieger South-Man Engineering (Please Print Clearly)

Signature: A A

Notes

¹ Identifying the location of the project is needed to determine the compliance with zoning and other by-laws. The inclusion of a location map helps to identify the project site within the municipality.

If a plan is required, the proponent may attach the acceptance letter from the director of Manitoba Sustainable Development in an appendix to the Site Assessment as supporting documentation, demonstrating compliance with section 12.2(1) of the Livestock Manure and Mortalities Management Regulation (M.R. 42/98). For more information, contact Manitoba Sustainable Development at (204) 945-4384.

¹¹" Agricultural operations are a source of traffic, noise, dust and odours. One of the key elements to successful siting of a livestock operation is to observe appropriate separation distances between potentially conflicting land uses. This is particularly important for the effective dispersion and dilution of odours from pig production facilities. When deciding where to build a new livestock operation, it is best to choose a site with as few neighbours as possible."

Section 6.2 Setbacks and Other Steps to Avoid Conflicts - Farm Practice Guidelines for Pig Producers in MB (April 2007)

Identifying the distance to the nearest land use features such as a neighbouring agricultural operation or non-agricultural designated uses (such as residential or recreational designated areas in the Development Plan), sensitive areas such as wildlife management areas or critical habitat, individual dwellings and various water bodies and drains

² Indicating if the operation is new or expanding helps determine what regulation requirements are needed to be met for the proposal.

³ The regulatory requirements such as municipal by-laws and provincial regulations will vary with type and size of a livestock operation.

⁴ The regulatory requirements such as provincial regulations will vary with the type of housing.

⁵ Confined livestock areas most commonly refer to outdoor, open livestock facilities such as beef feedlots or cowcalf operation facilities ("open confined livestock areas"). The LMMMR includes covered structures, open to the elements, used for the rearing of livestock that feature a floor design that constitutes an effective water barrier, such as concrete ("Covered Confined Livestock Areas"). For example biotech shelters for feeder pig production and hoop structures.

⁶ The site plan is needed to ensure that required yard and other requirements can be met. Noting other features such as dwellings, shelterbelts, water source locations, drainage patterns, access points and the property dimensions enable the applicant to ensure proper site planning and sufficient separation distances between features to meet provincial regulations.

⁷ The province regulates the use of surface and ground water. Identifying the source of water will be required for resource management and licensing purposes.

⁸ A water well log is a report completed by the well driller after the construction of the well. Copies of the report are left with the well owner, the well drilling contractor and the Water Science and Management Branch of Manitoba Sustainable Development. Water well logs provide useful information on the geology of the well site and can be used to assess the potential vulnerability of the site to groundwater contamination.

⁹ The Province regulates the use of surface and ground water. Identifying the amount of water needed will be required for resource management and licensing purposes.

¹⁰New or expanding livestock operations in certain areas must have access to additional lands suitable for the application of livestock manure located within a reasonable distance, in the opinion of the director of Manitoba Sustainable Development. Reasonable distance is considered to be within a 10 mile radius of the operation for liquid manure. If land is identified beyond the 10 mile radius, a producer must submit a plan to the director of Manitoba Sustainable Development for approval describing the action taken and proposed to be taken to achieve and maintain soil phosphorus levels below 60 ppm.

enable the applicant to ensure that minimum separation distances are maintained between those various uses and the proposed animal confinement facility and manure storage facilities.

Any clearing activity, related construction activity, or works associated with the manure spreading application will also require the appropriate permitting under applicable legislation (e.g., The Crown Lands Act, The Forestry Act etc. Please contact the Regional Lands Manager or Conservation Officer for additional information.

¹⁵Identifying truck haul routes and access points on municipal and Provincial Roads and/or Provincial Trunk Highways assists the province and municipality in planning and identifies any potential required access permits. The information also allows other stakeholders to determine potential impacts on existing roads and adjacent land uses.

¹² Is an area identified on a Development Plan Map based on its current or future use?

¹³ The mapping of the project site, neighbouring designated residential areas, individual residences and surface water features enables the applicant to describe the geographic setting and general suitability of the area for the project. This may also assist the applicant in determining appropriate setbacks for field storage of manure, composting manure, and composting mortalities. By identifying a 3-kilometer area around the project site, the applicant is made aware of all land owners that will be notified regarding the public Conditional Hearing that will take place as part of the review process.

¹⁴ If undesignated Crown lands will be used for manure spreading purposes; including the laying of pipe, including draglines, or clearing activity, it will require the proponent to obtain a Crown Lands General Permit disposition that will authorize the use and access of the subject Crown Land(s).

(A massanbas 0

Corporate > Insurance > Lending > Other Programs >

Manitoba Agricultural Services Corporation

X €3 o

N.

Ċ,

MMPP - Variety Yield Data Browser

This page contains content imported from our previous website and does not scale well on mobile devices with small screens. Check back soci for this content to be re-written for mobile devices.

MMPP Variety Yield Data Browser - (Query Help)

Save Raw Data New Search

Summary Raw Data

Search Summary

Your selected search:

Region(s) Selected: CARTIER

Crop(s) Selected: BARLEY

Variety(s) Selected: CONLON

Pariad Selected: 2006 to 2016

This search returned 11 records from the MASC database, summarized below:

Sum of Farm Varieties: 107 farms

Total Acres: 58,075 acres
Yield per Acre: 74.0 Bushels / acre (1.612 tonnes / acre)

View Raw Data

Save Raw Data New Search

Manitoba Agricultural Services Corporation

()):

MMPP - Variety Yield Data Browser

This page contains content imported from our previous website and does not scale well on mobile devices with small screens. Check back soon for this content to be re-written for mobile devices.

Search Summary Your selected snarch: Region(s) Selected: CARTIER Crop(s) Selected: CARTIER Verley(s) Selected: CARTIER Verley(s) Selected: 2006 to 2016 Period Selected: 2006 to 2016 Sum of Farro Varieties: 249 farms
Search Summary Your selected snarch. Region(s) Selected: CARFIER Crop(s) Selected: WINTER WHEAT Variety(s) Selected: CDC FALCON Period Selected: 2006 to 2016 Period Selected: 2006 to 2016 This search returned 11 records from the MASC database, summarized below: Sum of Farm Varieties: 249 farms
Your selected snarch. Region(s) Selected: CACRIER Crop(s) Selected: WINTER WHEAT Variety(s) Selected: 2004 to 2016 Period Selected: 2004 to 2016 This scarch returned 11 records from the MASC database, summarized below: Sum of Farm Varieties: 249 farms
Region(s) Selected: CARTIER WHEAT Crop(s) Selected: UNITER WHEAT Variety(s) Selected: 2006 to 2016 Period Salected: 2006 to 2016 This search returned 11 records from the MASC database, summarized below: Sum of Farro Varieties: 249 farms
Crop(s) Selected: UNIVER WHEAT Variety(s) Selected: CDC FALCON Period Selected: 2006 to 2016 This search returned 11 records from the MASC database, summarized below: Sum of Farm Varieties: 249 farms
Variety(s) Selected, 2004 to 2016 Period Selected, 2004 to 2016 This search returned 11 records from the MASC database, summarized below. Sum of Farm Varieties: 249 farms
Period Selected, 2006 to 2016 This search returned 11 records from the MASC database, summarized below: Sum of Farry Varieties: 249 farms
This search returned 11 records from the MASC database, summarized below: Sum of Farm Varieties: 249 farms
Total Acres: 83,274 acres Vield per Acre: 79.8 Bushels / acre (2.171 toornes / acre)

Manitoba Agricultural Services Corporation

MMPP - Variety Yield Data Browser

This page contains content imported from our previous website and does not scale well on mobile devices with small screens.

Check back seen for this content to be rewritten for mobile devices.

MMPP Variety Yield Data Browser - (Query Hclp.)

Save Raw Data New Search

Summary Raw Dota

Search Summary

Your selected search:

Region(s) Selected: CARTIER

Crop(s) Selected: SOYBEANS

Variety(s) Selected: TH 33005R2Y <THUNDER- (RT)

Period Selected: 2006 to 2016

This search returned 1 records from the MASC database, summarized below:

Sum of Farm Varieties: 3 farms

Total Acres: 1,300 acres Vield per Acre: 42.2 Bushels Jacre (1.147 tornes Lacre)

View Raw Daca

Save Raw Sists New Search

Manitoba Agricultural Services Corporation

x

C N 0

MMPP - Variety Yield Data Browser

This page contains content imported from our previous website and does not scale well on mobile devices with small screens.

Check back soon for this content to be re-written for mobile devices. MMPP Variety Yield Data Browser - (Query Help) Summary Baw Date

Search Summary

Your selected search:

Region(s) Selected: CARTIER

Crop(s) Selected: SCIYBEANS

Variety(s) Selected: 24-108Fr < DEKALB> (RT)

Period Selected; 2006 to 2016

This search returned 5 records from the MASC database, summarized below:

Sum of Farm Varieties: 48 farms

11,644 acres Total Acres; Yield per Acre: Total Acres;

45.4 Bushels / acre (1.237 tonnes / acre)

View Raw Data

Save Raw Data New Sounds

× : • © 1 N

MMPP - Variety Yield Data Browser

Save Raw Data New Search This page contains contains contain imported from our provious website and does not scale well on mobile devices with small screens.

Chack back spon for this content to be re-written for mobile devices. 47.7 Bushels / acre (1.082 tonnes/ acre) This search returned 2 records from the MASC database, summarized below: 7,438 acres 28 farms Yield per Acre: Sum of Farm Varieties: Total Acres MMPP Variety Yield Data Browser - (Query Help) Variety(s) Selected: L140P < INVIGOR> (LT) Crop(s) Selected: ARGENTINE CANDLA Period Selected, 2006 to 2016 Region(s) Selected: CARTIER Search Summary Your selected search: Summany Raw Data

Save Raw Data New Search

View Raw Data

×

6

MMPP - Variety Yield Data Browser

This page contains content imported from our previous website and does not scale well on mobile devices with arrial screwns.

Check back soon for this content to be re-written for mobile devices.

MMPP Variety Yield Data Browser - (query Help)

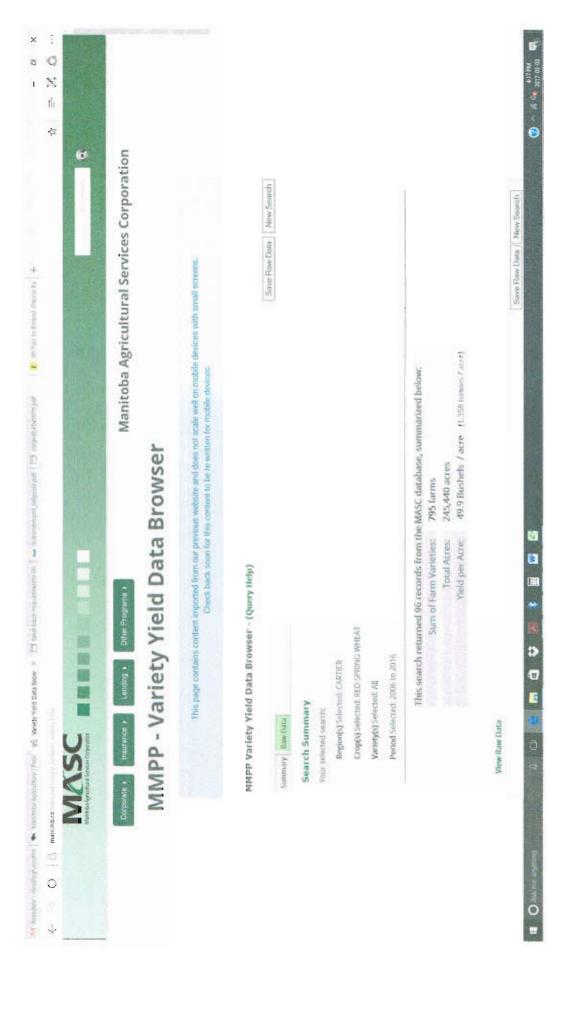
Save Raw Duta New Search

Variety(s) Selected 1.252 -(INVIGORS (LT) Crapps) Selection: ARGENTINE CANGLA. Period Selected: 2006 to 2016. Region(s) Selected: CARTIER Search Summary Your selected search; Summary Raw Data

Total Acres: 20,157 acres
Vield per Acre: 46.4 Buchels. / acre (1952 towns / acre) This search returned 3 records from the MASC database, summarized below: Sum of Farm Varieties: 70 farms

View Raw Data

Save Raw Dots New Sourch



Soil Analysis by Agvise Laboratories (http://www.agvise.com)

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID SAMPLE ID

FIELD NAME North Riverlot

COUNTY

TWP

RANGE 00

LP-020- QTR 00 SECTION

ACRES 110

W

PREV. CROP Soybeans

SUBMITTED FOR:

Rosedale Colony

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

S REF # 1601418 BOX # 0 LAB # NW91157

N

Date Sampled

Date Received 09/30/2016

Date Reported 3/6/2017

E

Nut	rient In	The Soil	Interpretation	15	t Cro	p Choice		2n	d Cro	p Choice		3r	d Cr	op Cho	ice
			SURE LOW HOW HIGH		Can	ola-bu									151
	0-6" 6-24"	6 lb/ac 6 lb/ac			YIELI	O GOAL			YIELD	GOAL			YIEL	D GOAL	
			-		55	BU									
	0-24"	12 lb/ac		SUGO	SESTE	GUIDELINE	s	SUGO	SESTED	GUIDELIN	ES	SUG	GESTE	D GUIDE	LINES
litrate					В	and									
	Olsen	16 ppm	******	LB/A	CRE	APPLICAT	ION	LB/A	CRE	APPLICAT	ION	LB/A	CRE	APPLI	CATION
hosphorus	Olsen	то ррш		N	166			N.				N			
otessium		321 ppm	******	P2O5	25	Band *		P ₂ O ₅				P ₂ O ₅			
hloride	1110			K20	0			K ₂ O				K20			
	0-6"		******	CI				CI				CI			
Sulfur	6-24"	102 lb/ac	******	5	17	Band		5				S			
Foron				В				8				В			
linc		1.78 ppm		Zn	0			Zn				Zn			
ron				Fe				Fe				Fe		-	
Aanganese		-		Mn		-	-	Mn			-	Mn			
opper				7077			-	200			-				
1egnesium				Cu		-		Cu		-		Cu			
aletum				Mg				Mg				Mg			
sodium				Lime				Lime				Lime			
Org.Matter 4.4 9		******				Cati	Cation Exchange		% Base S:		sturation (Typical Range)				
arbonate(CCE)			Soll	pH E	Buffer pH		Capaci	200	% Ca	% N	200		% Na	% H
Sol. Salts	0-6" 6-24"	0.41 mmho/cm 0.66 mmho/cm	**********	0-6" 7	3370										

Soil Analysis by Agvise Laboratories (http://www.agvise.com)

> Northwood: (701) 587-6010 Benson: (320) 843-4109

> > SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID SAMPLE ID

FIELD NAME South Riverlot

COUNTY

SECTION

TWP

00

RANGE 00

LP-020- QTR 00

ACRES 215

PREV. CROP Soybeans

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB

W

1601405 BOX #

NW91156

REF # LAB #

Date Sampled

Rosedale Colony

Date Received 09/30/2016

ROH OHO

Date Reported 3/6/2017

E

Nut	trient In	The Soil	Interpretation	15	t Cro	p Choice		2nd	Cro	p Choice		3rd (Crop Cho	ice
			Wall tem Med High		Soy	beans								
	0-6" 6-24"	6 lb/ac 6 lb/ac			YIEL	D GOAL			YIELD	GOAL		Y	ELD GOAL	
	I THE		•		40	BU								
	0-24"	12 lb/ac		SUG	SESTE	GUIDELINE	ES	SUGGE	ESTED	GUIDELIN	ES	SUGGES	TED GUIDE	LINES
Vitrate				HE	В	and							ligi.	
	Sali a			LB/A	CRE	APPLICAT	ION	LB/AC	RE	APPLICAT	TON	LB/ACR	E APPLI	CATION
Phosphorus	Olsen	39 ppm	******	N	***			N				N		
Potassium	7	491 ppm		P ₂ O ₅	10	Band (Starter	2	P ₂ O ₅				P ₂ O ₅		
Chloride				K20	٥			K ₂ O				K ₂ O		
	0-6" 6-24"		******	CI				CI				CI		
Sulfur	0.0000			5	5	Band (Tri	al)	S				S	-	
Baron				В				В				В		
Zinc Iron		3.01 ppm	***********************	Zn	0			Zn				Zn		
Manganese				Fe				Fe				Fe		
Copper				Mn				Mn				Mn		
Magnesium				Cu				Cu				Cu		
Calcium				Mg				Mg				Mg		
Sodium				Lime	o			Lime				Lime		
0 rg.Metter		6.9 %	****************				0.17		tion Exchange		se Sati	ration (Typical Ra	nge)
Carbonate(CC	5)			Soil	pH i	Buffer pH		Capacity	-	% Ca	% Ms			% H
Sal, Salts	0-6" 6-24"		**************	0-6" 6 6-24" 2	200									

Crop 1: * Caution: Seed Placed Fertilizer Can Cause Injury * Nitrogen is credited 15 lbs for the previous crop. Nitrogen credits may need to be adjusted based on local conditions. Many crops may respond to a starter application of P & K even on high soil tests. Crop Removal: P205 = 35 K20 = 60 AGVISE Band guidelines will build P & K test levels to the medium range over many years. Soybeans may respond to nitrogen on fields testing less than 60 lb/ac with a limited soybean history.

Soil Analysis by Agvise Laboratories (http://www.agvise.com)

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 5 SAMPLE ID

FIELD NAME Iberville Bush

COUNTY

TWP 11 RANGE 2W

SECTION 32 QTR NW ACRES 85

PREV. CROP Wheat-Winter

SUBMITTED FOR:

Rosedale Colony

TED FOR: SUBMITTED BY: TE1677

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB ROH OHO

W E

REF # 1599511 BOX # 0

LAB # NW51408

Date Sampled Date Received 08/21/2016 Date Reported 2/8/2017

Nutrient In The Soil		Interpretation	Interpretation 1st Crop Choice		2n	2nd Crop Choice				3rd Crop Choice			
		DEEM LIW Hed High		Can	ola-bu			No.					
0-6" 6-24"	6 lb/ac 6 lb/ac			YIELI	GOAL		YIELD	GOAL		YII	LD GOAL		
		· Euglibi		55	BU								
0-24"	12 lb/ac		SUG	SESTER	GUIDELINES	SUG	GESTED	GUIDELINE	s s	SUGGEST	ED GUIDE	LINES	
Nitrate				В	and			TI, STILL					
Olsen	8 nom	******	LB/A	CRE	APPLICATIO	N LB//	ACRE	APPLICATI	ON	LB/ACRE	APPLI	CATION	
Phosphorus	o pp.iii		N	181		N				N			
Potassium	227 ppm	******	P20s	47	Band *	P2O5			P:	Os			
Chloride			K ₂ O	0		K20			К	20			
0-6"		*****	CI			CI				11			
6-24" Sulfur	360 +lb/ac		s	10	Band	5		II.		5			
Boron			В			В				В			
Zinc	3.30 ppm		Zn	0		Zn			2	in .			
Iron			Fe			Fe				ie .			
Manganese Copper			Mn			Mn				tn-			
Magnesium			Cu			Cu				u			
Calcium			Mg			Mg			,	1g			
Sodium			Lime			Lime			L	me			
0 rg.Matter 3.8 %		*******			ation Exc	20000000		e Satur	aturation (Typical Range)				
Carbonate(CCE)			Soil	pH E	Buffer pH	Capaci		% Ca	% Mg	% K	% Na	% H	
0-6" 6-24" Sol. Salts		**************	0-6* 8 6-24* 8	-1-772									

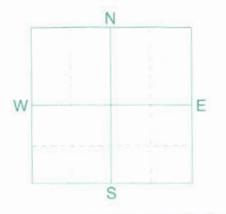
Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 6 SAMPLE ID

FIELD NAME West St Eustache


COUNTY

TWP 11 SECTION 33 RANGE 3W

SUBMITTED BY: TE1677

QTR NE ACRES 125

PREV. CROP Barley

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB

ROH OHO

REF # 1599521 BOX # (

LAB # NW52962

Date Sampled

Rosedale Colony

Date Received 08/24/2016

Date Reported 2/8/2017

Nut	rient In	The Soil	Interpretation	15	t Cro	p Choice	200	d Cro	p Choice		3rd (rop Cho	ice
			VACUE FOR HIGH		Soy	beans						Ly_13	
	0-6" 6-24"	10 lb/ac 6 lb/ac			YIELI	GOAL		YIELD	GOAL		Y	ELD GOAL	
			***		40	BU							
	0-24"	16 lb/ac		SUGO	SESTE	GUIDELINES	sugg	ESTED	GUIDELINE	5 5	SUGGES	TED GUIDE	LINES
Nitrate					В	and							
	Olsen	13 ppm		LB/A	CRE	APPLICATION	LB/A	CRE	APPLICATI	ON	LB/ACR	E APPLI	CATION
Phosphorus	Olacii	25 pp		N	***		N.				N		
Potassium		320 ppm	******************	P ₂ O ₅	24	Band *	P ₂ O ₅			P ₂	05		
Chioride				K ₂ O	0		K ₂ O			K	20		
	0-6"		******	CI			CI				21		
Sulfur	6-24"	42 lb/ac	******	5	5	Band (Trial)	5				s		
Boron				В			Б				В		
Zinc		4.70 ppm	******	Zn	0		Zn			2	Zn .		-
Iron				Fe			Fe				Fe		
Manganese				Mn			Mn				4ri		
Copper				Cu			Cu				. u		
Magnesium Calcium				Mg			Mg				/ig		
Sodium				Lime			Lime				me	_	
Org.Matter		5,2 %	7111110000TTXXXXIII	Entro			1000000		D: 0		. A. A.	Santa Tara	
Carbonate(CC8)			Soil	H E	luffer pH Ca	Capacit	(7)	% Ca	e Satur	% K	Typical Ra % Na	mgia) % H
	0-6" 6-24"	0.74 mm ho/cm 0.519 mmho/cm	******	0-6" 3 6-24" 8	0.00								

Crop 1: " Caution: See d Placed Fertilizer Can Cause Injury " Many crops may respond to a starter application of P & K even on high soil tests. Crop Riemoval: P205 = 35 K20 = 60 AGVI:SE Band gradefines will build P & K test levels not the medium range over many rears. Soybeans may respond to nitrogen on fields testing less than 60 lb/ac with a limited soybean history.

Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 7
SAMPLE ID

FIELD NAME Oxen Bush

COUNTY

TWP 11

RANGE 3W

SECTION 36 QTR NE ACRES 72

PREV. CROP Canola-bu

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE MB

ROH OHO

W E

REF # 1601388 BOX # 0

LAB # NW57954

Date Sampled

Rosedale Colony

Date Received 08/31/2016

Nu	trient In	The Soil	Interpretation	15	t Cro	p Choice	2n	d Cro	p Choice	3	3rd	l Cro	op Cho	ice
			Now Low Not High		Barle	y-Feed								
	0-6" 6-24"	26 lb/ac 15 lb/ac			YIELI	GOAL		YIELD	GOAL			YIEL	D GOAL	
	0-24	13 10/ 80			100	au								
	0-24"	41 lb/ac		SUG	ESTE	GUIDELINES	SUG	GESTED	GUIDELIN	ES	sugg	ESTE	D GUIDE	LINES
Nitrate					8	and								
				LB/A	CRE	APPLICATIO	N LB/A	CRE	APPLICAT	TION	LB/A	CRE	APPLIC	CATION
Phosphorus	Olsen	46 ppm	***************************************	N	134	1-01	N.				N			
Potassium		390 ppm		P2O5	15	Band (Starter)*	P ₂ O ₅				P2O5			
Chloride	0-6"	52.11.7-		K ₂ O	10	Band (Starter)*	K ₂ O				K2O			
Sulfur	6-24"		***************************************	CI			CI				CI			
Boron				S	0		S				5			
Zinc		3.60 ppm	******************	В			В				В			
1ron				Zn	0		Zn				Zn			
Manganese				Fe			Fe				Fe			
Capper				Mn			Mn				Mn			
Magnesium	1.11			Cu			Си				Cu			
Calcium	TREVA			Mg			Mg				Mg			
Spdlum				Lime			Lime				Lime			
Org.Matter		4.8 %	******	will the	40-21 -		ation Exc	hange	% Ba	se Sat	uration	(TV	pical Ra	nge)
Carbonate(CC	E)			Soil	OH E	Buffer pH	Capaci		% Ca	% M	-	K	% Na	% H
Sol. Salts	0-6" 6-24"		************	0-6" 2										

Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 8
SAMPLE ID

FIELD NAME 35 Acres

COUNTY

TWP 11

RANGE 3W

SECTION 36 QTRNW ACRES 38

PREV. CROP Canola-bu

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB ROH OHO

W E

REF # 1601389 BOX # 0

LAB # NW57948

Date Sampled

Rosedale Colony

Date Received 08/31/2016

Nutrient In	The Soil	Interpretation	15	t Cro	p Choice	2n	d Cro	p Choice	9	3rd	d Cro	op Cho	ice
		Mayer line Med High		Barie	y-Feed								
0-6" 6-24"	16 lb/ac 15 lb/ac			YIEL	D GOAL		YIELD	GOAL			YIEL	D GOAL	
	25 10/ 02	******		100	BU								
0-24"	31 lb/ac		SUGO	ESTE	GUIDELINES	SUG	GESTER	GUIDELIN	ES	SUGO	ESTE	D GUIDE	INES
Nitrate				В	and			1 8					
			LB/A	CRE	APPLICATION	N LB//	ACRE	APPLICAT	TION	LB/A	CRE	APPLI	CATION
Olsen Phosphorus	34 ppm	***************************************	N	144		N				N			
Potassium	379 ppm	******	P2O5	15	Band (Starter)*	P2O5				P2Os			
Chloride 0-6"	120 115 (2.4		K20	10	Band (Starter)*	K20				K ₂ O			
6-24" Sulfur		***************************************	CI			CI				CI			
Boron			S	0		5				5			
Zinc	2.39 ppm	*******************	8			В				В			
Iron			Zn	0		Zn				Zn			
Manganese			Fe			Fe				Fe			
Copper			Mn			Mn				Mn			
Magnestum			Cu			Cu				Cu			
Calcium			Mg			Mg				Mg			
Sodium			Lime			Lime				Lime			
Drg.Matter	5.7 %	*******			C	ation Exc	hange	% Ba	se Sat	uration	n (Tvi	pical Ra	nge)
Carbonate(CCE)			Soil	H E	Buffer pH	Capaci		% Ca	% M	-	K	% Na	% H
0-6" 6-24"		***********************	0-6" 7 6-24" 7										

> Northwood: (701) 587-6010 Benson: (320) 843-4109

> > SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 9 SAMPLE ID

FIELD NAME North 424 & Hafel

COUNTY

TWP 11 SECTION 36 RANGE 3W

QTRSW ACRES 153

PREV. CROP Barley

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB

ROH OHO

W E

REF # 1599518 BOX # 0

LAB # NW51411

Date Sampled

Rosedale Colony

Date Received 08/21/2016

Nuti	rient In 1	The Soil	Interpretation	1st	Cro	p Choice	2nd	Cro	p Choice		3rd (Crop Ch	ioice
			blas Low Med High	11	Soy	beans							
	0-6" 6-24"	12 lb/ac 12 lb/ac			YIELD	D GOAL		YIELD	GOAL		Y	TELD GOA	AL.
			*****		40	BU							
	0-24"	24 lb/ac		SUGG	ESTED	D GUIDELINES	sugg	ESTED	GUIDELINE	ES	SUGGES	STED GUII	DELINES
litrate					В	and							
	Olsen	16 ppm	******	LB/AC	CRE	APPLICATION	LB/A	CRE	APPLICAT	ION	LB/ACR	E APP	PLICATION
hosphorus	Uisen	AU ppin			***		N.				N		
otassium		361 ppm	******	P ₂ O ₅	19	Band *	P205			1	P2Os		
hloride				K ₂ O	0		K ₂ O			1	K ₂ O		
Nonue	0-6"		******	CI			CI				CI		
ulfur	6-24"	360 +lb/ac	***************************************	5	5	Band (Trial)	s				S		
oron				В			В				В		
inc		1,93 ppm		Zn	0		Zn				Zn		
ron				Fe			Fe				Fe		
Manganese Copper				Mn			Mn				Mn		
Magnesium				Cu			Cu				Cu		
Calcium				Mg			Mg				Mg		
Sodium				Lime			Lime			7	Lime		
3 rg. Medder		6.5 %	******			Ca	tion Exch	ange.	% Ba	se Sati	ration (Typical I	Range)
Carbonate(CCE	a .			Soil to	н в	Buffer pH	Capacit	11/2/2015	% Ca	% Mg			
Sol. Salts	0-6" 6-24"	0.64 mmho/cm 6.85 mmho/cm	***************************************	0-6" 7. 6-24" &	2.72					-			

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 10 B SAMPLE ID

FIELD NAME Locks

COUNTY

TWP 11 RANGE 2W

SECTION 31 QTR NW ACRES 171

SUBMITTED BY: TE1677

PREV. CROP Canola-bu

HWY 1 ONE MILE WEST

SUBMITTED FOR:

Rosedale Colony TERRACO-ELIE

BOX 433

ELIE, MB ROH OHO

W E

REF # 1601387 BOX # 0

LAB # NW58810

Date Sampled

Date Received 09/01/2016

Nutrient In	The Soil	Interpretation	15	t Cro	p Choice		2nd	Cro	p Choice		3rd	d Cro	p Cho	ice
3)		Mark Anth Mak Mah		Soy	beans									
0-6" 6-24"	62 lb/ac 33 lb/ac			YIELI	GOAL			YIELD	GOAL			YIEL	D GOAL	
	20.2, 20	***************************************		40	BU									
0-24"	95 lb/ac		SUG	SESTE	GUIDELINES	5	SUGGE	ESTED	GUIDELIN	ES	SUGO	ESTE	D GUIDE	LINES
Nitrate				В	and									
	-		LB/A	CRE	APPLICATION	ON	LB/AC	RE	APPLICAT	TON	LB/A	CRE	APPLI	CATION
Olsen Phosphorus	49 ppm	******	N	***			N				N			
Potassium	372 ppm	******************	P2O5	10	Band (Starter)		P ₂ O ₅				P ₂ O ₅			
Chloride			K20	0			K ₂ O				K20			
0-6" 6-24"			CI				CI				CI			
Sulfur			S	0			5				S			
Boron Zinc	6,0827		В				В				В			
Iron	4.75 ppm	*******************	Zn	0			Zn				Zn			
Manganese			Fe	-			Fe				Fe			
Copper			Mn				Mn				Mn			
Magnesium			Cu				Cu				Cu			
Calcium			Mg				Mg				Mg			
Sodium			Lime				Lime				Lime			
Org.Matter	6.5 %	*******				Cation	n Exchi	ange	₩ Ba	se Satu	ratio	(Ty	pical Ra	nge)
Carbonate(CCE)			Soil	H E	Buffer pH		apacity	11220	% Ca	% Mg		K	% Na	% H
0-6" 6-24"		*********************	0-6" 1 6-24" 7	10.7		reve								

Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 13 SAMPLE ID

FIELD NAMES St Eustache

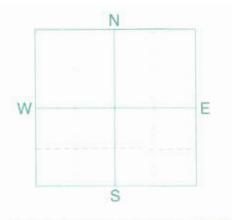
COUNTY

TWP 11

SECTION 27 QTR NE ACRES 160

PREV. CROP Barley

SUBMITTED BY: TE1677 TERRACO-ELIE


RANGE 3W

HWY 1 ONE MILE WEST

HWY I ONE PILLE WEST

BOX 433 ELIE, MB

ROH OHO

REF # 1599520 BOX # 0

LAB # NW52967

Date Sampled

Rosedale Colony

Date Received 08/24/2016

Nut	rient In	The Soil	Interpretation	15	t Cro	p Choice		2nd C	гор	Choice	表表	3rd C	rop Cho	ice
			VIAM DOW FIRST High		Soy	beans		TELL						
	0-6" 6-24"	13 lb/ac 9 lb/ac			AIET	GOAL		YI.	ELD C	GOAL		YI	ELD GOAL	
			***		40	BU								
	0-24"	22 lb/ac		sugg	ESTE	GUIDELINE	es	SUGGEST	TED G	GUIDELINE	is	SUGGEST	TED GUIDE	LINES
Nitrate					8	and							T	
		40		LB/A	CRE	APPLICAT	ION	LB/ACRE		APPLICAT	ION	LB/ACRE	APPLI	CATION
Phosphorus	Olsen	19 ppm	*******************	N	***			N				N		
Potassium		383 ppm		P2O5	14	Band *		P2O5			F	205		
				K₃O	0			K ₂ O			1	K2O		
Chloride	0-6"	66 lb/ac		CI				CI				CI		
Sulfur	6-24"		•••••		0			s				s		
Boron				В				В				В		
Zinc		3.51 ppm		Zn	0			Zn				Zn		
Iron				Fe	1,000			Fe				Fe		
Manganese				Mn				Mn	-			Mo		
Capper				Cu				Cu			75	Cu		
Magnesium Calcium				Mg				Mg				Mg		
Sodium												1000		
Org.Metter		T 4 04		Lime				Lime		7/100		Lime	11 20 11 12 12	
Carbonate(CCE	5)	1.54 710		Soil p	H B	Buffer pH		on Exchan	ge	% Bas			Vpical Ra	inge)
	0-6" 6-24"		****************	0-6° 7	200			cepacity		7/0 Cia	% Mg	90 K	% cual	70 ES

Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 14 SAMPLE ID FIELD NAME Vicker

TWP 11 SECTION 26

COUNTY

RANGE 3W

QTR E 1/2 ACRES 440

PREV. CROP Soybeans

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

W E

REF # 1601407 BOX # 0 LAB # NW104290

Date Sampled

Rosedale Colony

Date Received 10/05/2016

Date Reported 2/8/2017

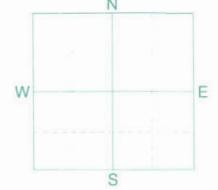
Nut	rient In	The Soil	Interpretation	15	t Cro	p Choice	2n	d Cro	p Choice		3rd	Crop	Choice
			Voge tou Hor High		Soy	beans						TI	1 20
	0-6" 6-24"	10 lb/ac 9 lb/ac			YIEL	GOAL	DO	YIELD	GOAL			YIELD G	OAL
			****		40	BU							
	0-24"	19 lb/ac		SUGO	SESTE	GUIDELINES	SUGO	SESTED	GUIDELINE	S	SUGGE	STED G	UIDELINES
Nitrate					В	and					SEATT.		
	Olsen	9 ppm	******	LB/A	CRE:	APPLICATIO	N LB/A	CRE	APPLICAT	ION	LB/AC	RE A	PPLICATION
Phospharus	-			N	***		N				N		
Potassium		321 ppm	*****************	P2O5	30	Band *	P ₂ O ₅				P2O5		
Chloride				K20	0		K ₂ O				K20		
Lillorine	0-6"		******	CI			CI				CI		
Suttur	6-24"	360 +lb/ac	***************************************	S	0		5				s		
Boron				В			В				В		•
Zinc		1.19 ppm	******	Zn	٥		Zn				Zn		
Iron				Fe			Fe				Fe		
Manganese Copper				Mn			Mn				Mn		
Magnesium				Cu			Cu				Cu		
Calcium				Mg			Mg				Mg		
Sodium				Lime			Lime				Lime		
Org.Matter		6-1 %	32222 2222 2222			-	ation Excl	hanne	% Ba	se Sah	uration	(Typics	l Range)
Carbonate(CC	t)			Soll	pH E	Buffer pH	Capaci'		% Ca	% M			
Sol. Selts	0-6° 6-24"		***************************************	0-6" 1 6-24" 1									

Crop 1: * Caution: Seed Placed Fertilizer Can Cause Injury * Nitrogen is credited 15 lbs for the previous crop. Nitrogen credits may need to be adjusted based on local conditions. Many crops may respond to a starter application of P & K even on high soil tests. Crop Removal: P205 = 35 K20 = 50 AGVISE Band guidelines will build P & K test levels to the medium range over many years. Soybeans may respond to nitrogen on fields testing less than 60 lb/ac with a limited soybean history.

> Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 15


SAMPLE ID FIELD NAME Elie Line

COUNTY

TWP 11 RANGE 3W

SECTION 25 QTR NW ACRES 240

PREV. CROP Canola-bu

1599789 BOX #

REF # LAB # NW57950

SUBMITTED FOR:

Rosedale Colony

SUBMITTED BY: TE1677 TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB

ROH OHO

Date Sampled

Date Received 08/31/2016

Nutri	ient In	The Soil	Interpretation	15	t Cro	p Choice	2nd	Cro	p Choice	9	31	d Cre	op Cho	ice
			Many som Had Han		Wheat	t-Winter								
	0-6"	25 lb/ac 15 lb/ac			YIELD	GOAL		YIELD	GOAL			YIEL	D GOAL	
	-		*******		90	BU								
	0-24"	40 lb/ac		SUGO	ESTED	GUIDELINES	SUGGI	ESTED	GUIDELIN	ES	SUGO	SESTE	D GUIDE	LINES
Nitrate					В	and								
				LB/A	CRE	APPLICATION	LB/AC	CRE	APPLICAT	NOI	LB/A	CRE	APPLI	CATION
Phosphorus	Olsen	30 ppm	******	N	176		N				N:			
Potassium		489 ppm	***************************************	P ₂ O ₅	15	Band (Starter)*	P ₂ O ₅				P205			
Chloride				K20	10	Band (Starter)*	K20				K ₂ O			
Suffur	0-6" 6-24"		*************************	CI			CI				CI			
Boron				S	0	100000	S				S			
Zinc		2.45 ppm	******	В	-		8				В			
1ron				Zn	0		Zn				Zn			
Manganese				Fe			Fe				Fe			
Copper				Mn			Mn				Mn			
Magneslum				Cu			Cu				Cu			
Calcium				Mg			Mg				Mg			
Sodium				Lime			Lime				Lime			
Org.Matter		5.8 %	****************			Ca	tion Excha	ange	% Ba	se Sat	curation	n (Ty	pical Ra	nge)
Carbonate(CCE)				Soil ;	н в	uffer pH	Capacity		% Ca	% M		K	% Na	% H
Sol. Salts	0-5" 6-24"		***************	0-6" 7 6-24" 8									CHIPPAN I	

Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 16 SAMPLE ID

FIELD NAMES Colony

COUNTY

TWP 11 SECTION 25 RANGE 3W

QTR £1/2 ACRES 285

PREV. CROP Barley

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

E W

1599517 BOX # REF # 0 LAB #

NW51409

Date Sampled

Rosedale Colony

Date Received 08/21/2016

Nut	trient In 1	The Soil	Interpretation	15	t Cro	p Choice	2nd	Crop	Choice	46	3rd C	rop Cho	ice
			flow Low Med High		Can	ola-bu							
	0-6" 6-24"	12 tb/ac 6 lb/ac			YIELI	GOAL		YIELD (GOAL		YI	ELD GOAL	
	0-24	0.107.	****		60	ви							
	0~24"	18 lb/ac		sugo	SESTER	GUIDELINES	SUGGE	STED	GUIDELIN	es	SUGGES	TED GUIDE	LINES
Nitrate					В	and							
				LB/A	CRE	APPLICATION	LB/AC	RE	APPLICAT	ION	LB/ACRI	APPLI	CATION
Phosphorus	Olsen	52 ppm	******	N	192		N				N		
Potassium		517 ppm		P2O5	10	Band (Starter)*	P ₂ O ₅			p	203		
Chloride				K ₂ O	0		K ₂ O			1	K2O		
	0-6" 6-24"		******	CI			CI				CI		
Sulfur	0 24	23 (13)		s	15	Band	s				s		
Boron				В			В				В		
Zinc		4.27 ppm	******	Zn	0		Zn				Zn		
Tron Manganese				Fe			Fe				Fe		
Copper				Mn		1 10 10	Mn				Mn		
Magnesium				Cu			Cu				Cu		100
Calcium				Mg			Mg				Mg		
Sodium				Lime			Lime				ime		
Org.Matter		7.3 %	******			Co	tion Excha	2000	% Ba	se Satu	ration (Typical Ra	ange)
Carbonate(CC)	E)			Soil	pH E	Suffer pH	Capacity		% Ca	% Mg		% Na	% H
Sol. Salts	0-6" 6-24"	0.64 mmho/cm 0.69 mmho/cm	*************	0-6° 7									

Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 17 SAMPLE ID

FIELD NAME North Billy Joe

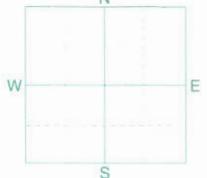
COUNTY

TWP 11

TERRACO-ELIE

BOX 433

ELIE, MB


RANGE 3W

SUBMITTED BY: TE1677

SECTION 24 ACRES 240 OTR SE

PREV. CROP Canola-bu

HWY 1 ONE MILE WEST

REF.#

LAB #

1599793 BOX #

NW57952

Date Sampled

Rosedale Colony

Date Received 08/31/2016

ROH OHO

Date Reported 2/8/2017

0

Nutrier	nt In	The Soil	Int	erpretation	15	t Cro	p Choice		2nd	Cro	o Choice		310	Cre	op Cho	ice
			Victor	aw Med High		Soy	beans			110						
	0-6"	13 lb/ac 9 lb/ac				YIELI	GOAL .			YIELD	GOAL			YIEL	D GOAL	
			****			40	BU									
0-	-24"	22 lb/ac			SUG	SESTE	GUIDELINE	s s	UGGE	ESTED	GUIDELIN	ES	SUGG	ESTE	D GUIDE	LINES
Nitrate						В	and									
O	Isen	18 ppm		*************	LB/A	CRE	APPLICATI	ON	B/AC	RE	APPLICAT	ION	LB/A	CRE	APPLI	CATION
Phosphorus					N	***			¥				N			
Potassium		461 ppm	******		P208	16	Band *	P ₂	05				203			
Chloride					K ₂ O	0		K	0				K20			
	0-6"				CI			(:1)				CI			
Sulfur	-24"	360 +16/ac	******	*****	5	0			5				s			
Baron					В				3				В			
Zinc		1.14 ppm	******		Zn	0		Z	n				Zn			
Iron					Fe			F	e				Fe			
Manganese					Mn				In				Mn			
Copper					Cir				u				Cu			
Magnesium Calcium					Ма				la la	-			Mg			
Sodium					Lime				ne				Lime			
Org.Matter		6.0 %	*****	******	MITTE.						44.5		00//03		10 70 -	
Carbonate(CCE)	111	(1877)			Soil	pH Y	Buffer pH	Cation	Exchi		% Ba	se Satu % Mo		K	pical Ra	nge) % H
	0-6" -24"	1.05 mmho/cm 3.05 mmho/cm			0-6" 2			cas	racity.		70 Ca	and tale	0/0	K	% Na	We H

Crop 12 " Caution: Seed Placed Fertilizer Can Cause Injury * Many crops may respond to a starter application of P & K even on high soft tests. Crop Rumoval: P205 = 35 Y20 = 60 A GVISE Band guidelines will build P & K test levels to the medium range over many years. Soybeans may respond to nitrogen on fields testing less than 60 lb/ac with a limited soybean history.

> Northwood: (701) 587-6010 Benson: (320) 843-4109

> > SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 18 SAMPLE ID

FIELD NAME SE Colony

COUNTY

TWP 11

RANGE 2W

SECTION 30 QTRW 1/2 ACRES 460

PREV. CROP Soybeans

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

MB ROH OHO

W E

REF # 1601409 BOX #

LAB # NW91158

Date Sampled

Rosedale Colony

Date Received 09/30/2016

Date Reported 3/6/2017

0

Nutrient In	The Soil	Interpretation	15	t Cro	p Choice		nd Cro	p Choice		3rd C	rop Cho	ice
		ycom tow. Her than		Can	ola-bu							
0-6" 6-24"	9 lb/ac 15 lb/ac			AIETI	GOAL		YIELO	GOAL		YII	ELD GOAL	
	30 10, 00	*****		55	ви			- 0 - 1			Mail	
0-24"	24 lb/ac		sugo	ESTE	GUIDELINES	s su	GGESTED	GUIDELIN	ES	SUGGEST	ED GUIDE	LINES
Vitrate				В	and							
			LB/A	CRE	APPLICATION	ON LE	/ACRE	APPLICAT	TON	LB/ACRE	APPLI	CATION
Olsen Phosphorus	40 ppm	******	N	154		N				N		
Potassium	503 ppm	******	P2O5	10	Band (Starter)	P20	s		P	205		
Chloride			K20	0		K ₂ C	0.		K	20		
0-6" 6-24"		***************************************	CI			CI				CI		
Sulfur	,		s	10	Band	S				s	11	
Baron			8			В				В		
Zinc	3.64 ppm	******	Zn	0		Zn				Zn		
Iron Manganese			Fe			Fe				Fo		
Copper			Mn			Min			Fit	Mn		
Magnesium			Cu			Cu			30	Cu		
Calcium			Mg			Mg		"	1	Mg		
Sodium			Lime			Lim	е	- 11 - 12	1	ime		
Org.Matter	6.7 %	******				Cation Ex	change	% Ba	se Satur	ation (T	ypical Ra	nge)
Carbonate(CCE)			Soil	H E	Buffer pH	Capa	Marie Comment	% Ca	% Mg	% K	% Na	% H
0-6" 6-24" Sol. Salts	The state of the s	******************	0-6" 7 6-24" 8	100								

Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID SAMPLE ID

FIELD NAME Mile Piece

COUNTY

TWP 11 RANGE 2W

SECTION 30 QTR E 1/2 ACRES 265

PREV. CROP Soybeans

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB ROH OHO W E S

REF # 1601410 BOX #

NW91159 LAB #

Date Sampled

Rosedale Colony

Date Received 09/30/2016

Nutrient Ir	The Soil	Interpretation	15	t Cro	p Choice	2	nd Cro	p Choice	2	3rd (Crop Cho	ice
		Committee Hogs High		Ba	arley							
0-6" 6-24"	7 lb/ac 18 lb/ac			YIEL	D GOAL		YIELD	GOAL		-Y	ELD GOAL	
0-24	10 10/ 00	*****		100	BU							
0-24"	25 lb/ac		SUG	GESTE	D GUIDELINES	suc	GESTE	GUIDELIN	ES	SUGGES	TED GUIDE	LINES
Nitrate				В	and							
			LB/A	ACRE	APPLICATIO	N LB	ACRE	APPLICAT	TION	LB/ACR	E APPLI	CATION
Olsen	31 ppm	******	N	115		N				N		
Potassium	509 ppm		P2O5	15	Band (Starter)*	P2O5				P ₂ O ₅		
Chloride			K20	10	Band (Starter)*	K20				K ₂ O		
0-6" 6-24" Sulfur		******	CI			CI				CI		
Boron			S	0		S				5		
Zinc	2.60 ppm	*******************	В			В				В		
Iron			Zn	0		Zn				Zn		
Manganese			Fe			Fe				Fe		
Copper			Mn			Mn				Mn		
Magnesium			Cu			Cu				Cu		
Calcium			Mg			Mg				Mg		
Sodium			Lime			Lime			1	Lime		
Org.Matter	6.5 %	***************************************				ation Ex	change	% Ba	se Satu	ration (Typical Ra	inge)
Carbonate(CCE)	w		Soll	pH I	Buffer pH	Capac	-	% Ca	% Mg			% H
0-6" 6-24" Sol. Salts		***************************************	G-6" 1									

Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 22 SAMPLE ID

FIELD NAME 100 acres

COUNTY

TWP 11

RANGE 2W

SECTION 20 QTR NW ACRES 160

PREV. CROP Canola-bu

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB ROH OHO

W E

REF # 1601390 BOX # 0

LAB # NW57942

Date Sampled

Rosedale Colony

Date Received 08/31/2016

Nutrient In	The Soil	Interpretation	15	t Cro	p Choice	2n	d Cro	p Choice		3rd	Crop C	hoice
		view flow Med Hosh	Hale	Barle	y-Feed							
0-6" 6-24"	14 lb/ac 9 lb/ac		Uzelli.	YIELI	O GOAL		YIELD	GOAL			YIELD GO	AL
	3 10/00			100	BU							
0-24"	23 lb/ac		SUGO	ESTE	GUIDELINES	SUGO	GESTED	GUIDELIN	ES	SUGGE	STED GUI	DELINES
Vitrate				В	and							
			LB/A	CRE	APPLICATION	LB/A	ACRE	APPLICAT	ION	LB/AC	RE API	PLICATION
Oisen	38 ppm	***************************************	N	152		N				N		
Potassium	538 ppm		P2O5	15	Band (Starter)*	P ₂ O ₅				P ₂ O ₅		
Chioride			K ₂ O	10	Band (Starter)*	K20				K ₂ O		
0-6" 6-24"	1201-10/2001/00/00	***************************************	CI			CI				CI		
Joron			S	0		5				5		
2 inc	3.41 ppm	******	В			В				В		
ron			Zn	0		Zn				Zn		
Manganese			Fe			Fe				Fe		
Copper			Mn			Mn				Mn		
1agnesium			Cu			Cu				Сш		
Calcium			Mg			Mg				Mg		
Sodium			Lime			Lime				Lime		
Org.Matter	6.3 %	******			r.	tion Exc	hanne	% Ba	se Sai	turation	(Typical	Range)
Carbonate(CCE)			Soll	PH 8	Buffer pH	Capaci		% Ca	% N	-		
0-6" 6-24" Sol. Salts		***************************************	0-5° 7	55.00								

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 23 SAMPLE ID

FIELD NAME East Side Pit

COUNTY

TWP **11**

RANGE 2W

W

SECTION 20 QTRSW ACRES 160

PREV. CROP Canola-bu

SUBMITTED FOR:

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

S

REF # 1601391 BOX # 0

LAB # NW57945

Date Sampled

Rosedale Colony

Date Received 08/31/2016

Date Reported 2/8/2017

E

Nutr	ient In	The Soil	Interpretation	15	Cro	p Choice	LO TO	2nd Cr	op Choice	2	3rc	Cre	p Cho	ice
			State Daw Med High		Barle	y-Feed								
	0-6" 6-24"	19 lb/ac 9 lb/ac			YIELD	GOAL		YIEL	D GOAL			YIEL	D GOAL	
	0-24	310/40	*****		100	BU								
	0-24"	28 lb/ac		SUGG	ESTED	GUIDELINE	s s	UGGESTE	D GUIDELIN	ES	SUGG	ESTE	D GUIDE	LINES
litrate					В	and								
		Toward to the		LB/A	CRE	APPLICATI	ON L	B/ACRE	APPLICAT	NOIT	LB/A	CRE	APPLI	CATION
hosphorus	Olsen	44 ppm		N	147		1	15			N			
otassium		556 ppm		P2O5	15	Band (Starter)	P ₂ (Ds .			P2O5			
hloride				K ₂ O	10	Band (Starter)	* K ₂	0			K2O			
iulfur	6-24"			CI			c	1			CI			
Foron				S	0		5				S			
Zinc		3.90 ppm	***************************************	В			Ē				В			
ron				Zn	0		z	n			Zn			
Tanganese				Fe			F	B.			Fe			
opper				Mn			M	n			Mn			
1 agnes lum				Cu			С	u			Cu			
Calcium				Mg			M	g			Mg			
odium				Lime			Lin	ne			Lime			
ry-Meteor		6.0 %	******				Cation E	xchange	% Ba	se Sa	bara tion	(Ту	pical Ra	nge)
arbonate(CCE)				Soil p	H B	uffer pH	Ciap	acity	% Ca	96 1	4g %	K	% Na	% H
Sol. Salts	0-6" 6-24"		********************	U-6" 7	9,724									

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 24 SAMPLE ID

FIELD NAME West Ponsin

COUNTY

TWP 11 RANGE 2W

SECTION 18 QTR W 1/2 ACRES 80

PREV. CROP Canola-bu

SUBMITTED FOR:

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB ROH OHO

W E

REF # 1601392 BOX # 0

LAB # NW57941

Date Sampled

Rosedale Colony

Date Received 08/31/2016

Nutr	ient In	The Soil	Interpretation	15	t Cro	p Choice		2nd	Cro	p Choice	2	3rd	Crop	Choi	ce
0.00			Vices Low Mod High		Barle	y-Feed									
	0-6" 6-24"	10 lb/ac 9 lb/ac			YIEL	GOAL			YIELD	GOAL			YIELD (GOAL	
		2.12,01	***		100	BU									
	0-24"	19 lb/ac		SUG	ESTE	GUIDELINE	s	SUGGE	ESTED	GUIDELIN	ES	SUGGE	STED	GUIDEL	INES
Nitrate					В	and									
	The same			LB/A	CRE	APPLICATI	ION	LB/AC	RE	APPLICAT	TION	LB/AC	RE	APPLIC	ATION
Phosphorus	Olsen	13 ppm	******	N	156			N				N			W.
Potassium		511 ppm		P ₂ O ₅	29	Band *		P ₂ O _S				P2O5			
Chloride				K20	10	Band (Starter)		K ₂ O				K ₂ O			
	0-6" 6-24"		******	CI				CI				CI			
Sulfur				5	0			5				5			
Zinc		1 19 000	******	8				В				В			
Iron		жас ррш		Zn	0			Zn				Zn			
Manganese				Fe				Fe				Fe			
Copper				Mn				Mn				Mn			
Magnesium.	1332			Cu				Cu				Cu			
Calcium				Mg				Mg				Mg			
Sodium				Lime	0			Lime				Lime			
Org.Matter		6.3 %	******	101200			Catio	on Exch	ange	% Ba	se Sat	uration	(Typic	cal Rar	nge)
Carbonate(CCE))			Soil	H I	Buffer pH		Capacity	-	% Ca	% M			o Na	% H
Sol. Salts	0-6" 6-24"		***************************************	0-6* (6-24* (255										

SUBMITTED FOR:

Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 25 SAMPLE ID FIELD NAME East Ponsin

COUNTY

TWP 11 RANGE 2W SECTION 17

ACRES 42 QTR NW

PREV. CROP Soybeans

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE MB

ROH OHO

N W E

REF # 0 1601393 BOX #

LAB # NW104267

Date Sampled

Rosedale Colony

Date Received 10/05/2016

Date Reported 3/6/2017

Nutrient In	The Soil	Interpretation	15	t Cro	p Choice		2nd C	гор	Choice		31	d Cr	op Cho	ice
		tice Love Med Ingn		Soy	beans		Toni-							
0-6" 6-24"	14 lb/ac 6 lb/ac			YIEL	D GOAL		YI	ELD G	OAL			YIEL	D GOAL	
	0,0,00	****		40	ви									
0-24"	20 lb/ac		SUGO	ESTE	GUIDELINE	s	SUGGEST	TED G	UIDELIN	ES	SUG	GESTE	D GUIDE	LINES
Nitrate				В	and				1118				n i	
			LB/A	CRE	APPLICATI	ON	LB/ACRE		APPLICAT	ION	LB/	ACRE	APPLI	CATION
Olsen Phosphorus	34 ppm	******	N	***			N				N			
Potassium	515 ppm	******	P ₂ O ₅	10	Band (Starter)		P2O5				P2O5			
Chloride			K ₂ O	0			K ₂ O		• •		K20			
0-6" 6-24"		******	CI				CI				CI			
Sulfur	300 +10/40		S	0			s				S			
Boron			В				В				В			
Zinc	2.18 ppm		Zn	0			Zn				Zn			
Eron Manganese			Fe				Fe				Fe		1	
Copper			Mn				Mn				Mn			
Magnesium			Cu				Cu				Cu			
Calcium			Mg				Mg				Mg			
Sodium			Lime				Lime				Lime			
Org.Matter	6.2 %	******************					IIII III		04 P-	-n S-		- CT-	mical P-	
Carbonate(CCE)			Soil	H H	Buffer pH		on Exchan Capacity	ge	% Ca	se sa	Seattle College	6 K	pical Ra % Na	nge) % H
0-6" 6-24" Sol. Salts		*****************	0-6" 7 6-24" 8	3.77										

Crop 1: " Caution: Seed Placed Fertilizer Can Cause Injury " Nitrogen is credited 15 lbs for the previous crop. Nitrogen credits may need to be adjusted based on local conditions. Many crops may respond to a starter application of P & K even on high soil tests. Crop Removal: P205 = 35 K20 = 50 AGVISE Band guidelines will build P & K test levels to the medium range over many years. Soybeans may respond to nitrogen on fields testing less than 60 lb/ac with a limited soybean history.

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 20 SAMPLE ID

FIELD NAME Marrow Claim

COUNTY

TWP 11

RANGE 2W

SECTION 19 QTR NW ACRES 180

PREV. CROP Canola-bu

SUBMITTED FOR:

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

W E

REF # 1599794 BOX #

LAB # NW57949

Date Sampled

Rosedale Colony

Date Received 08/31/2016

Date Reported 3/6/2017

0

Nuti	rient In	The Sail	Interpretation	15	t Cro	p Choice	2nd	Crop Choice		3rd C	rop Cho	ice
			Maw Low Host High		Whea	t-Winter						
	0-6" 6-24"	14 lb/ac 9 lb/ac			YIEL	O GOAL	Y	IELD GOAL		YII	LD GOAL	
	0-24	3 10/ 40			90	BU						
	0-24"	23 lb/ac		SUGO	ESTE	GUIDELINES	SUGGES	TED GUIDELINE	s	SUGGEST	ED GUIDE	LINES
Nitrate					В	and						
				LB/A	CRE	APPLICATION	LB/ACR	E APPLICAT	ION	LB/ACRE	APPLI	CATION
Phosphorus	Olsen	24 ppm		N	193		N.			N		
Potassium		530 ppm		P2O5	15	Band (Starter)*	P ₂ O ₅		Р	205		
Chloride				K20	10	Band (Starter)*	K ₂ O		K	20		
Sulfur	0-6" 6-24"		***************************************	CI			CI			CI		
Boron				S	0		S			5		
Zinc		2.03 ppm	******	В			В			В		
Iron				Zn	0		Zn			Zn		
Manganese				Fe			Fe			Fe		
Copper				Mn			Mn			Mn		
Magneslum				Cu			Cu			Cu		
Calcium				Mg			Mg			Mg		
Sodium	-11			Lime			Lime		L	ime		
Org.Matter		6.8 %	******			-	tion Exchar	0/o Bas	e Satur	ation /T	ypical Ra	nge)
Carbonate(CCE	1)			Soll	HC E	Buffer pH	Capacity	% Ca	% Mg		% Na	% H
Sol. Salts	0-6" 6-24"	1.06 mmho/cm 2.39 mmho/cm	*****************	0-6" 7 6-24" 8								1000

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 21 SAMPLE ID

FIELD NAME NW Pit

COUNTY

TWP 11 RANGE 2W

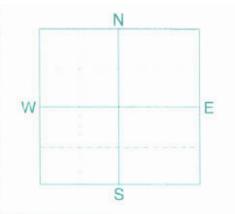
NE W

SECTION 19 OTR 1/2 of ACRES 157

SE

SUBMITTED FOR:

Rosedale Colony


SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB ROH OHO

REF # 1599798 BOX # 0 LAB # NW57956

Date Sampled

Date Received 08/31/2016

Nutri	ent In	The Soil	Interpretation	15	t Cro	p Choice		2no	d Cro	p Choice		3r	d Cr	op Cho	ice
			San Low Hed High		Whea	at-Winter									8 1
	0-6"	15 lb/ac 9 lb/ac			YIEL	D GOAL			YIELD	GOAL			YIEL	D GOAL	
		#. A. W.			90	BU									
	0-24"	24 lb/ac		SUG	SESTE	D GUIDELIN	ES	SUGG	ESTED	GUIDELINE	S	SUGO	SESTE	D GUIDE	LINES
litrate					E	and									
				LB/A	CRE	APPLICAT	TION	LB/A	CRE	APPLICAT	ION	LB/A	CRE	APPLI	CATION
hosphorus	Olsen	26 ppm		N	192			N				N			
otassium		536 ppm		P ₂ O ₅	15	Band (Starter	Ann I	P ₂ O ₅			1	205			
hloride	0-6"	62 lb./		K ₂ O	10	Band (Starter	2	K20				K20			
Sulfur	6-24"		******	CI				CI				CI			
oron				S	0			S				S			
tine		3.09 ppm		В				В				В			
ron				Zn	C			Zn				Zn			
Menganese				Fe				Fe				Fe			
Copper				Mn				Mn				Mn			
1 agnesium				Cu				Cu				Cu			
Calcium				Mg				Mg				Mg			
Sodium				Lime				Lime			a	Lime			
rg.Matter		7.4 %				on contain the	Cat	ion Exch	nange	% Bas	se Satu	ratio	n (Ty	pical Ra	nge)
arbonate(CCE)				Soil	pH	Buffer pH		Capacit	The state of the s	% Ca	% Mg	-	o K	% Na	% H
Sol. Salts	0-6" 6-24"		*****************	D-6* :	1										

Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 26 SAMPLE ID

FIELD NAME NW Frank

COUNTY

TWP 11

SECTION 7 QTR NW ACRES 172

PREV. CROP Wheat-Spring

W E

SUBMITTED BY: TE1677

RANGE 2W

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

REF # 1599779 BOX # 0 LAB # NW58805

Date Sampled

Rosedale Colony

Date Received 09/01/2016

Nut	rient In	The Soil	Interpretation	15	it Cro	p Choice		2n	d Cro	p Choice		3r	d Cr	op Cho	ice
			warm the Mod High		Soy	beans									
	0-6" 6-24"	10 lb/ac 6 lb/ac			YIEL	O GOAL			YIELD	GOAL			YIEL	D GOAL	
	7.00		**		40	BU									
	0-24"	16 lb/ac		SUG	GESTE	GUIDELIN	ES	SUG	GESTED	GUIDELIN	ES	SUG	ESTE	D GUIDE	LINES
litrate					В	and									
	Olsen	11 nom	******	LB/A	ACRE	APPLICAT	TION	LB/A	CRE	APPLICAT	TON	LB/A	CRE	APPLI	CATION
hosphorus	Ola ell	AZ PPIII		N	***			N	-			N			
otassium		446 ppm	••••••	P2O5	27	Band 1	*:	P2O5				P205			
hloride				K20	0			K20				K20			
	0-6"			CI				CI				CI			
Sulfur	6-24"	360 +IB/ ac	******	5	Ð			S				S			
oron				В				В				В			
line		0.99 ppm	*************	Zn	2	Band (Tr	ial)	Zn				Zn			
ron				Fe				Fe				Fe			
Manganese				Mn				Mn				Mn			
Copper				Cu				Cu				Cu			
lagnesium alcium				Mg			-	Ma			-1	Mg			
odlum				Lime				Lime				Lime			
rg.Matter		6.7 %	****************				E			Or m-		7618	-		
arbonate(CC	E)			Soll	pH I	Buffer pM		Capaci		% Cai	se Sati		6 K	picel Ra % Na	nge) % H
Sol. Salts	0-6" 6-24"		******	0-5"					-4	10 661	76 14	-,		70 Hd	70 M

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 27 SAMPLE ID

FIELD NAME Frank

COUNTY

TWP 11 RANGE 2W

SECTION 7 QTR S 1/2 + NE ACRES 460

PREV. CROP Wheat-Spring

SUBMITTED FOR:

Rosedale Colony

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

W

REF # 1599514 BOX # 0 LAB # NW57955

Date Sampled

Date Received 08/31/2016

	trient In	The Soil	Interpretation	15	t Cro	p Choice	21	nd Cro	op Choice		3rd C	rop Cho	ice
			Mor Law Mr F Hall		Soy	beans				T T			
	0-6" 6-24"	9 lb/ac 6 lb/ac			YIELI	GOAL		YIELD	GOAL		YII	ELD GOAL	
			***		40	BU		Ť					
	0-24"	15 lb/ac		SUGO	SESTE	GUIDELINES	SUG	GESTE	GUIDELINE	S S	JGGEST	ED GUIDE	LINES
Nitrate					8	and							
	Olsen	12 ppm	******	LB/A	CRE	APPLICATIO	N LB/	ACRE	APPLICATI	ON L	B/ACRE	APPLI	CATION
Phosphorus	833537			N	***		N			N			
Potassium		513 ppm	******	P2O5	26	Band *	P2O5			P20	15		
Chloride				K ₂ O	0		K₂O			K26)		
	0-6"		******	CI			CI			C			
Sulfur	6-24"	360 +lb/ac		s	0		S			s			
Boron				В			В			В	Į.		
Zinc		1.23 ppm	******	Zn	o		Zn			Zr			
Iron				Fe			Fe			Fe			
Manganese Copper				Mn			Mn			Mr	1		
Magnesium				Cu			Cu			C	E		
Calcium				Mg			Mg			Mg			
Sodjum			阿哥 罗斯	Lime			Lime			Lim	ie		
Q ng Matter		6.6 %	*****				ation to	·n n n n n	0/n Bas	e Satura	tion (7	ypical Ra	nnet
Carbonate(CC	E)			Soil	Hq	Buffer pH	Capac		% Ca	% Mg	% K		% H
Sol. Salty	0-6" 6-24"		********************	6-24"	V-2								

Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 28 SAMPLE ID

FIELD NAMES Billy Joe

COUNTY

TWP 11 SECTION 13

RANGE 3W QTRE1/2 ACRES 300

PREV. CROP Barley

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB

ROH OHO

W E

REF # 1599515 BOX # 0

LAB # NW51536

Date Sampled

Rosedale Colony

Date Received 08/22/2016

	rient In	The Soil	Interpretation	15	t Cro	p Choice		2nd Cro	p Choice	e	3rd	Cro	p Cho	ice
			Viol 16w Med 16sh		Whea	t-Spring								
	0-6" 6-24"	7 lb/ac 6 lb/ac			YIEL	D GOAL		YIELD	GOAL			YIELI	GOAL.	
	V. 44.5	3,12,43	***		80	BU								
	0-24"	13 lb/ac		SUGO	SESTE	D GUIDELINES	S	UGGESTED	GUIDELIN	ES	SUGG	ESTE	GUIDE	LINES
Nitrate					E	and								
				LB/A	CRE	APPLICATIO	ON L	B/ACRE	APPLICAT	TION	LB/AC	RE	APPLIC	CATION
Phosphorus	Olsen	7 ppm	******	N	203		N				N			
Potassium		424 ppm	************************	P2O5	50	Band *	P20	05			P ₂ O ₅			
Chloride				K ₂ O	10	Band (Starter)*	Kz	0			K ₂ O			
	0-6" 6-24"		*************************	CI			С	1			CI			
Sulfur				S	0		S				S			
Boron				В			В				В			
Zinc Iron		0.85 ppm	*************	Zn	2	Band (Tria	I) Zi	1			Zn			
Manganese				Fe			Fo				Fe			
Copper	18 1			Mn			М	n			Mn			
Magnesium				Cu			C	u			Cu			
Calcium				Mg			M	9			Mg			
Sodium				Lime			Lin	10			Lime			
Org.Matter		6.4 %	******	110000			Cation 5	xchange	% Ba	se Sat	uration	(Tvi	oical Ra	nge)
Carbonate(CCE)			Soil	H H	Buffer pH		acity	% Ca	% M			% Na	% H
Sol. Salts	0-6" 6-24"		***************************************	0-6° 1	455									

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 31 SAMPLE ID

FIELD NAMETriangle Piece

COUNTY

TWP 11

RANGE 4W

SECTION 21 OTR of NE

QTR N1/2 ACRES 80

PREV. CROP Soybeans

SUBMITTED FOR:

Rosedale Colony

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

W E

REF # 1601412 BOX # 0

LAB # NW117088

Date Sampled

Date Received 10/12/2016

Nut	rient In	The Soil	Interpretation	15	t Cro	p Choice		2nd C	rop	Choice		310	Cro	p Cho	ice
			Way Law Med High		Whea	t-Spring									
	0-6" 6-24"	6 lb/ac 9 lb/ac			YIEL	D GOAL		YI	ELD	GOAL			YIEL	D GOAL	
					80	BU									
	0-24"	15 lb/ac		sug	GESTE	D GUIDELINE	ES	SUGGES	TED	GUIDELIN	ES	SUGG	ESTE	D GUIDE	LINES
Vitrate					B	and									
				LB/A	CRE	APPLICAT	ION	LB/ACRI		APPLICAT	TON	LB/A	CRE	APPLI	CATION
Phosphorus	Olsen	12 ppm	***************************************	N	186			N				N			
Potassium		340 ppm	******	P20s	36	Band *		P2O5				P2O5			
Chloride				K ₂ O	10	Band (Starter		K2O				K2O			
	0-6" 6-24"			CI				CI				CI			
Sulfur				5	0			S				s			
Boron				В				В				В			
Zinc		1.96 ppm	***************************************	Zn	0			Zn				Zn			
Iron				Fe				Fe				Fe			7c.
Manganese				Mn			\neg	Mn		-		Mn			
Magnesium				Cu				Cu				Cu			
Calcium				Mg			-	Mg							
Sodium				Lime			-	Lime				Mg			
Drg, Matter		5.8 %	******	Linie			Minus	1/2				Lime	W. Sept. St		0.01002
Carbonate(CC	E):			Soil	рН 9	Buffer pH		on Exchan Capacity	ge	The state of	1000 P			pical Ra	
Sol. Sains	Ø6° 624″		*****************	D-6" 3				capacity		% Cal	% M	g %	R	% Na	% H

Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 32 SAMPLE ID

FIELD NAME Norquay Corner

COUNTY

SECTION

TWP 11 RANGE 4W

QTR E 1/2 ACRES 80

PREV. CROP Soybeans

28

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

W E

REF # 1601413 BOX # 0

LAB # NW117091

Date Sampled

Rosedale Colony

Date Received 10/12/2016

	trient In	The Soil	Interp	retation	15	t Cro	p Choice	2nd	Cro	p Choice		3rd C	rop Cho	ice
			State Land	Hed High		Whea	t-Spring			320				
	0-6" 6-24"	8 lb/ac 6 lb/ac				YIELI	GOAL		YIELD	GOAL		ΥI	ELD GOAL	
		E	***			80	BU							
	0-24"	14 lb/ac			SUGO	GESTE	GUIDELINES	SUGGE	ESTED	GUIDELIN	is	SUGGES"	ED GUIDE	LINES
Nitrate				MIE		В	and							
	Olsen	9			LB/A	CRE	APPLICATION	LB/AC	CRE	APPLICAT	ION	LB/ACRE	APPLI	CATION
Phosphorus	Uisen	8 ррп	***************************************		N	187		N				N		
Potassium		309 ppm	******		P2O5	47	Band *	PzOs			P	205		
Chloride					K2O	10	Band (Starter)*	K ₂ O			K	20		
	0-6" 6-24"		The same that the same of the same of	***********	CI			CI				CI		
Sulfur	10004,144				s	0		s				5		
Boron		was the same			В			В				В		
Zinc Iron		1,22 ppm	******	******	Zn	0		Zn			- 1	Zn		
Manganese					Fe			Fe				Fe		
Copper					Mn			Mn			-	n.		
Magnesium					Cu			Cu				Lu:		
Calcium					Mg			Mg			1/9	vig.		
Sodium					Lime			Lime			L	me		
Org.Matter		5.0 %	*****	*******			-	ation Exch	ange	o∕₀ Ba	se Satur	ation (ypical Ra	inge)
Carbonate(CC	E)				Soil	pH E	Buffer pH	Capacity	A COLUMN	% Ca	% Mg		% Na	% H
Sol. Salts	0-6" 6-24"	1.53 mmho/cm 2.9 mmho/cm			0-6° 3									

Northwood: (701) 587-6010 Benson: (320) 843-4109

SOIL TEST REPORT

FIELD ID 33 SAMPLE ID

FIELD NAME Fortier Farmyard

COUNTY

TWP 11

RANGE 4W

SECTION 27

QTR W 1/2 ACRES 80

PREV. CROP Soybeans

SUBMITTED FOR:

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433 ELIE, MB

ROH OHO

W E

REF # 1601415 BOX # 0 LAB # NW117095

Date Sampled

Rosedale Colony

Date Received 10/12/2016

Nu	itrient In	The Soil	Interpretation	15	t Cro	p Choice	2nd	Cro	p Choice	e	31	d Cr	op Cho	ice
			Mam Love Med 16gn		Whea	t-Spring								
	0-6" 6-24"	7 lb/ac 6 lb/ac			YIEL	GOAL		YIELD	GOAL			YIEL	D GOAL	
	7.51	0 10/ 10	***		80	BU								
	0-24"	13 lb/ac		SUG	GESTE	GUIDELINES	SUGGI	ESTED	GUIDELIN	ES	SUG	GESTE	D GUIDEI	LINES
Nitrate					В	and								
				LB/A	CRE	APPLICATION	LB/AC	CRE	APPLICAT	TION	LB/A	CRE	APPLIC	CATION
Phosphorus	Olsen	14 ppm	******	N	188		N				N			
Potassium		352 ppm		P205	31	Band *	P2O5				P205			
Chloride				K ₂ O	10	Band (Starter)*	K ₂ O				K20			
	0-6" 6-24"		***************************************	CI			CI				CI			
Sulfur				S	0		5				S			
Soron				В		-	В				В			
Zinc		1.10 ppm	******	Zn	0		Zn				Zn			
Iron				Fe			Fe				Fe			
Manganese														
Copper				Mn			Mn			_	Mn			
Magnesium				Cu			Cu				Cu			
Calcium	178			Mg			Mg				Mg			
Sodium				Lime			Lime				Lime			
Org.Matter		4.8 %	******				Alam E		% Ra	se Sat	nuratio	n /Tv	pical Ra	roe)
Carbonate(C	CE)			Soil	pH E	Buffer pH	Capacity	-	% Ca	0% M		6 K	% Na	% H
	0-5" 6-24"		***************************************	0-6" 1	1000	ŧ		7/						

> Northwood: (701) 587-6010 8enson: (320) 843-4109

> > SUBMITTED FOR:

SOIL TEST REPORT

FIELD ID 34 SAMPLE ID

FIELD NAME Miller Corner

COUNTY

TWP 11

RANGE 4W

SECTION 27

QTR F1/2 ACRES 80

PREV. CROP Soybeans

SUBMITTED BY: TE1677

TERRACO-ELIE

HWY 1 ONE MILE WEST

BOX 433

ELIE, MB ROH OHO

W E

REF # 1601417 BOX # 0

LAB # NW117089

Date Sampled

Rosedale Colony

Date Received 10/12/2016

Nutrient In The Soil			Interpretation	1st Crop Choice			2nd Crop Choice			3rd Crop Choice				
		7 lb/ac 6 lb/ac 13 lb/ac	Non-Sow Hist High	Wheat-Spring YIELD GOAL 80 BU SUGGESTED GUIDELINES Band										
	0-6" 6-24"		***				YIELD GOAL SUGGESTED GUIDELINES			YIELD GOAL				
	0-24"									SUGGESTED GUIDELINES				
Nitrate														
				LB/ACRE		APPLICATION	LB/ACR	E APPLIC	ATION	N LB/ACRE		APPLIC	ATION	
Phosphorus	Olsen	15 ppm	******	N	188	-1011	N			N				
Potassium		361 ppm		P ₂ O ₅	28	Band *	P206			P205				
Chloride				K ₂ O	10	Band (Starter)*	K ₂ O			K ₂ O				
	0-6" 6-24"		***************************************	CI			CI			CI				
Sulfur		300 113/ 00		s	0		S			S				
Boron				8			В			В				
Zinc		1,41 ppm	******	Zn	0		Zn			Zn				
Iron Manganese				Fe			Fe			Fe				
Copper				Mn			Mn			Mn				
Magnesium				Cu			Cu			Cu				
Calcium				Mg			Mg		**	Mg				
Sodium				Lime	0		Lime			Lime		-		
Org.Matter	Matter 5.5 %		*************				tion Funt	9/- 1	% Base S		aturation (Typical Range)			
Carbonate(CCE)			Soil pH		Buffer pH Ca	Capacity	% Ca	200	Mg % K		% Na	% H		
Sol. Salts	0-5" 6-24"		***************************************	p-6" 6.9 6-24" 7.9										