

Manitoba Transportation and Infrastructure

IN-SERVICE ROAD SAFETY REVIEW PTH 1 AND PTH 5 INTERSECTION

FINAL REPORT
December 2023

DISCLAIMER

WSP Canada Inc. ("WSP") prepared this report solely for the use of the intended recipient, Manitoba Transportation \& Infrastructure, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Inc.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given to by any modifications to be made to this document.

CONTRIBUTORS

WSP

Diana Emerson, WSP

Geoff Millen, WSP

Damir Bjelica, WSP

Brant Magnusson, WSP

Jaime Lacoste, WSP

SUBCONSULTANTS

Thomas Smahel, Human Factors North

Craig Milligan, Miovision

Project Manager

Senior Road Safety Advisor

Road Safety Review Lead

Geometric Analysis

Collision and Operational Analysis

Human Factors Analysis

Video Conflict Analysis

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Background 1
1.2 Focus of ISRSR 2
1.3 The ISRSR and the Design Process 2
1.4 Basis of ISRSR. 2
1.5 Start-Up Meeting 3
2 METHODOLOGY 5
2.1 Overview 5
2.2 Site Investigation 6
2.3 Safety Analysis 6
2.4 Identification of Road Safety Issues and Priorities 7
2.5 Countermeasure Development 7
2.6 Implementation Options 8
3 SITE INVESTIGATION 9
3.1 Overview 9
3.2 Intersection Configuration 11
3.3 Positive Guidance and Signage 18
3.4 General Maintenance 27
4 SAFETY ANALYSIS 32
4.1 Overview 32
4.2 Collision Analysis 32
4.3 Geometric Analysis 40
4.4 Operational Analysis 44
4.5 Video Conflict Analysis 53
4.6 Human Factors Analysis 61
5 IDENTIFICATION OF ROAD SAFETY RISK AND PRIORITIES 77
5.1 Overview 77
5.2 Risk level rating 77
5.3 Lines of Evidence Summary 78
5.4 Intersection Priorities 82
6 COUNTERMEASURE DEVELOPMENT 84
6.1 Overview 84
6.2 Cost Effectiveness 84
6.3 Quantifying Countermeasure Effectiveness 84
6.4 Results of Countermeasure Effectiveness Analysis 85
6.5 Additional Discussion on Alternative Intersection Configuration Options 87
6.6 Interchange Option Discussion 93
7 IMPLEMENTATION OPTIONS 94
7.1 Overview 94
7.2 Development of Implementation Options 94
8 SUMMARY 101
9 AUDIT SIGNATURES 102
TABLES
TABLE 4.1: PTH 1 AND PTH 5 NETWORK SCREENING 33
TABLE 4.2: GEOMETRIC DESIGN CRITERIA COMPARISON TO ACTUAL DESIGN 41
TABLE 4.3: PTH 1 \& PTH 5 OPERATIONAL PERFORMANCE 48
TABLE 4.4: PTH 1 SPEED SURVEY RESULTS - EASTBOUND DIRECTION 50
TABLE 4.5: PTH 1 SPEED SURVEY RESULTS - WESTBOUND DIRECTION 50
TABLE 4.6: PTH 5 SPEED SURVEY RESULTS 53
TABLE 4.7: TYPICAL CROSSING CONFLICT CONFIGURATIONS 54
TABLE 4.8: RISK LEVEL CATEGORY THRESHOLDS 55
TABLE 4.9: SUMMARY OF RISK LEVEL RATING FOR CROSSING CONFLICTS 56
TABLE 4.10: STOP SIGN COMPLIANCE 60
TABLE 5.1: RISK LEVEL RATING: FREQUENCY THAT THE ROAD SAFETY ISSUE IS LIKELY TO LEAD TO A COLLISION 77
TABLE 5.2: RISK LEVEL RATING: LIKELY SEVERITY OF A COLLISION RESULTING FROM THE ROAD SAFETY ISSUE 78
TABLE 5.3: LEVEL OF RISK 78
TABLE 5.4: LINES OF EVIDENCE SUMMARY 79
TABLE 5.5: INTERSECTION PRIORITIES 82
TABLE 6.1: COUNTERMEASURE COST EFFECTIVENESS MODEL 84
TABLE 6.2: INTERSECTION PRIORITIES AND SELECTED COUNTERMEASURES 85
TABLE 6.3: EXPECTED COLLISION PREDICTIONS FOR THE INSTALLATION OF A TRAFFIC SIGNAL 88
TABLE 6.4: EXPECTED COLLISION PREDICTIONS FOR THE INSTALLATION OF ROUNDABOUT 89
TABLE 7.1: SELECTED COUNTERMEASURES AND IMPLEMENTATION OPTIONS 95
FIGURES
FIGURE 1.1: PTH 1 AND PTH 5 INTERSECTION 1
FIGURE 2.1: LINES OF EVIDENCE FRAMEWORK 5
FIGURE 3.1: PTH 1 AT PTH 5 INTERSECTION LAYOUT WITH COMMENT NUMBERS 10
FIGURE 4.1: COLLISION DIAGRAM 38
FIGURE 4.2: NEGATIVE OFFSET EXAMPLE 44
FIGURE 4.3: 2023 TRAFFIC VOLUMES AND TRUCK PERCENTAGES AT PTH 1 \& PTH 5 45
FIGURE 4.4: TIME-OF-DAY DISTRIBUTION OF TRAFFIC 46
FIGURE 4.5: MONTHLY DISTRIBUTION OF TRAFFIC - AVERAGE DAILY TRAFFIC (ADT), AVERAGE DAILY TRUCK TRAFFIC (ADTT) AND \% TRUCKS 47
FIGURE 4.6: PTH 1 SPEED SURVEY LOCATIONS 50
FIGURE 4.7: PTH 5 SPEED SURVEY LOCATIONS 52
FIGURE 4.8: RISK LEVEL CATEGORIES 55
FIGURE 4.9: SUMMARY OF RISK LEVEL RATING FOR CROSSING CONFLICTS 58
FIGURE 4.10: THE MOST FREQUENT CROSSING CONFLICTS 58
FIGURE 4.11: MOVEMENTS WITH CRITICAL AND HIGH-RISKCONFLICTS59
FIGURE 4.12: THE RELATIONSHIP BETWEEN VIEWING DISTANCE AND IMAGE SIZE 65
FIGURE 4.13: LEFT A-PILLAR OBSTRUCTION OF A VEHICLE ON A COLLISION COURSE AT AN INTERSECTION 66
FIGURE 4.14: RIGHT A-PILLAR OBSTRUCTION OF A VEHICLE ON A COLLISION COURSE AT AN INTERSECTION 66
FIGURE 4.15: NORTHBOUND POSITION, LOOKING LEFT THROUGH DRIVER'S WINDOW 68
FIGURE 4.16: NORTHBOUND POSITION, LOOKING STRAIGHT 68FIGURE 4.17: NORTHBOUND POSITION, LOOKING RIGHT69
FIGURE 4.18: SOUTHBOUND TO EASTBOUND LEFT TURN VIEW70
FIGURE 4.19: NORTHBOUND TO WESTBOUND LEFT TURN VIEW 70
FIGURE 4.20: NORTHBOUND APPROACH: LEFT TURNING TRAFFIC USE ACCELERATION LANE SIGN 71
FIGURE 4.21: NORTHBOUND APPROACH: LEFT TURNING TRAFFIC USE ACCELERATION LANE SIGN 71
FIGURE 4.22: EASTBOUND APPROACH ON PTH 1 TO PTH 5 72
FIGURE 4.23: WESTBOUND APPROACH ON PTH 1 TO PTH 5.. 72
FIGURE 4.24: EASTBOUND APPROACH ON PTH 1 TO PTH 5 73
FIGURE 4.25: WESTBOUND APPROACH ON PTH 1 TO PTH 5 73
FIGURE 4.26: EASTBOUND ONRAMP FROM PTH 5 TO PTH 1 74
FIGURE 4.27: WESTBOUND ONRAMP FROM PTH 5 TO PTH 1. 74
FIGURE 6.1: RURAL STOP CONTROLLED RCUT CONFIGURATION 90
FIGURE 6.2: EXAMPLE OF A TRUCK TURNING LOON 91
FIGURE 6.3: CONVENTIONAL INTERSECTION AND RCUT INTERSECTION CONFLICT POINTS 92
FIGURE 7.1: EXAMPLE OF A DYNAMIC ADVANCE INTERSECTION WARNING SYSTEM 98
APPENDICES
A COLLISION DATA
B JULY 2023 TRAFFIC COUNT
C OPERATIONAL ANALYSIS REPORTS
D SPEED SURVEY DATA
E VIDEO CONFLICT ANALYSIS
E-1 Risk Diagnostic Report
E-2 Non-Conflicting Vehicle Interactions Report
E-3 Stop Sign Compliance Report
F COUNTERMEASURE EVALUATION

1 INTRODUCTION

1.1 BACKGROUND

At the request of Manitoba Transportation and Infrastructure (MTI), WSP Canada Inc. (WSP) has conducted an in-service road safety review (ISRSR) for the two-way stop-controlled intersection of PTH 1 and PTH 5 located near Carberry, Manitoba. The layout of the intersection is displayed in Figure 1.1 below.

The purpose of the ISRSR was to identify safety performance issues associated with the intersection and to suggest potential safety enhancements for consideration by MTI. The ISRSR was conducted in accordance with the Transportation Association of Canada (TAC) Canadian Guide to In-service Road Safety Reviews and was an independent and formal process, conducted by a multidisciplinary team who, based on their experience and expertise, provided opinions on safety issues from the perspective of all road users.

Note: While the ISRSR was initiated as a result of a fatal collision that occurred on June 15th, 2023, this review did not examine the details of this incident, as it is part of an ongoing RCMP investigation.

Figure 1.1: PTH 1 and PTH 5 Intersection

1.2 FOCUS OF ISRSR

The goal of the ISRSR is to improve safety. To do this, the ISRSR identifies safety issues and recommends options to address the safety issues. In carrying out the work, a site investigation of the intersection study area was conducted, and plans and documents supplied by MTI were reviewed.

The various issues identified in this report come from a road safety, human factors, and operational perspective only. Any recommendations are intended to address the identified issues from these perspectives. The recommendations do not consider other influencing factors such as cost-effectiveness, land requirements or environmental issues. Readers of this report should recognize that road design and construction decisions are influenced by the need to provide cost-effective solutions. While improved safety is a key objective of the In-Service Road Safety Review, it is not the only factor that will influence the long-term solution of the road safety issues under consideration.

1.3 THE ISRSR AND THE DESIGN PROCESS

ISRSRs are separate from the design process. ISRSRs are not intended to identify one single safety solution for an intersection or roadway segment. Rather, the ISRSR typically identifies several potential countermeasures for further consideration by the road agency. These countermeasures will include short-term recommendations (such as sign upgrades or reapplication of pavement markings) to long-term recommendations (such as intersection reconfiguration or interchange construction).

It is important to note that multiple longer term safety options may be identified for consideration that are alternatives (i.e., traffic signals, roundabout, or other treatment). Where the recommendations for long-term options are identified, a functional design is needed to evaluate the options and identify the optimal solution. The evaluation of options in a functional design will consider safety and operational issues as well as other items such as cost, environmental implications, drainage, land acquisition and construction traffic management requirements. At the conclusion of the functional design, the optimal treatment will be identified, and the project can proceed to the detailed design phase and subsequent construction.

1.4 BASIS OF ISRSR

Except as specifically noted in the text, this road safety review has been based on the following:

- A start-up meeting held with MTI representatives on July $13^{\text {th }}, 2023$.
- A day and night field review of the study area conducted between July $18^{\text {th }}$ and July $19^{\text {th }}$, 2023.
- Ten years (2012 to 2021) of MTI summary level collision data for the intersection. It is noted data from 2012 and 2013 was incomplete due to Manitoba's collision data reporting procedure at that time.
- Intersection traffic count data for PTH 1 \& PTH 5 collected by WSP between July $18^{\text {th }}$ and July $19^{\text {th }}, 2023$.
- Results from MTI's intersection safety network screening tool.
- Speed data collected by WSP on July $19^{\text {th }}$ and August $8^{\text {th }}, 2023$.
- As-built drawings and aerial imagery of the intersection.
- Video footage collected by WSP between July $17^{\text {th }}$ and July $21^{\text {st }}, 2023$, for the purpose of the video conflict analysis.

1.5 START-UP MEETING

On July $13^{\text {th }}, 2023$, a virtual project start-up meeting was held between key members of the road safety team and MTI representatives. The following people attended this meeting:

- Russ Andrushuk, Assistant Deputy Minister, Engineering and Technical Services Division, MTI
- Dustin Booy, Executive Director, Highway Engineering Services, MTI
- Glenn Cuthbertson, Director, Traffic Engineering Branch, MTI
- Kelvin Shuvera, Director, Regional Operations, Western Region, MTI
- Derek Durant, Manager, Highway Geometric Design Standards and Practices, MTI
- Warren Borgford, Traffic Services Engineer, MTI
- Denise Jubenvill, Technical Services Engineer, MTI
- Jennifer Chapman, Traffic Analysis Engineer, MTI
- Jena Gordon, Highway Design Engineer, MTI
- Diana Emerson, Project Manager, WSP
- Geoff Millen, Senior Road Safety Advisor, WSP
- Brant Magnusson, Geometric Analysis, WSP
- Jaime Lacoste, Collision and Operational Analysis, WSP
- Tom Smahel, Human Factors Analysis, Human Factors North

The following points summarize the key background information obtained during this meeting:

- The study area includes:
- A posted speed limit of 100 kilometers per hour $(\mathrm{km} / \mathrm{h})$ on PTH 1 ;
- High traffic volumes and percentage of truck traffic;
- Narrow median width;
- Stop control on the north and south sides of the intersection;
- An access road located in close proximity to the intersection; and
- Channelized right-turn tapers.
- There will be a memorial located near the intersection in the future to memorialize the people that died in the tragic collision that occurred on Thursday, June $15^{\text {th }}, 2023$.
- In the past, the Town of Carberry has indicated a desire for traffic signals installed at this location. It was noted that isolated traffic signals present road safety concerns and that speed management measures would be required if signals were to be specified at this location.
- Several measures have been implemented over the years to improve safety at the intersection (prior to the June $15^{\text {th }}$ collision). These include the provision of transverse rumble strips on the minor leg approaches, right-turn and left-turn auxiliary lanes, and oversized Stop signs with flashing beacons.
- It was noted that there is significant driver workload at these types of intersections (two-way stop-controlled intersections with narrow medians), which may limit a driver's ability to properly assess gaps in traffic and the speed of approaching traffic.
- Agricultural industries in the area are operating large tandem trailer trucks. In addition to increased truck traffic at the intersection, these long trucks may contribute to speed differentials and operational issues at the intersection.
- A portion of PTH 5 is getting upgraded to accommodate the Road Transportation Association of Canada (RTAC), now known as Transportation Association of Canada (TAC) RTAC loading, which is a national standard for highway truck weights and Manitoba's heaviest regulated loading classification. However, there are no new developments that are expected to increase heavy truck traffic on PTH 5 from current levels.

2 METHODOLOGY

2.1 OVERVIEW

In carrying out this work, an assessment of the existing road safety performance of the study area was conducted using a "lines of evidence" approach, followed by a risk level evaluation. This approach involved examining the safety performance of the study area using a range of tools and techniques, each of which were assessed first individually, and then as a whole. Where lines of evidence "overlapped" and pointed to a common conclusion regarding a particular element of the roadway or location, that conclusion was strengthened by the independence of the indicators and the multiplicity of their occurrence.

The lines of evidence framework examined the performance of the intersection using six distinct examination methods as illustrated in Figure 2.1. Findings from a synthesis of the lines of evidence and risk-level evaluation were then used to identify priority road safety issues and opportunities for road safety improvement. Each step in this framework is described in further detail in the following sections.

Figure 2.1: Lines of Evidence Framework

2.2 SITE INVESTIGATION

The site investigation was an important element of the ISRSR as it provided the team with an opportunity to observe in-service conditions in the field and to collect information on road safety and operational characteristics of the facility including how drivers interact with the infrastructure and each other.

The site investigation team was multidisciplinary and included road safety, traffic engineering, geometric design, and human factors experts. The site was examined based on the needs of all relevant users and modes (vehicular traffic, heavy trucks, buses, pedestrians, and bicycles). The site investigation examined the facility during the a.m. and p.m. peak hour periods and during day and night conditions.

2.3 SAFETY ANALYSIS

The safety analysis was a critical component of the audit process and involved problem definition and assessment. Historical collision data provided the primary foundation for this analysis. However, traffic and geometric characteristics as well as human factors considerations were also reviewed. A description of each task in the safety analysis process is provided below.

2.3.1 COLLISION ANALYSIS

Using the most recent 10 years of collision data provided by MTI, an analysis of collision patterns and trends was conducted to develop a clear understanding of the road safety performance characteristics on the facility.

2.3.2 GEOMETRIC ANALYSIS

A review of geometric design elements (horizontal alignment, vertical alignment, cross-section elements, design consistency, sight distance, auxiliary lanes, access management, drainage, pavement condition, etc.) was conducted based on the TAC Geometric Design Guide for Canadian Roads and local design standards. While this analysis examined geometrics in the context of current practices, it was not intended to constitute a comprehensive geometric standards compliance check. Rather, the emphasis was on attempting to identify any correlations that may exist between infrastructure characteristics and collision occurrence.

2.3.3 OPERATIONAL ANALYSIS

A traffic operational analysis was undertaken to identify operational issues that may be contributing to collision risk at the intersection. The methodologies contained in the Transportation Research Board's Highway Capacity Manual were applied to the evaluation of the intersection.

In addition, an assessment of speed limits on PTH 1 and PTH 5 approaching the intersection was conducted to determine if the current posted speed limits are appropriate for the conditions
present. In accordance with MTI's speed limit setting practices, this involved collecting operational speed data and conducting an assessment in accordance with the Institute of Transportation Engineers (ITE's) Speed Zone Guidelines - A Proposed Recommended Practice and MTI's Guide for Setting Posted Speed Limits on Manitoba Roadways.

2.3.4 VIDEO CONFLICT ANALYSIS

A traffic conflict analysis was conducted using video recordings collected from several locations at the intersection. This analysis examined near miss events between road users to gain an understanding of the probable causes of potential collisions. The results from this analysis provide useful information on the following:

- Near-misses: Interactions between two road users that cross each other's path (or are expected to do so) within five seconds of one another.
- Stop-sign compliance: Stop-sign compliance for the northbound and southbound movements at the intersection.
- Volume data: Turning movement volumes for each road user within the intersection.

Using the results from this analysis, the most critical movements and their conflicting scenarios can be identified and ranked based on the level of road safety risk.

2.3.5 HUMAN FACTORS ANALYSIS

WSP's Road Safety Team in association with Human Factors North provided analysis of the relevant human factors issues in the context of this in-service road safety review. This team consisted of experts with extensive experience in applying human factors to road safety audits and the development of road safety improvement options. Elements examined included driver workload, visual complexity, sign and pavement marking effectiveness, factors influencing speed selection, gap search and manoeuvre distance and decision point spacing.

2.4 IDENTIFICATION OF ROAD SAFETY ISSUES AND PRIORITIES

Findings from the site investigation and the safety analysis were used to identify road safety issues and develop a list of priorities for road safety improvements.

2.5 COUNTERMEASURE DEVELOPMENT

Using the prioritized list of road safety and operational issues discussed in the section above, the road safety team identified potential countermeasures. As part of this task, estimates of countermeasure effectiveness were provided where possible. High-level cost-estimates were also prepared for each countermeasure.

2.6 IMPLEMENTATION OPTIONS

Using the results from the countermeasure development task discussed above, short, medium, and long-term implementation options focused on improving road safety and traffic operations at the intersection were developed.

3 SITE INVESTIGATION

3.1 OVERVIEW

The following sections summarize observations from the site investigation conducted on July $18^{\text {th }}$ and $19^{\text {th }}, 2023$.

For the purpose of this report, observations made during the site investigation have been organized into the following categories:

- Intersection configuration (Section 3.2)
- Positive guidance and signage (Section 3.3)
- General maintenance (Section 3.4)

Figure 3.1 shows the intersection of PTH 1 and PTH 5 and includes comment location identifiers associated with the comments in Section 3.2 to Section 3.4.

Figure 3.1: PTH 1 at PTH 5 intersection layout with comment numbers

3.2 INTERSECTION CONFIGURATION

Specific comments regarding the intersection configuration observed during the site investigation are noted below.

Comment \#1

The narrow median width at this intersection (24.4m) limits the available storage and refuge area for vehicles using the median as a two-stage crossing. Of particular concern is the accommodation of long vehicles (heavy trucks, trailers, etc.) crossing PTH 1 or turning left from PTH 5 onto PTH 1 and their ability to fit in the median. Long and heavy trucks accounted for 28% of 2023 traffic volumes, including 13\% of the through traffic on PTH 5 and 18% of left-turning traffic in all directions.

Field observations, indicate that long trucks crossing PTH 1 or turning left from PTH 5 onto PTH 1 do so in one continuous movement due to the narrow median width. This appears to be of particular concern for trucks entering the intersection from PTH 5 southbound as a left-turn median acceleration lane is not provided to accommodate this continuous movement. For northbound traffic turning left onto PTH 1 heavy trucks generally turn directly into the leftturn median acceleration lane in a continuous movement.

Truck crossing narrow median as a single stage crossing

Truck and passenger vehicle crossing narrow median at same time

Pick-up truck with trailer stopped within narrow median

Comment \#2

Several vehicles were observed occupying the narrow median at the same time. This provides significant opportunities for conflict, including conflicting vehicle orientations while waiting in the median and the potential for queuing traffic to extend into the high speed through lanes. Vehicles occupying the median also create sightline obstructions for other vehicles.

Truck making eastbound left blocking access to the median

Two northbound vehicles occupying the median at the same time

Two southbound vehicles occupying the median at the same time

Comment \#3

The PTH 1 left-turn lanes have a negative offset which can limit sightlines for opposing left-turning vehicles.

Large trucks occupying these left-turn lanes as they wait for the median to clear can also obstruct sightlines for other traffic crossing or waiting in the median.

Truck waiting in the left-turn lane limits sightlines for vehicles using the median

Two pick-up trucks making opposing leftturns from PTH 1 onto PTH 5 at the same time

Comment \#4

Different driving behaviors were observed at the median for vehicles making left-turns from both PTH 1 and PTH 5. Some drivers make "simultaneous left-turns", while others make "interlocking left-turns."

The literature indicates that drivers leaving an expressway generally tend to turn in front of each other (simultaneous left turns) when the median width is $50 \mathrm{ft}(15.2 \mathrm{~m})$ or less but tend to turn behind one another (interlocking left-turns) when the median width is greater than $50 \mathrm{ft}(15.2 \mathrm{~m})$. The literature also notes that there is no implication that one behavior is more desirable than another. The existing median width at this intersection is approximately $80 \mathrm{ft}(24.4 \mathrm{~m})$ when measured from the edge of the eastbound travel lane to the edge of the westbound travel lane.

In addition to the left-turn issue identified above, vehicles were observed turning left from PTH 1 at the same time vehicles were turning left from PTH 5. These conflicting turning behaviours contribute to an increased risk of driver error and collision at the intersection.

Left-Turn Behaviors (NCHRP Report 650)

Turn Behind Behavior (Interlocking LeftTurns) between two mainline left-turning vehicles

Turn In Front Behavior (Simultaneous leftturns) between a mainline and sideroad left-turning vehicle

Comment \#5

Field observations suggest a significant volume of traffic is turning left from PTH 5 southbound onto PTH 1 eastbound. No median left-turn acceleration lane is provided in the eastbound direction on PTH 1. As a result, southbound to eastbound left-turning vehicles merge directly into the high-speed mainline lane or use the median shoulder to accelerate. This introduces a speed differential on the mainline lanes and an increased risk of collision. This is a particular concern for large trucks that generally take longer to accelerate and often merging at lower speed.

Passenger vehicle making left-turn directly into eastbound through lane

Truck making left-turn directly into eastbound through lane

Comment \#6

Although both right-turn (taper-type) acceleration lanes on PTH 1 may meet provincial geometric guidelines, TAC recommends a longer parallel speed change lane on high-speed facilities such as PTH 1. During the site investigation, vehicles were observed merging onto the mainline lanes at speeds much lower than the approaching mainline traffic. This can result in significant speed differential and an increased risk of collision.

Southbound to westbound channelized right-turn lane with taper-type acceleration lane

Comment \#7

The right-turn deceleration lanes provided at this intersection feature a taper-type lane with a 40 km/h exit advisory speed. Vehicles were observed slowing down on the mainline lanes prior to entering the deceleration lane. This may result in speed differentials in advance of the intersection and an increased risk of rear-end collision.

Eastbound to southbound channelized right-turn lane with taper-type deceleration lane

Comment \#8

Adjacent service roads, north and south of PTH 1, are located in close proximity to the main intersection (PTH 1 / PTH 5).

The close proximity of these intersections (located within the right turn merge and diverge points and the main intersection area of influence) may cause conflicts between through traffic and vehicles turning to/from the service road, especially if there are northbound or southbound queues at the intersection. During the site visit, queues were occasionally observed to extend to the service roads when there were limited gaps available in traffic on PTH 1.

The proximity of these intersections may also distract PTH 5 drivers' attention from the PTH 1 intersection.

Service Road, north of intersection

Service Road, south of intersection

Comment \#9

The merge tapers from PTH 1 right-turn lanes onto PTH 5 extend through the service road intersections north and south of the main intersection. As a result, vehicles slowing or stopping to turn left or right from PTH 5 onto the service road at these locations may not be anticipated by drivers approaching from behind. This may contribute to an increased risk of rear end and sideswipe collisions at these locations.

Merge taper at Service Road, south of the intersection

3.3 POSITIVE GUIDANCE AND SIGNAGE

Specific concerns regarding positive guidance and signage are noted below.

Comment \#10

When approaching the intersection on PTH 1, there is little contrast between the mainline lanes and the intersection. Also, drivers on PTH 1 are provided with limited advanced warning of the approaching intersection with PTH 5. As a result, the intersection conspicuity is limited.

Given the east-west orientation of PTH 1, sunlight glare may impair driver vision on the approach to the intersection at certain times of the day.

PTH 1 eastbound approach to intersection

PTH 1 westbound approach to intersection

Comment \#11

A Divided Highway Ahead Warning Sign (WA34) is provided on the PTH 5 southbound approach to the intersection. This sign is not provided on the PTH 5 northbound approach. This is a consistency issue.

Divided Highway Ahead Sign on the PTH 5 southbound approach

Comment \#12

Guide signage on the eastbound and westbound approaches to the intersection is not consistent. On the eastbound approach, an advance destination distance sign and destination direction sign are provided. On the westbound approach, only a destination direction sign is provided.

There are also numerous information and tourist-oriented signage tabs that create sign clutter that may reduce the effectiveness of the guide sign.

Advance destination distance sign on the eastbound approach to the intersection

Destination direction sign on the westbound approach to the intersection

Comment \#13

A speed limit reduction zone (reduction from $110 \mathrm{~km} / \mathrm{h}$ to $100 \mathrm{~km} / \mathrm{h}$) is introduced on PTH 1 in both the eastbound and westbound directions due to the presence of a rail crossing west of the PTH 1 and PTH 5 intersection.

In the westbound direction, the speed reduction zone starts approximately 1.6 km east of the PTH 5 intersection and ends approximately 4.0 km west of PTH 5. In the eastbound direction, the speed reduction zone starts approximately 5.5 km west of the PTH 5 intersection (approximately 3.0 km west of the at-grade rail crossing) and ends immediately east of the PTH 5 intersection.

These speed reduction zones are long (approximately $5.5-5.6 \mathrm{~km}$ in length), and no speed management is provided to promote and reinforce the reduced speed within these zones. As a result, the effectiveness of the speed reduction zones may be limited.

Comment \#14

The posted speed on PTH 5 is $100 \mathrm{~km} / \mathrm{h}$ and no speed reduction zone is provided on the approaches to the stop-controlled intersection.

PTH 5 approach to intersection with no speed limit reduction

Comment \#15

The solid line pavement markings provided between the mainline travel lanes (including the left turn lanes) immediately in advance of the intersection (on both eastbound and westbound approaches) are approximately 55 metres in length. This short length may encourage drivers to perform a passing manoeuvre on the immediate approach and within the intersection as was observed during field observations.

Solid line on approach in advance of the intersection

Comment \#16

A left-turn acceleration lane is provided in the westbound direction on PTH 1. During the site investigation, northbound left turning vehicles were observed turning directly into the westbound mainline travel lanes or only used the left-turn acceleration lane for a short distance. The left-turn acceleration lane is currently delineated with dashed line, which may encourage drivers to merge into the high-speed mainline lane directly or shortly after entering the acceleration lane. This behaviour can result in significant speed differential and an increased risk of collision.

Dashed line pavement marking delineation for westbound left-turn acceleration lane

Comment \#17

As noted above, the manner in which drivers use the left-turn acceleration lane in the westbound direction is inconsistent.

Although signage informing drivers about the median left-turn acceleration lane is provided, its effectiveness may be limited. This signage includes the following:

- White information sign "Left Turn Traffic, Use Acceleration Lane on PTH 1" provided on the PTH 5 northbound approach to the intersection (approximately 250 m upstream). This sign is small and may be difficult for some drivers to read.
- Double posted warning signs "Traffic Merging from Left" provided on the PTH 1 westbound approach to the intersection.

Double posted warning signs "Traffic Merging from Left" on westbound approach

"Left Turn Traffic, Use Acceleration Lane on PTH 1" sign on northbound approach

Comment \#18

Due to the wide median opening, the yield signs in the median are located at an increased offset from the travel path. As a result, the effectiveness of these signs may be reduced.

Large yield signs are located at increased offset from the travel path

Comment \#19

Due to the narrow median, no positive guidance is provided to help drivers navigate and position themselves in the median. This absence of positive guidance contributes to an increased risk of collision.

No positive guidance in the median

Comment \#20

Abstract

The right-turn acceleration lane geometry (in both eastbound and westbound direction) suggests to drivers that they should speed up and merge onto PTH 1. However, the yield signs provided suggest drivers should slow down and yield to oncoming traffic. This sends a mixed message to drivers and may contribute to speed differentials at this location. The provincial standard for signing this type of ramp should be confirmed to ensure appropriate signage has been provided.

Southbound to westbound channelized right-turn lane with yield sign

Example of channelized right-turn lane with merging roadways ahead sign

Comment \#21

During the field review, trucks stopped on the roadway shoulder were observed on all quadrants of the intersection at the end of the channelized right-turn lanes. These locations are currently posted with "No stopping" signs.

Trucks stopped on the shoulder limit opportunities for evasive maneuvers at the end of the ramp tapers.

Truck stopped at end of right-turn channel on northwest corner

"No Stopping" signage on PTH 1

Comment \#22

Field observations from the nighttime review include the following:

- Illumination at the intersection is limited. This creates shadowed areas within the intersection and limits intersection conspicuity when approaching the intersection on PTH 1 in both the eastbound and westbound directions.
- There is no direct illumination of the PTH 1 left-turn lanes and the median cross-over.
- Deteriorated pavement markings offer reduced positive guidance to drivers at night.
- Several signs were observed to have low reflectivity.
- Some headlight glare was observed from opposing traffic on both PTH 1 and PTH 5 approaches to the intersection. Of particular concern is the following:
- Glare from opposing PTH 1 traffic while a vehicle is waiting in the median left turn lane.
- PTH 5 traffic stopped in the median to cross or turn left onto PTH 1 experience glare from opposing traffic on the opposite leg of PTH 5.

Approaching intersection on PTH 1 while travelling eastbound at night

Approaching intersection on PTH 1 while travelling westbound at night

3.4 GENERAL MAINTENANCE

The intersection has several features that require ongoing maintenance to ensure that they remain effective. These features include:

- Pavement Markings
- Signage
- Rumble Strips
- Roadway Pavement
- Gravel Shoulders
- Lighting

Concerns regarding maintenance are noted below.

Comment \#23

In general, line painting is deteriorated. As a result, the effectiveness of positive guidance offered to drivers is reduced. This contributes to increased driver workload and risk of driver error.

Example of pavement marking deterioration at stop line

Example of pavement marking deterioration on northbound approach

Comment \#24

Some signs on the approaches to the intersection were deteriorated, damaged, or exhibited low reflectivity at night. This can reduce sign effectiveness and contributes to increased driver workload and risk of driver error.

Example of Sign deterioration

Example of Sign Deterioration

Comment \#25

Several signs located within the intersection clear zone are mounted on single 6×4 inch $(15 \times 10 \mathrm{~cm})$ wooden posts that are not equipped with shear holes. As such, these posts present a roadside hazard as they would be less likely to give way if impacted.

Example of Sign without shear holes

Comment \#26

The transverse rumble strips on both PTH 5 approaches to the intersection are worn in the wheel paths. This may impact their effectiveness.

The shoulder rumble strips on PTH 1 are also worn and should be reviewed for refurbishing.

Since conducting the field review, MTI has refurbished the transverse rumble strip installations on PTH 5 (full lane width).

Transverse Rumble strips on the northbound approach

Rumble strips on the eastbound approach

Comment \#27	
Pavement on the approaches to the intersection exhibit cracking and other surface deterioration. These discontinuities may impact surface drainage and contribute to further pavement deterioration.	Pavement cracking on the eastbound approach
Pavement cracking at intersection (facing	
south)	

Comment \#28

At several locations on PTH 5, the granular shoulders have deteriorated. This condition creates shoulder discontinuities that may impact drainage and vehicle stability.

Gravel shoulder deterioration on the north leg

Gravel shoulder deterioration on the south leg

Comment \#29

The nighttime field review identified one bulb on the double davit in the northwest corner of the intersection that was no longer working.

No photo available

4 SAFETY ANALYSIS

4.1 OVERVIEW

The following sections summarize results for the Safety Analysis component of the ISRSR. The Safety Analysis included the following tasks:

- Collision Analysis
- Geometric Analysis
- Operational Analysis
- Video Conflict Analysis
- Human Factors Analysis

4.2 COLLISION ANALYSIS

Collision analysis is a useful tool at the diagnostic stage of a safety review. It also provides valuable clues as to candidate countermeasures that should be considered for addressing safety and operational concerns. The following sections provide a summary of the collision analyses undertaken for the PTH 1 and PTH 5 intersection.

Note: The ISRSR was initiated as a result of a fatal collision that occurred on June $15^{\text {th }}, 2023$. It is the ISRSR study team's understanding that this collision involved a bus travelling south on PTH 5 that collided with a semi-trailer traveling east on PTH 1. It is also the ISRSR team's understanding that the bus was crossing the eastbound lanes when a semi-trailer struck the bus at the intersection of the two highways. Six weeks later on July $31^{\text {st }}, 2023$, another severe injury collision occurred between a pickup truck travelling south on PTH 5 and an SUV travelling east on PTH 1. Similar to the June $15^{\text {th }}$ collision, it is the ISRSR study team's understanding that the pickup truck was crossing the eastbound lanes when the SUV collided with the pickup truck. The pickup truck then rolled and collided with another vehicle stopped at the northbound stop sign on PTH 5. As the details of both collisions were under examination by the RCMP at the time of this review, only details provided by media reports were available to the ISRSR study team.

The June $15^{\text {th }}$ and July $31^{\text {st }}$ collisions are not included in the collision data set analyzed as part of this study, in addition to any other collisions reported after 2021. Although these collisions are not part of the collision data that was provided to the ISRSR study team for review, the ISRSR team recognizes that details from these collisions suggest similar collision characteristics to some historical collisions reported at the intersection between 2012 and 2021.

As a result, the ISRSR study team considered these more recent collisions during the process of identifying key road safety concerns, priorities, and potential treatment measures discussed in later sections of this report.

4.2.1 NETWORK SCREENING

As part of the historical background information, network screening results were provided by MTI for the intersection of PTH 1 and PTH 5. The results are summarized in Table 4.1 and include Level of Service of Safety (LOSS) for total collisions (combined property damage only, injury, and fatal collisions), fatal and injury collisions, and Excess Collisions for total collisions and fatal and injury collisions.

LOSS is a measure of a highway's safety performance relative to other similar highway facilities on the network and uses a scale of one to four. When compared to other similar facilities:

- LOSS 1 indicates better safety performance than average for similar facilities and a low potential for crash reduction through implementation of countermeasures;
- LOSS 2 indicates slightly better safety performance than average for similar facilities and a low to moderate potential for crash reduction;
- LOSS 3 indicates slightly poorer safety performance than average for similar facilities and a moderate to high potential for crash reduction; and
- LOSS of 4 indicates poorer safety performance than average and a high potential for crash reduction.

Excess Collisions is another measure of a highway's safety performance. It provides an estimate of the number of collisions expected to occur (at an intersection or for a highway segment) above or below the predicted number of collisions for similar facility types. Excess collisions are expressed in number of collisions per five years.

Table 4.1: PTH 1 and PTH 5 Network Screening

Intersection	Loss $\left(\mathbf{N}_{2}\right.$ Total $\left.^{1}\right)$	Loss $\left(\mathbf{N}\right.$ Fi $\left.^{2}\right)$	Excess Collisions $(\mathbf{N}$ Total) $/ 5$ Years	Excess Collisions $(\mathbf{N}$ Fi) $/ 5$ Years
PTH $1 \&$ PTH 5	3	3	+0.551	+0.194

${ }^{1}$ N_Total includes property damage only collisions, injury collisions and fatal collisions.
${ }^{2} \mathrm{~N}$ _fi includes injury collisions and fatal collisions.
As shown in Table 4.1, the LOSS values of 3 indicate safety performance slightly poorer than average for similar intersections on MTI's network and a moderate to high potential for crash reduction. The Excess Collisions indicate that a slightly higher number of collisions will occur every five years compared to other similar intersections.

This network screening was conducted by MTI to identify priority intersections for road safety improvement and was based on 2005-2009 collision data. It is noted that since the time of the available network screening data, the westbound left turn acceleration lane was constructed (in

2010/11) and the southwest right-turn cut-off island was upgraded to meet MTI's design standards in 2014.

As the network screening results are based on collision and traffic volume data more than ten years old and there have been modifications to the intersection since that time, these network screening results have been provided for historical background information only. WSP understands that MTI is actively working to update their network screening results based on updated collision and traffic volume data.

4.2.2 COLLISION DATA

For the intersection of PTH 1 and PTH 5, 10 years (2012 to 2021) of summary level collision data was provided by MTI. MTI's collision database is populated using available Traffic Accident Reports (TARs) completed by law enforcement agencies as well as claims records from Manitoba Public Insurance (MPI). It is noted that MTI advises that collision data in their database for 2012 to 2013 may be incomplete due to an initial adjustment period experienced by MPI and law enforcement agencies following an amendment to the Highway Traffic Act (HTA) which made changes to the collision reporting process in Manitoba at the end of 2011.

4.2.3 COLLISION PATTERNS

Collision pattern analysis consists of a breakdown and summary of relevant fields and records from available collision data and can be particularly useful in identifying contributing and causal factors associated with collisions.

This section provides a summary of key collision characteristics for the intersection. A full overview of collision parameters examined is presented in Appendix A of this report.

- General: Over the 10-year analysis period (2012 to 2021), a total of 29 collisions were reported at this intersection.
- Collision Severity: Of the 29 total collisions, one fatal collision (3.4\%), 12 injury related collisions (41.4\%) and 16 property damage only (PDO) collisions (55.2\%) were reported. The fatal collision occurred in 2016
 and was identified as a right-angle collision between an eastbound semi-truck and northbound pick-up truck. The collision data indicates that a contributing factor for the pickup truck was "disobeying traffic control device". The majority of injury related collisions were right-angle collisions with the predominant contributing factors being either "failing to yield the right-of-way" or "leaving stop sign before safe to do so".

- Collision Type and Configuration:

Collisions with other motor vehicle (22 collisions - 75.9%) were the most common collision type at this intersection. Of the 22 collisions with another motor vehicle, 12 collisions (54.6\%) were identified as right-angle (90-degree) collisions, four collisions (18.2\%) were identified as left turn collisions, three collisions (13.6\%) were identified as sideswipe collisions, one collision (4.5\%)

No. of Two-Vehicle Collisions by Configuration was identified as a rear end collision, and two collisions (9.1\%) did not have the collision configuration identified. Contributing factors for the majority of the right-angle collisions included failing to yield right-of-way and leaving the stop sign before safe to do. Animal related collisions were the next most common collision type (seven collisions - 24.1%). All of the animal related collisions occurred at night, as this is typically when wildlife is active.

- Light Condition: A total of 10 collisions (34.5%) occurred during periods of reduced lighting levels (dark or artificial lighting). 16 collisions (55.2\%) occurred during the day, and three collisions (10.3\%) had unknown lighting conditions.
- Road Surface Condition: Ice, snow, and wet road surface conditions were present in six collisions (20.7\%). Four of these collisions resulted in a collision with another motor vehicle and two resulted in a collision with an animal. 21 of the collisions (72.4\%) occurred during dry road surfaces conditions and two collisions (6.9\%) had unknown road surface condition.

No. of Collisions by Road Surface Condition

- Vehicle Type: The 29 total collisions reported at this intersection involved 51 vehicles.
Automobiles were involved in 28 collisions (54.9\%), pick-ups or vans (including minivans)
 under 4500 kg were involved in nine collisions (17.7\%), and heavy trucks (including power units for semi-trailers and trucks over 4500 kg) were involved in four collisions (7.8%). There were 10 collisions (19.6\%) with an unknown vehicle type.
- Driver Age: Drivers under the age of 25 were the most represented in collisions (12 collisions -23.5%), followed by ages 65 to 75 (7 collisions - 13.7\%), 55 to 65 (six collisions - 11.8\%), 25 to 35 (six collisions - 11.8\%), 35 to 45 (3 collisions - 5.9%), 45 to 55 (3 collisions - 5.9\%), and over 75 (3 collisions 5.9\%).

Key findings from the collision patterns review clude the following:

- Almost half of the collisions at the intersection (45\%) involve fatality or injury. This finding suggesting that high-severity collision types are an issue at this location.
- Right angle (intersection 90 degree) collisions were the most common collision type when considering collisions between two or more vehicles (54.9\%). This collision type is typically associated with increased collision severity. Common contributing factors included "failing to yield the right-of-way" and "leaving the stop sign before safe to do so". This suggests that the drivers on PTH 5 are having difficulty assessing when it is safe to cross PTH 1 or turn left onto PTH 1.
- Over a third of collisions (34.5\%) occurred during reduced lighting levels (dark or artificial lighting). This suggests that illumination may be a contributing factor for some collisions. However, it is important to note that 60% of collisions with reduced lighting also involved animals which are typically more active at night.
- Poor road surface conditions (ice, snow or wet) were reported in 20.7% of collisions)
- Passenger vehicles (automobiles, pick-up trucks, and vans) were most represented in collisions (72.6\%). Of the four heavy trucks involved in collisions, all were travelling on PTH 1 and collided with either a passenger vehicle which "failed to yield the right-of-way" or an animal.
- Younger (under 25) and older drivers (over 65) were most represented in collisions (43.1\%), suggesting that driver inexperience / risk-taking behavior (in the case of younger drivers) and driver decline in mental and physical ability (in the case of older drivers) may be contributing factors for some collisions.

4.2.4 COLLISION DIAGRAM

A collision diagram indicating the spatial location, type, and severity of each recorded collision was prepared as part of this analysis. By providing a visual representation of historical collisions, collision clusters and problematic vehicle movements can be identified. Figure 4.1 displays the collision diagram prepared for the intersection of PTH 1 and PTH 5.

Figure 4.1: Collision Diagram

Key findings from an examination of the collision diagram (Figure 4.1) include the following:

- The majority of collisions involve vehicles departing the median (left-turns from PTH 1 and PTH 5, and PTH 5 traffic crossing PTH 1).
- Left-turn maneuvers are most problematic for vehicles turning left from the median onto the eastbound mainline lanes. The absence of a left-turn acceleration lane to accommodate this manoeuvre may be a contributing factor.
- Right-angle collisions accounted for 12 of the reported collisions (55\% of collisions with other motor vehicles) and include one fatal collision, seven injury collisions, and four PDO collisions. These right-angle collisions were distributed as follows:
- One collision (fatal) occurred between a northbound and eastbound vehicle.
- Two collisions (one injury and one PDO collision) occurred between southbound and eastbound vehicles.
- Two collisions (both injury collisions) occurred between northbound and eastbound vehicles.
- Three collisions (all injury collisions) occurred between northbound and westbound vehicles.
- Three collisions (all PDO collisions) occurred between southbound and westbound vehicles.
- One collision (injury collision) had no information on the travel directions of the vehicles.

Based on the points above, the majority of right-angle collisions occurred when a vehicle is leaving the median on the far side of the intersection. Contributing factors may include the following:

- Drivers on PTH 5 may have difficulty assessing when it is safe to cross the highway.
- Drivers may have difficulty in assessing the rate at which distant vehicles are approaching on PTH 1.
- Three sideswipe (same direction) collisions were reported on PTH 1. These collisions included the following:
- One injury related collision between a northbound left-turning vehicle and a westbound vehicle.
- One injury related collision between two eastbound vehicles.
- One PDO collision between two westbound vehicles.

Speed differentials and the increased driver workload associated with the intersection may be contributing factors to these collisions. Additional details on each collision (by severity) are included in Appendix A.

4.3 GEOMETRIC ANALYSIS

Although a detailed standards compliance check was not conducted as part of this in-service road safety audit, a review of geometric design elements was conducted to identify existing conditions which may increase collision potential and to identify any correlations that may exist between infrastructure characteristics and collision history. The following sections summarize the key findings from this analysis.

4.3.1 GEOMETRIC DESIGN ELEMENTS

A review of geometric design elements (vertical elements, horizontal elements, roadside elements, cross-section elements, and intersection elements) was conducted based on the TAC Geometric Design Guide for Canadian Roads and the MTI Blue Sheet Supplement to the TAC Guide.

MTI Detailed Design Drawings \#7393, \#7414, and \#7528 along with highway inventory information, photographic evidence, and Google Earth images were used to identify actual values for the purpose of this review.

A summary of MTI's current desired Geometric Design Criteria compared to actual conditions is provided in the Table 4.2, areas that fall below the desired minimum criteria are highlighted in blue.

Table 4.2: Geometric Design Criteria Comparison to Actual Design

Item		Reference	PTH 1		PTH 5		
		Design Criteria	Actual	Design Criteria	Actual		
Speed	Current Posted Speed (km/h)		N/A	100	100	100	100
	Design Speed (DS) (km/h)	$\begin{gathered} \text { TAC Table } \\ 1.3 .2 .1 \mathrm{M} \end{gathered}$	130	130	120	120	
Vertical Elements	Maximum Gradient (\%)		3	< 3	3	< 3	
	Minimum Stopping Sight Distance (m)		260	$\begin{aligned} & \text { EB: }>260 \\ & \text { WB: }>260 \end{aligned}$	240	$\begin{aligned} & \text { SB >240 } \\ & N B>240 \end{aligned}$	
	Minimum Decision Sight Distance1 (DSD) (m)	TAC Table 2.5.6	415	$\begin{aligned} & \text { EB: }>415 \\ & \text { WB: }>415 \end{aligned}$	415	$\begin{aligned} & \mathrm{NB}>415 \\ & \mathrm{SB}>415 \end{aligned}$	
	Minimum K Value - Sag Curve (Ks) (Headlight)	$\begin{gathered} \text { TAC Table } \\ \text { 1.3.2.1M } \end{gathered}$	65	N/A	60	N/A	
	Minimum K Value - Crest Curve (Kc)		120	N/A	105	N/A	
Horizontal Elements	Curvature - Minimum Radius ($\mathrm{m}, \mathrm{e}_{\text {max }}=6 \%$)		950	5650	750	N/A	
	Maximum Superelevation (\%m/m)	TAC 2.1.2.2M	6.0\%	2.0\%	6.0\%	N/A	
	Minimum Distance - Intersection to Horizontal Curve (m)	TAC 2.1.2.6M	300	>300	300	>300	
Roadside Elements	Minimum Median Slope	TAC Figure 4.51	$\begin{gathered} \hline 4 \mathrm{H}: 1 \mathrm{~V} \\ \text { (median }<25 \mathrm{~m} \text {) } \end{gathered}$	4H:1V	N/A	N/A	
	Minimum Side Slope	TAC 7.3	4H:1V	4H:1V	4H:1V	4H:1V	
CrossSection	Lane Widths (m)	$\begin{gathered} \text { TAC Table } \\ 1.3 .2 .1 \mathrm{M} \end{gathered}$	3.7	3.7	3.7	3.7	
	Median Width (m)		15 minimum 20-40 normal	24.4	N/A	N/A	
	Left Shoulder (m)		1.5 paved	1.5 paved	N/A	N/A	
	Right Shoulder (m)		3.0 m paved	3.0 m paved	0.8 paved/1.7 gravel	0.00 paved/3.0 gravel	
Intersection	Intersection Sight Distance (m)	TAC 9.9*	N/A	N/A	$\begin{gathered} 289 \text { (PC) } \\ 441 \text { (WB-20) } \end{gathered}$	>441	
	Left Turn Lane Deceleration Length (m)	TAC 2.3.6.4M	100 Taper 150 Parallel	$\begin{gathered} \text { EB 94.3 Taper } \\ \text { EB } 205.5 \\ \text { Parallel } \\ \text { WB } 100 \text { Taper } \\ \text { WB } 210 \text { Parallel } \end{gathered}$	N/A	N/A	

Item	Reference	PTH 1		PTH 5	
		Design Criteria	Actual	Design Criteria	Actual
Left Turn Acceleration Length(m)	$\begin{gathered} \text { TAC Table } \\ 10.6 .5 \end{gathered}$	100 Taper 885 Parallel	WB 200 Taper WB 1000 Parallel	N/A	N/A
Right Turn Deceleration Length(m)	TAC 2.3.8.5M	100 Taper 150 Parallel	200 Taper 0 Parallel	N/A	N/A
Right Turn Acceleration Length(m)	$\begin{gathered} \text { TAC Table } \\ 10.6 .5 \\ \hline \end{gathered}$	500	$0 \text { (on Yield }$ control)	N/A	N/A

* Two-stage left turn from minor road using median.

4.3.2 KEY FINDINGS

The following design criteria and general geometric observations are noted:

Design Criteria:

- The shoulders on PTH 5 are constructed with a 2.0 m to 3.0 m wide fully gravel surface. The current MTI standards would recommend a 2.5 m wide shoulder including a 0.8 m partially paved strip for these shoulders.
- The westbound left turn lane taper is slightly sub-standard at 94.3 m as opposed to the 100 m taper length currently recommended.
- The right turn deceleration lanes on PTH 1 use a direct taper design which does not include a parallel lane prior to the taper. Current MTI standard TAC 2.3.8.5M suggest a 150 m parallel lane plus a 100 m taper for this treatment.

Additional Observations:

- The provided median width of 24.4 m between EB and WB through lanes is above the recommended minimum dimension. It is noted however, that the addition of left turn deceleration lanes and left turn acceleration lanes in the vicinity of the intersection reduces the actual physical median width to between 17 m and 20.7 m . The overall length of a WB-20 design vehicle is 22.7 m , meaning that these widths are insufficient to store these vehicles.
- The PTH 1 left-turn lanes have a negative offset, meaning that opposing left turn vehicles can block each others view of the traffic in adjacent through lanes (Figure 4.2).
- There are no right-turn acceleration lanes provided in the eastbound or westbound direction. A yield/direct taper design is used in these quadrants which may result in significant speed differentials between entering traffic and through traffic on PTH 1 , as the acceleration length is short, vehicles entering the PTH 1 do so at speeds well below the $100 \mathrm{~km} / \mathrm{h}$ posted speed limit. Speed differentials between entering traffic and through traffic on PTH 1 were also observed during the field investigation.
- The service road intersections on the north and south legs of PTH 5 are placed within the right turn acceleration and deceleration tapers. This may result in conflicts between service road traffic and traffic entering/exiting PTH 1 at this location.

Figure 4.2: Negative Offset Example

4.4 OPERATIONAL ANALYSIS

As part of this task, traffic volumes for the PTH 1 and PTH 5 intersection were reviewed to determine the peak and daily traffic volumes (including truck traffic) at the intersection. An operational analysis of the intersection was conducted to determine whether there are any operational issues during peak traffic periods. A review of operating speeds and a speed limit assessment was also conducted using data obtained from speed surveys. The results of these reviews are provided in the following sections.

4.4.1 TRAFFIC VOLUMES

Traffic counts were collected at the PTH 1 and PTH 5 intersection on July $18^{\text {th }}$ and $19^{\text {th }}, 2023$, using Miovision Scout Video Collection Units, which is an industry-leading, portable, camerabased traffic data collection device. The traffic counts were collected between 7:00 a.m. and 9:00 p.m. (14-hours each day) and were recorded in 15-minute intervals (e.g., 7:00 a.m. to 7:15 a.m., 7:15 a.m. to 7:30 a.m., etc.). A copy of the collected data is provided in Appendix B.

The a.m. and p.m. peak hour volumes were used for the operational assessment of the intersection as these time periods are generally when traffic volumes are highest. Based on the traffic data collected, the a.m. peak hour occurred between 8:00 a.m. and 9:00 a.m. (recorded on July $19^{\text {th }}, 2023$) and the p.m. peak hour occurred between 4:00 p.m. and 5:00 p.m. (recorded on July $18^{\text {th }}, 2023$).

Daily traffic volumes were calculated by averaging the two 14-hour counts and multiplying by 1.3 , which is a typical MTI practice for converting 14 -hour counts to daily counts.

Truck percentages were calculated by dividing the total heavy vehicle volume (Federal Highway Administration (FHWA) Classes 4-13 which includes buses, single-unit trucks, single-trailer trucks, and multi-trailer trucks) by the total volume of traffic for each movement. The resulting traffic volumes for the weekday a.m. and p.m. peak average daily traffic, and percentage of trucks are shown in Figure 4.3.

Note:

- \#\#(\#\#) = Traffic Volume (Truck Volume, Truck \%)
- Volumes are rounded to the nearest 5 vehicles per hour
- Daily volumes are calculated by averaging two 14 -hour counts and multiplying by 1.3 to estimate the $\mathbf{2 4}$-hour daily traffic volumes

Figure 4.3: 2023 Traffic Volumes and Truck Percentages at PTH 1 \& PTH 5
The traffic volumes indicate that truck traffic accounts for 28% of daily traffic, with the highest daily truck traffic volumes occurring on the PTH 1 through movements and turning to/from the south leg of PTH 5.

No pedestrian or cyclists were recorded in the traffic count data collected in July 2023 and none were observed during the site investigation. Pedestrian and cycling volumes at the intersection are assumed to be very low as no pedestrian and cycling infrastructure currently exists in the vicinity of the intersection.

The time-of-day distribution of traffic (recorded in 15-minute intervals) is shown in Figure 4.4. The graph shows that traffic steadily increases throughout the day and drops off in the evening. Total traffic volumes are highest around 4:30 p.m., while truck traffic volumes are highest at 12:30 p.m.

Figure 4.4: Time-of-Day Distribution of Traffic
It was noted through discussions with MTI that truck traffic volumes may be higher during the potato harvesting season in September and October. The increased traffic generated by these harvesting activities includes semi-tractor trailers and B-Trains traveling through the intersection.

The monthly distribution of traffic on PTH 1 (obtained from permanent count Station 79, located approximately 4.3 kilometers west of PTH 5) was examined and is shown in Figure 4.5. The graph shows that average daily traffic (ADT) volumes are highest during the summer months and lowest during the winter months. Average daily truck traffic (ADTT) volumes follow a similar pattern, however, remain high (similar to the summer months) during harvest season through September and October. In addition, the proportion of trucks increases in the fall and through the winter, as passenger vehicle traffic decreases (compared to the summer months).

This information indicates that the truck volumes collected during the traffic count in July 2023 are similar to those experienced during harvest season, and that the passenger vehicle volume were higher than what would be experienced during harvest season. As a result, the traffic volumes collected in July 2023 reflect a highest volume case scenario for both passenger vehicles and truck traffic.

Based on the review of historical traffic volumes and collisions, no direct correlation between temporal traffic volumes (time-of-day and month-of-year) and collisions at the intersection is evident.

Figure 4.5: Monthly Distribution of Traffic - Average Daily Traffic (ADT), Average Daily Truck Traffic (ADTT) and \% Trucks

4.4.2 TRAFFIC OPERATIONAL ANALYSIS

The traffic operational analysis for the intersection was undertaken using the HCM $6^{\text {th }}$ Edition methodology by utilizing Synchro 11.0 traffic analysis software and SimTraffic simulation software. Several metrics are used to examine intersection performance. These include:

- Level of Service (LOS)
- Volume to capacity ratio (V/C)
$-95^{\text {th }}$ percentile queue length
Each of these metrics is described below.
The relative performance of an intersection is measured in terms of Level of Service (LOS), ranging from A (excellent) to F (beyond capacity). In general, LOS E is considered to be at capacity.

LOS for unsignalized intersections is defined in terms of delay. Delay is the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line. This includes the time required for the vehicle to travel from the last in queue position to the first.

The volume to capacity $(\mathrm{v} / \mathrm{c})$ ratio is used to determine the level of congestion for each lane group. If the v / c ratio is greater than or equal to 1.00 , that lane group is operating above capacity.

The $95^{\text {th }}$ queue length is the maximum length of the back of the traffic queue with $95^{\text {th }}$ percentile traffic volumes. This measure is often used to determine whether the length of the left-turn storage lane is sufficient.

The PTH 1 and PTH 5 intersection was modelled as a four-legged, two-way stop-controlled intersection with the following configuration:

- The eastbound and westbound approaches are free-flowing, and each consist of a left-turn lane, two through lanes and a channelized right-turn lane.
- The northbound and southbound approaches are stop-controlled, and both consist of a shared left-turn/through lane and a channelized right-turn lane. Northbound left-turning traffic has a median westbound acceleration lane.

The results of the traffic operational analysis indicate that the overall intersection is operating at LOS A during both AM and PM peak hours. The results for the individual movements are shown in Table 4.3 and indicate that all movements are operating at acceptable levels from an operations perspective. The northbound left / through movement has the highest delay (around 17 seconds) and operates at LOS C in both peak hours. No issues were observed during the SimTraffic simulations. The detailed traffic model reports are provided in Appendix C.

Table 4.3: PTH 1 \& PTH 5 Operational Performance

Individual Movement ${ }^{1}$	HCM 6 ${ }^{\text {th }}$ Edition Operational Metrics									
	Weekday AM Peak Hour					Weekday PM Peak Hour				
		$\begin{aligned} & \leqslant \\ & \text { ón } \\ & 0 \\ & \stackrel{3}{0} \end{aligned}$	$\stackrel{\Gamma}{0}$					©		
Westbound Left	1131	0.02	A	8.3	0.1	1167	0.03	A	8.2	0.1
Eastbound Left	1134	0.02	A	8.2	0.1	1207	0.02	A	8.1	0.1
Northbound Left / Through	474	0.39	C	17.3	1.8	516	0.38	C	16.2	1.8
Southbound Left / Through	530	0.15	B	13.0	0.5	495	0.25	B	14.7	1.0
${ }^{1}$ The HCM 6 ${ }^{\text {th }}$ Edition methodology in the Synchro 11.0 traffic analysis software analyses the movements at the immediate intersection; therefore, the median westbound acceleration lane merge movement and right-turn lane merge movements (in all directions) are not included in the table. SimTraffic simulations for the median westbound acceleration lane and right-turn lanes indicated no issues.										

In addition to the analyses above, a traffic signal warrant analysis was conducted by MTI. MTI uses a 50-point warrant based on the TAC Traffic Signal \& Pedestrian Signal Head Warrant Analysis and MTI's Policy/Standard No. 400-A-2 Traffic Signal Warrants. MTI advised the results of the warrant analysis indicated that a traffic signal is not warranted at this time based on MTI's standard.

4.4.3 OPERATING SPEEDS AND SPEED LIMIT ASSESSMENT

As part of the in-service road safety review, the road safety team reviewed the speed survey data collected during the site investigation to analyze vehicle operating speeds on the intersection approaches.

The speed surveys were conducted in accordance with the guidance provided in MTl's Guide for Setting Speed Limits on Manitoba Roadways. Speeds were collected using a handheld radar device (Scout 2, Decatur Electronics), where the person holding the device and recording the speeds was sitting in a vehicle located on the shoulder of the highway. While this method of speed data collection is an industry accepted practice and every effort was made to conduct the speed surveys in an inconspicuous manner, some drivers may have been influenced (e.g., slowed down) by the presence of a vehicle parked on the shoulder of a highway.

The speed data was reviewed to assess the appropriateness of current speed limits on both PTH 1 and PTH 5, but also to determine the effectiveness of the localized speed reduction zone on the PTH 1 approaches and to determine the effectiveness of the rumble strip installations provided on the PTH 5 approaches.

PTH 1 APPROACHES

On the PTH 1 approaches to the intersection, the posted speed limit is reduced from $110 \mathrm{~km} / \mathrm{h}$ to $100 \mathrm{~km} / \mathrm{h}$ in advance of the intersection approximately 1.6 km to the east and 5.5 km to the west. For the purpose of determining the effectiveness of this localized speed reduction zone, the speed surveys were conducted at the locations illustrated in Figure 4.6 and listed below:

- Location 1 - PTH 1 eastbound approach in the $110 \mathrm{~km} / \mathrm{h}$ speed zone, at 6.8 km west of PTH 5 (200 meters west of Road 87W), to assess the eastbound operating speeds outside of the speed reduction zone.
- Location 2 - PTH 1 eastbound approach in the $100 \mathrm{~km} / \mathrm{h}$ speed zone, immediately west of the PTH 1 and PTH 5 intersection to assess the eastbound operating speeds of traffic approaching and traveling through the intersection.
- Location 3 - PTH 1 westbound approach in the $100 \mathrm{~km} / \mathrm{h}$ zone, immediately east of the PTH 1 and PTH 5 intersection, to assess the westbound operating speeds of traffic approaching and traveling through the intersection.
- Location 4 - PTH 1 westbound approach in the $110 \mathrm{~km} / \mathrm{h}$ speed zone, at 3.5 km east of PTH 5 (100 meters west of Road 81W), to assess the westbound operating speeds outside of the speed reduction zone.

Figure 4.6: PTH 1 Speed Survey Locations
Table 4.4 and Table 4.5 summarizes the results of the speed surveys. Additional speed survey information is provided in Appendix D.

Table 4.4: PTH 1 Speed Survey Results - Eastbound Direction

Measure	PTH 1 Eastbound - 110 km/h Location 1			PTH 1 Eastbound - 100 km/h Location 2		
	Passenger Vehicles	Heavy Vehicles	All Vehicles	Passenger Vehicle	Heavy Vehicles	All Vehicles
Sample Size	60	52	112	57	43	100
$85^{\text {th }}$ percentile speed (km / h)	117.4	108.8	115.8	108.5	107.3	108.0
15 km/h Pace	-	-	100-114	-	-	95-109
Percent in Pace	-	-	74\%	-	-	82\%

Table 4.5: PTH 1 Speed Survey Results - Westbound Direction

Measure	PTH 1 Westbound - 110 km/h			PTH 1 Westbound - 100 km/h Location 3		
	Location 4					
	Passenger Vehicles	Heavy Vehicles	All Vehicles	Passenger Vehicle	Heavy Vehicles	All Vehicles
Sample Size	60	60	120	65	35	100
$85^{\text {th }}$ percentile speed (km / h)	118.6	111.1	117.1	108.8	103.7	108.0
15 km/h Pace	-	-	100-114	-	-	95-109
Percent in Pace	-	-	68\%	-	-	80\%

Results from the survey indicate the following:

- In the $110 \mathrm{~km} / \mathrm{h}$ speed zones located on the distant approaches to the intersection, $85^{\text {th }}$ percentile operating speeds (the maximum speed that 85% of drivers did not exceed) range from $116 \mathrm{~km} / \mathrm{h}$ in the eastbound lanes to $117 \mathrm{~km} / \mathrm{h}$ in the westbound lanes.
- Within the $100 \mathrm{~km} / \mathrm{h}$ speed zone in the vicinity of the study area intersection, $85^{\text {th }}$ percentile operating speeds were $108 \mathrm{~km} / \mathrm{h}$ in both the eastbound and westbound lanes.
- When the $15 \mathrm{~km} / \mathrm{h}$ Pace (the range of speed at which the majority of vehicles are traveling) is considered for the $100 \mathrm{~km} / \mathrm{h}$ speed zone, the results indicate that 82% of drivers in the eastbound lanes and 80% of drivers in the westbound lanes travel between $95 \mathrm{~km} / \mathrm{h}$ and $109 \mathrm{~km} / \mathrm{h}$.
- Truck speeds in the eastbound $100 \mathrm{~km} / \mathrm{h}$ speed zone are approximately $7 \mathrm{~km} / \mathrm{h}$ above the speed limit and similar to passenger vehicle speeds.

Based on the findings discussed in the points directly above, reducing the speed from $110 \mathrm{~km} / \mathrm{h}$ to $100 \mathrm{~km} / \mathrm{h}$ results in a speed reduction ranging from $8 \mathrm{~km} / \mathrm{h}$ to $9 \mathrm{~km} / \mathrm{h}$ in the vicinity of the intersection. The upper limit of the $15 \mathrm{~km} / \mathrm{h}$ Pace is within $10 \mathrm{~km} / \mathrm{h}$ of the posted speed limit, also suggesting relative compliance to the posted speed limit.

We note that, as there was significant media attention to safety at this intersection in the weeks prior to the collection of speed data, driver speed choices may have been influenced during the speed data collection period. As a result, it is recommended that a follow-up speed survey be conducted to confirm operating speeds at the intersection.

Concern has been raised regarding the appropriateness of the $100 \mathrm{~km} / \mathrm{h}$ posted speed limit in the vicinity of this intersection and the need to further reduce the mainline speed limit. We note that, research indicates that simply reducing the speed limit to less then $100 \mathrm{~km} / \mathrm{h}$ on a highspeed facility can create other challenges. These include the following:

- Localized speed reduction zones on high-speed freeways are contrary to driver expectation. As a result, driver compliance to the to the localized speed reduction will likely be poor.
- The highway appearance within the localized speed reduction zone would still be consistent with other portions of the highway posted at $110 \mathrm{~km} / \mathrm{h}$ located upstream and downstream of the intersection, and there would be no visual cues (other than the speed limit signage) of the need to change driving behavior. This would contribute to poor compliance with the reduced speed limit.
- Drivers would likely have been driving at high speed for long periods of time. As a result, they will be speed adapted. Speed adaptation is a driver's underestimation of their actual speed after transitioning from a higher speed-limit facility or highway section.

Poor compliance with the reduced speed limit may contribute to increased speed differentials and an increased risk of collision. Based on the concerns outlined in the points above, the
adoption of a reduced speed limit (less then $100 \mathrm{~km} / \mathrm{h}$) on the PTH 1 approaches to the intersection would not be recommended as a standalone treatment.

PTH 5 APPROACHES

The posted speed limit is $100 \mathrm{~km} / \mathrm{h}$ on PTH 5, and no speed reduction is introduced on the approaches to the intersection. However, three sets of transverse rumble strips are provided on both approaches over a 200 m distance (starting 400m away and ending 200 m away from the intersection) to warn driver of the approaching intersection. Each set of transverse rumble strips is 20 m long and separated by 70 m . To assess the effectiveness of these rumble strip installations, speed data was collected at the locations illustrated in Figure 4.7 and listed below:

- Location 1 - before the set of rumble strips that was furthest away from the intersection.
- Location 2 - after the set of rumble strips that was closest to the intersection.

Figure 4.7: PTH 5 Speed Survey Locations
Results from these speed surveys are summarized in Table 4.6. Additional speed survey information is provided in Appendix D.

Table 4.6: PTH 5 Speed Survey Results

Measure	PTH 5 Northbound			PTH 5 Southbound		
	Before Rumble Strips Location 1	After Rumble Strips Location 2	Speed Reduction	Before Rumble Strips Location 1	After Rumble Strips Location 2	Speed Reduction
Sample Size	42			47		
$85^{\text {th }}$ percentile speed (km/h)	97.0	77.8	$18.8{ }^{1}$	101.8	75.8	$26.0{ }^{1}$
15 km/h	85-99	60-74	-	90-105	60-75	-
\% in pace	57\%	52\%	-	43\%	46\%	-

${ }^{1} 85^{\text {th }}$ percentile speed reduction is the difference between the $85^{\text {th }}$ percentile speeds before and after the rumble strips.

The results of the survey indicate that the $85^{\text {th }}$ percentile speed before the rumble strips was $97.0 \mathrm{~km} / \mathrm{h}$ in the northbound direction approaching the intersection and $101.8 \mathrm{~km} / \mathrm{h}$ in the southbound direction approaching the intersection. After passing through the rumble strips these $85^{\text {th }}$ percentile operating speeds dropped to $77.8 \mathrm{~km} / \mathrm{h}$ on the approach and $75.8 \mathrm{~km} / \mathrm{h}$ on the southbound approach. This results in an $85^{\text {th }}$ percentile speeds reduction of $18.8 \mathrm{~km} / \mathrm{h}$ in the northbound direction and $26.0 \mathrm{~km} / \mathrm{h}$ in the southbound direction. In the northbound direction, the $15 \mathrm{~km} / \mathrm{h}$ pace reduced from 85 to $99 \mathrm{~km} / \mathrm{h}$ before the rumble strips to 60 to $74 \mathrm{~km} / \mathrm{h}$ after the rumble strips. In the southbound direction, the $15 \mathrm{~km} / \mathrm{h}$ pace reduced from 90 to $105 \mathrm{~km} / \mathrm{h}$ before the rumble strips to 60 to $74 \mathrm{~km} / \mathrm{h}$ after the rumble strip. The percent in pace for both directions, and both before and after the rumble strips, ranged from 43% to 57%. As this is less than 60%, this suggests that the speed drivers are choosing as they approach the intersection is not consistent.

Although the transverse rumble strips result in a significant speed reduction, the majority of the speed reduction on these approaches occurred within 200 m of the intersection. The introduction of a reduced speed zone supported with appropriate speed management on the approaches to the intersection may be an option to support a more gradual reduction in speed approaching the intersection.

4.5 VIDEO CONFLICT ANALYSIS

In this line of evidence, intersection video recordings were used to examine vehicle interactions including conflicts and near-miss events, and stop sign compliance to obtain an understanding of probable causes of potential collisions. As part of this work, 60 hours of video recording collected (between July 17th and July 21st, 2023) was processed and analyzed.

4.5.1 VEHICLE INTERACTIONS

Vehicle interactions, including conflicts and near-miss events were analyzed by focusing on conflicts with the highest probable collision severity and collision likelihood. For this purpose, the main focus of the analysis was on crossing (right-angle) conflict types, as these conflict types are typically associated with higher severity collision outcomes. Table 4.7 illustrates three typical crossing conflict configurations considered for this purpose.

Table 4.7: Typical crossing conflict configurations

Left-Turn vs. Through Oncoming	Through vs. Through	Left-Turn vs. Through from Left

Each configuration illustrated in Table 4.7 features two possible scenarios of potential conflict, including the following:

- Scenario 1 - where the vehicle with higher speed and the right-of-way reaches the conflict point first, and the slower vehicle approaching from a controlled approach (such as a stopcontrolled approach) reaches the conflict point after. This type of conflict would be considered a lower-risk conflict. One example at the PTH 1 and PTH 5 intersection is when the eastbound through movement is compared to the northbound through movement (stopcontrolled movement), and when the northbound vehicle has carefully passed after the eastbound through vehicle.
- Scenario 2 - where the slower vehicle approaching from a controlled approach (such as a stop-controlled approach) reaches the conflict point first, and the vehicle with higher speed and the right-of-way reaches the conflict point after. This type of conflict would be considered a higher-risk conflict. One example at the PTH 1 and PTH 5 intersection is when the eastbound through movement is compared to the northbound through movement (stopcontrolled movement), and when the northbound vehicle has passed briefly before the eastbound through vehicle.

For the purpose of this analysis, the Scenario 2 type of conflicts were selected and further evaluated.

In the next step, the post-encroachment time (PET) value was used to assess the likelihood of a collision occurring for these movements. Post-Encroachment Time (PET) is a surrogate safety measure used to measure the available reaction time that road users typically experience when interacting with one another in a conflict. Lower PET value suggests less reaction time that drivers have to react and therefore this suggests a higher likelihood of collision. For the purpose of this analysis, PET values less than five seconds were selected.

Finally, to quantify the level of risk present at this intersection, eight crossing conflicting movement types were identified at the intersection and were further individually analyzed and assigned a risk level based on the PET value and maximum speed of vehicles involved in the conflict. The risk rating was performed using risk level categories indicated in Figure 4.8 and Table 4.8 below.

Figure 4.8: Risk Level Categories
Table 4.8: Risk Level Category Thresholds

Critical Risk (C)	High Risk (H)		Medium Risk (M)		Low Risk (L)
$\begin{gathered} \mathrm{PET}<=2 \mathrm{sec} \\ \mathrm{AND} \\ \text { Speed }>70 \\ \mathrm{~km} / \mathrm{h} \end{gathered}$	$\begin{gathered} \mathrm{PET}<=2 \text { sec } \\ \text { AND } \\ \text { Speed } 70-50 \\ \mathrm{~km} / \mathrm{h} \end{gathered}$	$\begin{gathered} \text { PET 2-3 sec } \\ \text { AND } \\ \text { Speed > } 50 \\ \mathrm{~km} / \mathrm{h} \end{gathered}$	$\mathrm{PET}<=3$ AND Speed 50-35 km/h	PET 3-5 sec AND Speed > 35 km/h	PET <= 5 sec AND Speed < $35 \mathrm{~km} / \mathrm{h}$

The results of the risk rating exercise are summarized in Table 4.9 and Figure 4.9 below. Details specific for each conflicting movement are presented in Appendix E of this report.

いい|

Table 4.9: Summary of Risk Level Rating for Crossing Conflicts

No.	Conflicting Movements		Crossing Conflict Type	Total Number of Crossing Conflicts (PET < 5 sec)	Risk Level Rating				
			CRITICAL		HIGH	MEDIUM	LOW		
1	Eastbound-Left vs Westbound-Through			Left-Turn vs. Through Oncoming	21	1	0	20	0
2	Westbound-Left vs Eastbound-Through		Left-Turn vs. Through Oncoming	40	0	3	37	0	
3	Northbound-Through vs Eastbound-Through		Through vs. Through	23	0	0	23	0	
4	Southbound-Through vs Westbound-Through		Through vs. Through	16	0	0	16	0	

いゝ|

No.	Conflicting Movements		Crossing Conflict Type	Total Number of Crossing Conflicts (PET < 5 sec)	Risk Level Rating				
			CRITICAL		HIGH	MEDIUM	Low		
5	Southbound-Through vs Eastbound-Through			Through vs. Through	37	1	0	36	0
6	Northbound-Through vs Westbound-Through		Through vs. Through	37	0	1	36	0	
7	Northbound-Left vs Eastbound-Through		Left-Turn vs. Through from Left	57	0	0	57	0	
8	Southbound-Left vs Westbound-Through		Left-Turn vs. Through from Left	22	0	1	21	0	

In-Service Road Safety Review - PTH 1 and PTH 5 Intersection
Project No. 211-12345-00
Manitoba Transportation and Infrastructure

WSP

Figure 4.9: Summary of Risk Level Rating for Crossing Conflicts
The following points summarize key findings from this analysis:

- The most frequent conflicts are illustrated in Figure 4.10. Three of the four illustrated conflicts are occurring at the south part of the intersection.

Figure 4.10: The Most Frequent Crossing Conflicts

The highest frequency of conflicts involved the following movements:

- Northbound-Left vs. Eastbound Through (57 conflicts)
- Westbound-Left vs. Eastbound-Through (40 conflicts)
- Southbound-Through vs. Eastbound-Through (37 conflicts)
- Northbound Through vs. Westbound Through (37 conflicts)

Most of these conflicts involved medium-risk conflicts. One critical-level conflict was recorded for the Southbound-Through vs. Eastbound-Through movement, and a few high-risk conflicts were recorded for Westbound-Left vs. Eastbound-Through and Northbound-Through vs. WestboundThrough movements.

In addition, critical and high-risk conflicts were also recorded for the following movements:

- Eastbound-Left vs. Westbound-Through
- Southbound-Left vs. Westbound-Through

Critical and high-risk conflicts present the greatest potential for collision as the available reaction time for drivers is less than three seconds, which is less than the PET comfort boundary for many drivers. This indicates that drivers crossing the mainline lanes may be more frustrated due to higher waiting times and are willing to take more risk by selecting smaller gaps within the high-volume mainline traffic stream. Movements resulting in critical and high-risk conflicts are illustrated in Figure 4.11.

Figure 4.11: Movements with Critical and High-Risk conflicts
Based on the above, critical and/or high-risk conflicts are occurring between PTH 1 traffic and several movements including:

- Southbound traffic turning left from PTH 5

- Traffic turning left from PTH 1

- Through traffic from PTH 5

Of particular concern are conflicts with through traffic from PTH 5 as these conflicts are occurring on the far side of the intersection. After reviewing the video footage for these specific conflicts, it was observed that vehicles from PTH 5 are stopping in the median before proceeding to the far side of PTH 1 where the conflicts are occurring. This suggests that these drivers may see the traffic approaching on PTH 1 but are have difficulty in assessing the rate at which distant vehicles are approaching.

4.5.2 STOP SIGN COMPLIANCE

For the purpose of this analysis, the compliance with the stop sign was analyzed for both northbound and southbound approaches to the intersection. The results of this analysis are presented in Table 4.10. For the purposes of this analysis, rolling stops less than $20 \mathrm{~km} / \mathrm{h}$ were classified as compliant stops.

Table 4.10: Stop Sign Compliance

Vehicle Movement	Estimated Vehicle Volume	Vehicles Violating Stop Sign	\% of Vehicles Violating Stop Sign
Northbound-Through	1656	10	0.60%
Northbound-Left	2728	16	0.58%
Southbound-Through	1748	30	1.71%
Southbound-Left	596	24	4.02%

The results from this analysis indicate that the southbound approach to the intersection had a higher percentage of vehicles violating the stop sign. Of particular concern are southbound vehicles turning left. This may be a contributing factor to the high-risk conflicts observed in the conflict analysis in the section above.

After reviewing the video footage for these specific conflicts, it was observed that some vehicles were only slowing down on the approach to the stop sign after which they would accelerate and proceed through the intersection without stopping. This behaviour suggests that after visually scanning for PTH 1 traffic while approaching the intersection these drivers may feel comfortable to proceed without stopping.

The review of the video footage also indicated that in situations when one vehicle is waiting at the stop sign on PTH 5, and another vehicle is waiting in the median wanting to turn left onto

PTH 1, some drivers hesitate, indicating they may be confused in regard to who has the right-ofway.

4.6 HUMAN FACTORS ANALYSIS

This section summarizes the analysis of the relevant human factors issues in the context of this in-service road safety review for the PTH 1 and PTH 5 intersection.

4.6.1 RELEVANT HUMAN FACTORS TOPICS

As part of the human factors analysis, the road safety team examined the study area by focusing on the most relevant human factors including:

- Limitations in information processing
- Visual patterns while driving
- Detection of hazards in peripheral vision
- Visual and mental demands during left turns
- Left turn gap acceptance
- Positive guidance
- Expectancy
- Conspicuity
- Factors that affect driver speed choice
- Perception of closing velocity
- A-pillar obstruction

Each of these human factors topics are further described below.

Limitations in Information Processing

Human attention and abilities in information processing are limited. While attention can be switched rapidly from one information source to another, humans only attend well to one source at a time. Given the limitations in driver information processing, it is not surprising that drivers are more likely to make errors when they are faced with high demands from more than one information source. The faster we move, the more we are taxing our information processing capacity. Consequently, we rely on pattern recognition and expectations developed based on prior experience in responding to the roadway environment.

Visual Search Patterns While Driving

Even though the visual field of view is very wide, approximately 180 degrees, only a small cone of about 2 to 4 degrees allows for accurate vision. Beyond 4 degrees is defined as peripheral
vision. The quality of vision (i.e., peripheral vision) falls off rapidly outside of this 2-to-4-degree cone of vision. For this reason, in order to identify targets, drivers need to look directly at them.

Drivers continuously scan the road environment through a series of eye fixations, looking for information relevant to their driving task. Research has shown that the duration of eye fixations in the forward field ranges from 0.25 to 1.5 seconds. ${ }^{1}$ This means that the number of fixations that can be made, and the number of objects that can be identified as a driver drives through a particular area is very limited.

Detection of Hazards in Peripheral Vision

Peripheral vision detects targets of interest that are outside the narrow cone of vision and then our eyes must move to look directly at the target in order to identify it by looking directly at the target. It is always being used to direct an observer to the next point of interest to fixate on. This is important because drivers are continuously scanning the road environment for information and cannot see everything at the same time. This is also an important consideration for drivers who have to look for potential hazards approaching from different directions at the same time.

The conclusion from on-road studies is that the further a potential hazard is off a driver's line of sight and the more attention demanding the central task, the less likely a target seen at an angle is to be detected. ${ }^{2}$

Visual and Mental Demands During Left Turns

Research has shown that there are significant increases in driver head movements and mental workload during turn sequences, and in particular, left turns, when compared to straight driving. ${ }^{3}$ This is due in part to the fact that drivers are required to complete a series of tasks that occur sequentially and partly depend on each other. ${ }^{4}$ In the context of the PTH 1 and PTH 5 intersection, the same concept can be applied to northbound and southbound through movements as completing these movements would also require a series of several sequential tasks including head movement and mental workload while scanning for traffic to cross PTH 1.

Left Turn Gap Acceptance

Gap acceptance distances depend on a driver's ability to accurately judge the time available to execute a traffic-crossing manoeuvre, such as a left turn.

According to National Cooperative Highway Research Program (NCHRP) Report 600, entitled "Human Factors Guidelines for Road Systems", car drivers turning left from a minor road onto a 4-lane major road with no median require a time gap of 7.5 seconds between vehicles

[^0]approaching from the right. For each additional lane width that is required, an additional 0.5 seconds should be added. In the context of the PTH 1 and PTH 5 intersection, a driver turning left from PTH 5 to PTH 1 would need to travel an additional 3-4 lane widths (the median is approximately three lanes wide plus one lane median acceleration lane for southbound to eastbound turning vehicles to cross). This means that a driver making a continuous left turn would require an additional 1.5-2 seconds between vehicles approaching from the right. A truck driver would require an even a larger gap as it takes more time to complete the turn. The NCHRP Report 600 indicates that this time would be at least 12.3 seconds.

Positive Guidance

The theory of positive guidance was developed by psychologists employed by the U.S. Federal Highway Administration and is based on the understanding that drivers have limitations in perception, information processing, and memory, and that these have important implications in the design of safe road systems.
"The positive guidance approach emphasizes primacy (placing signs according to importance), spreading (spread out over space to reduce information load), coding (by colour and shape to speed information processing), and redundancy (giving the message in more than one location or format)" (Smiley \& Smahel, 2015) in (Smiley, 2015) (p.394).

Expectancy

Expectancy refers to the predisposition that people have, that things will happen or be arranged in a certain way. ${ }^{5}$ For example, when driving on a rural road, if several relatively sharp curves are preceded by curve warning signs, driver's expectancy is that similar curves will be similarly signed. If a sharp downstream curve is not preceded by a curve warning sign, thereby violating the driver's expectancy, drivers may not respond properly. Unfamiliar drivers may misinterpret the sharpness of the curve, take it too fast, and run off the road. In the section on Driver Expectancy in Forensic Aspects of Driver Perception and Response, the authors note that,
"It is fair to say that a prudent driver should recognize the possibility that some emergency situation may develop at any time. On the other hand, experience teaches us that other drivers will virtually always respect STOP signs and traffic signals and will stay in their lane when movement out of their lane could cause problems for other drivers".

Regarding highway signing, research ${ }^{7}$ also indicates that the key to effective expectancy structuring is uniformity and standardization. Standard devices inconsistently applied create expectancy problems for drivers". It is also noted that: "Regardless of the signing method
${ }^{5}$ Olson et al. 2010 (p.21)
${ }^{6}$ Olson et al. 2010; p. 23
${ }^{7}$ Ontario Traffic Manual, Book 1C, 2001; p. 11
chosen, consistency in sign placement and type should be carried out through the road network." ${ }^{8}$ For example, in an on-road study of the effectiveness of street name signs for the City of Toronto it was determined that unexpected placement of street name signs increased the likelihood that they would be missed by drivers who were actively looking for them. ${ }^{9}$

Conspicuity

Conspicuity refers to the characteristics of an object that determine the likelihood that it will be noticed by an observer who is not expecting it to be there. Attributes of an object that make it more likely to be noticed include object size (larger rather than smaller), location (closer to the centre of a driver's field of view), colour and colour contrast. Conspicuity may be affected by lighting.

The more conspicuous a sign is, the more quickly a driver will detect it. Poor conspicuity can contribute to drivers missing signs. Sign attributes that contribute to poor conspicuity include small size and unexpected sign placement. ${ }^{10}$

Factors that affect driver speed choice

Key factors include the following:

- Speed Adaptation: Once drivers are used to driving at a higher speed it can be difficult for them to adjust to a lower speed limit.
- Speed Limit Signs: Reducing the speed limit with only a sign, and no other changes to the cross section of the roadway, has minimal effects on driver speed.
- Presence of Speed Reducing Countermeasures: The following changes to the roadway can enhance a driver's perception of speed which encourage them to slow down:
- narrower lanes,
- landscaping / side friction,
- speed feedback signs,
- optical speed bars (e.g., peripheral lane markings or full transverse lines).

Perception of Closing Velocity

According to driver behaviour research, "drivers are relatively poor at estimating the velocity of a vehicle traveling in the same direction ahead of them and also the relative velocity between the vehicle ahead of them and their own vehicle. These deficiencies in the driver's perception capabilities provide a strong clue to the occurrence of many rear-end crashes because poor

[^1]sensitivity to lead-vehicle velocity or the relative velocity does not allow drivers to estimate adequately the time remaining to close the gap with a vehicle ahead of them."11

Research of drivers' ability to judge closing speed and distance to a lead vehicle has found that the most important cue is the rate of change of the apparent size of the lead vehicle on the eye of the following driver ${ }^{12}$. However, at a higher distance the apparent size of the lead vehicle is very small. As the distance closes the apparent size of the lead vehicle increases very slowly and then increases rapidly when the distance between the two vehicles is very short (Figure 4.12). This helps to explain why crash risk increases dramatically as the speed difference between two vehicles increases.

Speed perception is also influenced by the size of the vehicle. Large objects, while travelling the same speed as small ones, appear to be moving slower. ${ }^{13}$

Figure 4.12: The relationship between viewing distance and image size ${ }^{14}$

[^2]
A-Pillar Obstruction

There are a number of scenarios where the A-pillar (i.e., the frame of the vehicle that defines the left and right side of the front windshield) can obstruct a driver's view to vehicles approaching from an intersecting road. Depending on the design of the vehicle and the seated position of the driver, the left A-pillar will be somewhere between 30 and 50 degrees to the left of the driver's straight-ahead line of sight (Figure 4.13). Similarly, a typical right A-pillar will be about 60 to 70 degrees to the right of the driver's straight-ahead line of sight (Figure 4.14).

Figure 4.13: Left A-pillar obstruction of a vehicle on a collision course at an intersection ${ }^{15}$

Figure 4.14: Right A-pillar obstruction of a vehicle on a collision course at an intersection ${ }^{16}$
${ }^{15}$ Olson Dewar, \& Farber, 2010; p. 154
${ }^{16}$ Ibid; p. 155

4.6.2 ANALYSIS OF KEY ROAD SAFETY ISSUES

The key road safety issues identified at the PTH 1 and PTH 5 intersection during the field investigation were analyzed using the key Human Factors principles and topics discussed in the section above. These issues include the following:

1. Vehicles crossing straight through or turning left from PTH 5 to PTH 1 (the use of the median)
2. Vehicles turning left from PTH 5 to PTH 1 (the use of the median acceleration lane)
3. Left turn movement from PTH 1 to PTH 5
4. Right turn movement from PTH 1 to PTH 5
5. Right turn movement from PTH 5 to PTH 1
6. Intersection conspicuity
7. Speed management

Each of these issues is discussed below.

Issue 1: Vehicles crossing straight through or turning left from PTH 5 to PTH 1 (the use of the median)

The field investigation comments (Section 3) directly related to this issue include the following:

- Comment \#1 (narrow median limits the available storage for two-stage crossing)
- Comment \#2 (several vehicles occupying narrow median at same time)
- Comment \#4 (interlocking left-turn behavior within the median)
- Comment \#11 (the WA-34 warning sign missing at northbound approach)
- Comment \#18 (placement of yield sign in the median)
- Comment \#19 (lack of delineation in the median)

Human Factors comments include the following:

- The vehicle storage available in the median between the yield sign and travel lane (approximately 14 m) may provide enough room for at most two passenger vehicles to stop and complete a two-stage crossing, but this width does not provide enough space for larger vehicles, such as transport trucks or buses to stop within the median. This means that drivers of vehicles that are longer than 14 meters in length will need to carry out their crossing or left turn maneuver in one continuous movement rather than in two stages, so their vehicle does not encroach the travel lane while stopped in the median. This is a significant concern at this intersection as long and heavy trucks account for 28% of traffic, and 18% of left-turning traffic in all directions. Completing a left turning maneuver across two streams of high-speed traffic requires drivers to look for simultaneous gaps to their left and
to their right, which consists of visually and mentally demanding maneuvers that result in a very high workload activity.
- Also, even though there are clear sightlines in both directions, as the road is straight and flat, drivers have difficulty assessing the rate at which distant vehicles are approaching. As noted above, drivers also underestimate how fast large vehicles are approaching as larger vehicles appear to be moving slower than smaller vehicles. To complicate this task even more, the vehicle A-pillars can obstruct the view to approaching vehicles on PTH 1, which is particularly a problem when looking to the right during a left turn as the A-pillar blocks the view of a driver on PTH 5 to approaching vehicles on PTH 1 as they drive towards the intersection. Figure 4.15, Figure 4.16 and Figure 4.17 illustrate the view of a northbound driver on PTH 5 stopped at the PTH 1 intersection. The view obstruction from the A-pillar is indicated in Figure 4.17.

Figure 4.15: Northbound position, looking left through driver's window

Figure 4.16: Northbound position, looking straight

Figure 4.17: Northbound position, looking right

- As described in Section 4.6.1, drivers require large gaps when making a left turn because they need to cross several lanes of traffic and need to search for simultaneous gaps in both directions. This is a high workload activity and drivers have difficulty in estimating the time to arrival for traffic on the mainline.
- The lack of delineation identified within the median may contribute to negative outcomes such as several vehicles occupying the narrow median at the same time and the presence of interlocking left-turn behavior which interferes with the flow of traffic. We note that delineation serves a useful purpose as it provides a clear indication of the path that drivers should take. Where delineation is absent, there will be a greater variability in driver actions, which could lead to negative safety outcomes.

Issue 2: Vehicles turning left from PTH 5 to PTH 1 (the use of the median acceleration lane)

The field investigation comments directly related to this issue include the following:

- Comment 5 (southbound to eastbound acceleration lane is not provided)
- Comment 16 (limited delineation of northbound to westbound acceleration lane)
- Comment 17 (placement of "Left Turn Traffic Use Acceleration Lane on PTH 1" sign)

Human Factors comments include the following:

- Left turn lanes are desirable for traffic turning onto PTH 1, especially for large, heavy vehicles. This is because their rate of acceleration is low and it takes a long distance (and time) for them to reach highway speed. This can result in large speed differences in the eastbound direction on PTH 1 where an acceleration lane is not provided. At this location, large speed differences are expected, and crashes are much more likely to occur since, as described in the discussion on perception of closing velocity in Section 4.6.1, drivers have difficulty assessing the rate at which the distance between their vehicle and the vehicle ahead is decreasing when the difference in speed is large. The view of drivers turning left onto PTH 1 are shown below in Figure 4.18 and Figure 4.19.

Figure 4.18: Southbound to eastbound left turn view

Figure 4.19: Northbound to westbound left turn view

- In the westbound direction on PTH 1, a 1000m parallel acceleration lane with 200 m taper is provided. However, this acceleration lane is not marked with signs or pavement markings specific for the acceleration lane and could be misunderstood to be a passing lane. A small sign is provided on the northbound approach on PTH 5 which informs left turning drivers that they should use the acceleration lane on PTH 1 (Figure 4.20 and Figure 4.21). This sign is not placed where drivers would be looking to receive this information. It is also a small sign with small letter heights, which makes it more likely to be missed (by comparison, the adjacent commercial billboard has larger letter heights). We note that traffic control devices such as signs and pavement markings are important roadway features as they provide positive guidance which leads to more predictable driving behaviour and greater overall safety.

Figure 4.20: Northbound approach: Left Turning Traffic Use Acceleration Lane sign

Figure 4.21: Northbound approach: Left Turning Traffic Use Acceleration Lane sign
Issue 3: Left turn movement from PTH 1 to PTH 5
The field investigation comments directly related to this issue include the following:

- Comment \#1 (narrow median limits the available storage for two-stage crossing)
- Comment \#3 (negative offset left-turn lanes)
- Comment \#4 (interlocking left-turn behavior within the median)
- Comment \#15 (short solid line pavement markings on PTH 1 approaches)
- Comment \#19 (lack of delineation in the median)

Human Factors comments include the following:

- Left turn lanes are helpful to allow drivers who want to turn left to decelerate in an auxiliary lane so that they do not slow down traffic in the left through lane. Left turn lanes on PTH 1 develop 280 m upstream from the intersection (Figure 4.22 and Figure 4.23), equivalent to 10 seconds of travel time at the posted speed limit. Although the left turn lanes may meet provincial geometric guidelines, some drivers of heavy trucks may need to decelerate in the left through lane before moving into the left turn lane to decelerate to a stop at a comfortable rate. Drivers slowing down in the through lane increases speed variability, which increases crash risk. As described above, drivers have difficulty assessing the rate at which they are approaching slower moving vehicles ahead, which increases the risk of rear-end collisions.
- Also, these left turn lanes are not marked with signs or pavement markings. This could give drivers the impression that the additional lane can be used for passing. The provision of these traffic control devices is important as they provide positive guidance to drivers.

Figure 4.22: Eastbound approach on PTH 1 to PTH 5

Figure 4.23: Westbound approach on PTH 1 to PTH 5

Issue 4: Right turn movement from PTH 1 to PTH 5

The field investigation comments directly related to this issue include the following:

- Comment \#7 (short right-turn deceleration lanes on PTH 1)

Human Factors comments include the following:

- The PTH 1 right-turn deceleration lanes are provided with a $40 \mathrm{~km} / \mathrm{h}$ advisory speed but the deceleration lanes are very short. Based on a review of the most recent available aerial photograph, these lanes are also not wide enough to accommodate a vehicle until the last 35 to 40 metres before the painted gore (Figure 4.24 and Figure 4.25). As a result, drivers are required to decelerate while in the right through lane of PTH 1 which increases speed variability. As described above, drivers have difficulty assessing the rate at which they are approaching slower moving vehicles ahead, which increases the risk of rear-end collisions.

Figure 4.24: Eastbound approach on PTH 1 to PTH 5

Figure 4.25: Westbound approach on PTH 1 to PTH 5

Issue 5: Right turn movement from PTH 5 to PTH 1

The field investigation comments directly related to this issue include the following:

- Comment \#6 (short right-turn acceleration lanes on PTH 1)
- Comment \#20 (right-turn acceleration lanes signed with a YIELD sign)

Human Factors comments include the following:

- Based on measurements from the most recent available aerial photograph, the length of the eastbound and westbound right-turn acceleration lanes were 100 m and 40 m , respectively (Figure 4.26 and Figure 4.27). This is not enough distance to allow drivers of motorized vehicles to accelerate up to freeway speed. This is particularly a problem with heavy trucks which require much more distance to reach highway speed. As a result, large speed differences are likely to be present on PTH 1 downstream of PTH 5 in both directions. When there are large speed differences crashes are much more likely to occur since drivers have difficulty assessing the rate at which the distance between their vehicle and the vehicle ahead is decreasing when the difference in speed is large.

Figure 4.26: Eastbound onramp from PTH 5 to PTH 1

Figure 4.27: Westbound onramp from PTH 5 to PTH 1

Issue 6: Intersection Conspicuity

The following observations were made during the site visit:

- Comment 10 (limited advance warning of the intersection)
- Comment 12 (inconsistent advance guide signage)
- Comment 22 (limited illumination at intersection)

Human Factors comments include the following:

- The combination of signage observed on the PTH 1 approaches to the intersection provided a clear message that there was a junction ahead. However, the application of guide signage for each approach was not completely consistent and a more significant concern at the intersection was limited illumination.
- In addition to the above, given the east-west orientation of PTH 1 on both approaches to PTH 5, sunlight glare during the 30-minute period before sunset and after sunrise may contribute to impaired driver vision to the road ahead, making it more challenging to respond to potential hazards, such as slower moving vehicles that are either accelerating or decelerating at the PTH 5 intersection.

Issue 7: Speed Management

The following observations were made during the site visit:

- Comment \#13 (effectiveness of speed reduction zones on PTH 1)
- Comment \#14 (no speed reduction provided on PTH 5)

Human Factors comments include the following:

- With respect to speeds collected on PTH 1 for the purpose of this in-service road safety review, in the $100 \mathrm{~km} / \mathrm{h}$ speed limit zone the mean and 85th percentile speeds were measured to be $101.7 \mathrm{~km} / \mathrm{h}$ and $108.0 \mathrm{~km} / \mathrm{h}$, respectively. This represents an 8 to $9 \mathrm{~km} / \mathrm{h}$ reduction from the 85th percentile speeds of $115.8 \mathrm{~km} / \mathrm{h}$ that were measured a short distance away in the $110 \mathrm{~km} / \mathrm{h}$. This reduction is greater than generally expected as the implementation of a speed limit sign with a reduced speed limit typically only results in a 3 to $4 \mathrm{~km} / \mathrm{h}$ change in travel speeds and usually results in greater speed variability. It is our understanding that there had been a lot of local media attention to the safety at this intersection in the weeks before the speed data were collected which could have influenced driver speeds during the speed data collection period. A follow-up data collection effort is recommended to further evaluate and confirm travel speeds on the approaches to this intersection.
- We note that, in general, without changes to the cross-section elements or the "road message", drivers are unlikely to reduce their speed substantially in response to a lower speed limit sign only. One low-cost measure that has been demonstrated to help reduce
speeds is the use of optical speed bars at progressively reduced spacing to give drivers the impression of increased speed which encourages them to reduce their speed. These are typically applied over a distance of 200 m to 400 m in the area between the advance and reduced speed limit sign. In conjunction with the optical speed bars, speed feedback signs placed above speed limit signs can be effective at reducing driver speeds.
- With respect to speeds on PTH 5, the posted speed limit is $100 \mathrm{~km} / \mathrm{h}$, and no speed reduction zone is provided in advance of the PTH 1 intersection.

5 IDENTIFICATION OF ROAD SAFETY RISK AND PRIORITIES

5.1 OVERVIEW

The work conducted up to this point has focused on documenting the existing road safety characteristics of the facility. In this phase of the analysis, the knowledge gained from the various lines of evidence is summarized to provide guidance with regards to prioritizing key issues at the intersection for road safety improvement.

As discussed earlier in this report, a lines of evidence approach has been applied to this analysis to identify road safety priorities at the PTH 1 and PTH 5 intersection. This approach involves examining the safety performance of the study area using a range of tools and techniques, each of which was assessed in the sections above.

In this next stage of the lines of evidence approach, findings from the individual analyses are combined and examined as a whole. Where lines of evidence overlap and point to a common conclusion regarding a particular issue at the intersection, that conclusion is strengthened by the independence of the indicators and the multiplicity of its occurrence.

5.2 RISK LEVEL RATING

To further assist in the lines of evidence prioritization process, the road safety team has applied a risk level evaluation tool to the road safety issues identified. This risk level evaluation tool has been adapted from the Australian Road Safety Audit Guide and is based on establishing two criteria associated with a specific issue:

- Frequency that the issue is likely to cause a collision; and
- Severity of the collision that would result from the issue.

The general rating scheme used to define each of these two rating criteria is defined in Table 5.1 and Table 5.2.

Table 5.1: Risk Level Rating: Frequency that the Road Safety Issue is Likely to Lead to a Collision

FREQUENCY	DESCRIPTION
Frequent	Once or more per week
Probable	One or more per year (< 1 per week)
Occasional	Once every 5 to 10 years
Improbable	Less often than once every 10 years

Table 5.2: Risk Level Rating: Likely Severity of a Collision Resulting from the Road Safety Issue

SEVERITY	DESCRIPTION
Catastrophic	Likely Multiple Deaths
Serious	Likely Death or Serious Injury
Minor	Likely Minor Injury
Limited	Likely Trivial Injury or Property Damage Only

The two rating criteria defined above are combined into an overall priority rating based on the matrix in Table 5.3. The risk levels are colour coded and have been applied in the section below.

Table 5.3: Level of Risk

Severity	Frequency			
	Frequent	Probable	Occasional	Improbable
Catastrophic	Very High	Very High	Very High	High
Serious	Very High	Very High	High	Medium
Minor	Very High	High	Medium	Low
Limited	High	Medium	Low	Low

5.3 LINES OF EVIDENCE SUMMARY

Table 5.4 presents a summary of findings from the lines of evidence evaluation. In the table, issues identified through each line of evidence are compared to identify commonalities. As noted in the section above, where lines of evidence overlap and point to a common conclusion regarding a particular issue, that conclusion is strengthened by the independence of the indicators and the multiplicity of their occurrence.

When a road safety issue has been identified by a particular line of evidence analysis, it is indicated in the summary table with an " X ". The frequency, severity and risk level rating for each road safety issue is also presented.

いい1

Table 5.4: Lines of Evidence Summary

Road Safety Issues		Risk Level Rating				Safety Analysis				
		Frequency	Severity	Risk Level		Collision Analysis	Geometric Analysis	Operational Analysis	Video Conflict Analysis	Human Factors Analysis
Intersection Configuration										
Median Operations	The narrow median width limits the available storage and refuge area.	Probable	Serious	Very High	x	x	x	x	X	X
	The narrow median is often occupied by several vehicles at the same time.	Probable	Serious	Very High	x	X			x	x
	Different driving behaviors for left-turning vehicles were observed within the median.	Occasional	Serious	High	x	x			X	X
Left Turns from PTH 1	The negative offset of the PTH 1 left-turn lanes can create sightline obstructions.	Occasional	Serious	High	X	X	X		X	X
	The length of the left turn deceleration lanes from PTH 1 is short.	Occasional	Limited	Low			X			X
Left Turns from PTH 5	There is no eastbound median left-turn acceleration lane.	Occasional	Minor	Medium	x	X				x
Right Turns from PTH 1	The length of the right-turn deceleration lanes is short.	Occasional	Limited	Low	x		x			x
Right Turns from PTH 5	The length of the right-turn acceleration lanes is short.	Occasional	Limited	Low	x		X			x
Proximity of Service Roads	There is a potential for vehicle queues on PTH 5 to extend into the service road intersections.	Improbable	Limited	Low	X		X			
	The right-turn merge tapers from PTH 1 extend through the service road intersections.	Improbable	Limited	Low	X		X			
PTH 5 Shoulder	Portions of the PTH 5 shoulder are narrow and a 0.8 m partially paved shoulder is not provided.	Improbable	Limited	Low			x			
Positive Guidance and Signage										
Intersection Conspicuity	On PTH 1, there is little contrast between the mainline lanes and the intersection. Advanced warning of the approaching intersection is limited. Sunlight glare may contribute to impaired driver vision at certain times of the day.	Occasional	Serious	High	X					X

[^3]| | | Risk Level Rating | | | | Safety Analysis | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Road Safety issues | Frequency | Severity | Risk Level | | Collision Analysis | Geometric Analysis | Operational Analysis | Video Conflict Analysis | Human Factors Analysis |
| Warning Signage | No Divided Highway Ahead Warning Sign (WA-34) is provided on the PTH 5 northbound approach. | Improbable | Minor | Low | X | | | | | |
| Guide Signage | Guide signage on the eastbound and westbound approaches to the intersection are not consistent. | Improbable | Limited | Low | X | | | | | |
| PTH 1 Speeds | The $100 \mathrm{~km} / \mathrm{h}$ speed reduction zones are long with no additional enforcement. | Improbable | Minor | Low | X | | | x | | X |
| PTH 5 Speed Reduction Zone | Posted speed on PTH 5 is $100 \mathrm{~km} / \mathrm{h}$ and no speed reduction zone is provided on the approaches to the stop-controlled intersection. | Improbable | Minor | Low | X | | | X | | X |
| PTH 5 Stop Sign Compliance | The results of the video analysis suggest a reduced level of compliance with the Stop signs on PTH 5, particularly for the southbound left turn movement. | Probable | Serious | Very High | | X | | | X | |
| PTH 1 Pavement Markings | The solid line pavement markings on PTH 1 between the mainline travel lanes and the left-turn lanes in advance of the intersection are short. In addition, limited positive guidance (signs or pavement markings) is provided for the left-turn lanes on PTH 1. | Occasional | Limited | Low | X | X | | | | X |
| | The westbound median left-turn acceleration lane is currently delineated with dashed lines, which may encourage drivers to merge directly into the high-speed mainline lane. | Occasional | Limited | Low | X | X | | | | X |
| Signage specific for median acceleration lanes | The effectiveness of the advanced signage for the northbound to westbound median left-turn acceleration lane is limited. | Occasional | Minor | Medium | X | | | | | X |
| Median Yield Sign Location | The yield signs in the median are located at an increased offset from the travel path. This may reduce their effectiveness. | Improbable | Serious | Medium | X | X | | | | |
| Limited Positive Guidance in the Median | No positive guidance is provided in the median to help drivers position their vehicles and navigate through the median. | Probable | Minor | High | X | | | | x | X |
| Right Turn from PTH 5 (yield sign) | The right-turn acceleration lane geometry (in both eastbound and westbound direction) suggests to drivers that they should merge into traffic, while the yield signs suggests that drivers should yield to traffic. | Occasional | Limited | Low | X | | | | | |
| Trucks Stopped in Prohibited Locations | Trucks are violating the existing "No stopping" signs at the intersection. | Improbable | Serious | Medium | X | | | | | |

		Risk Level Rating				Safety Analysis				
	Road Safety Issues	Frequency	Severity	Risk Level		Collision Analysis	Geometric Analysis	Operational Analysis	Video Conflict Analysis	Human Factors Analysis
Limited Intersection Illumination	Conspicuity of the intersection and the PTH 1 left-turn lanes is limited at night.	Occasional	Minor	Medium	X	X				X
Headlight Glare	Some headlight glare was observed from opposing traffic on both PTH 1 and PTH 5 approaches to the intersection. Of particular concern is glare for the PTH 5 traffic that is using the median cross-over as it may impact driver perception of traffic conditions.	Improbable	Serious	Medium	X					
A-pillar obstruction	The vehicle A-pillars can obstruct the sightlines to approaching vehicles on PTH 1. This is a particular problem when looking to the right when making a left turn.	Improbable	Serious	Medium		x				X
General Maintenance										
Deteriorated Pavement Markings	In general, line painting is deteriorated.	Improbable	Limited	Low	X					
Signage Condition	Some signs on the approaches to the intersection were deteriorated, damaged, or exhibited low reflectivity at night.	Improbable	Limited	Low	X					
Signage Posts	Several signs located within the intersection clear zone are mounted on a single 6×4 in ($15 \times 10 \mathrm{~cm}$) wooden post that are not equipped with shear holes.	Improbable	Minor	Low	X					
PTH 5 Rumble Strips	The transverse rumble strips on both PTH 5 approaches to the intersection are worn in the wheel paths and this impacts their effectiveness. MTI advised that the rumble strips were refurbished on August 10, 2023 (following the WSP site investigation).	Occasional	Serious	High	X					
Pavement Conditions	Pavement cracking and discontinuities within the intersection may impact drainage and lead to further deterioration.	Improbable	Limited	Low	X					
PTH 5 Shoulder Conditions	The shoulders on PTH 5 are deteriorated and may affect drainage and vehicle stability.	Improbable	Limited	L	X					
Illumination Maintenance	A light bulb on the double davit in the northwest corner of the intersection is not working.	Improbable	Minor	L	X					

[^4]
5.4 INTERSECTION PRIORITIES

An examination of the overlapping lines of evidence outlined in the table above helps identify intersection priorities, i.e., the key elements of the intersection that offer the greatest potential for road safety improvement. For the purposes of this analysis, the following criteria have been used to sort the various road safety issues identified into appropriate priority categories:

- High Priority: This category includes road safety issues assigned Very High and High risk levels and road safety issues that were identified in four or more lines of evidence.
- Medium Priority: This category includes road safety issues assigned a Medium risk level and road safety issues that were identified in three lines of evidence.
- Low Priority: This category includes safety issues assigned a Low risk level and road safety issues that were identified in two or less lines of evidence.

The results of this prioritization exercise are presented in Table 5.5.
Table 5.5: Intersection Priorities

Priority Level	\quad Road Safety Issue

Priority Level	Road Safety Issue
	PTH 1 pavement markings - delineation of westbound median left-turn acceleration lane
	Signage specific for median acceleration lane
	Median yield sign location
	Trucks stopping on shoulder at prohibited locations
	Intersection illumination
	Headlight glare
	A-pillar obstructions
Low Priority	Left turns from PTH 1 - length of the left-turn deceleration lanes
	Proximity of service roads - potential for queues within the service road intersection
	Proximity of service roads - merge taper from PTH 1 within the service road intersection
	PTH 5 shoulder width
	Warning signage
	Guide signage
	Right-turn from PTH 5 yield sign
	Deteriorated pavement markings
	Signage condition
	Signage posts
	Pavement conditions
	PTH 5 shoulder conditions
	Illumination maintenance

6 COUNTERMEASURE DEVELOPMENT

6.1 OVERVIEW

Using the prioritized list of road safety issues discussed in the section above, the road safety team identified potential countermeasures to address the concerns identified. As part of this task, estimates of countermeasure effectiveness were provided.

6.2 COST EFFECTIVENESS

Cost-effectiveness is an important consideration in the selection of safety countermeasure treatments. The following approach was applied to the prioritised list of road safety issues when considering the cost effectiveness of countermeasures. Table 6.1 summarizes this approach.

Table 6.1: Countermeasure Cost Effectiveness Model

Priority Level	Cost-Effectiveness Guide
High Priority	Should be corrected or the risk significantly reduced, even if the treatment cost is high.
Medium Priority	Should be corrected or the risk significantly reduced, if the treatment cost is moderate, but not high.
Low Priority	Should be corrected or the risk reduced if the treatment cost is low.

For the purposes of this analysis, the following cost threshold levels were applied:

- High cost: Greater than \$500,000
- Moderate cost: \$100,000 to \$500,000
- Low cost: Less than \$100,000

6.3 QUANTIFYING COUNTERMEASURE EFFECTIVENESS

The goal of the countermeasure evaluation process was to quantify the potential road safety benefits associated with each of the countermeasures identified - where possible - using a toolset of evaluation techniques. Given the diverse nature of the countermeasures identified, several different analytical tools were applied to quantify potential road safety benefits.

For this analysis, the toolsets applied included the following:

- Highway Safety Manual (HSM) and MTI Safety Performance Functions (SPF's): Crash Reduction Factors from the FHWA's CMF Clearinghouse, AASHTO Highway Safety Manual and the FHWA's Desktop Reference for Crash Reduction Factors were applied to the
relevant SPFs to determine estimated levels of crash reduction that might be expected after implementing a given countermeasure at a specific site.
- AASHTO Roadside Safety Analysis Program software (RSAP): The AASHTO Roadside Safety Analysis Program (RSAP) is a cost-effectiveness analysis procedure for use in assessing roadside safety improvements. The analysis technique used was a before-andafter study approach. The before condition represents the existing condition of a typical road safety risk (i.e., a critical embankment slope located near the driving lane). The after condition was then represented by making changes to the before situation based on the countermeasures identified above (flattening the slope or shielding the slope with a barrier).
- FHWA CMF Clearinghouse: Crash Modification Factors from the FHWA's CMF Clearinghouse used to estimate the level of crash reduction that might be expected after implementing a given countermeasure at a specific site.

6.4 RESULTS OF COUNTERMEASURE EFFECTIVENESS ANALYSIS

A detailed examination of the potential countermeasures identified to address road safety issues identified in the ISRSR is provided in tabular format in Appendix F of this report. The table provides a description of the countermeasure, details on the analysis tool or techniques applied, a discussion on any assumptions or Crash Reduction Factors used, details on application locations, estimated impacts of the countermeasure on collisions, and an indication of costeffectiveness.

The results of this detailed analysis was used to identify a short list of countermeasures for implementation. This short list of countermeasures is presented in Table 6.2.

Table 6.2: Intersection Priorities and Selected Countermeasures

Priority Level	Road Safety Issue	Selected Countermeasure

Priority Level	Road Safety lssue	Selected Countermeasure
	Left turns from PTH 1 - negative offset for left-turn lanes	Implementation of an alternative intersection configuration
	Intersection conspicuity	Install a Dynamic Advance Intersection Warning System
		Install the Concealed or Unexpected Intersection (WA-11) sign - alternative countermeasure
	PTH 5 stop sign compliance	Implementation of an alternative intersection configuration
	Limited positive guidance in the median	Implementation of an alternative intersection configuration
	PTH 5 rumble strips	The condition and design of the rumble strips should be reviewed and repaired/adjusted as necessary
Medium Priority	Left turns from PTH 5 - absence of eastbound median left-turn acceleration lane	Provision of southbound to eastbound median acceleration lane
		Implementation of an alternative intersection configuration
	Right turns from PTH 1 - length of the rightturn deceleration lanes	Extend speed-change lanes as part of any future highway rehabilitation such as installation of alternative intersection design or an interchange
	Right turns from PTH 5 - length of the rightturn acceleration lanes	
	PTH 1 speeds	Conduct a follow-up speed study on PTH 1
	PTH 5 speed reduction zone	Consider for further review a speed reduction on PTH 5 as part of MTI's ongoing initiative to develop systemic response plans for intersections
	PTH 1 pavement markings - short solid line pavement markings between the mainline travel lanes	Extend solid line pavement markings
	PTH 1 pavement markings - delineation of westbound median left-turn acceleration lane	Provision of a solid line pavement markings
	Signage specific for median acceleration lanes	Provision of signage specific for median acceleration lanes, designed with input from a human factors expert
	Median yield sign location	Review the locations of yield signs to reduce the sign offset
		Implementation of an alternative intersection configuration
	Trucks stopping in prohibited locations	Engage with the Manitoba Trucking Association Enforcement of the "no stopping" signage
	Limited intersection illumination	Reevaluate intersection illumination and enhance if necessary
	Headlight glare	
	A-pillar obstruction	Implementation of an alternative intersection configuration

Priority Level	Road Safety Issue	Selected Countermeasure
Low Priority	Left turns from PTH 1 - length of the left-turn deceleration lanes	Extend speed-change lanes as part of any future highway rehabilitation such as installation of alternative intersection design or an interchange. Extend solid line pavement markings
	Proximity of service roads - potential for queues within the service road intersection	Realignment of the service roads to increase the separation between the intersections
	Proximity of service roads - merge taper from PTH 1 within the service road intersection	
	PTH 5 shoulder width	Provision of paved shoulders on PTH 5 following MTI standards
	Warning signage	Provide the necessary signage
	Guide signage	
	Right-turn from PTH 5 (yield sign)	Review for compliance with the provincial standard requirements
	Deteriorated pavement markings	Reapply line painting and pavement markings
	Signage condition	Review signage for deterioration and reflectivity
	Signage posts	Provide shear holes as necessary
	Pavement conditions	Assess to determine if patch repairs, rehabilitation, or replacement is warranted.
	PTH 5 shoulder conditions	Grading of existing shoulders to ensure smooth surface
	Illumination maintenance	Replace bulbs as necessary

6.5 ADDITIONAL DISCUSSION ON ALTERNATIVE INTERSECTION CONFIGURATION OPTIONS

As part of the countermeasure development analysis summarized in Appendix F, several alternative intersection configurations were examined to address the road safety concerns present at the intersection. These alternative configurations are discussed in more detail in the sections below. It should be noted that an in-depth evaluation of the alternative intersection configurations presented below will be required as part of a future functional level study to select the most appropriate option based on site conditions, safety, and traffic operations.

6.5.1 TRAFFIC SIGNAL

Although a traffic signal can provide some operational benefits when properly applied, the isolated nature of the study area intersection raises concern regarding the presence of speed
adapted drivers, the potential for signal violations, and the risk of high-speed rear-end collisions. Based on relevant North American road safety research, the provision of isolated traffic signals on high-speed facilities such as PTH 1 can result in increased total collision frequency, as well as fatal and injury collision frequency.

Table 6.3 presents the results of the quantitative road safety analysis conducted using the methodologies outlined in the American Association of State Highway and Transportation Officials (AASHTO) Highway Safety Manual (HSM). In this analysis, safety performance functions (SPFs) from the HSM were applied to estimate the expected change in annual collision frequency associated with changing the existing stop-controlled intersection to a traffic signal. The results of this analysis indicate that installing a traffic signal at this location would result in a significant increase in total collisions annually.

Table 6.3: Expected collision predictions for the installation of a traffic signal

INTERSECTION CONFIGURATION	ANNUAL EXPECTED COLLISION FREQUENCY		
	PROPERTY DAMAGE ONLY COLLISIONS	FATAL AND INJURY COLLISIONS	TOTAL COLLISIONS
Existing Stop-Control	1.58	1.63	3.21
Signalized Intersection	4.66	3.70	8.36

Based on the above, the provision of a traffic signal has not been included in the short list of countermeasures considered for implementation at this location.

6.5.2 INTERSECTION MEDIAN WIDENING

Although it may require significant changes to the highway alignment, providing a wider median at the intersection can be considered as an alternative configuration. Literature indicates that in general, four-legged, two-way-stop-controlled intersections on rural expressways are safer if the median is wider, and this is most likely due to the fact that wider medians allow for two-stage gap selection (i.e., minor road left-turning or crossing vehicles can safely stop in the median area to evaluate the adequacy of the gap in expressway traffic coming from the right, thereby reducing the relative crash risk associated with these manoeuvres). In addition to providing the benefits of extra median storage for large vehicles, this treatment can also help emphasize the presence of the intersection, encourage more consistent left-turn behavior in the median, and provide opportunity for enhanced delineation and better positive guidance within the median. If widened enough to accommodate storage of the design vehicle, Stop control can be considered in the median.

6.5.3 ROUNDABOUT

A roundabout can provide significant road safety benefits due to its characteristic low-speed operations and reduced vehicle conflicts and collision severity. When compared to a stopcontrolled intersection, the majority of conflict points that are eliminated are crossing type conflicts occurring at the median crossovers that in general result in higher severity outcomes. Roundabout conflicts are generally low-speed, sideswipe collisions that result in low severity outcomes.

However, the application of a roundabout in a high-speed rural environment and the isolated nature of this intersection can raise concern regarding driver expectation. As such, careful consideration of a system of speed management measures focused on reducing vehicle approach speeds for a significant distance would be required as part of this option. These speed management measures can include advanced warning provisions, speed feedback signs, the application of peripheral pavement markings, and the introduction of alignment shifts using long splitter islands. The operational characteristics of long combination vehicles would also need to be considered.

To help quantify the relative change in road safety performance associated with changing the existing stop-controlled intersection to a multi-lane roundabout, an analysis was conducted using safety performance functions (SPFs) from the Federal Highway Administration (FHWA) Highway Safety Manual (HSM) to estimate the expected collision frequency for the existing stop-controlled configuration, and using Collision Modification Factors (CMFs) from both the FHWA HSM and the TAC Roundabout Design Guide to estimate the expected collision frequency for a multilane roundabout configuration. These CMFs suggest a 44% reduction in total collisions and an 82% reduction in fatal and injury collisions. Table 6.4 presents the findings from this review.

Table 6.4: Expected collision predictions for the installation of roundabout

INTERSECTION CONFIGURATION	ANNUAL EXPECTED COLLISION FREQUENCY		
	PROPERTY DAMAGE ONLY COLLISIONS	FATAL AND INJURY COLLISIONS	TOTAL COLLISIONS
Existing Stop-Control	1.58	1.63	3.21
Roundabout Intersection	1.51	0.29	1.80

As shown in the table, the installation of a multilane roundabout is expected to result in lower total, PDO and fatal and injury annual expected collision frequencies when compared to the existing stop-control configuration.

In addition to the analysis above, safety performance functions (SPFs) specific to estimating roundabout related collisions were reviewed from the National Cooperative Highway Research

Program (NCHRP) Report No. 888. These SPFs suggest that a similar trend in reducing fatal and injury collisions is expected when converting the existing stop-controlled intersection to a multilane roundabout.

6.5.4 RESTRICTED CROSSING U-TURN (RCUT)

A stop-controlled or yield-controlled RCUT intersection can be used as a safety treatment at isolated intersections on four-lane divided highways in rural areas. There are known safety benefits associated with this type of intersection. The RCUT intersection, also known as a JTurn or Superstreet, differs from a conventional intersection by eliminating the left-turn and through movements from crossroad approaches. To accommodate these movements, the RCUT intersection requires drivers to turn right onto the main road and then make a U-turn maneuver at a one-way median opening located downstream of the intersection. On the major road approaches, the left turns are typically accommodated similar to left turns at conventional intersections. Figure 6.1 illustrates the movements at an RCUT intersection.

Source: FHWA Restricted Crossing U-Turn Intersection Informational Guide (August 2014)
Figure 6.1: Rural stop controlled RCUT configuration
Due to the significant truck volumes on both PTH 1 and PTH 5, the application of this configuration would require careful consideration. Of particular concern is providing adequate gap search and maneuver distance between the main intersection and the upstream U-turn provisions to ensure heavy trucks have sufficient distance to merge onto the highway, make the necessary lane change maneuvers, and decelerate into the U-turn. If the median width is less than adequate for larger vehicle U-turns, additional pavement can be added at the far side of the U-turn crossover in the form of "loons" to accommodate this movement as shown in Figure 6.2 below. These would need to be sized to accommodate the required design vehicle.

Figure 6.2: Example of a truck turning loon
By restricting several movements at the main crossing intersection, RCUT intersections reduce vehicular intersection conflict points from 32 (stop-controlled intersection) to 18 (RCUT intersection). The majority of the reduced conflict points are crossing type conflicts occurring at the median crossovers that in general result in higher severity outcomes. Conflict points are also spread out which allows drivers to make decisions for each conflict individually, lowering driver workload and risk of error. The difference in number of conflicts is shown in Figure 6.3.

Conventional Intersection: Conflict Points

RCUT: Conflict Points

Source: Virginia Department of Transportation
Figure 6.3: Conventional intersection and RCUT intersection conflict points
A study of the safety performance of RCUT intersections conducted by Missouri Department of Transportation found the RCUT design resulted in a 34.8% reduction in total collisions and a 53.7% reduction in fatal and injury collisions. These expected reductions were used to help quantify the relative change in road safety performance associated with changing the existing stop-controlled intersection to a RCUT intersection. Table 6.5 presents the findings from this review.

Table 6.5: Annual Expected Collision Frequency for the Installation of a RCUT Intersection

INTERSECTION CONFIGURATION	ANNUAL EXPECTED COLLISION FREQUENCY		
	PROPERTY DAMAGE ONLY COLLISIONS	FATAL AND INJURY COLLISIONS	TOTAL COLLISIONS
Existing Stop-Control	1.58	1.63	3.21
RCUT Intersection	1.35	0.75	2.10

The key findings from this analysis indicate that an RCUT intersection would result in lower total, PDO, and fatal and injury annual expected collision frequencies when compared to the existing stop-controlled intersection.

6.6 INTERCHANGE OPTION DISCUSSION

Grade separation can be achieved by either overpass or underpass and there are a variety of interchange types (i.e., Diamond, Parclo, etc.) to consider based on site conditions and operational requirements. Jurisdictions considering new interchanges generally must consider a variety of factors including highway classification, operational capacity, collision frequency and severity, site topography, road-user benefits, relative priority across the transportation network, funding, and other considerations. For these reasons, a functional design study is typically conducted to explore and evaluate options before selecting a preferred option to develop to a detailed design and eventual construction.

Research shows that converting an at-grade intersection to a grade-separated interchange may reduce all collisions by 42% and fatal/injury collisions by 57% (CMF Clearinghouse: Elvik, R. and Erke, A., 2007). These expected reductions were used to help quantify the relative change in road safety performance associated with changing the existing stop-controlled intersection to a grade-separated interchange. Table 6.6 presents the findings from this review.

Table 6.6: Annual Expected Collision Frequency for the Installation of an Interchange

INTERSECTION CONFIGURATION	ANNUAL EXPECTED COLLISION FREQUENCY		
	PROPERTY DAMAGE ONLY COLLISIONS	FATAL AND INJURY COLLISIONS	TOTAL COLLISIONS
Existing Stop-Control	1.58	1.63	3.21
Grade-Separated Interchange	1.16	0.70	1.86

The key findings from this analysis indicate that a grade-separated interchange would result in lower total, PDO, and fatal and injury annual expected collision frequencies when compared to the existing stop-controlled intersection.

7 IMPLEMENTATION OPTIONS

7.1 OVERVIEW

An examination of the cost-effectiveness and ease of implementation associated with each of the road safety countermeasures selected in Section 6 was used to develop the following implementation options.

7.2 DEVELOPMENT OF IMPLEMENTATION OPTIONS

Using the prioritized list of road safety issues identified as part of the ISRSR, and results from the cost-effectiveness assessment of potential countermeasures, implementation options were developed based on the time and level of development needed for countermeasure implementation. The following implementation criteria were applied:

- Short-term options: These items include low and moderate-cost countermeasures that can be implemented with little project development effort.
- Medium-term options: These items include countermeasures that will require project development effort but should be considered in the near future.
- Long-term options: These items include countermeasures that will require significant planning and analysis due to their cost and potential impacts on surrounding communities and developments. These items should be considered as alternatives for further review as part of future highway rehabilitation.
- Maintenance issues: These items include countermeasures that should be addressed as part of routine maintenance activities on the highway.
- Watch list items: Due to the low cost-effectiveness associated with the selected countermeasures, some road safety issues have been placed on a "watch list". These issues should be monitored on an ongoing basis for changes in safety performance that might trigger reconsideration of the need to invest in mitigation.
Table 7.1 presents implementation options identified for each safety countermeasure.

Table 7.1: Selected Countermeasures and Implementation Options

Priority Level	Road Safety Issue	Selected Countermeasure	Implementation Options
High Priority	Median operations: - Narrow median width limiting the available storage and refuge area Narrow median occupied by several vehicles at the same time - Different driving behaviors for left-turning vehicles observed within the median	Implementation of an alternative intersection configuration (Intersection Median Widening, Roundabout, RCUT)	Medium-term
		The provision of a grade-separation (interchange)	Long-term
	Left turns from PTH 1 - negative offset for left-turn lanes	Implementation of an alternative intersection configuration	Medium-term
	Intersection conspicuity	Install a Dynamic Advance Intersection Warning System	Short-term
		Install the Concealed or Unexpected Intersection (WA-11) alternative countermeasure	
	PTH 5 stop sign compliance	Implementation of an alternative intersection configuration	Medium-term
	Limited positive guidance in the median	Implementation of an alternative intersection configuration	Medium-term
	PTH 5 rumble strips	The condition and design of the rumble strips should be reviewed and repaired/adjusted as necessary	Short-term
Medium Priority	Left turns from PTH 5 - absence of eastbound median left-turn acceleration lane	Provision of southbound to eastbound median acceleration lane	Short-term
		Implementation of an alternative intersection configuration	Medium-term
	Right turns from PTH 1 - length of the right-turn deceleration lanes	Extend speed-change lanes as part of any future highway rehabilitation such as installation of alternative intersection design or an interchange.	Watch List
	Right turns from PTH 5 - Length of the right-turn acceleration lanes		
	PTH 1 speeds	Conduct a follow-up speed study on PTH 1	Short-term
	PTH 5 speed reduction zone	Consider for further review a speed reduction on PTH 5 as part of MTI's initiative to develop systemic response plans for intersections	Watch List
	PTH 1 pavement markings short solid line pavement markings between the mainline travel lanes	Extend solid line pavement markings	Maintenance

Priority Level	Road Safety Issue	Selected Countermeasure	Implementation Options
	PTH 1 pavement markings delineation of westbound median left-turn acceleration lane	Provision of a solid line pavement markings	
	Signage specific for median acceleration lanes	Provision of signage specific for median acceleration lanes, designed with input from a human factors expert	Short-term
		Review the locations of yield signs to reduce the sign offset	Short-term
	Median yield sign location	Implementation of an alternative intersection configuration	Medium-term
	Trucks stopping in prohibited	Engage with the Manitoba Trucking Association	
	locations	Enforcement of the "no stopping" signage	Short-term
	Limited intersection illumination	Reevaluate existing illumination and	Short-term
	Headlight glare	enhance where necessary	Shor-term
	A-pillar obstruction	Implementation of an alternative intersection configuration	Medium-term
Low Priority	Left turns from PTH 1 - length of the left-turn deceleration lanes	Extend speed-change lanes as part of any future highway rehabilitation such as installation of alternative intersection design or an interchange	Watch List
		Extend solid line pavement markings	Maintenance
	Proximity of service roads potential for queues within the service road intersection	Realignment of the service roads to increase the separation between the intersections	Watch List
	Proximity of service roads merge taper from PTH 1 within the service road intersection		
	PTH 5 shoulder width	Provision of paved shoulders on PTH 5 following MTI standards	Watch List
	Warning signage	Provide the necessary signage	Maintenance
	Guide signage		
	Right-turn from PTH 5 (yield sign)	Reviewed for compliance with the provincial standard requirements	Short-term
	Deteriorated pavement markings	Reapply line painting and pavement markings	Maintenance
	Signage condition	Review signage for deterioration and reflectivity	Maintenance
	Signage posts	Provide shear holes as necessary	Maintenance

Priority Level	Road Safety Issue	Selected Countermeasure	Implementation Options
	Pavement conditions	Assessed to determine if patch repairs, rehabilitation, or replacement	Maintenance
	PTH 5 shoulder conditions	Grading of existing shoulders to ensure smooth surface	
	Illumination maintenance	Replace bulbs as necessary	Maintenance

Safety countermeasures grouped in the specific implementation options are listed below.

7.2.1 SHORT-TERM OPTIONS

Short-term option countermeasures include the following:

- Improve conspicuity of the intersection and vehicles entering from the side road by installing Dynamic Advance Intersection Warning Systems (Figure 7.1). This is an intersection recognition treatment that is meant to enhance an expressway driver's awareness of an approaching two-way stop-controlled intersection. The systems typically consist of static Vehicle Entering When Flashing (VEWF) warning signs with traffic-actuated flashers on the expressway approaches and in-pavement loop detectors on the minor roads. When traffic is detected on the minor road, the flashers on the VEWF signs are activated on the expressway approaches, warning expressway drivers that one or more vehicles are present at the intersection and may enter from the minor road. An alternative to the Dynamic Advance Intersection sign may be the Concealed or Unexpected Intersection Signs WA-11 sign that could be installed with continuous or active flashing beacons.

Figure 7.1: Example of a Dynamic Advance Intersection Warning System

- Review and reapply the PTH 5 rumble strips as necessary.
- Provide a southbound to eastbound median acceleration lane on PTH 1.
- Provide signage specific for median acceleration lanes ("Left-Turn Traffic Use Acceleration Lane on PTH 1") to inform drivers on the presence and the use of PTH 1 median acceleration lanes. It is suggested the signage design be developed with input from a human factors expert.
- Conduct a follow-up speed study on PTH 1 to confirm the $100 \mathrm{~km} / \mathrm{h}$ speed zone effectiveness, and the need for an enhanced system of speed management measures.
- Reevaluate existing illumination and enhance where necessary.
- Address trucks stopping in prohibited locations by engaging with the Manitoba Trucking Association and / or local trucking operations and enhance the enforcement of the "no stopping signage".
- Review the location of the median yield signs to determine if the sign offsets can be reduced.
- Review the need and application of yield signs at the PTH 5 right-turn lanes to ensure compliance with Manitoba standards.

7.2.2 MEDIUM-TERM OPTIONS

Medium-term option countermeasures include the following:

- Implement an alternative intersection configuration (Intersection Median Widening, Roundabout, RCUT).

7.2.3 LONG-TERM OPTIONS

Long-term option countermeasures include the following:

- Provide grade-separation (interchange).

7.2.4 MAINTENANCE ISSUES

Maintenance issue countermeasures include the following:

- Provision of consistent warning, regulatory and guide signage including:
- Provision of Divided Highway Ahead (WA-34) signs on the PTH 5 approaches.
- Provision of consistent destination and guide signage on the PTH 1 approaches.
- Provision of pavement marking for:
- Extending solid lines to delineate PTH 1 through lanes at intersection approaches, to discourage passing on the immediate approach and within the intersection.
- Extending solid lines to delineate left-turn lanes on PTH 1 at least 100 m further back to discourage the misuse of these lanes.
- Providing pavement markings to identify left-turn lanes on PTH 1 to improve positive guidance to drivers.
- Providing solid line pavement markings at the beginning of the northbound to westbound median acceleration lane to improve positive guidance and reduce the risk of driver error.
- Other general maintenance activities including:
- Repaint deteriorated pavement markings to improve positive guidance.
- Replace deteriorated and damaged signs.
- Provide shear holes for wooden sign posts.
- Repair pavement patches and other pavement deterioration.
- Regrade and resurfacing PTH 5 shoulders.
- Coordinate with Manitoba Hydro to replace non-operational light bulbs.

7.2.5 WATCH LIST

Items on the watch list include the following:

- Relocate service road intersections beyond the merge and diverge tapers.
- Provide partial width paved shoulders on PTH 5 to comply with MTI standards.
- The following countermeasures can be implemented as part of any future highway upgrades such as the implementation of an alternative intersection configuration or grade separation:
- Extend the left-turn deceleration lanes on PTH 1.
- Extend the right-turn deceleration lanes on PTH 1.
- Extend the right-turn acceleration lanes on PTH.
- Consider for further review a speed reduction on PTH 5 as part of MTI's ongoing initiative to develop systemic response plans for intersections.

8 SUMMARY

This report summarises findings from the ISRSR conducted for the intersection of PTH 1 and PTH 5 in accordance with the TAC Canadian Guide to In-service Road Safety Reviews. In conducting this review, a "lines of evidence" approach and risk-based evaluation was applied to identify a prioritized list of road safety issues.

Using this prioritized list of road safety issues, and results from a cost-effectiveness assessment of potential countermeasures, short, medium, and long-term implementation options were developed based on the time and level of development needed for countermeasure implementation.

As noted earlier in this report, an ISRSR is separate from the design process and is not intended to identify one single safety solution for an intersection or roadway segment. Rather, an ISRSR typically identifies a number of potential countermeasures for further consideration by the road agency, ranging from shorter-term countermeasures (such as sign upgrades, reapplication of pavement markings, and enhanced illumination), to medium- and longer-term countermeasures (such as modifying traffic control or reconstructing and reconfiguring an intersection).

It is recommended that the short-term countermeasures and maintenance items, generally consisting of low and moderate cost countermeasures that can be implemented with little project development effort, be implemented right away.

It is recommended that the medium-term and long-term countermeasures identified in Section 6 undergo further evaluation and development through a functional design study to address other considerations such as environmental constraints, drainage, land acquisition, and construction traffic management requirements. It is recognized that the ultimate solution will also need to consider department priorities and budget requirements.

9 AUDIT SIGNATURES

This review and commentary was prepared by WSP Canada Inc. (WSP) for Manitoba Transportation and Infrastructure (MTI). The material in it reflects WSP's best judgement in light of the information available to us at the time of the review. Any use which MTI or any third party makes of this review, or any reliance on it or decisions made based on it, are the responsibility of MTI or the third party. WSP accepts no responsibility for damages, if any, suffered by MTI or any third party as a result of decisions made or actions based on this review.

December 22, 2023
Diana Emerson, P. Eng.
WSP
Date

December 22, 2023
Geoff Millen, P. Eng. WSP Date

December 22, 2023
Brant Magnusson, P. Eng. WSP Date

December 22, 2023
Jaime Lacoste, P. Eng. WSP Date

2023-12-22

IS|"

COLLISION DETAILS (BY SEVERITY)

FATAL COLLISIONS - 1 COLLISION

One fatal collision occurred during the study period and was recorded as an intersection 90 degrees collision. The collision occurred in August 2016 between 7:00 p.m. and 8:00 p.m. under clear weather condition and dry road surface condition. The collision involved a pick-up truck (under 4500 kg) that "disobeyed the traffic control device". The other vehicle was a power unit for semi-trailer that was going straight ahead and recorded as "taking avoiding action". The power unit for semi-trailer was travelling in the eastbound direction, and the travel direction for the pick-up truck was travelling in the northbound direction. The driver of the in the pick-up truck died as a result of the collision.

INJURY COLLISIONS - 12 COLLISIONS

Seven injury collisions that occurred during the study period were recorded as intersection 90 degree collisions.

- One collision occurred in July 2015 between 3:00 p.m. and 4:00 p.m. under clear weather condition and dry road surface condition. The collision involved an automobile that was travelling northbound on PTH 5 that left the stop sign before safe to do so and collided with another automobile travelling eastbound that was going straight ahead and driving properly. The passenger (front right) in the vehicle travelling eastbound on PTH 1W incurred a minor injury and was treated in hospital and released.
- One collision occurred in August 2016 between 4:00 p.m. and 5:00 p.m. under clear weather condition and dry road surface condition. The collision involved a vehicle (vehicle type unknown) that was travelling southbound on PTH 5 that failed to yield the right-of-way and collided with another automobile travelling eastbound that was going straight ahead and driving properly. The passenger (rear right) in the vehicle travelling southbound on PTH 5 incurred a minor injury and was treated in hospital and released.
- One collision occurred in July 2018 between 4:00 p.m. and 5:00 p.m. under clear weather condition and dry road surface condition. The collision involved an automobile that was travelling northbound on PTH 5 that left the stop sign before safe to do so and collided with another automobile travelling eastbound that was going straight ahead and driving properly. The passenger (front right) in the vehicle travelling eastbound on PTH 1W incurred a minimal injury and did not require hospital treatment.
- One collision occurred in February 2015 between 2:00 a.m. and 3:00 a.m. under dark lighting condition, snowing weather condition and icy road surface condition. The collision involved a pick-up truck (under 4500 kg) that was travelling northbound on PTH 5 that failed to yield the right-of-way and collided with another automobile travelling westbound that was driving properly. The driver in the vehicle travelling westbound on PTH 1W incurred a minimal injury and did not require hospital treatment.
- One collision occurred in October 2016 between 8:00 p.m. and 9:00 p.m. under dark lighting condition. The weather surface condition, road surface condition, vehicle types, and travel directions are unknown (based on the collision data provided); however, one vehicle failed to yield the right-of-way and their ability was impaired by alcohol. The other vehicle was driving properly. No injury details were recorded in the collision data.
- One collision occurred in October 2017 between 1:00 p.m. and 2:00 a.m. under clear weather condition and dry road surface condition. The collision involved an automobile that was travelling northbound on PTH 5 that failed to yield the right-of-way (although coded as "leave stop sign before safe to do so") and collided with another automobile travelling westbound that was driving properly. The passenger (front right) in the vehicle travelling westbound on PTH 1W incurred a minor injury and was treated in hospital and released.
- One collision occurred in April 2017 between 7:00 a.m. and 8:00 a.m. under clear weather condition and dry road surface condition. The collision involved a pick-up truck (under 4500 kg) that was travelling northbound on PTH 5 that failed to yield the right-of-way and collided with an automobile travelling westbound that was driving properly. The driver (front right) in the vehicle travelling northbound on PTH 5 incurred a minor injury and was treated in hospital and released.

Three injury collisions that occurred during the study period were recorded as left-turn (same direction) collisions or side swipe (same direction) collisions.

- One left-turn (same direction) collision occurred in June 2019 between 1:00 a.m. and 2:00 a.m. under artificial lighting condition and dry road surface condition. The collision involved a pick-up truck (under 4500 kg) that was travelling southbound on PTH 5 that failed to yield the right-of-way when turning left and collided with a power unit for semitrailer travelling eastbound on PTH 1W that was driving properly. The passenger (front right) in the vehicle making the left-turn incurred a minor injury and was treated in hospital and released.
- One left-turn (same direction) collision occurred in May 2015 between 6:00 p.m. and 7:00 p.m. under clear weather condition and dry road surface condition. The collision involved a vehicle that was travelling southbound on PTH 5 that failed to yield the right-of-way when turning left and collided with a vehicle travelling eastbound on PTH 1W that was driving properly. The passenger (front right) in the vehicle making the left-turn incurred a minimal injury and did not require hospital treatment.
- One sideswipe (same direction) collision occurred in September 2013 between 1:00 p.m. and 2:00 p.m. under clear weather condition and dry road surface condition; however, the road was identified to be under construction. The collision involved a pick-up truck (under 4500 kg) that was travelling northbound on PTH 5 that failed to yield the right-of-way when turning left and collided with an automobile travelling westbound on PTH 1 W that was driving properly. The passenger (front right) in the vehicle making the left-turn incurred a minor injury and was treated in hospital and released.

Two injury collisions that occurred during the study period were recorded as Other collisions.

- One collision occurred in January 2015 between 1:00 p.m. and 2:00 p.m. under cloudy weather conditions and icy road surface conditions. The collision involved a vehicle travelling eastbound on PTH 1W that was travelling too fast for conditions (slippery road surface), turned improperly and lost control and collided with another automobile travelling eastbound on PTH 1W that was driving properly. The driver in the vehicle driving properly incurred a minimal injury and did not require hospital treatment. This collision was categorized as a side-swipe same direction collision in the collision diagram.
- One collision occurred in September 2015 between 10:00 p.m. and 11:00 p.m. under dark lighting conditions, clear weather conditions and dry road surface conditions. The collision involved an automobile travelling westbound on PTH 1W that collided with an animal. The passenger (rear left) in the vehicle was injured, but the extent was not specified. This collision was categorized as a collision with an animal in the collision diagram.

PROPERTY DAMAGE COLLISIONS - 16 COLLISIONS

Six (6) of the sixteen (16) property damage collisions involved animal and occurred under dark lighting conditions. Of the animal collisions, four occurred when the road surface was dry, one occurred when the road surface was wet (and it was raining), and one occurred when the road surface had snow coverage. Five of the six animal collisions involved automobiles and one involved a truck over 4500 kg . The collisions occurred on the west leg of the intersection (three collisions; two travelling eastbound, one travelling westbound), east leg of the intersection (one collision; travelling westbound), and south leg of the intersection (two collisions; one travelling southbound, one travel direction unknown).

Ten (10) of the sixteen (16) property damage collisions involved another motor vehicle. Four (4) were intersection 90 degree collisions, two were left-turn collisions, two were sideswipe collisions, one was a rear end collision, and one collision involved a vehicle reversing and backing unsafely.

90-degree collisions:

- Automobile travelling southbound disobeyed traffic control device (defective engine controls / drive train) and collided with an eastbound vehicle.
- Automobile travelling southbound left stop sign before safe to do so and collided with a westbound vehicle.
- Automobile travelling southbound left stop sign before safe to do so and collided with a westbound vehicle turning left.
- Automobile travelling southbound left stop sign before safe to do so and collided with a westbound vehicle.

Left-turn collisions:

- Automobile travelling southbound failed to yield right-of-way when turning left and collided with an eastbound vehicle.
- Automobile travelling southbound failed to yield right-of-way when turning left and collided with a northbound vehicle. Alcohol impairment was listed as a contributing factor.

Sideswipe collisions:

- Automobile travelling westbound was driving too fast for conditions, lost control and collided with another westbound vehicle.
- Automobile travelling southbound failed to yield right-of-way and collided with a northbound vehicle.

Rear end and other collisions:

- A vehicle travelling southbound was following too closely and collided with another southbound vehicle that was stopped at the stop sign.
- A vehicle travelling northbound reversed at the stop sign and collided with another vehicle.

IS|"

JULY 2023 TRAFFIC COUNT

Start Time 7:00 AM
Site Code PTH 1 \& 5
Project 211-12345-0
Project 211-12345-00

Type Road Classification Motorcycles PTH 5					PTH 1 Westbound				PTH 5Northbound				$\begin{gathered} \text { PTH } 1 \\ \text { Eastbound } \end{gathered}$			
Date Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru \|	Left	U-Turn
2023-07-18 7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
2023-07-18 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-189:00 AM	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
2023-07-18 9:15 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
2023-07-189:30 AM	0	0	0	0	0	13	0	0	0	0	0	0	0	0	0	0
2023-07-189:45 AM	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
2023-07-18 10:00 AM	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0
2023-07-18 10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
2023-07-18 10:30 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
2023-07-18 10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0			0
2023-07-18 11:00 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-18 11:15 AM	0	0	0	0	0	2	0	0	0	0	0	0		1	0	0
2023-07-18 11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
2023-07-18 11:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
2023-07-18 12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 12:15 PM	0	0	0	0	0	9	0	0	0	0	0	0	0	1	0	0
2023-07-18 12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-18 1:00 PM	0	0	0	0	0	0	0	0	0	0		0		0	0	0
2023-07-18 1:15 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
2023-07-18 1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
2023-07-18 1:45 PM	0	0		0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-18 2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0		1	0	0
2023-07-18 2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-18 2:45 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
2023-07-18 3:00 PM	0	0	0	0	0	0	0	0	0	2	1	0	0	1	0	0
2023-07-18 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-18 3:30 PM	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2023-07-18 3:45 PM	0	0	0		0	2	0	-	0	0	0	0	0	0	0	0
2023-07-18 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 4:15 PM	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 4:30 PM	0		0	0	0	0	0	0	0	-	0	0	0	0	0	0
2023-07-18 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:00 PM	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:30 PM	0		0	0	0	0	0		0	0	0	0	0	2	0	0
2023-07-18 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-18 6:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	-	0	0	0
2023-07-18 6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 6:30 PM	0	0	0	0	0	1	0	0	-	0		0	-	0	0	0
2023-07-188:45 PM	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:00 PM	0	0	0	0	-	0	0	0	1	0	0	0	0	0	0	0
2023-07-187:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-187:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-187:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:15 PM	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:30 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-188:45 PM	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
2023-07-19 7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
2023-07-19 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
2023-07-19 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-19 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0		2	0	0
2023-07-19 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 8:45 AM	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-199:15 AM	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
2023-07-19 9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
2023-77-19 9:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-19 10:00 AM	0		0	0	0	0	0	0	0	0	0		0	0	0	0
2023-07-19 10:15 AM	0	0	0	0	0	15	0	0	0	0	-	0	0	0	0	0
2023-07-19 10:30 AM	0		0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-19 10:45 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0
2023-07-19 11:00 AM	0		0	0	0	1	0	0		0	0		0	0	0	0
2023-07-19 11:15 AM	0	0	0	0	0	0	3	0	0	0	-	0	0	0	0	0
2023-07-19 11:30 AM	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
2023-07-19 11:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0
2023-07-19 12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 12:15 PM	0		0			0	0	0	0	0	0	0	0	0	0	0
${ }^{2023-07-19} 112: 30 \mathrm{PM}$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-19 12:45 PM	0		0		0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 1:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	-	0	0	0
2023-07-19 1:15 PM	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
2023-07-19 1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
2023-07-19 2:45 PM	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-19 3:30 PM	0				0	0		0	0	0	-	0	0	0	0	0
2023-07-19 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 4:15 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
2023-07-19 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 4:45 PM	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
2023-07-19 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
2023-07-19 5:15 PM		0	0	0	0	0	0	0	1	0	0		0	0	0	0
2023-77-19 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-19 5:45 PM	0	0	0	-	-	0	0	0	0	0	0	-	-	0	0	0
2023-07-19 6:00 PM	0	0	0	0	0	0	0	0	-	0		0	0	0	0	0
2023-07-19 6:15 PM	0		0	0	-	0	0	0	0	0	0	0	0	1	0	0
2023-07-19 6:30 PM	0	0	0	0	0	0	0	0	0			0	0	0	0	0
2023-07-19 6:45 PM	0		0		0	0	0	0	0	0	0	-	0	0	0	0
2023-07-19 7:00 PM	0	0	0		0	0	0	0		0	0	0		0	0	0
2023-07-19 7:15 PM	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0	0
2023-07-19 7:30 PM	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
2023-07-19 7:45 PM	0	0	0		0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 8:00 PM			0				0	0	1	2				0	0	0
2023-07-19 8:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 8:30 PM 2023-07-19 8:45 PM										0	0		-	-	0	

fudy Name PTH 1 \& 5 - In-Service Road Safety Review
Start Date 2023-07-1
Start Time 7:00 AM
Start Time 7:00 AM
Site Code PTH 1 \& 5
Project 211-12345-00

Classification Passenger Cars																
	PTH 5 Southbound				$\begin{gathered} \text { PTH } 1 \\ \text { Westbound } \end{gathered}$				$\begin{gathered} \text { PTH } 5 \\ \text { Northbound } \end{gathered}$				$\begin{aligned} & \text { PTH } 1 \\ & \text { Eastbound } \end{aligned}$			
Date Start Time	Right	Thru	Left	U-Turn												
2023-07-18 7:00 AM	4	4	3	0	0		2	0	3	4	9	0	8	18	1	
2023-07-18 7:15 AM	1	3	4	0	1	22	2	0	3	6	12	0	16	21	1	0
2023-07-18 7:30 AM	0	6	3	0	1	16	3	0	2	12	12	0	20	24	3	
2023-07-18 7:45 AM	0	13	1	0	2	30	2	0	1	9	14	0	21	30	6	0
2023-07-18 8:00 AM	3		0	0	1	23	5	0	4	3	8	0	6	23	4	
2023-07-18 8:15 AM	4	2	2	0		28	1	0		8	19	0	9	24	2	0
2023-07-18 8:30 AM		6	0	0	1	34	2	0	3	8	10	0	6	30	3	0
2023-07-18 8:45 AM	3	14	2	0	1	46	6	0	3	6	9	0	8	36	3	0
2023-07-189:00 AM	2	1	1	-	1	37	4	0	4	2	9	0	7	40	3	0
2023-07-18 9:15 AM	4	8	1	0	2	42	2	0	4	6	5	0	9	30	3	0
2023-07-189:30 AM	4	10	3	,	2	36	0	0	1	6	2	0	5	44	1	0
2023-07-18 9:45 AM	1	6	2	0	4	38	5		0	6		0	8	32	1	0
2023-07-18 10:00 AM	1	7	3	0	2	35	3	0	0	5	11	0	5	28	1	0
2023-07-18 10:15 AM	4	10	5	0	3	61	4	0	4	5		0	4	29	0	0
2023-07-18 10:30 AM	2	5	1	0	2	51	2	0	5	8	9	0	3	48	0	0
2023-07-18 10:45 AM	2	4	5	0	4	52	4	0	2	4	8		2	28	1	0
2023-07-18 11:00 AM	2	10	4	0	3	39	4	0	2	3	7	0	9	35	0	0
2023-07-18 11:15 AM	2	3	2	0	1	49	2	0	1	7	14	0	4	31	1	0
2023-07-18 11:30 AM	4	5	1	0	4	43	5	0	1	3	5	0	8	33	0	0
2023-07-18 11:45 AM	1	7	2	0	1	54	5	0	3	5	4	0	6	28		0
2023-07-18 12:00 PM	2	7	4	0	4	36	5	0		6	10	0	4	32	1	0
2023-07-18 12:15 PM	1	4	3	0	1	57	2	0	4	4	6	0	6	37	4	0
2023-07-18 12:30 PM	1	2	3	0	2	37	2	0	7	5	5	0	5	39	0	0
2023-07-18 12:45 PM	4	11	0	0	4	41	2	0	2	4	8	0	7	60	0	0
2023-07-18 1:00 PM	0	2	4	0	2	38	4	0	2	4	8	0	12	37	0	0
2023-77-18 1:15 PM	1	4	1	0	2	39	5	0	2	4	8	0	6	42	0	0
2023-77-18 1:30 PM	1	4	4	0	1	43	3	0	6	8	13	0	-	48	4	0
2023-77-18 1:45 PM	1	6	2	0	3	45	4	0	5	10	6	0	13	50	2	0
2023-07-18 2:00 PM	3	4	2	0		54	2	0	6		13	0	12	33	1	0
2023-07-18 2:15 PM	2	6	2	0	5	44	4	0	3	10	5	0	13	43	2	0
2023-07-18 2:30 PM	4	9	3	0	8	29	2	0	6	7	17	0	11	43	1	0
2023-07-18 2:45 PM	4	5	5	0	2	41	7	0	3	9	8	0	16	47	1	0
2023-07-18 3:00 PM	4	2	1	0	2	50	4	0	4	10	22	0	10	54	4	0
2023-77-18 3:15 PM	0	9	5	0	1	46	1	0	6	4	12	0	11	41	4	0
2023-07-18 3:30 PM	2	11	5	0	5	28	1	0	2	8	12	0	11	48	4	0
2023-07-18 3:45 PM	3	8	2	0	3	31	6	0	5	9	6	0	13	59	0	0
2023-77-18 4:00 PM	4	15	4	0	3	31	0	0	2	5	15	0	18	45	1	0
2023-07-18 4:15 PM	4	13	5			36	4	0	6	12	12	0	20	52	,	0
2023-77-18 4:30 PM	2	20	2	0	4	42	5	0	10	12	22	0	18	54	6	0
2023-07-18 4:45 PM	0	13		0		39	8	0	6	10	14	0	12	40	2	0
2023-07-18 5:00 PM	2	14	5	0	3	35	4	0	3	4	11	0	21	39	3	0
2023-07-18 5:15 PM	3	13	4	0	1	43	3	-	4	9	14	0	19	27	4	0
2023-07-18 5:30 PM	5	10	0	0	5	42	6	0	5	2	8	0	14	36	1	0
2023-07-18 5:45 PM	3	12		0		36	1	0	4	9	10	0	10	34	3	0
2023-07-18 6:00 PM	2	8	1	0	1	24	1	0	3	6	12	0	10	37	0	0
2023-07-18 6:15 PM	1	3	3	0	1	26	3	0	4	5	7	0	11	27	1	0
2023-07-18 6:30 PM	1	7	0	0	2	31	1	0	5	3	7	0	16	33	1	0
2023-07-18 6:45 PM	1	4	1	0	5	37	0	0	5	5	6	0	4	32	1	0
2023-07-18 7:00 PM		1	4	0	3	26	7	0	2	4	4	0	9	29	,	0
2023-07-18 7:15 PM	1	4	0	0	0	31	3	0	0	2	4	0	8	21	1	0
2023-07-187:30 PM	0	3	1	0	1	23	3	0	1	2	6	0	8	28	1	0
2023-07-187:45 PM	0	1	0	0	2	25	1	0	1	4	6	0	5	33	0	0
2023-07-18 8:00 PM	2	3	2	0	1	20	0	0	3	3	12	0	8	27	1	0
2023-07-188:15 PM	1	1	0	0	1	19	0	0	2	6	5	0	7	31	1	0
2023-07-18 8:30 PM	0	5	0	0	1	16	1		1	1	3	0	7	14	1	0
2023-07-18 8:45 PM	1	3	0	0	0	18	1	0	2	1	6	0	3	20	0	0
2023-07-19 7:00 AM	5	5	0	0	0	15	3	0	1	5	16	0	8	15	0	0
2023-07-19 7:15 AM	1	6	3	0	4	24	4	0	1	4	8	0	17	25	0	0
2023-07-19 7:30 AM	2	6	1	0	1	25	3	0	1	16	23	0	19	17	2	0
2023-07-19 7:45 AM	2	11	2	0	3	21	1	0	1	14	10	0	18	28	${ }^{3}$	0
2023-77-19 8:00 AM	2	7	3	0	0	33	2	0	6	8	8	0	11	23	4	0
2023-07-19 8:15 AM	2	3	2	0	0	40	4	0	3	8	22	0	10	33	1	0
2023-77-19 8:30 AM	4	7	2	0	1	36	3	0	3	15	6	0	6	39	2	0
2023-07-19 8:45 AM	4	5	1	0	1	33	3	0	2	5	9	0	11	39	1	0
2023-77-19 9:00 AM	5	5	1	-	1	35	4	0	8	5	6	0	10	34	0	0
2023-07-19 9:15 AM	9	4	2	0	1	47	4	0	3	4	10	0	7	34	4	0
2023-77-19 9:30 AM	1	4	1	0	1	59	3	0	5	3	7	0	12	27	0	0
2023-07-19 9:45 AM	0	8	1	0	4	31	2	0	4	5	7	0	3	44	2	0
2023-07-19 10:00 AM	3	6	1	0	1	52	3	0	4	6	7	0	4	29	1	0
2023-07-19 10:15 AM	0	4	1		0	50	3	0	2	5	8	0	2	32	3	
2023-07-19 10:30 AM	3	8	2		0	39	6	0	1	5	8	0	11	35	1	0
2023-07-19 10:45 AM	1	5		0	3	41	3	0	${ }^{2}$	9	7	0	5	42	1	0
2023-07-19 11:00 AM	0	15	4	0	0	44	3	0	7	6	5	0	2	31	4	0
2023-07-19 11:15 AM	4	8	3	0	2	42	2	0	2	6	6	0	11	32	0	0
2023-07-19 11:30 AM	1	9		0	3	39	3	0	4	4	6	0	6	24	3	0
2023-07-19 11:45 AM	3	5	4	0	0	39	0	0	1	11	12	0	4	38	1	0
2023-07-19 12:00 PM	2	11		0	2	43	4	0	2	3	12	0	10	48	2	0
2023-07-19 12:15 PM	1	5	4	0	3	39	4	0	2	5	8	0	6	32	2	0
2023-07-19 12:30 PM	2	3	2	0	1	44	0	0	3	6	8	0	4	28	2	0
2023-07-19 12:45 PM	3	6	5	0	1	25	4	0	4	5	7	0	7	40	1	0
2023-07-19 1:00 PM	1	3	2	0	2	29	5	0	3	3	15	0	7	34	0	0
2023-07-19 1:15 PM	2	8	2	0	4	36	4	0	4	3	4	0	10	50	0	0
2023-07-19 1:30 PM	1	5		0	0	50	5	0	5	6	7	0	6	49	0	0
2023-07-19 1:45 PM	1	6	2	0	2	35	3	0	7	11	7	0	6	35	2	0
2023-77-19 2:00 PM	1	3	0	0	7	48	2	0	4	4	3	0	11	61	${ }^{2}$	0
2023-07-19 2:15 PM	${ }^{2}$	7		0	2	38	2	0	11	${ }^{2}$	8	0	19	43	3	0
2023-77-19 2:30 PM	0	6	2	0	0	42	2	0	7	3	8	0	12	44	2	0
2023-77-19 2:45 PM	4	4		0	5	38	3	0	4	11	6	0	15	49	1	0
2023-07-19 3:00 PM	0	7	4	0	2	42	5	0	7	11	14	0	14	36	3	0
2023-07-19 3:15 PM	5	11	4	0	2	45	6	0	5	5	11	0	13	45	2	0
2023-07-19 3:30 PM	0	13	2	0	0	35	6	0	5	16	6	0	10	47	3	0
2023-07-19 3:44 PM	1	16	3	0	3	31	3	0		11	8	0	8	32	2	0
2023-07-19 4:00 PM	3	13	2	0	1	38	6	0	1	10	17	0	12	47	2	0
2023-07-19 4:15 PM	0	13	3	0	4	35	2	0	3	8	17	0	17	51	4	0
2023-07-19 4:30 PM	2	19	2	0	3	35	6	0	5	12	14	0	19	50	4	0
2023-07-19 4:45 PM	0	15		0	3	35	1	0	6	15	19	0	20	51	3	0
2023-07-19 5:00 PM		13	3	0	1	34	2	0	5	12	5	0	22	52	4	0
2023-07-19 5:15 PM	3	25	4	0	5	42	0	0	5	8	16	0	16	50	1	0
2023-07-19 5:30 PM	5	16	,		2	34	6	0	4	6	11	0	9	55	0	0
2023-77-19 5:45 PM	2	9	4	0		28	4	0	2	8	8	0	17	25	1	0
2023-77-19 6:00 PM	2	6		0	3	31	3	0	4	2	6	0	12	40	1	0
2023-07-19 6:15 PM	0	2	1	0		34	5	0		3	10		10	40	0	0
2023-07-19 6:30 PM	1	3	1	0	0	30	4	0			14	0	8	32	0	0
2023-07-19 6:45 PM	0	7	3	0		29	1	0		4			11	37		0
2023-07-19 7:00 PM	1	5				24		0	2	6	10	0	14	34	1	0
2023-07-19 7:15 PM		5	0	0	2	36	7			4		0	12	26		0
2023-07-19 7:30 PM	3	5			0	26	4	0	0	2	11	0	15	${ }^{23}$	1	
2023-07-19 7:45 PM		3	3	0	1	26	1	0	2	2		0	5	22	0	
2023-07-19 8:00 PM	2	3	0	0	0	19	1	0	4	${ }_{7}$	8	0	5	40	-	
2023-07-19 8:15 PM			0		1	24		0		7		0	5	25	-	
2023-07-19 8:30 PM 2023-07-19 8:45 PM									3		5 8	0				

Idy Name PTH 1 \& 5 - In-Service Road Safety Review
Start Time 7:00 AM
Start Code PTH 1 \& 5
Site
Project 211-12345-00

Type Road Classification Pickups, Panels, Vans					PTH 1 Westbound											
	PTH 5 Southbound								$\begin{gathered} \text { PTH } 5 \\ \text { Northbound } \end{gathered}$				$\begin{gathered} \text { PTH } 1 \\ \text { Eastbound } \end{gathered}$			
Date Start Time	Right	Thru	Left	U-Turn												
2023-07-18 7:00 AM	0	-	0		0	3	0	0	0	0	0	0	,	0	0	
2023-07-18 7:15 AM	0	0	1	0	0	2	0	0	0	0	0	0	1	0	0	0
2023-07-18 7:30 AM	0	1	0	0	0	2	0	0	0	0	0	0	1	1	0	0
2023-07-18 7:45 AM	0	1	0	0		1	0	0	1	0	1	0		0	0	0
2023-07-18 8:00 AM	0	0	0	0	1	4	0	0	0	0	0	0	0	0	1	0
2023-07-18 8:15 AM	0	0	0	0	0	4	0	0	0	0	0	0	3	0	1	0
2023-77-18 8:30 AM	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	2	1	0	0
2023-77-189:00 AM	0	1	0	0	0	1	0	0	1	0	1	0	0	2	0	0
2023-07-18 9:15 AM	0	0	0	0	0	3	0	0	0	0	0	0	0		1	0
2023-07-189:30 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-189:44 AM	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0
2023-07-18 10:00 AM	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0
2023-07-18 10:15 AM	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0
2023-07-18 10:30 AM	0	2	0	0	0	2	1	0	0	0	0	0	0	0	0	0
2023-07-18 10:45 AM	0	1	0	0		3	0	0	0	0	0	0		0	0	0
2023-07-18 11:00 AM	1	0	0	0	0	2	0	0	1	0	0	0	1	0	0	0
2023-07-18 11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-18 11:30 AM	0	0	0	0	0	2	0	0	0	0	1	0	1	0	0	0
2023-07-18 11:45 AM	0	0	1	0	0	3	0	0	0	0	0	0	0	0	0	0
2023-07-18 12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 12:15 PM	0	0	0	0	0	1	0	0	1	0	0	0	0	3	0	0
2023-07-18 12:30 PM	0	0	0	0	0	2	0	0	1	0	0	0	0	0	0	0
2023-07-18 12:45 PM	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
2023-07-18 1:00 PM	0	1	0	0	0	1	2	0	0	0	0	0	1	2	0	0
2023-07-18 1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
2023-07-18 1:30 PM	0	0	0	0	0	1	0	0	0	2	1	0	0	1	0	0
2023-07-18 1:45 PM	2	0	0	0	0	0	0	0	0	0	1	0	0	2	0	0
2023-07-18 2:00 PM	0	0	0	0	0	3	1	0	0	0	0	0	4	1	0	0
2023-07-18 2:15 PM	0	0	0	-	-	0	0	0	0	0	1	0	1	2	0	0
2023-07-18 2:30 PM	0	0	0	0	0	5	0	0	0	0	0	0	1	3	0	0
2023-07-18 2:45 PM	1	0	0	0	0	1	0	0	0	0	1	0	0	2	0	0
2023-07-18 3:00 PM	0	0	0	0	0	5	0	0	0	0	1	0	0	2	0	0
2023-07-18 3:15 PM	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
2023-07-18 3:30 PM	0	0	0	0	0	1	0	0	0	0	1	0	0	2	0	0
2023-07-18 3:45 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-18 4:00 PM	0	1	1	0	0	0	0	0	0	0	1	0	0	2	0	0
2023-77-18 4:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	1	5	1	0
2023-77-18 4:30 PM	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0
2023-07-18 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:00 PM	0	1	0	-	0	,	0	0	0	0	1	0	0	0	0	0
2023-07-18 5:15 PM	0	0	0	0	0	2	0	0	0	0	1	0	0	2	0	0
2023-07-18 5:30 PM	0	1	0	0	0	0	0	0	0	0		0	0	0	0	0
2023-07-18 5:45 PM	0	0	0	0	0	2	0	0	1	0	0	0	0	0	0	0
2023-07-18 6:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0
2023-07-18 6:15 PM	0	0	0	0	0	1	0	0	0	0	-	0	1	0	0	0
2023-07-18 6:30 PM	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0
2023-07-18 6:45 PM	-	0	0	0	0	1	0	0	0	0		0	1	3	0	0
2023-07-18 7:00 PM	0	-	0	0	0	0	0	0		0	0	0	0	0	1	0
2023-07-18 7:11 PM	0	-	0	-	0	0	0	0	1	0	-	0	0	1	0	0
2023-07-187:30 PM	0	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0
2023-07-187:45 PM	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-18 8:15 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-18 8:45 PM	0	-	0		0	1	0	0	0	0	0	0	0	1	0	0
2023-07-19 7:00 AM	0	0	0	0	0	0	0	0	0	0		0	1	0	0	0
2023-07-19 7:15 AM	0	1	1	0	0	1	0	0	0	0	-	0	0	0	0	0
2023-07-19 7:30 AM	-	0	0		0	0	0	0	1	0	1	0	0	0	0	0
2023-07-19 7:45 AM	0	0	0	0	0	2	0	0	0	1	1	0	0	0	0	0
2023-07-19 8:00 AM	0	0	0	0	0	1	0	0	0	1		0	0	0	1	0
2023-07-19 8:15 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
2023-07-19 8:30 AM	0	0	0	0		2	0	0	0	1	0	0	0	0	0	0
2023-07-19 8:45 AM	0	0	0	0	0	3	0	0	0	0	0	0	0	0	1	0
2023-07-19 9:00 AM	1	0	0		0	4	0	0	0	0	0	0	2	2	0	0
2023-07-19 9:15 AM	0	0	0		0	2	2	0	0	0	1	0	1	2	0	
2023-07-19 9:30 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	1	0	
2023-07-19 9:45 AM	-	0	0	0	0	2	0	0	0	0	0	0	1	0	0	0
2023-07-19 10:00 AM	0	0	0	0	0	3	1	0	0	0	0	0	1	0	0	0
2023-07-19 10:15 AM	0				0	7	0	0	0	0		0	0	0	0	0
2023-07-19 10:30 AM 2023-07-19 10:45 AM	0	0	0	0	0	${ }_{2}$	0	0	0	0	1	0	${ }_{2}$	1	1	0
2023-07-19 10:45 AM 2023-07-19 11:00 AM	0		1	0		1	0	0	1	0	0	0	1	0	0	0
2023-07-19 11:00 AM 2023-07-19 11:15 AM	0	0	0	0	0	0	0	0	0	1		0	0	1	0	0
2023-07-19 11:15 AM 2023-07-19 11:30 AM	0				0	0	1	0	0	1	0	0	0	0 1	0	0
2023-07-19 11:45 AM	0	0	0	0	0		0	0	0	0	0	0	1	0	0	0
2023-07-19 12:00 PM	0	0	0	0	0		0	0	0	0	-	0	0	1	0	0
2023-07-19 12:15 PM	0	0	0	0	1	2	0	0	0	0	0	0	0	2	1	0
2023-07-19 12:30 PM	-					2		0	0	0	1	0	0		0	0
2023-07-19 12:45 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
2023-07-19 1:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
2023-07-19 1:15 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
2023-07-19 1:30 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
2023-07-19 1:45 PM	1	0	1	0	0	1	1	0	0	0		0	0	0	0	0
2023-07-19 2:00 PM	0		0	0	1	0	0	0	0	0	1	0	0	1	0	0
2023-07-19 2:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
2023-07-19 2:30 PM	0	0	0	0	0	2	1	0	0	0	1	0	0	0	0	
2023-07-19 2:45 PM	0				1	2	0	0	0	0	0	0	0	0	0	0
2023-07-19 3:00 PM	0	0	0	0	0	${ }_{1}^{2}$	0	0	0	0	0	0	1	3	0	0
2023-07-19 3:15 PM 2023-77-19:30 3	-				0	1		0	0	0	,	0	0	0	0	
2023-07-19 3:30 PM 2023-77-19 3:45 PM a	1	0	0	0	0	0	1	0	0	1	2	0	0	2	0	0
2023-07-19 3:45 PM 2023-07-19 4:00 PM	0	0		0	0	-		0	0	0	0	0	0	2	0	0
2023-07-19 4:00 PM 2023-77 4:15 PM	0	0	0	0	0	0	0	0	0	2	0	0	2	2	0	0
2023-07-19 4.15 PM 2023-7-19 4:30 PM	0		0	0	0	0 1	1	0	1	0	1	0	0	0 5	0	0
2023-07-19 4:45 PM	1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	。
2023-77-19 5:00 PM	0	0	0	0	0		0	0	0	0		0	0	0	0	
2023-07-19 5:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
2023-77-19 5:30 PM	-				1	,	0	0	0	0	-	0	0	1	0	
2023-07-19 5:45 PM	0	0	0	0	0		0	0	0	0		0	0	2	0	0
2023-07-19 6:00 PM	0	0		0	0		0	0	0	0	-	0	0	2	0	
2023-07-19 6:15 PM	0	0	0	0	0	0	0	0	0	0		0	1	3	0	
2023-07-19 6:30 PM	0	0	0	0	0	,	0	0	1	0	0	0	0	3	0	
2023-07-19 6:45 PM	0	0	0	0	0	,	0	0	0	0	1	0	0	1	0	
2023-07-19 7:00 PM	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2023-07-19 7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 7:30 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
2023-07-19 7:45 PM					0			0	0	0	0	0	0	0	0	
2023-07-19 8:00 PM	0	0	0	0	0	,	0	0	0	0	1	0	0		0	0
2023-07-19 8.15 PM	0					0	0	0	0		0	0	0	0	0	
2023-07-19 8:30 PM 2023-07-19 8:45 PM										${ }_{0}$	${ }_{0}$	0	0			


```Study Name PTH 1 & 5-In-Service Road Safety Review Start Date 2023-07-18 Start Time 7:00 AM Site Code PTH 1 & 5 Project 211-12345-00```																		
Type RoadClassification Single Unit 3-Axle Trucks																		
	$\begin{gathered} \hline \text { PTH 5 } \\ \text { Southbound } \\ \hline \end{gathered}$				Westbound						PTH 5Northbound				$\begin{gathered} \text { PTH } 1 \\ \text { Eastbound } \\ \hline \end{gathered}$			
Date Start Time	Right	Thru	Left	U-Turn	Right		Thru	Left			Right	Thru	Left	U-Turn	Right	Thru	Left	U-Tum
2023-07-18 7:00 AM	0	0	0	0		0	0		0	0	0	0	0	0	${ }^{1}$	0	0	
2023-07-187:15 AM	0	0	0	0		0	1		0	0	0	0	0	0	0	0		
2023-07-187:30 AM	0	0	0	0		0	1		0	0	0	0	0	0	0	2	0	0
2023-07-187:45 AM	0	0	1	10		1	0		0	0	0	0	0	0	0	0	0	0
2023-07-18 8:00 AM	0	0	0	0		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-18 8:15 AM	0	0		0		0	1		0	0	0	0	1	0	1	0	0	
2023-07-188:30 AM	0	1	0	0		1	0		0	0	1	0	0	0	0	0	0	0
2023-07-188:45 AM	0	0	0	0		0	0		2	0	0	1	0	0	0	0	0	0
2023-07-189:00 AM	0	0	0	0		0	0		0	0	0	0	1	0	0	0	0	0
2023-07-189:15 AM	2	0	0	0		0	0		0	0	0	0	0	0	1	0	0	0
2023-07-189:30 AM	0	-	0	0		0	0		0	0	0	0	1	0	0	0	0	0
2023-07-189:45 AM	0	1	0	0		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-18 10:00 AM	0	0	0	0		1	0		0	0	0	0	0	0		2	1	0
2023-07-18 10:15 AM	0	0	0	0		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-18 10:30 AM	0	0	2	2		0	1		0	0	0	1	1	0	1	2	0	0
2023-07-18 10:45 AM	0	0		0		0	1		0	0	0	0	2	0	1	0	0	0
2023-07-1811:00 AM	0	0	0	0		0	0		0	0	0	0	0	0	1	0	0	0
2023-07-18 11:15 AM	0	-	0	0		0	2		0	0	0	0	1	0	0	0	0	0
2023-07-18 11:30 AM	0	0	0	0		0	0		0	0	1	1	0	0	0	1	0	0
2023-07-18 11:45 AM	0	0		10		0	1		2	0	0	1	1	0	0	0	0	
2023-07-18 12:00 PM	0	0	0	0		0	2		0	0	0	0	1	0	0	1	0	0
2023-07-18 12:15 PM	0	0	1	10		2	1		0	0	1	0	0	0	0	2	0	0
2023-07-18 12:30 PM	0	0		0		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-1812:45 PM	0		0	0		0	1		0	0	1	0	0	0	0	1	0	0
2023-07-18 1:00 PM	0	0	2	2		0	2		0	0	0	0	0	0	0	0	0	0
2023-07-18 1:15 PM	0	3	0	0		1	0		0	0	0	1	0	0	0	0	0	0
2023-07-18 1:30 PM	0	2	0	0		0	0		0	0	0	0	0	0	0	3	0	0
2023-07-181:45 PM	0	0	0	0		2	0		0	0	0	0	0	0	0	0	0	0
2023-07-18 8 200 PM 2023-77-18 2.15	0	-	0	0		0	0		0	0	0	2	0	0	0	1	0	0
2023-07-18 2:15 PM	0	0	2	20		${ }^{3}$	0		0	0	0	2	0	0	0	4	0	0
2023-07-18 $2: 30 \mathrm{PM}$ 2023-77-18 2.45M	-	0	0	0		0	0		0	0	0	0	0	0	1	0	0	0
2023-07-18 $2: 45 \mathrm{PM}$		2	0	0		0	2		0	0	0	0	1	0	0	4	0	0
2023-07-183:00 PM	0	0	1	10		0	1		0	0	0	0	0	0	0	1	0	0
2023-07-18 3:15 PM 2023-07-18 3:30 PM	0	0	1	10		0	${ }_{1}$		0	0	0	1	0	-	0	${ }_{1}$	1	0
2023-07-18 3:45 PM	0	0	0	0		0	0		0	0	0	0	0	0	0	3	0	0
2023-07-18 4:00 PM	0	0	0	O		0	0		0	0	1	1	0	0	0	${ }^{2}$	0	0
2023-07-18 4:15 PM	0	0	0	0		0	0		0	0	0	0	0	0	0	2	0	
2023-07-18 4:30 PM		0	0	0		0	1		0	0	0	1	1	0	0	0	0	0
2023-07-18 4:45 PM	0	0	0	0		1	0		0	0	0	0	0	0	0	0	0	0
2023-07-18 5:00 PM 2023-07-18 5:15 PM	0	0	0	0		0	${ }_{2}$		0	0	0	0	0	0	0	0	0	-
2023-07-18 5:30 PM	0	0	0	0		-	0		0	0	0	0	1	0	1	0		0
2023-07-18 5:45 PM	0	0	0	0		0	0		0	0	0	0	1	0	0	0	0	0
2023-07-18 6:00 PM		-	0	0		0	0		0	0	0	0	0	0		0	0	0
2023-07-18 6:15 PM	0	0	0	0		0	4		0	0	0	0	0	0	0	0	0	0
2023-07-18 8:30 PM	0	0	0			0	0		0	0	0	0	0	0	0	0	0	0
2023-07-18 8:45 PM		0	0			0	0		0	0	0	0	1	0	0	1	0	0
2023-07-187:00 PM	0	-	0	0			0		0	-	0	0	1		0	0	0	0
2023-07-187:15 PM	-	0	0			0	0		0	0	0	0	0	0	0	1	0	0
2023-07-187:30 PM	0	0	0	0		0	1			0	0	0	0	0	0	0		
2023-07-18 7:45 PM 2023-07-18 8:00 PM	0	0	0	0		0	${ }_{1}^{1}$		0	0	0	0	0	0	0	0	0	0
2023-07-188:15 PM	0	0	0	0		-	0		0	0	0	0	0	0	0	0	0	0
2023-07-188:30 PM		0	0	0		0	0		0	0	0	0	0	0	0	1	0	0
2023-07-188:45 PM	0		0	0		0	0		0	0	0	0			0	0	0	
2023-07-19 7:00 AM	-	0	0	0		0	0		0	0	0	0	0	0	0	1	0	0
2023-07-19 7:715 AM	0	1	0	0		0	1		0	0	0	0	0	0	0	2	0	0
2023-07-19 7:30 AM 2023-07-19 7:45 AM	0	1	1	10		${ }_{0}^{0}$	1		0	0	0	0	1	0	0	0	0	0
2023-07-19 8:00 AM	-	0		10			0		0	0	0	0	0	0	0	1	0	0
2023-07-19 8:15 AM	0	0	0	0		0	1		0	-	0	0	0	0	1	3	0	0
2023-07-19 8:30 AM		0		0		0	0				0	0	0	0	0	2	0	0
2023-07-19 8:45 AM	0	0	0	0		1	1		0	0	0	0	1	0	0	3	1	0
2023-07-199:00 AM		0	0	0			0		0	0	0	0	0	0	0	1	0	0
2023-07-19 9:15 AM	0	1	0	0			0		0		0	1	0	0	0	2	1	0
2023-07-199:30 AM $2023-7.19$ $9: 45 \mathrm{AM}$		0	1	10		1	0		0	0	0	0	0	0	1	4	0	0
2023-07-19 10:00 AM		,	1	0		0	0		0	0	0	0	0	0	0	0	1	0
2023-07-19 10:15 AM	0		0	-			0		0		0	0	1	0	0	1	0	0
2023-07-19 10:30 AM	1	1		10		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-19 10:45 AM	0	1	0	0		-	0		0	0	0	0	0	0	0	2	0	0
2023-07-19 11:00 AM	0	0	0	0			0		0		0	0	0	0	1	0		
2023-07-19 11:15 AM 2023-07-19 11:30	${ }_{1}$	0		-		$\stackrel{2}{0}$	${ }_{0}^{2}$		0	0	0	1	1	0	${ }_{1}$	${ }_{2}$	0	0
2023-07-19 11:45 AM	0	0	0	0		0	1		0	0	1	1	0	0	0	2	0	0
2023-07-19 12:00 PM	1		0			1	0		0	0	0	0	0	0	0	5	0	0
2023-07-19 12:15 PM 2023-07-19 21:30 PM	0	0	1	10		0	${ }^{2}$		0	0	0	0	1	0	0	2	0	0
	0	1	$\bigcirc$	0		${ }_{0}$	1		0	0	$\bigcirc$	0	0	0	0	$\stackrel{2}{2}$	0	0
2023-07-19 1:00 PM		0	0	0		1	0		0	0	0	0	0	0	0	0	0	0
2023-07-19 1:15 PM	1	0		0		0	0		0	0	0	0	0	0	0	4	0	0
2023-07-19 1:30 PM	0	0	0	0		1	1		0	0	0	0	0	0	0		0	0
2023-07-19 1:45 PM	0	0	0	0		0	0		0	0	0	0	0	0	0	4	0	
2023-07-19 2:00 PM 2023-7-19 2:15 PM	0			0		0	0		0	0	${ }_{0}$	0	0	0	0 2	4 0	${ }_{1}$	0
2023-07-19 2:30 PM	0	1		0		0	0		0	0	0	0	0	0	2	2	0	
2023-07-19 2:45 PM	0	0		-		0	0		0	0	0	0	0	0	0		0	0
2023-07-19 $3: 30 \mathrm{PM}$	$\stackrel{0}{0}$	0	0	0		${ }_{0}$	${ }_{0}$		0	0	0	${ }_{0}^{2}$	1	0	0	0	0	0
2023-07-19 3:45 PM	0	0		0		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-19 4:00 PM	1	-	0			-	2		0	0	0	0	0	0	0	0	0	0
2023-07-19 4:15 PM	0	1				0	0		0	0	0	0	0	0	0	1	0	0
2023-07-19 4:30 PM	0	0		0		0	2		0	0	0	0	0	0	0	0	0	0
2023-07-19 4:45 PM 2023-7-19 5:00	1	0		0		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-19 5:15 PM	0	0	0	0		0	0		0	0	0	0	0	0	0	2	0	0
2023-07-19 5:30 PM	1	0		0		0	0		0	0	0	0	0	0	0	0	0	
2023-07-19 5:45 PM 2023-77-19 6:00	0	0	0	0		0	0		0	0	0	0	0	0	0	0	0	0
2023-07-19 6:00 PM 2023-77-19 6:15 PM	0	0	0	0		0	0		0	0	1	0	0	0	0	${ }_{1}$	0	
2023-07-199:30 PM	0			-			0		0		0	0	0	0	0	1	0	0
2023-07-19 6:45 PM		0	0	0		0	0				0	0	0	0	0	0	0	0
2023-07-19 7:00 PM	0						0		0		0	0	0	0	0	1	0	0
2023-07-197:15 PM	0	0	0	0		0	0		0	0	0	0	0	0	1	0	0	0
2023-07-197:30 PM 2023-77-19 7-45	0		0	-		0	0				0	0	0	0	0	0	0	
2023-07-199:00 PM	0	0		0			0		0	0	0	0	0	0	0	1	0	0
2023-07-19 8:15 PM	0					0	0				0	0	0	0	0	2	0	
2023-07-19 8:30 PM 2023-07-19 8:45 PM												${ }_{0}$		0	0	0		

dy Name PTH 1 \& 5 - In-Service Road Safety Review
Start Time 7:00 AM
Site Code PTH $1 \& 5$
Project 211-12345-00

Type Road Classification Single																
					$\begin{gathered} \text { PTH } 1 \\ \text { Westbound } \end{gathered}$				$\begin{gathered} \text { PTH } 5 \\ \text { Northbound } \end{gathered}$				$\begin{gathered} \hline \text { PTH } 1 \\ \text { Eastbound } \end{gathered}$			
Date Start Time	Right	Thru	Left	U-Turn												
2023-07-18 7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-187:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-18 8:00 AM	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
2023-77-18 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:30 AM	0	0	0	0		0	0	0	0	0	0	0	1	0		0
2023-77-18 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-189:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
2023-77-189:15 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-189:30 AM	0	0	0	0	0	0	0		0	0	0	0	1	0	0	0
2023-07-189:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 10:44 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 11:15 AM	0	0	0		0	0	0	0	0	0	0	0			0	0
2023-07-18 11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 11:45 AM	0	0	0		0	0	0	0	0	0	0	0	0		0	0
2023-07-18 12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 1:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-18 1:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-18 2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 $2: 15 \mathrm{PM}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 3:45 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2023-07-18 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-18 4:45 PM	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:30 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 6:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:30 PM	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 7:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
2023-07-18 8:17 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-18 8:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-19 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-19 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 8:45 AM	0	0	0	-	0	0	0	0	0	0	0	0	0	0	1	0
2023-07-19 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 9:15 AM	0	0	0		0	0	0	0	0	0	0		0	0	0	0
2023-07-19 9:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-19 9:45 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
2023-07-19 10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 10:15 AM	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 10:30 AM	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
2023-07-19 10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 11:00 AM	0	0	0		0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-19 1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 1:15 PM	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 1:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-77-19 1:45 PM	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 2:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
2023-07-19 3:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 4:30 PM	0				0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 5:00 PM	0	0	0	0	0	0	0	0	-	1	0	0	0	0	0	0
2023-07-19 5:15 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
2023-07-19 5:30 PM	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 6:15 PM	0	0	0		0	0	0	0	0	0	0	0		0	0	0
2023-77-19 6:30 PM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 6:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:00 PM	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
2023-07-19 7:15 PM	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0
2023-07-19 7:30 PM		0	0		0	0	0	0	0	0	0		0		0	0
2023-07-19 7:44 PM	0			0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 8:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
2023-07-19 8:15 PM					0			0	0	0	0	0	0	0	0	
2023-07-19 8:30 PM 2023-07-19 8:45 PM					0	0	0	0	0	0	0	0	0	0	0	0


Study Name PTH 1 \& 5 - In-Service Road Safety Review   Start Date 2023-07-18   Start Time 7:00 AM   Site Code PTH 1 \& 5   Project 211-12345-00																	
	(ification	Road   Single Tr	ailer 3 o	or 4-axle t													
	$\begin{gathered} \text { PTH } 5 \\ \text { Southbound } \end{gathered}$				$\begin{gathered} \text { PTH 1 } \\ \text { Westbound } \\ \hline \end{gathered}$				$\begin{gathered} \text { PTH } 5 \\ \text { Northbound } \\ \hline \end{gathered}$				PTH 1 Eastbound				
Date Start Time	Right	Thru	Left	U-Turn	Right		Left $\mid$ U-Turn		Right	Thru	Left U -Turn		Right	Thru 0	Left ${ }^{\text {U-Turn }}$		
2023-07-18 7:00 AM	,	0	0	0	,		0	0	0						崖		
2023-07-187:15 AM	0	0		00	0	0	0	0	0	0	0	0		0	0	0	0
2023-07-187:30 AM	0	0			0	2		0	0	0	0			0	0		
2023-07-187:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 8:00 AM	0	0			0	0	0	0	0		0	0	0	0	0	0	
2023-07-188:15 AM	0	0			0			0	0	0	0		O	1	0	0	
2023-07-18 8:30 AM	0	0	0	0 0	0	0	0	0	0	0		0	0	0	0	0	
2023-07-18 8:45 AM	0	0		00	0	1	0	0	0	0	0	0	0	0	0		
2023-07-189:00 AM	0	0			0			O	0	0				0	0		
2023-07-189:15 AM	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-189:30 AM 2023-77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-189:45 AM	0	0		0 0	0	1	0	0	0	0	0	0	0	0	0		
2023-7.-18 10:00 AM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0		
2023-07-18 10:15 AM	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 10:30 AM	0	0		0 0	0	0	0	0	0	0		0	0	0	0		
2023-07-18 10:45 AM	0	0		0 0	0	0	0	0	0	0	0	O		0	0		
2023-07-18 11:00 AM	0	0		00	0	0	1	0	0	0	0	0	0	0	0	0	
2023-07-18 11:15 AM 2032-07-1811:3 AM	0	${ }_{0}^{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
2023-07-18 11:30 AM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0		
${ }^{2023-07-18111: 45 ~ A M ~}$	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18181200 PM 2023-07-181215 PM	0	${ }_{0}^{0}$		0	0	${ }_{1}$	0	0	0	0	0	0	0	0	0	-	
2023-07-18 12:30 PM	0	0		0	0	1	0	0	0	0	0	0	0	0	0		
2023-07-18 12:45 PM	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-77-18 1:00 PM		0	0	0	0	0	0	0	0	0	0	0	0	0		0	
2023-07-181:15 PM	0	0		0	0	0	0	0	0	0	0	0	0	0	0		
2023-07-18 1:30 PM	0	0		00	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 1:45 PM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	${ }_{0}^{0}$		0	0	0	0	0	0	0	0	0	0	0	0		
2023-07-18 2:15 PM	0	0		00	0	0	0	0	0	0	0	0	0	0	0		
2023-07-18 2:30 PM	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 2:45 PM 2023-07-18 3:00 PM	0	${ }_{0}^{0}$		0	0	0	0	0	0	0	0	0	0	${ }_{2}$	0	-	
	0	0		${ }_{0}^{0}$	0	0	$\bigcirc$	0	0	${ }_{0}^{0}$	0	0	0	2	0	-	
2023-07-18 3:30 PM	0	0		0	0	0	0	0	0	0	0	0	0	2	0	0	
2023-07-18 3:45 PM	0	0	0	0 0	0	0	0	0	0	0	0	0	1	0		0	
2023-07-18 4:00 PM	0	0		00	-	0	0	0	0	0	0	0	0	0	0	0	
	0	0		00	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 4:30 PM 2023-77-184 4 P	0	${ }_{0}^{0}$		0 0	0	$\bigcirc$	0	0	0	$\bigcirc$	$\bigcirc$	0	0	0	0	-	
2023-07-18 5:00 PM	0	0		0	0	0	0	0	0	0	0	0	0	0	0		
2023-07-185:15 PM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 5:30 PM	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 5:45 PM 2023-1/4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	
2023-07-18 6:00 PM	0	0		00	0	0	0	0	0	0		0	0	0	0	0	
2023-07-18 6:15 PM		0		00	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-186:30 PM 2023-77-18 6.45M	0	${ }_{0}^{0}$		0	${ }_{0}^{0}$	0	0	0	0	0	0	0	0	0	0	-	
2023-07-18 6:45 PM 2023-07-18 7:00 PM	0	${ }_{0}^{0}$		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-187:15 PM	0			0	0	0	0	0	0	0	0	0	0	0	0		
2023-07-187:30 PM	0	0		0 0	-	0	0	0	0	0	-	0	0	0	0	0	
2023-07-187:45 PM		0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 8:00 PM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 8:15 PM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-18 8:30 PM	0			00	0	0	0	0	0	0	0	0	0	0		0	
2023-07-18 8:45 PM 2023-77-197:00 AM	0	0		00	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 7:15 AM	0	0		0		0	0	0	0	0	0	0	0		0		
2023-07-197:30 AM	0	0		0	0	0	0	0	0	0	0	0	0	0	0		
2023-07-19 7:45 AM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 8:00 AM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 8:30 AM 2023-07-19 8:45 AM	0	${ }_{0}^{0}$		0 0	0	0		0	0	0	0	0	0	1	0	0	
2023-77-199:00 AM	0	0	0	0		0	0	0	0	0	0	0	0		0	0	
2023-77-199:15 AM	0	-		0	-	0	0	0	0	0	0	0	0		-	0	
2023-77-19 9:30 AM	0	0		0 0	0	0	0	0	0	0	0	0	0	1	0	0	
2023-07-19 9:45 AM	0	0		00	0	0	0	0	0	0	0	0	0	1	0	0	
${ }^{2023-07-19} 10000 \mathrm{AM}$	0	0		0	0			0	0	0		0	0	1		0	
2023-07-19 10:15 AM 2033-07-19 00:3 AM	0			${ }_{0}^{0}$	${ }_{0}^{0}$	0	0	0	0	${ }_{0}^{0}$	0	0	0	0	0	0	
2023-07-19 10:45 AM	0			0		0	0	0	0	0	0	0	0			0	
2023-07-19 11:00 AM	0	0		0	0	0	0	0	0	0	0	0	0		-	0	
2023-07-19 11:15 AM	0	0		0 0		0	0	0	0	0	0		0	0	0	0	
${ }^{2023-07-19 ~ 11: 30 ~ A M ~}$	0	0		00	0	0	0	0	0	0	0	0	0	0	-	0	
2023-07-19 11:45 AM	0	0	0	0 0	0	0	0	0	0	0	0	0	0		0	0	
2023-07-19 12:00 PM	0	0		00	0	0	0	0	0	0	0	0	0	1	0	0	
2023-07-19 12:15 PM 2023-07-19 2	0			00	0	0	0	0	0	0	0	0	0	0	-	0	
	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 1:00 PM	0			0	0	0	0	0	0	0	0	0	0	0		0	
2023-77-19 1:15 PM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 1:30 PM	0	0		0 0	0		0	0	0	0	0	0	0	0	0	0	
2023-07-19 1:45 PM	0	-		0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 2:00 PM	0	0		00	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 2:15 PM	0	0		00	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 2:30 PM 2023-77-19 2:4 PM	0	${ }_{0}^{0}$		0	0		0	0	0	0	0	0	0	0	0	0	
2023-07-19 2:45 PM 2023-7-19 3:00 PM	0	0		0 0	${ }_{0}^{0}$	0	0	0	0	0	$\bigcirc$	0	0	0	0	0	
2023-07-19 3:15 PM	0			0	0	0	0	0	0	0	0	0	0	0	0		
2023-07-19 3:30 PM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 3:45 PM	0	0		0 0	0		0	0	0	0	0		0	0	0	0	
2023-07-19 4:00 PM	0	0		0	0		0	0	0	0	0	0	0	0	0	0	
2023-07-19 4:15 PM	0	0		0	0	0	0	0	0	0	0	0	0	1	0	0	
2023-07-19 4:30 PM	0	0		00	0		0	0	0	0	0	0	0	1	0	0	
2023-07-19 4:45 PM 2023-77-19 500 5:0	0			00	0		0	0	0	0	0	0	0	0	0	0	
2023-07-199:15 PM	0			0	0		0	0	0	0	0	0	0	2	0		
2023-07-19 5:30 PM	0	0		0 0	0		0	0	0	0	0	0	0	2	0	0	
2023-07-19 5:45 PM 2023-7-19 6:00 PM	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
2023-07-19 6:00 PM 2023-77-19 6:15 PM	0	0		0 0	${ }_{0}$	${ }_{0}$	${ }_{0}$	0	0	${ }_{0}^{0}$	${ }_{0}$	0	0	0	0	0	
2023-07-19 6:30 PM	0	0		0	0		0	0	0	0	0	0	0	0	0		
2023-07-199:45 PM	-	0		0 0	0		0	0	0	0	0	0	0	0	0	-	
2023-07-19 7:00 PM	0	0		0 0	0		0	0	0	0	0	0	0	0	0		
2023-07-19 7:15 PM	0	0		0	0			0	0	0	0	0	0	0	0		
2023-07-197:30 PM 2023-77-19 7:45 PM	0				${ }_{0}$			0	0	0	0	0	0	0	0	0	
2023-07-19 8:00 PM	0	0			0		0	0	0	0	0	0	0	0	0		
2023-07-19 8:15 PM	0							0	0	0	0	0	0	0			
2023-07-19 8:30 PM   2023-07-19 8:45 PM										0		0	0	${ }_{0}^{0}$			


Study Name PTH 1 \& 5 - In-Service Road Safety Review   Start Date 2023-07-18   Start Time 7:00 AM   Site Code PTH 1 \& 5   Project 211-12345-00																
					$\begin{gathered} \text { PTH } 1 \\ \text { Westbound } \\ \hline \end{gathered}$				$\begin{aligned} & \text { PTH } 5 \\ & \text { Northbound } \end{aligned}$				$\begin{gathered} \hline \text { PTH } 1 \\ \text { Eastbound } \\ \hline \end{gathered}$			
Date Start Time	Right	Thru	Left	U-Turn												
2023-07-18 7:00 AM	0	-	0	00	0	4	0	0	1	0	0	0	0	2	-	
2023-07-187:15 AM	0	0		00	0	1	0	0	0	0	0	0	0	1	0	0
2023-07-187:30 AM	0	0			0	6		0	1	0	0	0		5	0	
2023-07-187:45 AM	0	0	0	0	0	5	0	0	0	0	0	0	0	3	0	0
2023-07-18 8:00 AM	0	0			0	5	1	0	1	0	0	0		2	0	
2023-07-188:15 AM	0	0				4		0	0	1	0	0	0	5	0	0
2023-07-18 8:30 AM	0	0	0	0 0	0	7	1	0	0	0	0	0	1	4	0	
2023-07-18 8:45 AM	0	0		00	0	4	0	0	2	1	0	0	1	4	0	
2023-07-189:00 AM	0	0			1	5		O	3	0	0		1	3	0	
2023-07-189:15 AM	0	0	1	10	1	9	0	0	1	0	0	0	0	4	0	0
2023-07-189:30 AM	0	0	0	0 0	0	7	0	0	1	0	0	0	0	4	0	0
2023-07-189:45 AM	0	0		0 0	0	8	1	0	1	0	0	0	0	3	0	0
2023-77-18 10:00 AM	1	0		0 0	0	8	1	0	0	0	0	0	2	8	0	0
2023-07-18 10:15 AM	1	0	0	0	0	6	0	0	0	0	0	0	0	6	0	0
2023-07-18 10:30 AM	0	1	0	0	0	6	0	0	0	0	0	0	0	10	0	
2023-07-18 10:45 AM	0	0		0 0	0	4	0	0	0	0	0	O		7	0	
2023-07-18 11:00 AM	1	0		0 0	0	10	0	0	0	1	1	0	0	9	0	0
2023-07-18 11:15 AM	0	0	0	0 0	0	6	0	0	1	0	0	0	1	9	0	0
2023-07-18 11:30 AM	0	0		0 0	0	8	0	0	0	0	0	0	1	6	0	
2023-07-18 11:45 AM	0	0		0 0	0	7	0	0	0	0	0	0		5	0	0
2023-07-18 12:00 PM	0	0	0	00	0	5	0	0	2	0	0	0	0	1	0	0
2023-07-18 12:15 PM	0	0	0	0 0	0	8	0	0	0	0		0	0	11	0	0
2023-07-18 12:30 PM	0	0		0 0	0	6	0	0	1	0	0	0	0	9	1	0
2023-07-18 12:45 PM	0	0		0 0	0	3	1	0	1	0	0	0	2	4	0	0
2023-07-181:00 PM		0	0	0 0	0	10	0	0	1	0	0	0	0	6		0
2023-07-18 1:15 PM	0	0		00	0	8	0	0	1	1	1	0	0	5	0	0
2023-07-18 1:30 PM	0	0		00	1	7	0	0	0	0	1	0	0	12	0	0
2023-07-181:45 PM	0	0		00	0	15	1	0	0	0	0	0	0		1	0
2023-07-18 2:00 PM	0	0		0 0	0	11	0	0	0	0	0	0	1	6	1	0
2023-07-18 2:15 PM	0	0		0 0	0	5	0	0	0	0	0	0	0	9	0	
2023-07-18 2:30 PM	0	${ }_{0}^{0}$		0	0	${ }^{6}$	0	0	0	0	0	0	0	6	1	O
2023-07-18 2:45 PM	0	1		10	0	12	0	0	1	0	0	0	0	9	0	0
2023-07-18 3:00 PM	0	0		00	0	9	0	0	1	0	0	0	0	5	0	0
2023-07-18 3:15 PM 2023-07-18 3:30 PM	0	${ }_{0}^{0}$		0 0	0	${ }_{11}^{9}$	0	0	${ }_{0}^{2}$	0	0	0	0	9	0	0
2023-07-183:45 PM	0	0	0	0	0	10	0	0	0	0	0	0	0	6	0	0
2023-07-18 4:00 PM	0	${ }^{2}$		00	0	2	0	0	0	0	0	0	0	9	1	0
2023-07-18 4:15 PM	0	0		00	0	15	0	0	0	0	0	0	0	8	0	0
2023-07-18 4:30 PM		0	0	0 0	0	7	1	10	0	1	0	0	0	9	0	0
2023-07-18 4:45 PM	0	0		0 0	0	6	1	0	0	0	0	0	0	8	1	0
2023-07-18 5:00 PM	0	0		00	0	11	0	0	0	0	0	0	0	6	0	0
2023-07-18 5:15 PM	0	0		00	0	9	0	0	0	0	0	0	0	8	-	0
2023-07-185:30 PM	0	0		0	0	9	1	0	1	0	0	0	0	9	0	0
2023-07-185:45 PM	0	0		00	0	8	0	0	1	0	0	0	0	7	0	0
2023-07-18 6:00 PM 2023-77-18 6.15 PM	0	0		00	0	7	0	0	0	0	0	0	0		0	0
2023-07-18 6:30 PM	0	0	0	0	${ }_{0}^{0}$	${ }_{1}^{9}$	0	0	0	${ }_{0}^{0}$	${ }_{0}^{0}$	0	0	6 9	0 0	0
2023-07-188:45 PM	0	0		0	0	5	0	0	0	0	0	0	0	7	0	
2023-07-187:00 PM	0	0		0 0	0	1	0	0	1	0	0	0	0	11	0	0
2023-07-187:15 PM	0	0		00	0	0	0	0	0	0	0	0	0	7	0	0
2023-07-187:30 PM 2023-1787	0	0	0	0	0	1	0	0	0	0	0	0	0	7	0	0
2023-07-18 7:45 PM 2023-07-18 8:00 PM	0	0 0		0 0	0	${ }_{10}$	0	0	0	0	0	0	0	${ }_{8}^{6}$	0	0
2023-07-18 8:15 PM	0	0		0	0	7	0	0	0	0	0	0	0	5	0	0
2023-77-18 8:30 PM	0	0		0 0	0	13	0	0	0	0	1	0	0			
2023-07-18 8:45 PM	0	0		00	0	3	0	0	0	0			1		0	
2023-07-19 7:00 AM		0		00	0	7	0	0	0	0	0	0	0	4	0	0
2023-07-19 7:15 AM	0	0		0	0	${ }_{5}^{5}$	0	0	1	0	-	0	${ }_{1}$	11 4	0	0
2023-07-19 7:30 AM 2023-07-19 7:45 AM	0	0 0		$\begin{array}{ll}1 & 0 \\ 0\end{array}$	0	5 5	${ }_{1}$	1 0	0	0		0	1	4 10	0	0
2023-07-19 8:00 AM	0	0		1 0	0	2	1	1 0	0	0	0	0	0	10	0	0
2023-77-19 8:15 AM	0	0		0 0	0	4	1	10	2	0	0	0	0	4	0	
2023-07-19 8:30 AM		0		0 0	0	9	1	0	0	0			0		0	
2023-07-19 8:45 AM	0	0		0 0	0	8	0	0	0	0	0	0	0	5	0	0
2023-07-19 9:00 AM	0			0 0	0	9	1	0	1	0	0	0	0	7	0	0
2023-07-19 9:15 AM	0	0		00	0	12	0	0	1	0	0	0	0	11	0	
2023-07-199 9:30 AM 2023-7-19 9:4 AM	0	0		00	0	9	0	0	2	0	0	0	0	${ }^{\circ}$	0	0
2023-77-199:45 AM $2023-07-19$ $10: 00 \mathrm{AM}$	0	${ }_{1}^{0}$		0 0	0	8	${ }_{3}^{1}$	10	0	0	0	0	1	12 10	0	0
2023-07-19 10:15 AM		0		0	0	7	1	1 0	1	0	0	0	0	12		
2023-07-19 10:30 AM		0		0 0	0	9	0	0	0	0	0	0	0	17	0	0
2023-07-19 10:45 Am	0	0		0 0	0	8	2	0	1	0	0	0	1	11	0	0
2023-07-19 11:00 AM	0	0		0	0	7	1	10	0	0	0	0	0	${ }^{9}$	-	0
2023-07-19 11:15 AM 2023-07-19 11:3 AM	0			0 0	0	${ }_{11}^{5}$		0 0	${ }_{1}$	${ }_{0}^{0}$	0	0	$\bigcirc$	12 17	1	0
2023-07-19 11:45 AM	0		0	0	0	12	0	0	0	0	0	0	0	11	0	
2023-07-19 12:00 PM	0	0		00	0	9	0	0	0	1	0	0	0	17	0	0
2023-07-19 12:15 PM 2023-07-19 2	0	0		00	0	8	0	0	0	0	0	0	0	18	0	0
	0	0		0	0	$\stackrel{8}{14}$	0	0	1	0	0	0	0	$\stackrel{7}{16}$	0	0
2023-77-19 1:00 PM	0			0	0	9	0	0	1	0	0		1	9		0
2023-77-19 1:15 PM	1	0		0 0	0	9	0	0	1	0	0	0	0	8	0	0
2023-07-19 1:30 PM	0			0 0	0	15	1	0	0	0	0	0	0	11	0	0
2023-07-19 1:45 PM	0	-		0	0	10 11	0	0	1	1	0	0	0	10	0	0
2023-07-19 2:00 PM	0	0		0 0	0	11	0	0	0	0	0	0	0	10	0	
2023-07-19 2:15 PM	0	1		00	0	12	0	0	0	0	0	0	0	12	0	0
2023-07-19 2:30 PM 2023-7-19 2:4 PM	0	0		0		-9	0	0	0	0	0	0	0	15 10	0	0
2023-07-19 2:45 PM 2023-7-19 3:00 PM	0	0		${ }_{0}^{0}$	${ }_{0}^{0}$	19 9	0	0	0	${ }_{0}^{0}$	0	0	0	10 15	0	0
2023-07-19 3:15 PM	0		0	0	1	9	0	0	0	0	0	0	0	12	0	0
2023-07-19 3:30 PM	0			0	0	6	0	0	0	0	0	0	0	9	0	0
2023-07-19 3:45 PM	0	0		0 0	0	10	0	0	1	0	0		0	12	0	0
	0	0		0 0	0	9	0	0	0	0	0	0	0	12	0	0
2023-07-19 4:15 PM 2023-77-19 4.30	1	0		0	0	${ }_{8}^{8}$	0	0	0	0	0	0	1	11 10	0	0
2023-07-19 4:30 PM 2023-7-19 4:45 PM	0	0		${ }_{0}^{0}$	1	${ }_{6}^{8}$	0	0	0	${ }_{0}^{0}$	0	0	0	10 15	0	0
2023-07-19 5:00 PM	0	0		0 0	1	9	0	0	0	0	0	0	0	17	0	0
2023-07-19 5:15 PM	0			0 0	1		0	0	0	0	0	0	0	14	0	
2023-07-19 5:30 PM	0	0		0 0	0	5	0	0	1	0	0	0	0	9	0	0
	0	0		0 0	0	11	1	10	0	0	0	0	0	15		0
2023-07-19 6:00 PM 2023-7-19 6:15 PM	0	0		0 0	0	${ }_{6}^{3}$	0	0	${ }_{0}^{2}$	0	0	0	0	10 14	0	0
2023-07-19 6:30 PM	0	0		0	0	7	0	0	0	0	0	0	0	10	0	
2023-07-19 6:45 PM		0		0 0	0	2	0	0	0	0	0	0	0	12	0	
2023-07-19 7:00 PM		0		0 0	0		0	0	0	0	0	0	0	7	0	
2023-07-197:15 PM	0	0		0	0	2		0	0	0	0	0	0	5	0	0
2023-07-197:30 PM 2023-7-19 7:45 PM				0 0 0	0			0	0	0	${ }_{1}$	0	0	12 11	0	0
2023-07-19 8:00 PM		0		0 0	0		0	0		0	0	0	0	11	0	
2023-07-19 8:15 PM	0				0			0	0	0	0	0	0	10		
2023-07-19 8:30 PM   2023-07-19 8:45 PM										$\bigcirc$		0	0			

udy Name PTH 1 \& 5 - In-Service Road Safety Review
Start Time 7:00 AM
Start Code PTH $1 \& 5$
Site
Project 211-12345-00

Classification Single Trailer 6-Axle Trucks (or more)																
	$\begin{gathered} \text { PTH } 5 \\ \text { Southbound } \end{gathered}$				$\begin{gathered} \text { PTH } 1 \\ \text { Westbound } \end{gathered}$				$\begin{aligned} & \text { PTH } 5 \\ & \text { Northbound } \\ & \hline \end{aligned}$				PTH 1 Eastbound			
Date Start Time	Right	Thru	Left	U-Turn												
2023-07-18 7:00 AM	0	1	0	0	0	3	0	0	0	0	0	0	0	6	0	
2023-07-18 7:15 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	8	0	0
2023-07-18 7:30 AM	0	1	0	0	0	7	1	0	0	0	0	0	0	4	0	0
2023-07-18 7:45 AM	0	0	0	0	1		1	0	0	0	0	0	1	11	0	0
2023-07-18 8:00 AM	0	0	0	0	0	2	0	0	1	0	0	0		8	0	0
2023-07-18 8:15 AM	1	0	0	0	0	1	2	0	0	0	1	0	1	7	0	0
2023-07-18 8:30 AM	0	0	0	0	0	4	0	0	1	1	0	0		9	0	0
2023-07-18 8:45 AM	0	1	0	0	0	1	0	0	0			0	0	4	0	0
2023-77-189:00 AM	0	0	0	0	0	11	0	0	0	0	0	0	1	5		0
2023-07-189:15 AM	0	1	0	0	0	4	0	0	0	1	0	0	0	6	0	0
2023-07-189:30 AM	0	0		0	1	6	0	0	0	1	1	0	0	6	0	0
2023-77-189:45 AM	0	0	0	0	0	4	1	0	0	1	0	0	2	2	0	0
2023-07-18 10:00 AM	0	0	0	0	0	8	0		0	0	1	0	0		0	0
2023-07-18 10:15 AM	0	0	0	0	0	5	1	0	0	1	3	0	0	7	0	0
2023-07-18 10:30 AM	1	0		0	2	4	1	0	0	0	0	0	0	3	0	0
2023-07-18 10:45 AM	0	0	1	0	0	7	0	0	0	0	0	0	0	5	0	0
2023-07-18 11:00 AM	0	0		0	1	4	1	0	0	0	0	0	0	5	0	0
2023-07-18 11:15 AM	1	2	0	0	0	6	0	0	0	0	0	0	0	0	0	0
2023-07-18 11:30 AM	0	0	0	0	0	11	1		0	0	0	0	0	3		0
2023-07-18 11:45 AM	0	0	0	0	0	5	2	0	1	0	0	0	0	3	0	0
2023-07-18 12:00 PM	0	0	1	0	0	11	1	0	0	1	1	0	0	5	0	0
2023-07-18 12:15 PM	0	0	1	0	0	10	0	0	0	0	0	0	1	6	0	0
2023-07-18 12:30 PM	0	0	0	0	0	6	0	0	0	0	0	0	1	12	0	0
2023-07-18 12:45 PM	0	2	0	0	0	4	2	0		0	0	0	0	5	0	0
2023-07-18 1:00 PM	1	0	0	0	0	14	0	0	1	0	1	0	0	4	0	0
2023-07-18 1:15 PM	0	0	0	-	1	8	0	0	0	1	1		1	6	0	0
2023-07-18 1:30 PM	0	1	0	0	0	4	,	0	0	0	0	0	1	5	0	0
2023-07-18 1:45 PM	0	0	1	0	0	9	1	0	1	0	2	0	0	2	0	0
2023-07-18 2:00 PM	0	0	0	0	0	8	0	0	0	1	2	0	0	6	0	0
2023-07-18 2:15 PM	0	0	0	0	0	5	0	0	0	0	0	0	2	5	0	0
2023-07-18 2:30 PM	1	1	1	0	0	6	0	0	0	0	2	0	1	7	0	0
2023-07-18 $2: 45 \mathrm{PM}$	0	0	1	0	0	4	2	0	0	1	0	0	0	5	0	0
2023-07-18 3:00 PM	1	1	0	0	0	7	0	0	0	1	1	0	0	10	0	0
2023-07-18 3:15 PM	0	1	0	0	0	2	0	0	1	0	0	0	1	6	0	0
2023-07-18 3:30 PM	0	0	0		0	5	0	0	1	1	0	0	1	10	0	0
2023-07-18 3:45 PM	1	1	0	0	0	6	1	0	0	1	0	0	0	6	0	0
2023-77-18 4:00 PM	-	0	0	-	0	4	0	0	0	0	2	0	0	4	0	0
2023-07-18 4:15 PM	0	0	0	0	0	9	0	0	0	1	0	0	0	5	0	0
2023-07-18 4:30 PM	0	0	0	-	0	9	0	-	1	0	1	0	1	4	0	0
2023-07-18 4:45 PM	0	0	0	0	0	9	0	0	1	0	0	0	1	3	0	0
2023-07-18 5:00 PM	0	0	0	0	0	3	0	0	-	0	1	0	1	5	0	0
2023-07-18 5:15 PM	0		0	0	0	4	1	0	0	0	1	0	2	3	0	0
2023-07-18 5:30 PM	0	0	0	0	1	2	0	0	0	0	1	0	1	4	0	0
2023-07-18 5:44 PM	0	0	0	0	0	2	1	0	0	0	0	0	0	6	0	0
2023-07-18 6:00 PM	0	0	0	0	0	2	0	0	0	0	1	0	2	3	0	0
2023-07-18 6:15 PM	0	0	0	0	0	1	0	0	0	1	0	0	0		0	0
2023-77-18 6:30 PM	0	0	1	0	0	1	1	0	0	0	1	0	1	3	0	0
2023-07-18 6:45 PM	0	0		0	0	0	0	0	-	0	1	0	0	7	0	0
2023-07-18 7:00 PM	0	0	0	0	0	11	1	0	-	0	0	0	1	8	0	0
2023-07-18 7:17 PM	0	0	0	-	0	10	0	-	0	0	0	0	0	7	0	0
2023-07-187:30 PM	0	0	0	0	0	5	0	0	0	1	0	0	0	2	0	0
2023-07-187:45 PM	0	0	0	0	0	11	1	0	0	0	0	0	0	2	0	0
2023-07-18 8:00 PM	0	0	0	0	0	6	0	0	0	0	0	0	0	5	0	0
2023-07-188:15 PM	0	0	0	0	0	5	1	0	0	0	0	0	0	3	0	0
2023-07-188:30 PM	0		0	0	0	3	0	0	0	0	0	0	0	2	0	0
2023-07-188:45 PM	,	0	0	0	0	2	0	0	0	1	0	0	0	1	0	0
2023-07-19 7:00 AM	0		0	0	0	2	1	0	0	0	0	0	0		0	0
2023-07-19 7:15 AM	1	0	0	0	0	3	0	0	-	0	1	0	0	2	0	0
2023-07-19 7:30 AM	0	0	0	0	0	1	1	0	1	0	0	0	1	1	0	0
2023-07-19 7:45 AM	0	0	0	0	0	4	3	0	0	0	0	0	1	6	0	0
2023-07-19 8:00 AM	0	0	0	-	0	3	1	0	0	0	0	0	1	4	0	0
2023-07-19 8:15 AM	0	1	0	0	0	9	0	0	2	0	0	0	1	2	1	0
2023-07-19 8:30 AM	0	1	0	0	0	6	2	0	0	0	1	0	0	4	0	0
2023-07-19 8:45 AM	2	0	0	0	0	4	0	0	1	0	2	0	1	2	0	0
2023-07-19 9:00 AM	0	0	0	0	0	3	0	0	,	0		0		4	0	0
2023-07-19 9:15 AM		0	0	0	0	8	0	0	1	2	1	0	1	3	0	0
2023-07-19 9:30 AM	0	0	0		0	10	1	0		0	2	0	1	2	0	0
2023-07-19 9:45 AM	0	0	0	0	0	5	0	0	0	0	1	0	1	3	0	0
2023-07-19 10:00 AM	0	1	0	0	0	1		0	0	0	1	0	0	${ }^{2}$	0	0
2023-07-19 10:15 AM	0	0	0	0	1	5	0	0	0	1	1	0	1	5	1	0
2023-07-19 10:30 AM	1	1	0	0	0	${ }_{8}$	-	0	0	1	0	0	${ }_{2}$	9	0	0
2023-07-19 10:45 AM	-	0			1	8	1	0	0	0	0	0	1	4	0	0
2023-07-19 11:00 AM		0	0	0	0	2		0	0	1	1	0	1	1	0	0
2023-07-19 11:15 AM	1	0	0	0	0	11	2	0	1	0	1	0	0	8	0	0
2023-07-19 11:30 AM	0	0	0	0	0	8	0	0	0	0	3	0	0	3	0	0
2023-07-19 11:45 AM	0		0	0	0	4	0	0	0	0		0		4	0	0
2023-07-19 12:00 PM	1	1	0	0	0	4	0	0	0	0	1	0	0	7	0	0
2023-07-19 12:15 PM	1		0	0	0	1	,	0	1	0	0	0		3	0	0
2023-07-19 12:30 PM	0	1	0	0	0	7	0	0	0	1	0	0	0	${ }^{6}$	0	0
2023-07-19 12:45 PM	0	0	0	0	0	12		0	0	1	1	0	3	7	0	0
2023-07-19 1:00 PM	0	0	0		0	7	0	0	0	0	0	0	1	9	0	0
2023-07-19 1:15 PM	0	0	0	0	0	6	0	0	0	${ }^{2}$	1	0	1	7	1	0
2023-07-19 1:30 PM	0	0			0	6	-	0	1	0	2	0	0	5	0	0
2023-07-19 1:45 PM	0	0	0	0	0	10	1	0	1	0	1	0	0	6	0	0
2023-07-19 2:00 PM	0	0	0	0	0	8	1	0	0	1	0	0	1	6	0	0
2023-07-19 2:15 PM	0	1	0	0	0	7	1	0	0	1	0	0	0	6	0	0
2023-07-19 2:30 PM	0	0	0	0	0	8	0	0	1	0	1	0	0	3	0	0
2023-07-19 2:45 PM	0	0	0	0	0	8	1	0	0	0	0	0	1	3	0	0
2023-07-19 3:00 PM	0	0	0	0	0	6	0	0	0	1	0	0	1	4	0	0
2023-07-19 3:15 PM	0	0	0	0	0	5		0	0	0	0	0	1	3	0	0
2023-07-19 3:30 PM	0		0	0	0	5	0	0	0	0	1	0	0	3	0	0
2023-07-19 3:45 PM	0	1	0		0	9	0	0	1	0	1	0	0	5	0	0
2023-07-19 4:00 PM	0	0	0	0	0	7	1	0	0	1	1	0	0	2	0	0
2023-07-19 4:15 PM	0	0			0	4	0	0	0	1	0	0	0	0	0	0
2023-77-19 4:30 PM	0	1	0	0	0	7	0	0	0	1	0	0	0	3	0	0
2023-07-19 4:45 PM	0	0		0	0	2	1	0	0	0	0	0	,	-	0	0
2023-07-19 5:00 PM	0	0	0	0	0	7		0	0		0	0	1	2	0	0
2023-07-19 5:15 PM	-	0	1	0	0	6	0	0	0	1	1	0	2	2	0	0
2023-07-19 5:30 PM	1	0	0	0	1	6	0	0	0	0	1	0	1	1	0	0
2023-07-19 5:45 PM	0	0	0	0	0	3	0	0	1	1	0	0	0	1	0	0
2023-07-19 6:00 PM	0	0	0	0	0	5	0	0	0		1	0	0	5	0	0
2023-07-19 6:15 PM	0	0	0	0	0	14	0	0	1	1	0	0	0	1	0	0
2023-07-19 6:30 PM	0	0	0	0	0	9	0	0	0	0	0	0	0	2	0	0
2023-07-19 6:45 PM	0	0	0	0	0	7	0	0	0	0	0	0	0	1	0	0
2023-07-19 7:00 PM					0	8	0	0	0		0			,	1	0
2023-07-19 7:15 PM		0	0	0	0	15		0	0	0	0	0	0	0	0	0
2023-07-19 7:30 PM	0			-	0	7	0	0	-	0	1	-	0	3	0	0
2023-07-19 7:45 PM	0	1	0	0	0	9		0	0		1	0	0	4	1	0
2023-07-19 8:00 PM					0	11	0	0	0	0	0		0	4	0	0
2023-77-19 8:15 PM	0	0			0	9		0	0	0	0	0	0	2	0	0
2023-07-19 8:30 PM 2023-07-19 8:45 PM										${ }_{0}$	0		0			




```Study Name PTH 1 \& 5 - In-Service Road Safety Review Start Date 2023-07-18 Start Time 7:00 AM Site Code PTH 1 \& 5 Project 211-12345-00```																	
Classification Multi Trailer 7-Axle Trucks (or more)																	
	PTH 5 Southbound				$\begin{gathered} \text { PTH } 1 \\ \text { Westbound } \end{gathered}$				$\begin{gathered} \text { PTH } 5 \\ \text { Northbound } \end{gathered}$					$\begin{gathered} \text { PTH } 1 \\ \text { Eastbound } \\ \hline \end{gathered}$			
Date Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Tur		Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn
2023-07-187:00 AM	0	0	0	0	0	3		0	-	0	0	0	0	0	1	0	0
2023-07-187:15 AM	0	0	0	0	0	3				0	0		0	0	2	0	0
2023-07-187:30 AM	0	0	0	0	0	1		0		0	0	0	0	0	1	0	0
2023-07-187:45 AM	0	0	0	0	0	5		0		0	0	0	0	1	4	0	0
2023-07-18 8:00 AM	0	0	0		0	1				0	0		0	0	4	1	0
2023-07-18 8:15 AM	0	0	0	0	0	1				0	0	0	0	0	4	0	0
	0	0	1	0	0	4		0		0	0	0	0	0	9	0	0
2023-07-18 8:45 AM	0	0	0	0	0	5		0		0	0		0	0	4	0	0
2023-07-189:00 AM	0	0	0		0	2		0		0	0	0	0	0	7	0	0
2023-07-189:15 AM	0	0	0	0	0	2		0		0	0	0	0	0	0	0	0
2023-07-189:30 AM	0	0	0	0	0	3		1		0	0		0	0	2	0	0
2023-07-189945 AM	0	0	0	0	0	7		1		0	0	0	0	0	1	0	0
2023-07-18 10:00 AM	0	1	0	0	0	1		0		0	0	0	0	0	4	1	0
2023-07-18 10:15 AM	0	0	0	0	0	1		0		0	0	0	0	0	7	0	0
2023-07-18 10:30 AM	0	0	1	0	0	3		0		0	0	0	0	0	9	0	
2023-07-18 10:45 AM	0	0	0	0	0	3		0		0	0	0	0	0	7	0	
2023-07-18 11:00 AM	0	0	0	0	1	3		0	0	0	0	0	0	0	5	0	0
2023-07-1811:15 AM	0	0	0	0	0	8		0		0	0	0	0	0	${ }_{5}^{6}$	0	0
2023-07-18 11:30 AM	0	0	0	0	0	8		0		0	0	0	0	0	5	0	0
2023-07-18 11:45 AM	1	0	0	0	0	7		0		0	0	0	0	0	${ }^{6}$	0	0
- $2023.07-18112000 \mathrm{PM}$	0	0	0	0		${ }_{3}^{4}$		0		0	0	0	0	0	7	0	0
${ }^{\text {2023-07-18 18:15 PM }}$	0	0	0	0	0	3_{3}^{3}		0		0	0	0	0	0	${ }_{6}$	0	0
2023-07-181812:30 PM 2023-07-18 12:45 PM	0	0	0	0	1	3		0		0	1		0	0	${ }_{6}$	0	0
	${ }_{0}$	${ }_{0}$	${ }_{0}$	0	${ }_{0}$	7		!		1	0	1	0	0	${ }_{9}$	0	
2023-07-18 1:15 PM	0	0	0	0	0	10		2		0	0	1	0		1	0	
2023-07-18 1:30 PM	-	0	0	0	0	7		0		0	1	O	0	0	4	0	0
2023-07-181:45 PM	-	0	0	0		0		0		1	0	0	0	0	5	0	0
2023-07-18 2 2:00 PM	0	0	0	0	0	4		0		0	0	0	0	0	3	0	0
2023-07-18 2:15 PM 2023-07-18 2.30 PM	${ }_{0}$	0	0	0	${ }_{0}$	${ }_{3}^{6}$		0		0	0	0	0	0	${ }_{4}^{6}$	0	0
2023-07-18 2:45 PM		0	0	0	0	2		0		0	0	0	0	0	2	1	0
2023-07-18 3:00 PM	0	0	0	0	0	4		0		0	0	0	0	0	5	0	0
2023-07-18 3:15 PM	0	0	0	0	0	7		0		0	0	0	0	0	4	0	0
2023-07-18 3:30 PM	0	0	0	0	0	1		0		0	0	0	0	0	6	0	0
	0	0	${ }_{0}^{0}$	0	0	${ }^{2}$		0		0	0	0	0	0	${ }_{3}^{6}$	0	0
2023-07-18 4:00 PM	1	0	0	0	0	6		0		1	0	1	0	0	${ }^{3}$	0	
	0	1	0	0	0	4		0		0	0	1	0	0	6	0	0
2023-07-18 4:30 PM 2023-77-184 4 P	${ }_{1}$	0	0	0	0	9		0	0	0	0	0	0	0	0	0	-
2023-07-18 5:00 PM	0	0	0	0	0	3		0		0	0		0	0	${ }_{4}^{2}$	0	
2023-07-18 5:15 PM	0	0	0	0	0	5		0		0	0		0	0	0	0	0
2023-77-18 5:30 PM	0	0	0	0	0	9		0		0	1	0	0	0	8	0	0
2023-07-18 5:45 PM	0	0	0	0	0	${ }^{3}$		0		0	0	0	0	0	4	0	0
2023-07-18 6:00 PM		0	0	0	0	1		0		0	0	0	0	0	5	0	0
2023-07-18 6:15 PM		0	0	0	0	${ }^{3}$		0		1	0	0	0	0	${ }^{6}$	0	0
2023-07-186:30 PM 2023-7.18 6.45 PM	0	0	${ }_{0}^{0}$	0	0	${ }_{4}^{2}$		0	0	0	0	0	0	0	${ }_{4}^{2}$	1	0
2023-07-18 6:45 PM	0	0	0	0	-	4		1		0	0		0	0	4	2	
2023-07-18 7:00 PM 2023-07-18 7:15 PM	0	0	0 0	0	0	${ }_{1}^{2}$		0	0	${ }_{0}$	0	0	0	0	7	0	0
2023-07-187:30 PM	0	0	0	0	0	4		0		0	0	O	0	0	0	0	0
2023-07-187:45 PM	0	0	0	0	0	7		0	0	0	0	0	0	0	5	0	0
		0	0	0	0	4		0		0	0		0	0	5		0
2023-07-18 8:15 PM	${ }_{1}$	0	${ }_{0}^{0}$	0	0	5 3		0	0	0	0	0	0	0	3 5	0	-
2023-07-188:30.3PM 2023-7-18 8:45 PM	1	\bigcirc	${ }_{0}^{0}$	0	0	3 4		0	${ }_{0}$	0	0	0	0	0	5 1	0	0
2023-07-19 7:00 AM	0	0	0	0	0	5		0		0	0	0	0	0	3	0	0
2023-07-19 7:15 AM	0	0	0	0	-	2		0		0	0	0	0	0	6	0	
2023-07-19 7:30 AM	0	0	0	0	0	6		0		0	0		0	0	3	0	
		0	0	0	0	${ }^{3}$		0		0	0	0	0	0	1	0	O
$2023-77-198: 00 \mathrm{AM}$ 2023-7-19 8:15 AM	0	0	0	0	0	${ }_{3}^{4}$		0		0	\bigcirc	1	0	0	3 4	0	-
2023-07-19 8:30 AM	0	0	0	0		1		0	0	0	0	0	0	0	4	0	
2023-77-19 8:45 AM	0	0	0	0		7		0		0	0	0	0	1	6		0
2023-77-19 9:00 AM	0	0	0	0	0	7		0		0	0	0	0	0	4		
2023-07-199:15 AM	0	0	0		0	${ }_{3}$		1		0	0		0	0	1		0
2023-07-199:30 AM	0	0	0			3		0		0	0		0	0	4		0
2023-07-19 9:45 AM	0	0	0	0	0	1		0		-	1	0	0	0	3	0	0
2023-07-19 10:00 AM	${ }^{2}$	0	0	0	1	5		0	0	-	0	0	0	0	5 9	0	0
2023-07-19 10:15 AM 2023-07-19 00:3 AM	0	0		0	1	$\stackrel{2}{8}$		0		0	0	0	0	0	${ }_{0}^{9}$	0	0
2023-07-19 10:45 AM	0	0	0	0	0	7		0		0	0	0	0	0	8		
2023-07-19 11:00 AM	0	0	0	0	0	4		0		0	0	0	0	1	6	0	
2023-07-19 11:15 AM	0	0	0	0		3		0		0	0		0	0	6	0	
2023-07-19 11:30 AM 2023-07-19 11:45	0	0	0		0	5		2		0	0	0	0	0	6	0	0
2023-07-19 11:45 AM 2023-07-19 12:0 PM	${ }_{0}^{0}$	0	0 0	0	0	3 5		0		0	0	0	0	0	${ }_{4}^{6}$	0	0
2023-07-19 12:15 PM	0	0	0	0	0	6		0		0	0	0	0	0	4		0
2023-07-19 12:30 PM	0	0	0	0	0	2		0			0	1	0	0	9	0	0
2023-07-19 12:45 PM	1	0	0	0	0	6		1		0	0	0	0	1		0	0
2023-07-19 1:00 PM	0	0	0	0		5		0		0	0	0	0	1		1	
2023-07-19 1:15 PM 2023-7-19 1-30	0	0	0	0	0	3	0	0		0	0	0	0	0	3	1	0
2023-07-19 1:30 PM 2023-7-19 1:45 PM	${ }_{0}^{0}$	0	0	0	0	${ }_{1}^{7}$		0	O	0	\bigcirc	1	0	0	1 5	1	0
2023-07-19 2:00 PM	0	0	0	0	0	5		0		0	0	0	0	0		0	0
2023-07-19 2:15 PM	0	0	0	0	0	7	1	1		0	0	0	0	0	7	0	0
2023-07-19 2:30 PM	0	0	0	0	0	6	0	0		0	0	0	0	0	6	0	O
2023-07-19 9:45 PM 2023-19 2	0	0	0	0	0	${ }_{4}^{6}$	0	0	0	0	0	0	0	0	6	0	
2023-07-19 3:00 PM	0			0	0	4		0		0	0	0	0	0	${ }_{4}$	1	0
2023-07-19 3:15 PM	-	0	0	-	0	6	0	0		-	0	0	0	0	4	0	0
2023-07-19 $93: 30 \mathrm{PM}$ 2023-7.19 3	0	0		0		7	0	0	0	0	0		0	0	4	0	0
2023-07-19 3:45 PM 2023-7-19 4:00 PM	0	0	0	0	0	8		0	0	${ }_{2}$	0	0		0	4 2	0	0
2023-07-19 4:15 PM			0		0	6	0	0			0	0	0	0	5	0	
2023-07-19 4:30 PM	0	0	0	0		4	0	0	0	0	0	0	0	0	1	0	
2023-07-19 4:45 PM	0	O		0	0	4		0		1	0	0	0	1	2	0	0
2023-07-19 5:00 PM 2023-77 5	0	0	0	-	0	4	0	0		0	0	0	0	0	5	0	0
2023-07-19 5:15 PM 2023-07-19 5:30 PM	0	\bigcirc	0	0	${ }_{0}$	1	\bigcirc	0		0	\bigcirc	0	0	0	4	0	0
2023-77-19 5:30 PM 2023-7-19 5:45 PM	${ }_{0}^{0}$	0	${ }_{0}^{0}$	0	0	$\stackrel{1}{9}$	\bigcirc	0		0	0	0	0	0	6	0	0
2023-07-19 6:00 PM			0	0	0	4	0	0			0		0	0	5	0	
2023-07-19 6:15 PM	0	0		0	0	1	0	0	0	0	0		0	1		0	
2023-07-19 6:30 PM	0	0	0		0	${ }_{5}^{6}$		0		0	0	0	0	0	${ }^{6}$	1	
2023-07-19 6:45 PM 2023-77-19 7:00	0	0	0	0	0	5	0	0			0	0	0	0	3	0	0
2023-07-19 7:00 PM 2023-77-19 7:15 PM	0	0	0 0	0	0	3 5	0	0	O	0	0	0	0	0	6 4	0	0
2023-07-197:30 PM	0			0			1	1	0	1	0	0	0	0		0	0
2023-07-197:45 PM		0		0		2		0	0	0	0	0	0	0	4	0	
2023-07-19 8:00 PM		0	0	0	0	2				0	0	0	0	0	5	0	
2023-07-19 8:15 PM	0				0			0			0	0	0	0	6		
2023-07-19 8:30 PM 2023-07-19 8:45 PM											0		0	${ }_{0}^{0}$	1 5		

Study Name PTH 1 \& 5 - In-Service Road Safety Review
Start Date 2023-07-18
Start Time 7:00 AM
Site Code PTH $1 \& 5$
Project 211-12345-00

Study Name PTH 1 \& 5 - In-Service Road Safety Review
Start Date 2023-07-18
Site Code PTH 1 \& 5
Project 211-12345-00

Type Crosswalk Classification BicyclesPTH 5			PTH 1							
			$\begin{gathered} \text { PTH 5 } \\ \text { Northbound } \\ \hline \end{gathered}$	$\begin{gathered} \text { PTH 1 } \\ \text { Eastbound } \\ \hline \end{gathered}$						
Date Start Time	Southbound Sede	Peds CCW Peds Combine			Peds CW	Peds CCW Peds Combine	Peds CW	Peds CCW peds Combinel	Peds CW	Peds CCW Peds Combined
2023-07-18 7:00 AM	0	0 Comber	(0 O	,	0 O	,	0		
2023-07-18 7:15 AM	0	0	0	0	0	0	0	0		
2023-07-18 7:30 AM	0	0	0	0	0	0	0	0		
2023-07-18 7:45 AM	0	0	0	0	0	0	0	0		
2023-07-18 8:00 AM	0	0	0	0	0	0	0	0		
2023-07-18 8:15 AM	0	0	0	0	0	0	0	0		
2023-07-18 8:30 AM	0	0	0	0	0	0	0	0		
2023-07-18 8:45 AM	0	0	0	0	0	0	0	0		
2023-07-189:00 AM	0	0	0	0	0	0	0	0		
2023-07-18 9:15 AM	0	0	0	0	0	0	0	0		
2023-07-189:30 AM	0	0	0	0	0	0	0	0		
2023-07-18 9:45 AM	0	0	0	0	0	0	0	0		
2023-07-18 10:00 AM	0	0	0	0	0	0	0	0		
2023-07-18 10:15 AM	0	0	0	0	0	0	0	0		
2023-07-18 10:30 AM	0	0	0	0	0	0	0	0		
2023-07-18 10:45 AM	0	0	0	0	0	0	0	0		
2023-07-18 11:00 AM	0	0	0	0	0	0	0	0		
2023-07-18 11:15 AM	0	0	0	0	0	0	0	0		
2023-07-18 11:30 AM	0	0	0	0	0	0	0	0		
2023-07-18 11:45 AM	0	0	0	0	0	0	0	0		
2023-07-18 12:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 12:15 PM	0	0	0	0	0	0	0	0		
2023-07-18 12:30 PM	0	0	0	0	0	0	0	0		
2023-07-18 12:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 1:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 1:15 PM	0	0	0	0	0	0	0	0		
2023-07-18 1:30 PM	0	0	0	0	0	0	0	0		
2023-07-18 1:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 2:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 2:15 PM	0	0	0	0	0	0	0	0		
2023-07-18 2:30 PM	0	0	0	0	0	0	0	0		
2023-07-18 2:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 3:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 3:15 PM	0	0	0	0	0	0	0	0		
2023-07-18 3:30 PM	0	0	0	0	0	0	0	0		
2023-07-18 3:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 4:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 4:15 PM	0	0	0	0	0	0	0	0		
2023-07-18 4:30 PM	0	0	0	0	0	0	0	0		
2023-07-18 4:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 5:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 5:15 PM	0	0	0	0	0	0	0	0		
2023-07-185:30 PM	0	0	0	0	0	0	0	0		
2023-07-18 5:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 6:00 PM	0	0	0	0	0	${ }^{3}$	0	0		
2023-07-18 6:15 PM	0	0	0	0	0	0	0	0		
2023-07-186:30 PM	0	0	0	0	0	0	0	0		
2023-07-186:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 7:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 7:15 PM	0	0	0	0	0	0	0	0		
2023-07-18 7:30 PM	0	0	0	0	0	0	0	0		
2023-07-18 7:45 PM	0	0	0	0	0	0	0	0		
2023-07-18 8:00 PM	0	0	0	0	0	0	0	0		
2023-07-18 8:15 PM	0	0	0	0	0	0	0	0		
2023-07-188:30 PM	0	0	0	0	0	0	0	0		
2023-07-188:45 PM	0	0	0	0	0	0	0	0		
2023-07-19 7:00 AM	0	0	0	0	0	0	0	0		
2023-07-19 7:15 AM	0	0	0	0	0	0	0	0		
2023-07-19 7:30 AM	0	0	0	0	0	0	0	0		
2023-07-19 7:45 AM	0	0	0	0	0	0	0	0		
2023-07-19 8:00 AM	0	0	0	0	0	0	0	0		
2023-07-19 8:15 AM	0	0	0	0	0	0	0	0		
2023-07-19 8:30 AM	0	0	0	0	0	0	0	0		
2023-07-19 8:45 AM	0		0	0	0	0	0	0		
2023-07-19 9:00 AM	0	0	0	0	0	0	0	0		
2023-07-19 9:15 AM	0	0	0	0	0	0	0	0		
2023-07-19 9:30 AM	0	0	0	0	0	0	0	0		
2023-07-19 9:45 AM	0	0	0	0	0	0	0	0		
2023-07-19 10:00 AM	0	0	0	0	0	0	0	0		
2023-07-19 10:15 AM 2023-07-19 10:30 AM	0	0	0	0	0	0	0	0		
2023-07-19 10:30 AM 2023-07-19 10:45 AM	0	0	0	0	0	0	0	0		
2023-07-19 11:00 AM	0	0	0	0	0		0			
2023-07-19 11:15 AM	0	0	0	0	0	0	0	0		
2023-07-19 11:30 AM	0	0	0	0	0	-	0	0		
2023-07-19 11:45 AM	0	0	0	0	0	0	0			
2023-07-19 12:00 PM	0	0	0	0	0	0	0	0		
2023-07-19 12:15 PM	0	0	0	0	0	0	0	0		
2023-07-19 12:30 PM	0	0	0	0	0	0	0	0		
2023-07-19 12:45 PM	0	0	0	0	0	0	0	0		
2023-07-19 1:00 PM	0	0	0	0	0	0	0			
2023-07-19 1:15 PM	0	0	0	0	0	0	0			
2023-07-19 1:30 PM	0	0	0	0	0	0	0	0		
2023-07-19 1:45 PM	0	0	0	0	0		0	0		
2023-07-19 2:00 PM	0	0	0	0	0	0	0			
2023-07-19 2:15 PM 2023-07-19 $2: 30 \mathrm{PM}$	0	0	0	0	0	0	0	0		
2023-07-19 2023-07-19 $2: 345 \mathrm{PM}$ PM	0	0	0	0	0	0	0	0		
2023-07-19 2:45 PM 2023-07-19 3:00 PM	0	0	0	0	0	0	0	0		
2023-07-19 3:00 PM 2023-07-19 3:15 PM	0	0	0	0	0	0	0	0		
2023-07-19 $3: 15 \mathrm{PM}$ 2023-07-19 3:30 PM	0	0	0	0	0	0	0	0		
2023-07-19 2023-07-19 PM 3:45 PM	0	0	0	0	0	0	0	0		
2023-07-19 3:45 PM	0	0	0	0	0	0	0	0		
2023-07-19 4:15 PM	0	0	0	0	0		0	0		
2023-07-19 4:30 PM	0	0	0	0		0	0	0		
2023-07-19 4:45 PM	0	0	0	0	0		0			
2023-07-19 5:00 PM	0	0	0	0	0	0	0	0		
2023-07-19 5:15 PM	0	0	0	0	0	0	0			
2023-07-19 5:30 PM	0	0	0	0		0	0	0		
2023-07-19 5:45 PM	0	0	0	0	0	0	0	0		
2023-07-19 6:00 PM	0	0	0	0	0	0	0	0		
2023-07-19 6:15 PM	0	0	0	0	0	0	0	0		
2023-07-19 6:30 PM	0	0	0	0	0	0	0	0		
2023-07-19 6:45 PM	0	0	0	0	0	0	0	0		
2023-07-19 7:00 PM 2023-07-19 7:15 PM	0	0	0	0		0	0	0		
2023-07-19 7:15 PM 2023-07-19 7:30 PM	0	0	0	0		0	0	0		
2023-07-19 7:30 PM 2023-07-19 7:45 PM	0		0	0	0	0	0	0		
2023-07-19 7:45 PM 2023-07-19 8:00 PM	0	0	0			0	0	0		
2023-07-19 8:00 PM 2023-07-19 8:15 PM	0	0	0	0	0	0	0	0		
2023-07-19 8:15 PM 2023-07-19 8:30 PM	0	0	0	0	0	0	0	0		
2023-07-19 8:45 PM		0		0	0	0	0	0		

didy Name PTH $1 \& 5$ - In-Service Road Safety Review
Start Date 2023-07-1
Start Cole PTH $1 \& 5$
Site
Project 211-12345-00

Classification Totals PTH 5 Southbound					$\begin{gathered} \text { PTH } 1 \\ \text { Westbound } \end{gathered}$				Northbound				Eastbound			
Date Start Time	Right	Thru	Left	U-Turn												
2023-07-18 7:00 AM	4	5	3		0	19	2	0	4	4	9	0		28	1	
2023-07-18 7:15 AM	1	3	5	-	1	33	2	0	3	7	14	0	18	32	1	0
2023-07-18 7:30 AM	0	8	3	0	1	36	4	0	3	12	14	0	23	37	3	0
2023-07-18 7:45 AM	0	14		0	4	48	4	0		9	15	0	24	49	6	0
2023-07-18 8:00 AM	4	9	0	0	2	36	7	0	6	4	,	0	7	37	6	0
2023-07-18 8:15 AM	5	3	3	0	2	40	3		4		21	0	15	41	4	0
2023-77-18 8:30 AM	5	7	1	0	2	50		0	6	10	10	0	8	53	3	0
2023-77-18 8:45 AM	3	16	2	0	1	60	8	0	5		10	0	11	49	3	0
2023-77-189:00 AM	2	2	1	0	2	59	4	0		2	12	0	10	57	3	0
2023-07-18 9:15 AM	7	9	2	0	3	64	3	0	5	7	6	0	10	41	4	0
2023-07-189:30 AM	4	10	3	0	3	67	1	0	2	8	4	0	7	61	1	0
2023-07-189:45 AM	1	8	2	0	4	59	8	0	1	7	10	0	12	41	1	0
2023-07-18 10:00 AM	2	9		0	3	68	4	0	0	5	12	0	8	46	3	0
2023-07-18 10:15 AM	5	10	5	0	3	74	5	0	5	7	13		6	53	0	0
2023-07-18 10:30 AM	3	8	4	0	4	72	4	0	5	9	10	0	4	72	0	0
2023-07-18 10:44 AM	2	5	6	0	5	71	5	0	2	4	10	0	3	48	1	0
2023-07-18 11:00 AM	4	10	4	0	5	61	7	0	3	5	8	0	11	54	0	0
2023-07-18 11:15 AM	3	5	2	0	1	75	2	0	2	7	15	0	5	51	1	0
2023-07-18 11:30 AM	4	5	1	0	4	74	6	0	2	4	7		10	51	0	0
2023-07-18 11:45 AM	2	8	4	0	1	79	10	0	4	7	5	0	7	43	4	0
2023-07-18 12:00 PM	2	7	5	0	4	59	6	0	5	7	12	0	5	52	2	0
2023-07-18 12:15 PM	1	5	5	0	3	95	2	0	6	5	,	0	7	67	4	0
2023-07-18 12:30 PM	1	3	4	0	3	56	3		9	6	5	0	6	67	1	0
2023-07-18 12:44 PM	4	13	1	0	5	52	6	0	4	5	10	0	9	77	0	0
2023-07-18 1:00 PM	1	3	6	0	2	72	6	0	5	4	10	0	13	61	1	0
2023-07-18 1:15 PM	1	7	1	0	5	68	8	0	3	7	11	0	10	55	0	0
2023-07-18 1:30 PM	1	7	4	0	2	63	3	0	6	11	15	0	10	74	4	0
2023-07-18 1:45 PM	,	7	3	0	5	75	7	0	8	10	10	0	14	67	4	0
2023-07-18 2:00 PM	4	4	2	0	1	82	3	0	6	11	15	0	19	52	2	0
2023-07-18 2:15 PM	2	6	4	0	8	63	4	0		12	6	0	16	75	2	0
2023-07-18 2:30 PM	5	10	4	0	8	53	2	0	6	7	21	0	14	65	2	0
2023-07-18 2:45 PM	5	9	7	0	2	63	10	0	4	10	10	0	17	70	2	0
2023-07-18 3:00 PM	5		2	0	2	78	4	0	5	14	25	0	10	82	4	0
2023-07-18 3:15 PM	0	10	6	0	1	67	1	0	10	6	14	0	13	62	6	0
2023-07-18 3:30 PM	2	11	5	0	5	52	2	0	3	11	13	0	12	77	5	0
2023-07-18 3:44 PM	4	-	2	0	,	57	7	0	5	10	6	0	14	82	0	0
2023-07-18 4:00 PM	5	18	5	0	3	45	0	0	4	6	19	0	18	68	2	0
2023-07-18 4:15 PM	4	14	6	0	4	64	5	0	6	13	13	0	22	80	3	0
2023-07-18 4:30 PM	2	21	2	0	5	70	6	0	11	14	24	0	19	71	6	0
2023-07-18 4:45 PM	1	13	${ }^{2}$	0	3	60	9	0	7	10	14	0	13	55	3	0
2023-07-18 5:00 PM	2	15	5		3	55	4			5	13	0	22	57	3	0
2023-07-18 5:15 PM	3	13	4	0	1	${ }^{65}$	4	0	4	9	16	0	21	41	4	0
2023-07-18 5:30 PM	5	11	0	0	7	65		0	6	3	10		16	59	1	0
2023-07-18 5:45 PM	3	12	4	0	2	53	2	0	6	9	11	0	10	52	3	0
2023-07-18 6:00 PM	2	8	1	-	1	36	1	0	4	6	15	0	13	59	0	0
2023-07-18 6:15 PM	1		3	0	1	44	3	0	5	6	7	0	12	46	1	0
2023-07-18 6:30 PM	1	7	2	0	2	36	2	0	5	3	9	0	17	50	2	0
2023-07-18 6:45 PM	1	4	1	0	5	51	1	0	5	5	9	0	5	54	3	0
2023-07-18 7:00 PM	1	1	4	0	3	42	8	0	5	4	5	0	10	55	3	0
2023-07-18 7:15 PM	1	4	0	0	0	48	3	0	1	2	4	0	8	48	1	0
2023-07-18 7:30 PM	0	4	1	0	1	40	3	0	1	3	6	0	8	38	1	0
2023-07-187:45 PM	0		0	0	2	48	2	0	1	4	6	0	5	46	0	0
2023-07-188:00 PM	2	3	2	0	1	41	0	0	3	3	12	0	8	46	1	0
2023-77-18 8:115 PM	1	1	0	-	1	37	1	0	2	6	5	0	7	44	1	0
2023-07-188:30 PM	1	5	0	0	1	37	1	0	1	1	4	0	7	28	1	0
2023-07-188:45 PM	3	3	0	-	0	28	1	0	2	4	7	0	4	34	0	0
2023-07-19 7:00 AM	5	5	0	0	0	31	4	0	1	5	16	0	9	29	0	0
2023-07-19 7:15 AM	2	8	4	0	4	36	4	0	2	4	9	0	17	46	0	0
2023-07-19 7:30 AM	2	6	3	0	1	38	4	0	3	16	25	0	21	28	2	0
2023-07-19 7:45 AM	2	13	2	0	3	38	5	0	2	15	12	0	20	46	3	0
2023-07-19 8:00 AM	2	7	5	0	0	45	4	0	6	9	8	0	12	42	5	0
2023-07-19 8:15 AM	2		${ }^{2}$	0	0	61	5	0	7	9	${ }^{23}$	0	12	49	2	0
2023-07-19 8:30 AM	5	9	2	0	1	56	6	0	3	17	7	0	7	58	2	0
2023-07-19 8:45 AM	6	6	1	0	${ }^{3}$	60	3	0	3	6	12	0	13	56	4	0
2023-07-19 9:00 AM	6	5			1	61	5	0	10	5	8	0	14	54	0	0
2023-07-19 9:15 AM	9	6	2	0	1	78	7	0	5	8	12	0	9	54	5	0
2023-07-19 9:30 AM	1	4	2	0	2	85	4	-	8	3	10	0	16	50	0	0
2023-77-19 9:45 AM		9	3	0	4	52		0	4	8	9	0	7	64	2	0
2023-07-19 10:00 AM	5	10	2	0		70	8	0	4	7	8	0	6	51	3	0
2023-07-19 10:15 AM	0	4	1	0	2	88	5	0	3	7	10	0	4	60	4	0
2023-07-19 10:30 AM	5	10		0	0	69	6	0	1	6	9	0	15	64	2	0
2023-07-19 10:45 AM	1	7	1	0	4	72	7	0	4	9	7	0	9	69	1	0
2023-07-19 11:00 AM	0	15	4	0	0	59	5	0	7	8	8	0	5	49	5	0
2023-07-19 11:15 AM	5	11	3	0	4	72	8	0	3	10	8	0	11	59	0	0
2023-07-19 11:30 AM	2	9	4	0	3	65	6	0	5	5	12	0	7	55	4	0
2023-07-19 11:45 AM	3	5	4		0	62	0	0	${ }^{2}$	12	13	0	10	62	1	0
${ }^{2023-07-19} 112: 00 \mathrm{PM}$	4	13	1	0	4	${ }^{63}$	4	0	3	4	14	0	10	84	2	0
2023-07-19 12:15 PM	2	5	5		4	59	5	0	3	5	10	0	7	62	3	0
2023-07-19 12:30 PM	2	4	2	0	2	65	0	0	5	8	10	0	4	59	2	0
2023-07-19 12:44 PM	5	9	5	0	1	63	6	0	6	7	10	0	11	72	1	0
2023-07-19 1:00 PM	3	6	2	0	4	53	6	0	4	5	17	0	11	57	0	0
2023-07-19 1:15 PM	4	8	2	0	4	57	4	0	5	5	6	0	11	74	2	0
2023-07-19 1:30 PM	1	5	1	0	1	81	7	0	7	6	10	0	6	68	1	0
2023-07-19 1:45 PM	3	7	3	0	2	58	5	0	9	13	8	0	6	56	2	0
2023-07-19 2:00 PM	1	3	0	0	8	74	3	0	4	6	5	0	12	88	2	0
2023-07-19 2:15 PM	2	9	${ }^{3}$	0	${ }^{2}$	66	6	0	11	3	8	0	22	71	4	0
2023-07-19 2:30 PM	0	9	${ }^{2}$	0	0	75	3	0	8	5	11	0	14	72	${ }^{2}$	0
2023-07-19 9:45 PM	4	5	5	0	${ }_{6}$	74	4	0	${ }_{7}$	11	${ }_{16}$	0	16	71	1	0
2023-07-19 3:00 PM	2	7	4		2	65	5	0	7	12	16	0	17	66	4	0
2023-07-19 3:15 PM	5	11	4	0	3	73	8	0	5	7	12	0	15	70	2	0
2023-07-19 3:30 PM	2	13	3		0	55	7	0	5	17	10	0	10	66	3	0
2023-07-19 3:45 PM	1	17	3	0	3	60	3	0	8	11	9	0	9	59	2	0
2023-07-19 4:00 PM	4	13	2	0	1	64	7	0	4	13	18	0	14	68	2	0
2023-07-19 4:15 PM	1	14	3	0	4	53		0	5	9	20	0	18	71	4	0
2023-07-19 4:30 PM	2	20	2	0	4	57	6	0	6	14	15	0	21	72	4	0
2023-07-19 4:45 PM	2	15	3	0	3	52	2	0	7	15	21	0	22	72	4	0
2023-07-19 5:00 PM	4	14	3	0	2	57	2	0	5	13	6	0	26	79	4	0
2023-07-19 5:15 PM		25	5	0	6	60	1	0	6	10	17	0	18	74	1	0
2023-77-19 5:30 PM	7	16	2	0	4	46		0	5	6	12	0	10	78	1	0
2023-07-19 5:45 PM		9	4	-	-	54	5	0	3	9	9	0	17	50	1	0
2023-07-19 6:00 PM	2		1	0	${ }^{3}$	44		0	7	2	8	0	12	64	1	0
2023-07-19 6:15 PM	,	,	1	-	-	57	5	-		4	10	-	12	62	0	0
2023-07-19 6:30 PM	1	${ }^{3}$	1	0	0	55	4	0	3	2	14	0	8	56	1	0
2023-07-19 6:44 PM	-	7	3		3	47	1	0	3	4	3	0	11	55	1	0
2023-07-19 7:00 PM	1	5	0	0	4	40	3	0	2	6	10	0	14	52	2	0
2023-07-19 7:15 PM	1	5	0	0	2	60	7	0	${ }_{2}$	4	5	0	13	36	5	0
2023-07-19 7:30 PM		6		0	,	38		0	2	2	12	0	15	45	1	0
2023-07-19 7:45 PM	0	4	3		1	40	1	0	2	2	9	0	5	41	1	0
2023-07-19 8:00 PM	2	3	0		,	34					9		5	62	0	0
2023-07-19 8:15 PM	0		0		1	34	1	0	0	7	7	0	5	46	0	
2023-07-19 8:30 PM 2023-07-19 8:45 PM	0						1	0		6 5	5		5	31 42	0	0

IS|"

OPERATIONAL ANALYSIS REPORTS

IS|"

SPEED SURVEY DATA

Study Characteristics:
Date: $\quad 08-A u g-23$
Observer:
l

EB data collection	WB data collection	
Start Time:	10:35 a.m.	Start Time: 12:10 p.m.
End Time:	11:25 a.m.	End Time:

Purpose: EB data was collected 200 m west of Road 87 W (west of PTH 5). WB data was collected 100 m west of Road 81 W .

Roadway Characteristics:
Number of Lanes:
Posted Speed Limit:

4-lanes (2 EB lanes and 2 WB lanes) 110 km/h

$85^{\text {th }}$ percentile $=\frac{85-P_{\min }}{P_{\max }-P_{\min }} *\left(S_{\max }-S_{\min }\right)+S_{\min }$

Where: $\quad P_{\max }=$ the high end of the cumulative per cent just greater than 85 per cent
$P_{\text {min }}=$ the high end of the cumulative per cent just less than 85 per cent
$S_{\max }=$ the high end of the speed range containing the $85^{\text {th }}$ percentile
$S_{\min }=$ the low end of the speed range containing the $85^{\text {th }}$ percentile

IS|"

E
 VIDEO CONFLICT ANALYSIS

IS|"

E-1
RISK DIAGNOSTIC REPORT

Contents

General Information 1
Overview of Conflict Types 2
Definition of Metrics Used in Detail Pages 3
Results Summary - Safe Systems Post Encroachment Time 4
East-Left Vehicle vs West-Through Vehicle 6
West-Left Vehicle vs East-Through Vehicle 7
North-Through Vehicle vs East-Through Vehicle 8
South-Through Vehicle vs West-Through Vehicle 9
South-Through Vehicle vs East-Through Vehicle 10
North-Through Vehicle vs West-Through Vehicle 11
North-Left Vehicle vs East-Through Vehicle 12
South-Left Vehicle vs West-Through Vehicle 13

General Information

Report Details

Site	PTH-1 and PTH-5, Carberry, MB
Video Period	2023-Jul-17 to 2023-Jul-21
Video Length	60 hours
	Conflict data is provided for Jul. 17 @ 13:30-21:00, Jul. 18-20 @ 6:00-21:00 and Jul. 21 @ 6:00-13:30. Please note that the North, South, East and West in vehicle movements is referring to the direction of travel. For example North-through is referring to the Northbound vehicle travelling from South to North and is going through. For all the conflict configurations, VEH-1 is mentioned first followed by VEH-2. For example, East-left vs West-through refers to a conflict configuration where Eastbound-left vehicle reaches the point of conflict first, hence considered as VEH-1, followed by Westbound-through vehicle that is VEH-2. Vehicle conflict configurations where VEH 2 is coming from a stop are marked as NM (not measured) in this risk diagnostic report as those are controlled movements where the vehicle from PTH 5 has carefully passed after a through vehicle. These events do have relevance for safety in that they generally have required a gap rejection and they bring some risk of stop sign violation. We have provided those interactions separately in non-conflicting vehicle interactions report.
Report Notes	

Report Organization

General Information	Provides key details about the report
Results Summary	Provides data at the intersection level
Results Detail Pages	Provides data for individual configurations

Indicator Definitions

Safe Systems Post Encroachment Time (PETss)

PET is the time elapsed between one vehicle leaving a conflict area and a conflicting vehicle arriving at it. Risk level is based on PET together with the bullet vehicle impact speed. Risk thresholds reference the probability of severe injury (MAIS 3+) for left-turning vehicle vs oncoming vehicle collisions [1]. This indicator is used to measure risk to vehicle occupants.
[1] Jurewicz, C., Sobhani, A., Woolley, J., Dutschke, J., Corben, B., 2016. Exploration of Vehicle Impact Speed - Injury Severity Relationships for Application in Safer Road Design. Transportation Research Procedia 14, 4247-4256.
https://doi.org/10.1016/j.trpro.2016.05.396

Overview of Conflict Types

Vehicle vs Pedestrian/Cyclist			
Indicator Used	VRUss	$\begin{array}{l}\text { Through/Right/Left (near- } \\ \text { side) }\end{array}$	Through (far-side)
Left-hook	Right-hook		
pedestrian/cyclist vs			
left turning vehicle			
exiting intersection			

right turning vehicle

exiting intersection\end{array} \quad $$
\begin{array}{l}\text { pedestrian/cyclist vs vehicle } \\
\text { entering intersection }\end{array}
$$ $$
\begin{array}{l}\text { pedestrian/cyclist vs } \\
\text { through vehicle exiting } \\
\text { intersection }\end{array}
$$\right]\)

Vehicle vs Vehicle

Indicator Used	PETss	
Left Turning vs Oncoming	Through vs Through	Left Turning vs Through from Left

These are generic conflict type diagrams and do not depict the specific site

Definition of Metrics Used in Detail Pages

Metric	Definition of Metric
Measured Frequency	Number of conflicts measured in the respective risk category.
Annual Estimate	Simple extrapolation of measured frequency to an annual basis. The purpose of this metric is to provide an annualized context.
Conflict Rate	Calculated as: eg. if there is one North-left vs South-through high risk event and there are 1000 North-left vehicles, the high risk conflict rate for this configuration is 0.1\%.
Relative Risk	Calculated as: A Relative Risk of 1 means the conflict rate of road users at or above that risk level is the same as the benchmark average whereas a Relative Risk of 0.75 means the conflict rate is $0.75 x$ benchmark etc. Benchmark thresholds are developed locally for network screening applications and based on relevant sites from other jurisdictions otherwise. The purpose of this metric is to demonstrate which interactions have elevated risk and which do not.

Results Summary - Safe Systems Post Encroachment Time

Results Summary - Safe Systems Post Encroachment Time
Right-Angle (Left-Turning Vehicle vs Oncoming Vehicle)

Configuration	Low Risk	Medium Risk	High Risk	Critical Risk
North-Left vs South-Through	NM	NM	NM	NM
South-Left vs North-Through	NM	NM	NM	NM
East-Left vs West-Through	0	20	0	1
West-Left vs East-Through	0	37	3	0

Right-Angle (Through Vehicle vs Through Vehicle)

Configuration	Low Risk	Medium Risk	High Risk	Critical Risk
North-Through vs East-Through	0	23	0	0
East-Through vs North-Through	NM	NM	NM	NM
South-Through vs West-Through	0	16	0	0
West-Through vs South-Through	NM	NM	NM	NM
East-Through vs South-Through	NM	NM	NM	NM
South-Through vs East-Through	0	36	0	1
North-Through vs West-Through	0	36	1	0
West-Through vs North-Through	NM	NM	NM	NM

Right-Angle (Left-Turning Vehicle vs Through Vehicle from Left)

Configuration	Low Risk	Medium Risk	High Risk	Critical Risk
North-Left vs East-Through	0	57	0	0
South-Left vs West-Through	0	21	1	0
East-Left vs South-Through	NM	NM	NM	NM
West-Left vs North-Through	NM	NM	NM	NM

NM = Not Measured

East-Left Vehicle vs West-Through Vehicle

@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	1	0	20	0
Annual Estimate	91	0	1825	0
Conflict Rate (\%)	0.22	0.0	4.46	0.0
Relative Risk	NA	0.72	1.8	1.8

West-Left Vehicle vs East-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	0	3	37	0
Annual Estimate	0	274	3376	0
Conflict Rate (\%)	0.0	0.27	3.28	0.0
Relative Risk	NA	0.86	1.36	1.36

North-Through Vehicle vs East-Through Vehicle

@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	0	0	23	0
Annual Estimate	0	0	2099	0
Conflict Rate (\%)	0.0	0.0	1.39	0.0
Relative Risk	NA	0.0	0.8	0.8

South-Through Vehicle vs West-Through Vehicle

@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	0	0	16	0
Annual Estimate	0	0	1460	0
Conflict Rate (\%)	0.0	0.0	0.92	0.0
Relative Risk	NA	0.0	0.53	0.53

South-Through Vehicle vs East-Through Vehicle

@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	1	0	36	0
Annual Estimate	91	0	3285	0
Conflict Rate (\%)	0.06	0.0	2.06	0.0
Relative Risk	NA	0.34	1.22	1.22

North-Through Vehicle vs West-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	0	1	36	0
Annual Estimate	0	91	3285	0
Conflict Rate (\%)	0.0	0.06	2.17	0.0
Relative Risk	NA	0.36	1.29	1.29

North-Left Vehicle vs East-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	0	0	57	0
Annual Estimate	0	0	5201	0
Conflict Rate (\%)	0.0	0.0	2.09	0.0
Relative Risk	NA	0.0	1.21	1.21

South-Left Vehicle vs West-Through Vehicle

@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Risk Level	Critical Risk	High Risk	Medium Risk	Low Risk
Measured Frequency	0	1	21	0
Annual Estimate	0	91	1916	0
Conflict Rate (\%)	0.0	0.17	3.52	0.0
Relative Risk	NA	0.99	2.13	2.13

IS|"

$$
\begin{array}{ll}
\text { E-2 } & \text { NON-CONFLICTING } \\
& \text { VEHICLE } \\
& \text { INTERACTIONS } \\
& \text { REPORT }
\end{array}
$$

mı(̣̌VISIOn

PTH-1 and PTH-5
Carberry, MB
Non-Conflicting Vehicle Interactions Report

Contents

Contents 1
General Information 2
Definition of Metrics Used in Detail Pages 3
Results Summary - Vehicle Interactions 4
North-Left vs South-Through Vehicle 5
East-Through vs North-Through Vehicle 6
West-Through vs South-Through Vehicle 7
East-Through vs South-Through Vehicle 8
West-Through vs North-Through Vehicle 9
East-Left vs South-Through Vehicle 10
West-Left vs North-Through Vehicle 11

General Information

Report Details

Site	PTH-1 and PTH-5, Carberry, MB
Video Period	2023-Jul-17 to 2023-Jul-21
Video Length	60 hours
Report Notes	Many of the cases where VEH 2 is from stop control on PTH 5 are controlled movements where the vehicle from PTH 5 has carefully passed after a through vehicle. These events do have relevance for safety in that they generally have required a gap rejection and they bring some risk of stop sign violation. However, they do have a completely different and lower risk profile than cases where VEH-1 is from PTH 5 and is attempting to pass in front of a through vehicle on PTH 1. This report includes only those vehicle interactions where VEH-2 is coming from stop control on PTH 5. Please note that VEH-1 is the vehicle that reaches the point of conflict first. For example, East-through vs South-through refers to a conflict configuration where the Eastbound-through vehicle reaches the point of conflict first, hence considered as VEH-1, followed by the Southbound-through vehicle that is VEH-2.

Report Organization

General Information	Provides key details about the report
Results Summary	Provides data at the intersection level
Results Detail Pages	Provides data for individual configurations

Indicator Definitions

Safe Systems	PET is the time elapsed between one vehicle leaving a conflict area and a conflicting vehicle arriving at it. Risk level is based on PET together with the bullet Pont Encroachment vehicle impact speed. Risk thresholds reference the probability of severe injury (MAIS 3+) for left-turning vehicle vs oncoming vehicle collisions [1]. This indicator is used to measure risk to vehicle occupants.

[1] Jurewicz, C., Sobhani, A., Woolley, J., Dutschke, J., Corben, B., 2016. Exploration of Vehicle Impact Speed Injury Severity Relationships for Application in Safer Road Design. Transportation Research Procedia 14, 4247-4256. https://doi.org/10.1016/j.trpro.2016.05.396

Definition of Metrics Used in Detail Pages

Metric	Definition of Metric
Measured Frequency	Number of interactions measured in the respective risk category.
Annual Estimate	Simple extrapolation of measured frequency to an annual basis. The purpose of this metric is to provide an annualized context.
Interaction Rate	Calculated as: $\frac{\text { number of interactions }}{\text { frequency of estimated limiting movement }}$ eg. if there is one North-left vs South-through event and there are 1000 North-left vehicles, the interaction rate for this configuration is 0.1%.
Relative Risk	Calculated as: conflict rate at or above a specific risk level benchmark average conflict rate at or above that risk level A Relative Risk of 1 means the conflict rate of road users at or above that risk level is the same as the benchmark average whereas a Relative Risk of 0.75 means the conflict rate is $0.75 x$ the benchmark etc. Benchmark thresholds are developed locally for network screening applications and based on relevant sites from other jurisdictions otherwise. The purpose of this metric is to demonstrate which interactions have elevated risk and which do not.

Results Summary - Vehicle Interactions

Configuration	Measured Frequency
North-Left vs South-Through	1
East-Through vs North-Through	250
West-Through vs South-Through	314
East-Through vs South-Through	310
West-Through vs North-Through	285
East-Left vs South-Through	5
West-Left vs North-Through	10

Non-Conflicting Vehicle Interactions Report
Near-Miss Data from Traffic Video for Life-Saving Decisions
North-Left vs South-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Measured Frequency	1
Annual Estimate	91
Interaction Rate (\%)	0.04
Relative Risk	N / A

West-Through vs South-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Measured Frequency	314
Annual Estimate	28653
Interaction Rate (\%)	2.15
Relative Risk	N/A

East-Through vs South-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Post Encroachment Time (PET)

West-Through vs North-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Measured Frequency	285
Annual Estimate	26006
Interaction Rate (\%)	1.95
Relative Risk	N/A

Non-Conflicting Vehicle Interactions Report
Near-Miss Data from Traffic Video for Life-Saving Decisions
East-Left vs South-Through Vehicle
@ PTH-1 and PTH-5, 2023-Jul-17 to 2023-Jul-21

Measured Frequency	5
Annual Estimate	456
Interaction Rate (\%)	1.12
Relative Risk	N / A

IS|"

E-3 STOP SIGN
COMPLIANCE
REPORT

mi(̣VISIOn

Report Details

Site	PTH-1 and PTH-5, Carberry, MB
Video Period	Jul. 17 @ 13:30-21:00, Jul. 18-20 @ 6:00-21:00 and Jul. 21 @ 6:00-13:30.
Video Length	60 hours
Report Type	Stop Sign Compliance

Summary of Results

Sr	Date	Camera Angle	Vehicle Movement	Est. Vehicle Volume	Vehicles Violating Stop Sign	\% of Vehicles Violating Stop sign
1	Jul. 17, 2023 to Jul. 21, 2023	SE2	North-Thru	1656	10	0.60\%
2	Jul. 17, 2023 to Jul. 21, 2023	SE2	North-Left	2728	16	0.58\%
3	Jul. 17, 2023 to Jul. 21, 2023	NW2	South-Thru	1748	30	1.71\%
4	$\begin{gathered} \text { Jul. 17, } 2023 \\ \text { to } \\ \text { Jul. 21, } 2023 \end{gathered}$	NW2	South-Left	596	24	4.02\%

Data provided by Miovision

IS|)

COUNTERMEASURE EVALUATION

(inersection	Road Satey 1	Potential Counte	Anaysis Type	Stential Efiectiv	Source	Priority Level	mentaion Ca	Effectiven	Sion and Conclusi	mplementation
		Modify the highway alignment to provide an increased median width B-Train. With the wide median, the of intersection would operate as a the stage crossing.	Literature Search	Findings from NCHRP 375 suggest that, at rural, unsignalized intersections, the frequency of collisions and undesirable driving behavior decreases as the median width increases. The NCHRP 650 also indicates that in general, four-legged, two-way-stop-controlled intersections on rural expressways are safer if the median is wider. It is left-turning or crossing vehicles can safely stop in the median area to evaluate the adequacy of the gap in expressway traffic coming from the right, thereby reducing the relative crash risk associated with these maneuvers) Median widening beyond the standard (up to 45 m) is considered by some US states as a treatment when the projected minor road volumes are in the 800 vpd to $1,000 \mathrm{vpd}$ range with a higher percentage of trucks.			High			Medium-term
Left Turns from PTH 1	The negative offset of the PTH 1 left-turn lanes can create sightline obstructions. offset which can limit sightlines for opposing left-turning vehicles. Large trucks occupying these left-turn lanes as they wait for the other traffic crossing or waiting in the median.	Provision of slotted left-turn lanes with positive off-set.	CMF	This strategy is intended to improve safety by providing better visibility to drivers that are turning left. An FHWA study indicated a 33.8% reduction in all collisions and 35.6% reduction in fatal and injury collisions when the left-turn lane of intersections.	CMF Clearinghouse: Persaud, B., C Lyon, K. Eccles, N. Lefler, and F. Gross. "Safety Evaluation of Offset Improvements for Left-Turn Report No. FHWA-HRT-09035. Federal Highway Washington, DC. (June 2009)	High Priofty	Moderate			Notrecommended
		Implementation of an alternative intersection configuration	Sujjective	Improve negaive offset or remove the issue completely.			High		Consider as part of the installation of alternative intersection design.	Medium-term
	The length of the left turn deceleration lanes from PTH 1 is short The distance provided may not be sufficient fo drivers of heavy trucks to decelerate from 100 km / h to a stop In addition, the westbound to southbound left lane taper is slightly sub-standard at 4.3 m as opposed to the 100 m taper length urrently recommended.	Extend the left-turn deceleration lane and the taper	Literatue Search	The provision of a deceleration lane at this location would allow vehicles to exit the through travel lanes before applying their brakes. This may contribute to reduced speed differentials and risk of rear-end and sideswipe collisions at this location	NCHRP Report 500, Volume 5, A Guide for Addressing Unsignalized Intersection Collisions	Low Prioity	Moderate	Should be corrected or the risk reduced, if the treatment cost is low \square	Considering the low risk associated with this treatment, this can be considered as part of any future highway rehabilitation such as installation of alternative intersection design or an interchange	Watch List
		Extend solid line and provide pavement markings.	Sujective	Provides inproved positive guidance and discourages the misuse of these lanes.			Low	Should be corrected or the risk reduced, if the treatment cost is low	Adrress as parto f routine maintenance.	Maintenance
$\underset{\substack{\text { Left Turn from } \\ \text { PTH } 5}}{ }$		Provision of southbound to eastbound median acceleration lane.	Literatue Seach		NCHRP Report 500, Volume 5, A Guide for Addressing Unsignalized Intersection Collisions NCHRP Report 650, Median Intersection Design for Rural Highways	Medium Priofity	Moderate			Shorte
Right Turns from PTH 1	The length of the right-turn deceleration lanes is short. The right-turn deceleration provided at a $40 \mathrm{~km} / \mathrm{h}$ exit advisory speed. Vehicles were observed slowing down on the mainline lanes prior to entering the deceleration lasult in speed differentials in advance of the intersection and review of current MTI standard TAC 2.3.8.5M suggest a 150 m parallel lane with a 100 m taper should be used at this location taper should be used at this location.	Provision of longer right-turn deceleration lanes (WB-NB and EB-SB) with taper aligning with MTI Standards.	Literatur Search	The provision of a deceleration lane at this location would allow vehicles to exit the through travel lanes before applying their brakes. This may contribute to reduced speed differentials and risk of rear-end and sideswipe collisions at this location	NCHRP Report 500, Volume 5, A Guide for Addressing Unsignalized Intersection Collisions	Medium Priofity	Moderate		Considering the low risk associated with this treatment, this can be considered as part of any future highway rehabilitation such interchange.	Watch List

(inersection	Road Satey Is sue	Potential Countermeas	Anaysis	Potential Efiectiveness	Source	Prority Level	Implemenetation Cost	Cost-EElectiveness	cussion and Conolusic	plementation Options
Right Turns from PTH 5	The length of the right-turn acceleration lanes is short. Observations from the site investigation suggest that vehicles merge onto the mainline lanes at speeds much lower than the significant speed differential and an increased risk of collision.	Provision of longer right-turn acceleration lanes (NB-EB and SB-WB with taper aligning with MTI Standards. Standards.	Lierature Search	The provision of an acceleration lane at this location would provide trucks with more opportunity to accelerate and merge into the through lane at an appropriate speed. This may contribute to reduced speed differentials and risk of rear-end and sideswipe collisions at this location.	$\begin{aligned} & \text { NCHRP Report 500, Volume } \\ & \text { 5, A Guide for Addrasing } \\ & \text { Unsignized Intersection } \\ & \text { Collisions } \end{aligned}$	Medium Prioity	Moderate		Considering the low risk associated with this treatment, this can be considered as part of any future highway rehabilitation such interchange.	Watch List
Proximity of Service Roads		Realignment of the service roads to increase the separation between the intersections.	cmF	The quality of the available CMFs is poor. The CMFs suggest that the closure or complete relocation of all driveways from the functional area of an intersection may reduce all collisions by 7% in urban areas; A CMF for rural areas is not available. Generally, realigning the service road to provide additional separation from the intersection should improve operations and may reduce conflicts between traffic queuing on the side road. However, traffic volume on the service road is anticipated to be very low and no collision history was recorded to be related with this access.	CMF Clearinghouse: Lall et all., "Analysis of Traffic Accidents within the Functional Area of Intersections and Driveways. Portland State University, Department of Civil Engineering, (1995) Engineering, (1995)	Low Prioity	Moderate	Should be corrected or the risk reduced, if the treatment cost is low.		Watch List
PTH 5 Shoulder	Portions of the PTH 5 shoulder are narrow and a 0.8 m partially paved shoulder is not The shoul 5 are constructed with a 2.0 m to 3.0 m wide fully gravel surface. Th 2.5 m wide shoulder with a 0.8 m partially paved strip for these shoulders. This would improve vehicle stability if a vehicle left the travel lanes.	Provision of paved shoulders on PTH 5 following MTI standards.	Literatur Search	Research suggests that there is a small safety benefit to paving existing unpaved shoulders. The magnitude of the benefit increases with increasing shoulder width.		Low Prioity	Moderate			Wath List

Men	Roas satay sssue	Poominial counemesasue	Anaysis Type	Poominil Eliociveness	source	Piorivis Lovel	Implemenation cost	Cost Efitasivenoss	Disassion and Conolusions	momenemition
	Posted speed on PTH 5 is $100 \mathrm{~km} / \mathrm{h}$ and no speed reduction zone is provided on the approaches to the stop-controlled intersection	Consider for further review a speed reduction on PTH 5 as part of MTI's ongoing initiative to develop systemic response plans for intersections.	Subective		NCHRP Report 737, 2012 CMF Clearinghouse: Hallmark et al., 2015	Medium Piointy	Moderate	Should be corrected or the risk significantly reduced, if the treatment cost is moderate, but not high.		Watch List
${ }_{\text {PrHS Stop Sign }}^{\text {complanee }}$	The results of the video analysis suggest a reduced level of compliance with the Stop signs on PTH 5, particularly for the southbound left turn movemen		Subeetive	roved complance		Hgh Prointy	Hggh	Should be corrected or the risk significantly reduced, even if the treatment cost is high.	This can be considered as part of any future highway design or a interchange.	Medium-tem
		Extend solid line pavement markings to discourage passing on the immediate approach and within the intersection	Sub			Medium Prointy	Low	Should be corrected or the risk significantly reduced, if the treatment cost is moderate, but not high.	dress as part of routine maintenance.	Mainenance
$\underset{\substack{\text { PTH1 Pavement } \\ \text { Maxking }}}{ }$		Provision of a solid line pavement markings at the beginning of the acceleration lane.	Subje	Oovids inpored p as		Medium Pioint	Low	Should be corrected or the risk significantly reduced, if the treatment cost is moderate, but not high.	dress as part of routine maintenance.	Mainonance
	The effectiveness of the advanced signage for the northbound to westbound median left-turn acceleration lane is limited.		cmF	performance associated with improved signage, however, it is our opinion that providing clear and concise advanced warning of an uncommon intersection configuration is required from both a liability and driver expectation standpoint This type of signage has also been used at other locations in Manitoba with left-turn acceleration lanes.	Maze, T., Hochstein, J., Souleyrette, R., Preston, H., Storm, R., "NCHRP Report 650: Median Intersection Design for Rural High-Speed Divided Highways." Transportation Research Board, Washington D.C., (2010).	Medium Piointy	Low	Should be corrected or the risk significantly reduced, if the treatment cost is moderate, but not high.		Shortiem
	The ilid Signs in the mealan are loo		Liearaue Search			Medium Piointy	Low			Storter
astion	an inceased ofses thom the tevel		Subjedive			Medium Pionity	High			Medium-tem
	No positive guidance is provided in the median to help drivers position their and navigate through the median.		Subedive			Hig Prionty	Nodesate	Should be corrected or the risk significantly reduced, even if the treatment cost is high.	Adding lane markings in the median may be challenging considering the narrow median width and should be explo further as part of alternative intersection configurations.	Notreosmmented
		nementaion of a niemaive	Subeedive			Hgh Prointy	Hgh	Should be corrected or the risk significantly reduced, if the treatment cost is moderate, but not high.		Mediumemm

(inersection	Road Satey Issue	Potential Countermeasure	Analysis Type	Potential Effectiveness	Sout	Priority Level	Implementation Cost	Cost-EEfectiveness	Discussion and Conclusions	plementation Options
Right-Turn from PTH 5 (yield sign)		The appropriateness of the yield sign a this location should be reviewed for compliance with the provincial standard requirements, and provision of merging roadways ahead sign (if the right-turn acceleration lanes are of sufficient right-turning vehicles to safely merge into traffic.				Low Priofty	Low	Should be corrected or the risk reduced, if the treatment cost is low.	Address as part of routine maintenance. Sufficient right-turn acceleration lanes length should be ensured.	Maintenance
Truck Parking inProhibitedLocations	Trucks are violating the existing "No stopping" signs at the intersection.During the field review, trucks were observed parking on all corners of the intersection at the end of the channelized right-turn lanes, eventhough there is "no stopping" signage installed on all four corners. Trucks parked on the shoulder limit opportunities for evasive maneuvers at the end of the ramp merge.	Engage with the Manitoba Trucking Association and/or local trucking operations to determine why trucks are stopping in these locations and identify stopping in these locations and iden alternatives to prevent trucks from parking on the shoulders.	Subjective	Identify the need for truck stops or lay-bys, and potential alternatives to prevent trucks from parking on the shoulder at the end of ramps.		Medium Priority	Low	the risk significantly recuced, if the moderate, but not high		Short-term
		Enforcement of the "no stopping" signage.	No analysis was conducted as this item should be addressed as part of routine maintenance	Improves diver compliance.			Low	Should be corrected or the risk significantly treatment cost is moderate, but not high		Short-term
Limited Intersection Ilumination	Conspicuity of the intersection and the PTH 1 left-turn lanes is limited at night. The illumination at the intersection is limited conspicuity when approaching the intersection on PTH 1 in both the eastbound and illumination fire the median cross-over is not provided. The review of historical collision data indicated that 34% of collisions occurred during periods of reduced lighting levels.		Lierature Search	Poorly illuminated intersections may result in increased levels of night-time collisions. The collision data for the study period (2010-2019) indicated that 39% of collisions occurred during reduced lighting levels.	NCHRP Report 500, Volume 5, A Guide for Adressing Unsignalized Intersection Collisions	Medium Prioity	Moderate			Short-term
Headilight Glare	Some headlight glare was observed from opposing traffic on both PTH 1 and PTH 5 approaches to the intersection. Of particular concern is glare from opposing PTH 5 traffic for the PTH 5 traffic that is PTH 5 traffic for the PTH 5 traffic that is impact driver perception of traffic conditions.	Reevaluate existing illumination and enhance where necessary	Subjective	Potential for reduced headight glare.		Medium Prioity	Moderate	the risk significantly reduced, if the moderate, but not high		Shorterm
${ }_{\text {a }}^{\text {A-piliar }}$ obstuction	The vehicle A-pillars can obstruct the sightines to approaching vehicles on PTH looking to the right when making a left turn.	Implementation of an alternative intersection configuration.	Subjective			Medium Priority	High			Medium-term
General Maintenance										
Deteriorated Markings	In general, line painting is deteriorated. As a result, delineation within the intersection is poor. This contributes to increased driver workload and risk of driver error.	Reapply line painting and pavement markings to improve positive guidance within the intersection	No analysis was conducted as this item should be addressed as part of routine maintenance	Maintin positive guidance withit the intersection.		Low Prioity	Low	Should be corrected or the risk reduced, if the the risk reduced, if the treatment cost is low.	Address as parto fr rutine maintenance.	Maintenance
$\underset{\substack{\text { Signage } \\ \text { Condition }}}{\text { a }}$	exhibited poor reflectivity at night. This contributes to increased driver workload and risk of driver error. risk of driver error.	Review signage for deterioration and reflectivity at the intersection. Replace signage that is in poor-fair condition or exhibits low reflectivity	No analysis was conducted as this addressed as par maintenance maintenance	Ensure apropriate evels of sign reflection and conssicuity.		Low Prioity	Low	Should be corrected or the risk reduced, if the treatment cost is low.	Address as part of routine maintenance.	Maintenance
Signage Posts		All wooden posts with a dimension of $100 \times 150 \mathrm{~mm}$ or larger should be drilled with shear holes.	$\begin{aligned} & \text { No analysis was } \\ & \text { conducted as this } \\ & \text { item should be } \\ & \text { addressed as part } \\ & \text { of routine } \\ & \text { maintenance } \end{aligned}$	Provides crashworthiness for roadside element.		Low Prioity	Low	Should be corrected or the risk reduced, if the treatment cost is low.	Address as parto fr rutine maintenance.	Maintenance

	Road Satey Isure	Potential Countermessure	Anaysis Type	Potenital Efiectiveness	Source	Priority Level	mplementation Cost	Cost-Efiectiveness	Discussion and Conclusions	$\begin{aligned} & \text { plementation } \\ & \text { Options } \end{aligned}$
PTH 5 Rumble Strips		The condition and design of the rumble strips should be reviewed and repaired/adjusted as necessary	No analysis was conductect as this item should be addressed as satr of routine maintenance	Improves treatment effectiveness.		High Priofity	Low			Short-term
Pavement Condition	Pavement cracking and discontinuities within he intersection may impact drainage and lead to further deterioration.	The pavement condition of the approaches and intersection should be renabilitation, or replacement is waranted	No analysis was conducted as this item should be addressed as part of routine maintenance	Consistent pavement condtion.		Low Priority	Low	Should be corrected or the risk reduced, if the treatment cost is low.	Address as patto f routine maintenance.	Maintenance
PTH 5 Shoulder	The shoulders on PTH 5 are deteriorated w and may drainage and vehicle stability.	Grading of existing shoulders to ensure smooth surface and to minimize pavement edge drop-offs	No analysis was conducted as this addressed as part of routine maintenance	Consistent shoulder condition.		Low Priority	Low		Address as parto froutine maintenance.	Maintenace
Illumination Maintenance	Field observations during the nighttime review identified that one bulb on the double davit in the northwest corner of the intersection is no longer working	Coordinate with Manitoba Hydro to replace the bub that is no longer working on double davit in the northwest corner	No analysis was conductectas shis item should be addressed as part of routine maintenance	Consistent evels of flumination.		Low Priority	Low	Should be corrected or the risk reduced, if the treatment cost is low.	Address as pata fo foutine mintenance.	Maintenance

$$
\text { } \| \square \mid
$$

[^0]: ${ }^{1}$ Olson, Dewar, \& Farber (2010). Forensic aspects of driver response (p.86)
 ${ }^{2}$ Cole \& Hughes, 1984
 ${ }^{3}$ Hancock et al (1990). Driver workload during differing maneuvers
 ${ }^{4}$ Ringhand et al (2022). Approaching intersections - Gaze behavior of drivers

[^1]: ${ }^{8}$ Ontario Traffic Manual, Book 8, 2010; p. 109
 ${ }^{9}$ Smiley, Courage, Smahel, Fitch, \& Currie, 2001
 ${ }^{10}$ Smiley and Smahel, Smiley 2015; p. 395

[^2]: ${ }^{11}$ Mortimer, Blomberg, Alexander, \& Vingilis, 2005
 ${ }^{12}$ Dewar \& Olson, 2016; in Smiley, 2016; p. 30
 ${ }^{13}$ Dewar, 2015) in (Smiley, 2015) (p. 450)
 ${ }^{14}$ Olson Dewar \& Farber, 2010; p. 135

[^3]: In-Service Road Safety Review - PTH 1 and PTH 5 Intersection
 oject No. 211-12345-00
 Manitoba Transportation and Infrastructure

[^4]: In-Service Road Safety Review - PTH 1 and PTH 5 Intersection
 Project No. 211-12345-00
 Manitoba Transportation and Infrastructure

