Ice bridges and snow fills are two methods used for temporary winter access in remote areas. Ice bridges are constructed on larger watercourses that have sufficient stream flow and water depth to prevent the ice bridge from coming into contact with the stream bed or restricting water movement beneath the ice. Snow fills, however, are temporary stream crossings constructed by filling a stream channel with clean compacted snow.

Ice bridge and snow fill crossings provide cost-effective access to remote areas when lakes, rivers and streams are frozen. Since the ground is frozen, ice bridges and snow fills can be built with minimal disturbance to the bed and banks of the watercourse. However, these crossings can still have negative effects on fish and fish habitat. Clearing shoreline and bank vegetation increases the potential for erosion and instability of the banks and can lead to deposition of sediments into fish habitat. There is also potential for blockage of fish passage during spring break-up.

Fisheries and Oceans Canada (DFO) is responsible for protecting fish and fish habitat across Canada. Under the Fisheries Act no one may carry out a work or undertaking that will cause the harmful alteration, disruption or destruction (HADD) of fish habitat unless it has been authorized by DFO. By following the conditions and measures set out below you will be in compliance with subsection 35(1) of the Fisheries Act.

The purpose of this Operational Statement is to describe the conditions under which it is applicable to your project and the measures to incorporate into your project in order to avoid negative impacts to fish habitat. You may proceed with your ice bridge or snow fill project without a DFO review when you meet the following conditions:

- ice bridges are constructed of clean (ambient) water, ice and snow,
- snow fills are constructed of clean snow, which will not restrict water flow at any time,
- the work does not include realigning the watercourse, dredging, placing fill, or grading or excavating the bed or bank of the watercourse,
- materials such as gravel, rock and loose woody material are NOT used,
- where logs are required for use in stabilizing shoreline approaches, they are clean and securely bound together, and they are removed either before or immediately following the spring freshet,
- the withdrawal of any water will not exceed 10% of the instantaneous flow, in order to maintain existing fish habitat,
- water flow is maintained under the ice, where this naturally occurs, and
- you incorporate the Measures to Protect Fish and Fish Habitat when Constructing an Ice Bridge or Snow Fill listed below in this Operational Statement.

If you cannot meet all of the conditions listed above and cannot incorporate all of the measures listed below then your project may result in the violation of subsection 35(1) of the Fisheries Act and you could be subject to enforcement action. In this case, you should contact the DFO office in your area if you wish to obtain DFO's opinion on the possible options you should consider to avoid contravention of the Fisheries Act.

You are required to respect all municipal, provincial or federal legislation that applies to the work being carried out in relation to this Operational Statement. The activities undertaken in this Operational Statement must also comply with the Species at Risk Act (www.sararegistry.gc.ca). If you have questions regarding this Operational Statement, please contact the DFO office in your area (see Manitoba DFO office list).

We ask that you notify DFO, preferably 10 working days before starting your work by filling out and sending the Manitoba Operational Statement notification form (www.dfo-mpo.gc.ca/regions/central/habitat/os-ee/prov-terr/index_e.htm) to the DFO office in your area. This information is requested in order to evaluate the effectiveness of the work carried out in relation to this Operational Statement.

Measures to Protect Fish and Fish Habitat when Constructing an Ice Bridge or Snow Fill

1. Use existing trails, winter roads or cut lines wherever possible as access routes to limit unnecessary clearing of additional vegetation and prevent soil compaction.

2. Construct approaches and crossings perpendicular to the watercourse wherever possible.

3. Construct ice bridge and snow fill approaches using clean, compacted snow and ice to a sufficient depth to protect the banks of the lake, river or stream. Clean logs may be used where necessary to stabilize approaches.
4. Where logs are used to stabilize the approaches of an ice bridge or snow fill:
 4.1. The logs are clean and securely bound together so they can be easily removed.
 4.2. No logs or woody debris are to be left within the water body or on the banks or shoreline where they can wash back into the water body.

5. While this Operational Statement does not cover the clearing of riparian vegetation, the removal of select plants may be necessary to accommodate the road. This removal should be kept to a minimum and within the road right-of-way.

6. Install sediment and erosion control measures before starting work to prevent the entry of sediment into the watercourse. Inspect them regularly during the course of construction and decommissioning activities and make all necessary repairs if any damage occurs.

7. Operate machinery on land or on ice and in a manner that minimizes disturbance to the banks of the lake, river or stream.
 7.1. Machinery is to arrive on site in a clean condition and is to be maintained free of fluid leaks.
 7.2. Wash, refuel and service machinery and store fuel and other materials for the machinery away from the water to prevent any deleterious substance from entering the water or spreading onto the ice surface.
 7.3. Keep an emergency spill kit on site in case of fluid leaks or spills from machinery.
 7.4. Restore banks to original condition if any disturbance occurs.

8. If water is being pumped from a lake or river to build up the bridge, the intakes are sized and adequately screened to prevent debris blockage and fish mortality (refer to DFO’s Freshwater Intake End-of-Pipe Fish Screen Guideline (1995) available at www.dfo-mpo.gc.ca/Library/223669.pdf).

9. Crossings do not impede water flow at any time of the year.

10. When the crossing season is over and where it is safe to do so, create a v-notch in the centre of the ice bridge to allow it to melt from the centre and also to prevent blocking fish passage, channel erosion and flooding. Compacted snow should be removed from snow fills prior to the spring freshet.

11. Stabilize any waste materials removed from the work site to prevent them from entering the lake, river, or stream. This could include covering spoil piles with biodegradable mats or tarps or planting them with grass or shrubs.

12. Vegetate and stabilize (e.g., cover exposed areas with erosion control blankets or tarps to keep the soil in place and prevent erosion) any disturbed areas by planting and seeding preferably with native trees, shrubs or grasses. Cover such areas with mulch to prevent erosion and to help seeds germinate.
 12.1. Maintain effective sediment and erosion control measures until re-vegetation of disturbed areas is achieved.

FISHERIES AND OCEANS CANADA OFFICES IN MANITOBA

Winnipeg Office
Fisheries and Oceans Canada
Freshwater Institute
501 University Crescent
Winnipeg, Manitoba
R3T 2N6
Tel: (204) 983-5163
Fax: (204) 984-2402

Dauphin Office
Fisheries and Oceans Canada
135 2 Avenue NE
Dauphin, Manitoba
R7N 0Z6
Tel: (204) 622-4060
Fax: (204) 622-4066

Aussi disponible en français

For the purpose of this Operational Statement, the term “Isolated Crossing” means a temporary stream crossing technique that allows work (e.g., trenched pipeline or cable installation) to be carried out “in-the-dry” while diverting the natural flow around the site during construction. These types of open trenched crossings are isolated using flume or dam and pump techniques (see Pipeline Associated Watercrossings, 2005 at http://www.capp.ca/default.asp?V_DOC_ID=763&PubID=96717). The term “Dry Open-cut Stream Crossing” means a temporary stream crossing work (e.g., trenched pipeline or cable installation) that is carried out during a period when the entire stream width is seasonally dry or is frozen to the bottom.

The risks to fish and fish habitat associated with isolated open cut stream crossings include the potential for direct damage to substrates, release of excessive sediments, loss of riparian habitat, stranding of fish in dewatered areas, impingement/entrapment of fish at pump intakes, and disruption of essential fish movement patterns. Similarly, dry open-cut stream crossings pose a risk to fish and fish habitat due to potential harmful alteration of substrates, loss of riparian habitat, and release of excessive sediment once stream flows resume.

The order of preference for carrying out a cable or pipeline stream crossing, in order to protect fish and fish habitat, is: a) punch or bore crossing (see Punch & Bore Crossings Operational Statement); b) high-pressure directional drill crossing (see High-Pressure Directional Drilling Operational Statement); c) dry open-cut crossing; and d) isolated open-cut crossing. This order must be balanced with practical considerations at the site.

The risks to fish and fish habitat associated with isolated or dry open-cut stream crossings include the potential for direct damage to substrates, release of excessive sediments, loss of riparian habitat, stranding of fish in dewatered areas, impingement/entrapment of fish at pump intakes, and disruption of essential fish movement patterns. Similarly, dry open-cut stream crossings pose a risk to fish and fish habitat due to potential harmful alteration of substrates, loss of riparian habitat, and release of excessive sediment once stream flows resume.

The order of preference for carrying out a cable or pipeline stream crossing, in order to protect fish and fish habitat, is: a) punch or bore crossing (see Punch & Bore Crossings Operational Statement); b) high-pressure directional drill crossing (see High-Pressure Directional Drilling Operational Statement); c) dry open-cut crossing; and d) isolated open-cut crossing. This order must be balanced with practical considerations at the site.

You are required to respect all municipal, provincial and federal legislation that applies to the work being carried out in relation to this Operational Statement. The activities undertaken in this Operational Statement must also comply with the Species at Risk Act (SARA) (www.sararegistry.gc.ca). If you have questions regarding this Operational Statement, please contact the DFO office in your area (see Manitoba DFO office list).

We ask that you notify DFO, preferably 10 working days before starting your work, by filling out and sending the Manitoba Operational Statement notification form (www.dfo-mpo.gc.ca/regions/central/habitat/os-ee/prov-terr/index_e.htm) to the DFO office in your area. This information is requested in order to evaluate the effectiveness of the work carried out in relation to this Operational Statement.

Measures to Protect Fish and Fish Habitat when Carrying Out an Isolated or Dry Open-Cut Stream Crossing

1. Use existing trails, roads or cut lines wherever possible as access routes to avoid disturbance to the riparian vegetation.
2. Locate crossings at straight sections of the stream, perpendicular to the banks, whenever possible. Avoid crossing on meander bends, braided streams, alluvial fans, active floodplains or any other area that is inherently unstable and may result in the erosion and scouring of the stream bed.

3. Complete the crossing in a manner that minimizes the duration of instream work.

4. Construction should be avoided during unusually wet, rainy or winter thaw conditions.

5. While this Operational Statement does not cover the clearing of riparian vegetation, the removal of select plants may be necessary to access the construction site. This removal should be kept to a minimum and within the utility right-of-way.

6. Machinery fording a flowing watercourse to bring equipment required for construction to the opposite side is limited to a one-time event (over and back) and is to occur only if an existing crossing at another location is not available or practical to use. Operational Statements are also available for Ice Bridges and Snow Fills, Clear-Span Bridges, and Temporary Stream Crossing.

 6.1. If minor rutting is likely to occur, stream bank and bed protection methods (e.g., swamp mats, pads) should be used provided they do not constrict flows or block fish passage.

 6.2. Grading of the stream banks for the approaches should not occur.

 6.3. If the stream bed and banks are steep and highly erodible (e.g., dominated by organic materials and silts) and erosion and degradation is likely to occur as a result of equipment fording, then a temporary crossing structure or other practice should be used to protect these areas.

 6.4. Time the one-time fording to prevent disruption to sensitive fish life stages by adhering to appropriate fisheries timing windows (see the Manitoba In-Water Construction Timing Windows).

 6.5. Fording should occur under low flow conditions and not when flows are elevated due to local rain events or seasonal flooding.

7. Operate machinery in a manner that minimizes disturbance to the watercourse bed and banks.

 7.1. Protect entrances at machinery access points (e.g., using swamp mats) and establish single site entry and exit.

 7.2. Machinery is to arrive on site in a clean condition and is to be maintained free of fluid leaks.

 7.3. Wash, refuel and service machinery and store fuel and other materials for the machinery away from the water to prevent deleterious substances from entering the water.

 7.4. Keep an emergency spill kit on site in case of fluid leaks or spills from machinery.

8. Install effective sediment and erosion control measures before starting work to prevent entry of sediment into the watercourse. Inspect them regularly during the course of construction and make all necessary repairs if any damage occurs.

9. Stabilize any waste materials removed from the work site, above the HWM, to prevent them from entering the watercourse. This could include covering spoil piles with biodegradable mats or tarps or planting them with grass or shrubs.

10. Vegetate any disturbed areas by planting and seeding preferably with native trees, shrubs or grasses and cover such areas with mulch to prevent soil erosion and to help seeds germinate. If there is insufficient time remaining in the growing season, the site should be stabilized (e.g., cover exposed areas with erosion control blankets to keep the soil in place and prevent erosion) and vegetated the following spring.

 10.1. Maintain effective sediment and erosion control measures until re-vegetation of disturbed areas is achieved.

Measures to Protect Fish and Fish Habitat when Carrying Out an Isolated Crossing

Temporary isolation is used to allow work “in-the-dry” while maintaining the natural downstream flow by installing dams up and downstream of the site and conveying all of the natural upstream flow into a flume, or pumping it around the isolated area. In addition to measures 1 to 10, the following measures should be carried out when conducting an isolated stream crossing:

11. Time isolated crossings to protect sensitive fish life stages by adhering to fisheries timing windows (see Measure 6.4).

12. Use dams made of non-earthen material, such as water-inflated portable dams, pea gravel bags, concrete blocks, steel or wood wall, clean rock, sheet pile or other appropriate designs, to separate the dewatered work site from flowing water.

 12.1. If granular material is used to build dams, use clean or washed material that is adequately sized (i.e., moderately sized rock and not sand or gravel) to withstand anticipated flows during the construction. If necessary, line the outside face of dams with heavy poly-plastic to make them impermeable to water. Material to build these dams should not be taken from below the HWM of any water body.

 12.2. Design dams to accommodate any expected high flows of the watercourse during the construction period.

13. Before dewatering, rescue any fish from within the isolated area and return them safely immediately downstream of the worksite.

 13.1. You will require a permit from DFO to relocate any aquatic species that are listed as either endangered or threatened under SARA. Please contact the DFO office in your area to determine if an aquatic species at risk is in the vicinity of your project and, if appropriate, use the DFO website at www.dfo-mpo.gc.ca/species-especes/permits/sarapermits_e.asp to apply for a permit.
Measures to Protect Fish and Fish Habitat when Constructing Overhead Lines

1. Installing overhead lines under frozen conditions is preferable in all situations. On wet terrains (e.g., bogs), lines should be installed under frozen conditions, where possible, or using aerial methods (i.e., helicopter).

2. Design and construct approaches so that they are perpendicular to the watercourse wherever possible to minimize loss or disturbance to riparian vegetation.

3. Avoid building structures on meander bends, braided streams, alluvial fans, active floodplains or any other area that is inherently unstable and may result in erosion and scouring of the stream bed or overhead line structures.
 3.1. Wherever possible, locate all temporary or permanent structures, such as poles, sufficiently above the HWM to prevent erosion.

4. While this Operational Statement does not cover the clearing of riparian vegetation, the removal of select plants may be necessary to accommodate the overhead line. This removal should be kept to a minimum and within the road or utility right-of-way.

5. Machinery fording the watercourse to bring equipment required for construction to the opposite side is limited to a one-time event (over and back) and should occur only if an existing crossing at another location is not available or practical to use. A Temporary Stream Crossing Operational Statement is also available.
 5.1. If minor rutting is likely to occur, stream bank and bed protection methods (e.g., swamp mats, pads)
should be used provided they do not constrict flows or block fish passage.

5.2. Grading of the stream banks for the approaches should not occur.

5.3. If the stream bed and banks are steep and highly erodible (e.g., dominated by organic materials and silts) and erosion and degradation is likely to occur as a result of equipment fording, then a temporary crossing structure or other practice should be used to protect these areas.

5.4. Time the one-time fording to prevent disruption to sensitive fish life stages by adhering to appropriate fisheries timing windows (see the Manitoba In-Water Construction Timing Windows).

5.5. Fording should occur under low flow conditions and not when flows are elevated due to local rain events or seasonal flooding.

6. Operate machinery on land and in a manner that minimizes disturbance to the banks of the watercourse.

6.1. Machinery is to arrive on site in a clean condition and is to be maintained free of fluid leaks.

6.2. Wash, refuel and service machinery and store fuel and other materials for the machinery away from the water to prevent any deleterious substance from entering the water.

6.3. Keep an emergency spill kit on site in case of fluid leaks or spills from machinery.

6.4. Restore banks to original condition if any disturbance occurs.

7. Install effective sediment and erosion control measures before starting work to prevent entry of sediment into the watercourse. Inspect them regularly during the course of construction and make all necessary repairs if any damage occurs.

7.1. Avoid work during wet, rainy conditions or use alternative techniques such as aerial methods (i.e., helicopter) to install overhead lines.

8. Stabilize any waste materials removed from the work site to prevent them from entering the watercourse. This could include covering spoil piles with biodegradable mats or tarps or planting them with grass or shrubs.

9. Vegetate any disturbed areas by planting and seeding preferably with native trees, shrubs or grasses and cover such areas with mulch to prevent erosion and to help seeds germinate. If there is insufficient time remaining in the growing season, the site should be stabilized (e.g., cover exposed areas with erosion control blankets to keep the soil in place and prevent erosion) and vegetated the following spring.

9.1. Maintain effective sediment and erosion control measures until re-vegetation of disturbed areas is achieved.

Definition:

Ordinary high water mark (HWM) – The usual or average level to which a body of water rises at its highest point and remains for sufficient time so as to change the characteristics of the land. In flowing waters (rivers, streams) this refers to the “active channel/bank-full level” which is often the 1:2 year flood flow return level. In inland lakes, wetlands or marine environments it refers to those parts of the water body bed and banks that are frequently flooded by water so as to leave a mark on the land and where the natural vegetation changes from predominately aquatic vegetation to terrestrial vegetation (excepting water tolerant species). For reservoirs this refers to normal high operating levels (Full Supply Level).
A temporary stream crossing consists of i) a one-time ford in flowing waters, ii) a seasonally dry streambed ford, or iii) a temporary bridge (e.g., Bailey bridge or log stringer bridge). Temporary stream crossings are employed for short term access across a watercourse by construction vehicles when an existing crossing is not available or practical to use. They are not intended for prolonged use (e.g., forest or mining haul roads). The use of temporary bridges or dry fording is preferred over fording in flowing waters due to the reduced risk of damaging the bed and banks of the watercourse and downstream sedimentation caused by vehicles. Separate Operational Statements are available for Ice Bridges and Snow Fills used for temporary access during the winter and for non-temporary Clear Span Bridges.

The risks to fish and fish habitat associated with temporary stream crossings include the potential for direct harm to stream banks and beds, release of excessive sediments and other deleterious substances (e.g., fuel, oil leaks), loss of riparian habitat and disruption to sensitive fish life stages.

Fisheries and Oceans Canada (DFO) is responsible for protecting fish and fish habitat across Canada. Under the Fisheries Act no one may carry out a work or undertaking that will cause the harmful alteration, disruption or destruction (HADD) of fish habitat unless it has been authorized by DFO. By following the conditions and measures set out below you will be in compliance with subsection 35(1) of the Fisheries Act.

The purpose of this Operational Statement is to describe the conditions under which it is applicable to your project and the measures to incorporate into your project in order to avoid negative impacts to fish habitat. You may proceed with your temporary stream crossing project without a DFO review when you meet the following conditions:

- the bridge is no greater than one lane in width, and no part of its structure is placed within the wetted portion of the stream,
- the work does not include realigning the watercourse,
- for fording in flowing waters and temporary bridges, the channel width at the crossing site is no greater than 5 metres from ordinary high water mark to ordinary high water mark (HWM) (see definition below),
- disturbance to riparian vegetation is minimized,
- the work does not involve dredging, infilling, grading or excavating the bed or bank of the watercourse,
- all crossing materials will be removed prior to the spring freshet, or immediately following project completion if this occurs earlier,
- fording involves a one time event (over and back) and will not occur in areas that are known fish spawning sites,
- the crossing will not result in erosion and sedimentation of the stream, or alteration (e.g., compaction or rutting) of the bed and bank substrates,
- the crossing does not involve installation of a temporary culvert, and
- you incorporate the Measures to Protect Fish and Fish Habitat when Carrying Out a Temporary Stream Crossing listed below.

If you cannot meet all of the conditions listed above and cannot incorporate all of the measures listed below then your project may result in a violation of subsection 35(1) of the Fisheries Act and you could be subject to enforcement action. In this case, you should contact the DFO office in your area if you wish to obtain DFO’s opinion on the possible options you should consider to avoid contravention of the Fisheries Act.

You are required to respect all municipal, provincial and federal legislation that applies to the work being carried out in relation to this Operational Statement. The activities undertaken in this Operational Statement must also comply with the Species at Risk Act (SARA) (www.sararegistry.gc.ca). If you have questions regarding this Operational Statement, please contact the DFO office in your area (see Manitoba DFO office list).

We ask that you notify DFO, preferably 10 working days before starting your work, by filling out and sending the Manitoba Operational Statement notification form (www.dfo-mpo.gc.ca/regions/central/habitat/os-eo/prov-terr/index_e.htm) to the DFO office in your area. This information is requested in order to evaluate the effectiveness of the work carried out in relation to this Operational Statement.

Measures to Protect Fish and Fish Habitat when Carrying Out a Temporary Stream Crossing

1. **Use existing trails, roads or cut lines wherever possible, as access routes to avoid disturbance to the riparian vegetation.**
2. **Locate crossings at straight sections of the stream, perpendicular to the bank, whenever possible. Avoid crossing on meander bends, braided streams, alluvial**
fans, or any other area that is inherently unstable and may result in the erosion and scouring of the stream bed.

3. While this Operational Statement does not cover the clearing of riparian vegetation, the removal of select plants may be necessary to access the construction site. This removal should be kept to a minimum and within the road or utility right-of-way. When practicable, prune or top the vegetation instead of uprooting.

4. Generally, there are no restrictions on timing for the construction of bridge structures or fording seasonally dry streambeds, as they do not involve in-water work. However, if there are any activities with the potential to disrupt sensitive fish life stages (e.g., fording of the watercourse by machinery) these should adhere to appropriate fisheries timing windows (see the Manitoba In-Water Construction Timing Windows).

5. Machinery fording a flowing watercourse to bring equipment required for construction to the opposite side is limited to a one-time event (over and back) and is to occur only if an existing crossing at another location is not available or practical to use.

5.1. If minor rutting is likely to occur, stream bank and bed protection methods (e.g., swamp mats, pads) should be used, provided they do not constrict flows or block fish passage.

5.2. Grading of the stream banks for the approaches should not occur.

5.3. If the stream bed and banks are steep and highly erodible (e.g., dominated by organic materials and silts) and erosion and degradation are likely to occur as a result of equipment fording, then a temporary bridge should be used in order to protect these areas.

5.4. The one-time fording should adhere to fisheries timing windows (see Measure 4).

5.5. Fording should occur under low flow conditions, and not when flows are elevated due to local rain events or seasonal flooding.

6. Install effective sediment and erosion control measures before starting work to prevent the entry of sediment into the watercourse. Inspect them regularly during the course of construction and make all necessary repairs if any damage occurs.

7. For temporary bridges also employ the following measures:

7.1. Use only clean materials (e.g., rock or coarse gravel fill, wood, or steel) for approaches to the bridge (i.e., not sand, clay or organic soil) and install in a manner that avoids erosion and sedimentation.

7.2. Design temporary bridges to accommodate any expected high flows of the watercourse during the construction period.

7.3. Restore the bank and substrate to pre-construction condition.

7.4. Completely remove all materials used in the construction of the temporary bridge from the watercourse following the equipment crossing, and stabilize and re-vegetate the banks.

8. Operate machinery in a manner that minimizes disturbance to the watercourse bed and banks.

8.1. Protect entrances at machinery access points (e.g., using swamp mats) and establish single site entry and exit.

8.2. Machinery is to arrive on site in a clean condition and is to be maintained free of fluid leaks.

8.3. Wash, refuel and service machinery and store fuel and other materials for the machinery away from the water to prevent deleterious substances from entering the water.

8.4. Keep an emergency spill kit on site in case of fluid leaks or spills from machinery.

9. Stabilize any waste materials removed from the work site, above the HWM, to prevent them from entering any watercourse. This could include covering spoil piles with biodegradable mats or tarps or planting them with preferably native grass or shrubs.

10. Vegetate any disturbed areas by planting and seeding preferably with native trees, shrubs or grasses and cover such areas with mulch to prevent soil erosion and to help seeds germinate. If there is insufficient time remaining in the growing season, the site should be stabilized (e.g., cover exposed areas with erosion control blankets to keep the soil in place and prevent erosion) and vegetated the following spring.

10.1. Maintain effective sediment and erosion control measures until re-vegetation of disturbed areas is achieved.

Definition:

Ordinary high water mark (HWM) - The usual or average level to which a body of water rises at its highest point and remains for sufficient time so as to change the characteristics of the land. In flowing waters (rivers, streams) this refers to the “active channel/bank-full level” which is often the 1:2 year flood flow return level. In inland lakes, wetlands or marine environments it refers to those parts of the water body bed and banks that are frequently flooded by water so as to leave a mark on the land and where the natural vegetation changes from predominately aquatic vegetation to terrestrial vegetation (excluding water tolerant species). For reservoirs this refers to normal high operating levels (Full Supply Level).
FISHERIES AND OCEANS CANADA OFFICES IN MANITOBA

Winnipeg Office
Fisheries and Oceans Canada
Freshwater Institute
501 University Crescent
Winnipeg, Manitoba
R3T 2N6
Tel: (204) 983-5163
Fax: (204) 984-2402

Dauphin Office
Fisheries and Oceans Canada
135 2 Avenue NE
Dauphin, Manitoba
R7N 0Z6
Tel: (204) 622-4060
Fax: (204) 622-4066

Aussi disponible en français