Report

Tailings and Waste Rock Management Facility Conceptual Design

Minago Nickel Mine

Project I.D.: 11V777

Victory Nickel Inc. Toronto, Ontario

November 2013

Tailings and Waste Rock Management Facility Conceptual Design Report Minago Nickel Mine

Distribution

Sent To

No. of Copies

1

Dr. David Mchaina Victory Nickel Inc. 1802 – 80 Richmond Street West Toronto, Ontario M5H 2A4

Tailings and Waste Rock Management Facility Conceptual Design Report Minago Nickel Mine

Project ID: 11V777

Prepared for Victory Nickel Inc.

Toronto, Canada

Prepared by Foth Canada Corporation

November 2013

REUSE OF DOCUMENTS

This document has been developed for a specific application and not for general use; therefore, it may not be used without the written approval of Foth. Unapproved use is at the sole responsibility of the unauthorized user.

Copyright©, Foth Canada Corporation 2013

401 Bay Street, Suite 1600 • Toronto, ON M5H 2Y4 • (416) 646-6603 • Fax: (416) 363-0406 • www.foth.com

Tailings and Waste Rock Management Facility Conceptual Design Report Minago Nickel Mine

Contents

		Page
List	of Abbreviations, Acronyms, and Symbols	V
1	Overview	1
	1.1 Introduction	1
	1.2 Scope of Work	1
	1.3 Level of Study	2
	1.4 Project Description	2
2	Site Characterization	3
	2.1 Site Geology	3
	2.1.1 Surficial Geology	3
	2.1.2 Regional Geology	3
	2.2 Climate and Precipitation	4
	2.3 Hydrology and Drainage	4
	2.4 Seismicity	5
	2.5 Subsurface Conditions	6
3	Material Characterization	7
	3.1 Geochemistry	7
	3.1.1 Waste Rock	7
	3.1.2 Mill Nickel Tailings	7
	3.1.3 Frac Sand Tailings	8
	3.2 Tailings Physical Properties	8
	3.2.1 Mill Nickel Tailings	8
	3.2.2 Frac Sand Tailings	9
4	Design Requirements	10
	4.1 Design Considerations	
	4.2 Hazard Potential Classification	11
	4.3 Design Basis	11
	4.4 Design Criteria	11
5	Conceptual Design of TWRMF	12
	5.1 Sizing	12
	5.2 Layout	12
	5.3 Alternatives Analysis	13
	5.4 Dam Design	13
	5.5 Stability	14
	5.6 Seepage	14
	5.7 Appurtenances	15
	5.7.1 Decant Siphon System	
	5.7.2 Emergency Spillway	
	5.7.3 Polishing Pond	

Contents

		Page
	5.7.4 Water Cover	16
	5.7.5 Ditches	16
6	Deposition Strategy	17
	6.1 Deposition Quantities	17
	6.2 Deposition Method	17
	6.3 Operational Considerations	18
	6.4 Deposition Phases	18
	6.4.1 During Construction – Years -2 to -1	19
	6.4.2 During Normal Operations – Years 1 to 10	19
	6.4.2.1 During Pre-closure Operations – Design For Closure	19
	6.4.3 Post-closure – After Year 10	
	6.5 Safety	20
7	Water Management	21
	7.1 Water Management System	21
	7.2 Water Management Phases	22
	7.2.1 During Construction – Years -2 to -1	22
	7.2.2 During Normal Operations – Years 1 to 10	22
	7.2.2.1 During Warm Months	22
	7.2.2.2 During Winter Months	23
	7.2.2.3 During Pre-Closure Operations – Design for Closure	23
	7.2.3 Post-Closure	
	7.3 Effluent Quality	24
8	Construction Considerations	25
	8.1 Construction Requirements	25
	8.2 Construction Staging	25
	8.2.1 Starter Dam – Pre-load Construction	25
	8.2.2 Ultimate Dam	25
	8.3 Construction Schedule	25
9	Monitoring and Surveillance	27
10	Closure Considerations	
11	References	

Table Within the Report

Table A	Peak Ground Accelerations for Different Return Periods	.6
---------	--	----

Tables

(Located after Tables tab)

- Table 1Meteorological Data
- Table 2Mine Waste Production Schedule
- Table 3Design Basis to the TWRMF
- Table 4Design Criteria to the TWRMF
- Table 5TWRMF Construction and Deposition Schedule
- Table 6TWRMF Water Balance for Sizing of Polishing Pond

Figures Within the Report

Figure A	Lake Agassiz Clay Plan Showing the Minago Site	4
Figure B	Stage-Storage Curve for the Proposed TWRMF	13
0	Simplified Construction Schedule	

Figures

(Located after Figures tab)

- Figure 1 Site Location Plan Figure 2 Previous General Site Plan
- Figure 3 General Site Plan
- Figure 4 Site Topography and Drainage
- Figure 5 Proposed TWRMF Layout
- Figure 6 Typical North Dam Cross Section
- Figure 7 Typical Side Dam Cross Section
- Figure 8 Closure Pond Details and Water Balance Results
- Figure 9 Schematic TWRMF Deposition Plan
- Schematic Section A-A' TWRMF at Closure Figure 10

Appendices

- Appendix A Geotechnical Investigation Factual Report
- Appendix B Stability Analyses
- Appendix C Seepage Analyses

List of Abbreviations, Acronyms, and Symbols

API	American Petroleum Institute
ARD	Acid Rock Drainage
ASTM	American Society for Testing and Materials
BAW	Beach Above Water
CDA	Canadian Dam Association
СН	high plasticity clay
CL	clay
cm/s	centimeters per second
EAL	Environmental Act License
FSU	Feasibility Study Update
Foth	Foth Canada Corporation
frac sand	fracturing sand
g	acceleration due to gravity
g Golder	Golder Associates
ha	hectare
kg/m^3	kilogram per cubic meter
km	kilometer
m	meter
Ma	
masl	mega annum meter above sea level
ML	metal leaching
mm	millimeter
mm/yr	millimeter per year
m/s	meters per second
m^3	cubic meter
m^{3}/d	
$M-m^3$	cubic meter per day million cubic meters
M	million tonnes
NAG	
Ni	non-acid generating nickel
OMS	
PAG	Operation, Maintenance, and Surveillance potentially acid generating
PGA	Peak Ground Acceleration
PP	
SPMDD	Polishing Pond Standard Prostar Maximum Dry Donaity
t/m ³	Standard Procter Maximum Dry Density
t/m TWRMF	metric tonnes per cubic meter
	Tailings and Waste Rock Management Facility

1 Overview

1.1 Introduction

The Minago Site (Site) is located in Manitoba's Thompson Nickel Belt on Highway 6, approximately 225 kilometer (km) south of Thompson Manitoba, Canada (Figure 1). It is situated within a water-saturated peat terrain, a topographically low area with isolated bedrock outcrop "islands" (Figure 2). The Project site is favorably located close to existing infrastructure, including Manitoba Provincial Highway 6, a 230 kV high voltage transmission line running directly beside Highway 6 on the east side of the road, the OmniTRAX Canada Railway Line, and the town of Grand Rapids.

Following the discovery of additional mineralization in the vicinity of the previous Tailings and Waste Rock Management Facility (TWRMF), Victory Nickel resolved to relocate the TWRMF. In parallel with the additional drilling of the north limb Victory Nickel extended their leases to include the shallow valley directly to the west. A series of trial pits were dug across the valley and an aerial survey were conducted in early 2011 which suggested that the valley was ideal for the combined depository.

To confirm that the clay base to the valley identified with the trial pits was thick and consistent and to develop an appropriate design, Victory Nickel engaged Foth Canada Corporation (Foth). In late 2011/early 2012, Foth conducted a site investigation of the valley and commenced with the engineering design for the TWRMF. This work was halted in April 2012 then was restarted in April 2013 with a reduced scope limiting the design to a Conceptual Design rather than the full Feasibility Study Design.

The Government of Manitoba issued the Environmental Act License (EAL) No. 2981 which covers the current location for the TWRMF on August 23, 2011. The EAL would require an amendment to include the new relocated TWRMF.

This work follows the previous studies completed by Wardrop, Golder Associates (Golder), URS, and others. Where information has been abstracted from these reports the source has been identified and the approval of the Client, Victory Nickel obtained.

Since the proposed site is some 4 km from the previous site, the geotechnical information from the previous work has not been incorporated into the design but has been used as a reference to check the appropriateness of the conceptual design and resulting conclusions.

1.2 Scope of Work

The scope of the work for the Conceptual Design of the TWRMF and Polishing Pond (PP) were discussed in a December 11, 2012 meeting at Victory Nickel and outlined in a letter to Victory Nickel dated January 10, 2013. The letter indicated that Foth would prepare a Conceptual Design of the TWRMF prior to conducting a full Feasibility Study Update for the Minago Project, as per the request of Victory Nickel. This information would be sufficient for Victory Nickel to initiate the EAL No. 2981 amendment process before the FSU is finalized. The scope of this work is limited to the TWRMF which includes a PP.

The essential components of work for the Conceptual Design are summarized as:

- Completion of Factual Report for Phase 1 and Phase 2 Field Investigations (Foth, 2013).
- Preparation of a Design Criteria and Basis Memo to be incorporated in the report herein.
- Evaluation of deposition strategies and the development of a deposition plan.
- Stability and seepage analyses, and geotechnical design of TWRMF and PP containment dams.
- Evaluation of Water Management Strategies, and design of the PP and water cover.
- Preparation of the Conceptual Design Report.

1.3 Level of Study

The study levels for the development of a mining project normally include exploration, scoping, prefeasibility, full feasibility followed by final design and construction documents. At this stage, the design is conceptual as distinct from feasibility level engineering. As such the level of detail presented is intended to illustrate the concept without the detail and specification necessary for feasibility level. Ultimately, the findings of this study will feed into the Feasibility Study Update (FSU) for the TWRMF.

1.4 Project Description

The Minago deposit has potential as a large tonnage, low-grade nickel (Ni) sulphide deposit (30.6 Mt at 0.43% Ni, 0.20% cut-off grade) and contains 14.8 million tonnes (Mt) of marketable fracturing sand (frac sand) (Foth, 2013). The potential of the property is supported by a metallurgical test program, where a very high grade nickel concentrate of 22.3% was produced. The excellent recoveries for the ore from the open pit mine are substantiated by historical and current metallurgical testing data.

The economic potential of this deposit could be adversely impacted by an overlay of 80 meters (m) of overburden, dolomite, and sand, with a high open pit strip ratio. However, the 10 m sand layer just above the ultramafic ore bearing rock contains marketable hydraulic frac sand which will offset the cost of the stripping.

The TWRMF is proposed to occupy a long, narrow water-saturated muskeg/peat wetland with some forested areas approximately four km northwest of the proposed pit. This lowland extends approximately 8 km from the southwest to the northeast and is bound on the east and west by sub-parallel dolomite bedrock ridges, approximately 2.5 km apart. The ridges rise nearly 20 meters above the wetland valley that slopes gently at approximately 0.2% but consistently to the north-northeast. The proposed TWRMF structures would be oriented between the east and west ridges, and along the north and south lowland.

To take full advantage of the valley, Victory Nickel has instructed Foth to integrate the design of the containment dams with the dolomite bluffs on either side.

2 Site Characterization

2.1 Site Geology

2.1.1 Surficial Geology

The overburden consists of 1.0 to 2.1 m of muskeg (peat) that is underlain by 1.5 to 10.7 m of impermeable compacted glacial lacustrine clays. The clays are dark brown to grey and carbonate rich overlain with muskeg formed by an accumulation of sphagnum moss, leaves, and decayed matter.

The underlying clay and sporadic till was deposited from former glacial Lake Agassiz. Lake Agassiz once stretched across portions of Saskatchewan, Manitoba and western Ontario, impounded by retreating and transgressing Laurentian ice sheets. The extent of clays deposited in Lake Agassiz is shown in green in Figure A below. The deposit contains silt and some sand and gravel with glacial till found locally below the clay.

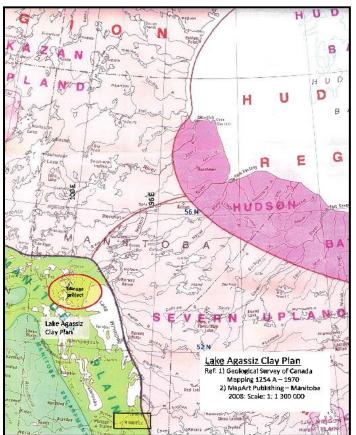


Figure A – Lake Agassiz Clay Plan Showing the Minago Site

2.1.2 Regional Geology

The regional geology comprises the eastern edge of the Phanerozoic sediments of the Western Canada Sedimentary Basin. The basin overlies Precambrian crystalline basement rocks, including the Thompson Nickel Belt. The basin tapers from a maximum thickness of about 6,000 m in Alberta to zero at the north and east, where it is bound by the Canadian Shield. The Property is located near the northeast corner of the basin, where it comprises approximately 53 m of Ordovician dolomitic limestone underlain by approximately 7.5 m of Ordovician sandstone.

The Precambrian basement rocks of the Thompson Nickel Belt form a northeast southwest trending 10 to 35 km wide belt of variably reworked Archean age basement gneisses and Early Proterozoic age cover rocks along the northwest margin of the Superior Province. Lithotectonically, the Thompson Nickel Belt is part of the Churchill Superior boundary zone. The Archean age rocks to the southeast of the Thompson Nickel Belt include low to medium grade metamorphosed granite greenstone, and gneiss terranes and the high grade metamorphosed Pikwitonei Granulite Belt. The Pikwitonei Granulite Belt is interpreted to represent exposed portions of deeper level equivalents of the low to medium grade metamorphosed granite greenstone and gneiss terranes. The Superior Province Archean age rocks are cut by mafic to ultramafic dikes of the Molson swarm dated at 1883 mega annum (Ma).

Dikes of the Molson swarm occur in the Thompson Nickel Belt, but not to the northwest in the Kisseynew domain. The early Proterozoic rocks to the northwest of the Thompson Nickel Belt comprise the Kisseynew domain that is interpreted to represent the metamorphosed remnants of a back arc or inter arc basin. The variably reworked Archean age basement gneisses constitute the dominant portion (volumetrically) of the Thompson Nickel Belt. The Early Proterozoic rocks that occur along the western margin of the Thompson Nickel Belt are a geologically distinguishable stratigraphic sequence of rocks known as the Opswagan Group.

2.2 Climate and Precipitation

Meteorological data was provided by Golder in 2008 (Golder, 2009a).

The Minago project area is located at approximately 250 meters above sea level (masl) in north-central Manitoba, approximately 100 km north of Grand Rapids on the western shores of Lake Winnipeg.

The region is characterized by warm, wet summers and cold, dry winters with temperatures ranging from 17.6°C in July to -21.5°C in January. The total annual precipitation is estimated at 510 millimeter (mm) consisting of 369 mm (72%) of rain and 141 mm (28%) of snow. The majority of the rain falls between June and September, with a smaller amount falling in early spring and late fall. Essentially 40 mm of rain (10.8% of total rain) falls in the month of May and 329 mm of rain (89.2% of total rain) in the period of June to October (Golder, 2009a). Little rain is recorded for November to March when almost all precipitation falls as snow. The annual lake evaporation was estimated at 566 mm with the maximum monthly evaporation (127 mm) occurring in July. Losses due to sublimation are estimated to be 40 mm over the winter months.

A summary of the meteorological data to be used for the design is presented on Table 1.

2.3 Hydrology and Drainage

A Hydrologic Baseline Study was completed by Golder in 2008 (Golder, 2009a).

Regionally the project site is located within the Nelson River sub-basin, which contains the Minago River, Hargrave River, and William River with the Oakley Creek tributaries. The

catchments of these three rivers are within the Lake Winnipeg basin, which ultimately drains northward into Hudson Bay. Within a 30 km radius of the project site there are several small-to-medium sized lakes, along with Limestone Bay on the northwestern edge of Lake Winnipeg.

The Minago and Hargrave Rivers flows in the northeast direction into Cross Lake, before reaching the Nelson River. The Oakley Creek flows in the southeast direction into the William River. The William River flows from William Lake in the northeast direction until reaching about 20 km downstream of Highway 6, where if turns 90 degrees to the southeast direction, draining into Limestone Bay (part of Lake Winnipeg).

Average surface runoff from the overall area was estimated by Golder (Golder, 2009a) to be approximately 117 millimeter per year (mm/yr) based on precipitation and stream gauging records. Recharge and evaporation in muskeg areas has not been directly measured.

Areas on the dolomite ridges will produce surface water runoff that will report towards the area under consideration. Inferred groundwater flow direction is north to northeast towards the Minago River, as shown on Figure 3. Although this will reflect pre-construction and post-closure conditions at the Minago project, open pit dewatering during site preparations and operations may have an impact on the groundwater flow patterns.

2.4 Seismicity

As the Minago project is located in a region historically exhibiting low seismicity an extensive evaluation extending beyond an examination of historic earthquakes is not considered necessary. The 2005 National Building Code seismic hazard calculation indicating the acceleration levels for given probabilities is presented below:

Probability of Exceedance per Annum	Probability of Exceedance in 50 Years (%)	Return Period (years)	Peak Ground Acceleration (PGA) g
0.01	40	100	0.007
0.0021	10	475	0.021
0.001	5	1,000	0.035
0.000404	2	2,475	0.059

Table A – Peak Ground Accelerations for Different Return Periods.

A return period of 475 years is identified for use in design of structures at the site with a corresponding Peak Ground Acceleration (PGA) of 0.021 acceleration due to gravity (g). This design value has been assumed to be applicable for the operational life of the mine. For the longer term post-closure phase a return period of 2,475 years has been assumed with a corresponding PGA of 0.059 g.

2.5 Subsurface Conditions

A geotechnical investigation of the proposed TWRMF site was completed by Foth in 2012. The area of investigation was approximately 3 km by 4 km, centered on a wetland valley bounded on the east and west by bedrock ridges. The results of the geotechnical investigation are included in Appendix A (Foth, 2013). The flanking ridges define the long dimension of an asymmetrical bedrock valley that is partially filled with overburden formations. Previous investigation work was completed by Wardrop in 2007 and 2008 (Wardrop, 2010) and focused on the previous TWRMF site, east of the site proposed herein.

In general the subsurface soils in at the proposed TWRMF site consist of:

- Peat coarse to fine fibrous peat varying in thickness between 0.8 and 2.3m.
- Upper Clay soft to stiff, grey to brown, high plasticity clay (CH) varying in thickness between approximately 1 and 2 m.
- Intermediate Clay firm to stiff, grey to brown, mottled, slightly weathered medium plasticity clay (CL) with a consistent thickness of approximately 5 m.
- Lower Clay very soft to firm, grey to brown, CH reaching a thickness of 16 m in the center of the valley.
- Dolomite Bedrock fine grained, weak to medium strong, moderately weathered, moderately jointed, dolomite.

The groundwater table is generally at the ground surface and several bodies of water are present around the site. Relatively high piezometric heads were observed in the dolomite bedrock observations wells, suggesting confined aquifer conditions. There is also presumptive evidence of upward vertical gradients in the dolomite relative to the overburden.

3 Material Characterization

3.1 Geochemistry

A geochemical characterization study was completed by URS in 2007 (URS, 2008). The key findings are summarized below.

3.1.1 Waste Rock

According to the results of the geochemical characterization program undertaken by URS in 2007 (URS, 2008), the overburden, Ordovician dolomite, and Ordovician sandstone overlying the altered Precambrian basement and Precambrian basement lithologies are considered non-acid generating (NAG) material with a minimal potential for metal leaching (ML). The altered Precambrian basement and the Precambrian basement lithologies amphibolite and mafic dike also are considered to be NAG.

The Precambrian granite is typically considered to be NAG, however, localized areas with moderate to high sulphide sulphur and negligible carbonate content may create potentially acid generating (PAG) granite. Precambrian serpentinite is considered to be NAG, primarily due to a high of carbonate content.

Precambrian mafic metavolcanic material is considered to be PAG based on the presence of sulphide content and negligible carbonate content. Precambrian mafic metasedimentary material is considered to be PAG due to low to high variability sulphide sulphur content and low carbonate content.

The Minago Project will produce three types of waste rock, namely, dolomite, country rock (predominantly granitic), and ultramafic rock. The overall quantities for dolomite, granitic country rock and ultramafic PAG waste rock are 111, 116, and 36 million tonnes, respectively.

Based on low estimated mafic metavolcanic and metasediment waste rock quantities and low potentially acid generating granite quantities expected to be generated during mining operations, URS recommends that an operational program for static testing on blast hole cuttings be undertaken and built into a geologic block model, and that it be communicated with open pit operators so that PAG and NAG waste rock can be separated, with PAG waste rock disposed of in an appropriate facility. Based on kinetic test carbonate molar ratios, a preliminary Neutralization Potential Ratio criterion of 1.7 is recommended for segregation PAG from NAG.

The humidity cell test results suggested that dolomite mixed with Precambrian lithologies (cap rock and ore zone) would be effective in providing excess acid neutralization capacity to compensate secondary sulphide oxidation products on a micro-scale or meso-scale in situ.

3.1.2 Mill Nickel Tailings

Static and laboratory kinetic subaqueous column test results indicate that potential tailings material is NAG, due to very low sulphide sulphur content and moderate carbonate mineral content. Based on URS 2008, static and kinetic subaqueous column test results indicate NAG tailings due to very low sulphide sulphur content and moderate carbonate content. Based on their geochemical characteristics, concurrent disposal of tailings and PAG waste rock would

mitigate Acid Rock Drainage (ARD) issues associated with ultramafic waste by encapsulating the PAG waste rock in tailings and water cover to minimize sulphide oxidation.

3.1.3 Frac Sand Tailings

The Ordovician sandstone will be processed to produce marketable frac sand and frac sand tailings. The Ordovician sandstone is considered to be NAG (URS, 2008) and hence the frac sand tailings.

3.2 Tailings Physical Properties

3.2.1 Mill Nickel Tailings

A geotechnical characterization of the nickel tailings was conducted by SGS Lakefield (Wardrop, 2010). The tailings sample was generated from the lock cycle test, one of several metallurgical programs set up for the Minago Project.

The tailings sample obtained from the lock cycle testing had a solids content of 45% by weight. Additional testing included settling tests, sieve and hydrometer analysis, specific gravity test, atterberg limits, standard proctor compaction test, hydraulic conductivity test, consolidated undrained triaxial test and an air drying test.

Settling tests were conducted for both undrained and drained conditions. The settled sample in the drained settling test was further subjected to a constant head hydraulic conductivity test. Hydraulic conductivity tests were carried out on compacted samples using a flexible wall permeameter. Specific gravity, sieve and hydrometer tests were conducted as per American Society of Testing and Materials (ASTM) requirements. The column drying test was conducted as per generic mining method rather than ASTM.

The grain size distribution test showed that the tailings sample was relatively fine grained, containing 5% clay, 77% silt, and 18% fine sand. Atterberg limits test gave a liquid limit of 42%, a plastic limit of 28%, and a plasticity index of 14%. A standard Proctor test resulted in a maximum dry density of 1,697 kilogram per cubic meter (kg/m³) at an optimum moisture content of 16.6%. The initial pulp density for both, drained and undrained conditions was 1.39 t/m³. When the test was completed nine days later, the density in drained and undrained conditions increased to 1.66 t/m³ and 1.54 t/m³, respectively.

Hydraulic conductivity tests on two combined tailings samples (i.e., on initially dry specimen and on slurried sample) were carried out using falling head testing method. Prior to conducting the tests, both samples were saturated. Based on the test results, the hydraulic conductivities were 8.2 x 10-6 centimeters per second (cm/s) and 2.0 x 10-5 cm/s for the initially dry and slurried samples, respectively.

The air drying test was carried out by SGS on a combined tailings sample. The test results show that the bulk of the volume reduction at average room temperature with relative humidity varying between 20 and 50% occurs during the first 800 hours.

3.2.2 Frac Sand Tailings

From a total of 11.5 million tonnes of mined frac sand, approximately 3.5 million tonnes will be sent to the TWRMF as tailings. Primarily, this fraction of the frac sand represents the finest portion of the sand which is that portion passing the American Petroleum Institute (API) Screen Number 140, or less than 116.5 microns and will consist primarily of silt.

4 Design Requirements

4.1 Design Considerations

The Minago TWRMF is designed for concurrent disposal of tailings and the PAG ultramafic waste rock in a stand-alone facility to mitigate ARD issues and facilitate regulatory compliance with Manitoba Provincial Regulatory and EAL 2981 Requirements. Figure 4 shows a plan view of the TWRMF centered on a wetland valley bounded on the east and west by bedrock ridges. The following design considerations were applied in the design

- The peat and clay foundation soils have variable consistency and thickness.
- Displacement and compression of the peat is expected to occur.
- The thick layer of native clay along the valley floor will provide effective seepage containment at the base of the TWRMF.
- A compacted clay liner will be constructed along the upstream slopes of the containment dams to minimize seepage flows into the environment.
- Clause 17 of Manitoba Conservation Environment Act License No.2981 stipulates a clay seal comprising at least 1.000 m of clay with a permeability less than 1x10-7meters per second (m/s).
- The low permeability of the tailings placed along the upstream slope of the containment dam will minimize the seepage flows into the environment.
- The PAG waste rock will be co-mingled with tailings with the following benefits.
 - Reduced oxygen infiltration in the waste rock to minimize ARD;
 - Increased storage capacity of the facility by filling the voids with tailings; and
 - Voids not filled with tailings will be filled with water in within PAG rock mass.
- The materials from the open pit mining operation will provide the construction materials for the TWRMF containment dam. In addition, a search for borrow material should be considered to find equivalent volumes of local eskers as a part of future studies.
- Selective disposal of clay overburden excavated from the open pit and TWRMF in attempt to sort the material by moisture content. This will facilitate the sourcing of clay material that is suitable for construction.
- The pit dewatering will create a cone of depression of hydraulic head in the dolomite and provide effective under-drainage to the overburden clays that underliea portion of the TWRMF. This under-drainage will promote the consolidation of the lower soft clays. The cone of depression contours are shown on Figure 4.
- A geotechnical monitoring program that includes the installation of vibrating wire piezometers and settlement plates should be considered during early stages of

construction of the TWRMF containment dam to measure pore pressure dissipation and settlement.

Three containment cells (East Cell, West Cell, and Decant Cell) are designed to provide operational flexibility and to facilitate progressive closure of the TWRMF. During operation, ARD mitigation measures will be undertaken concurrently by encapsulating the PAG waste rock in low permeability NAG tailings. Drainage water is to be captured by the decant pond and ultimately the PP. The quality of the water is to be monitored to ensure all applicable water quality standards are met prior to release to the receiving environment.

4.2 Hazard Potential Classification

The hazard potential classification has been made in accordance with the Canadian Dam Association (CDA) Dam Safety Guidelines 2007. This classification evaluates the consequences of dam failure in terms of risk to population, loss of life, and environmental, cultural, and economic losses.

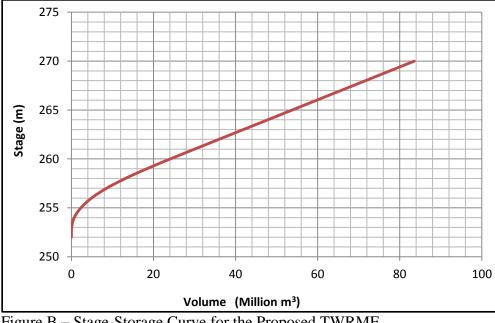
The hazard potential of the TWRMF and its containment dams is considered to be "low" due to the following reasons:

- 1. There is no population at risk for loss of life. The dolomite ridges along the east side of the TWRMF provide separation from the mill and camp facilities.
- 2. The worst case is scenario is considered to be a failure of the dam in the northeast valley (North Dam). The potential inundation area at the downstream toe of the North Dam includes a wetland valley that is contained by topographic ridges (Figure 3).
- 3. Considering that the tailings could outflow from the failed tailings dam at a slope of 10%, and that the maximum height of the North Dam is 12m, the tailings will not reach any surface water bodies or streams that may represent terrestrial or aquatic habitat. There is no potential for long-term environmental loss.
- 4. We are not aware of any cultural heritage value at the toe of the North Dam.

4.3 Design Basis

The TWRMF must accommodate a total of 34.1 Mt of nickel and frac sand tailings and 35.7 Mt PAG waste rock over an anticipated 10-year mine life and the facility must provide secure storage for the long-term. On the basis of the current production plan, the Tailings and Waste Rock Production Schedule is shown in Table 2 and the Design Basis for the TWRMF is summarized on Table 3.

4.4 Design Criteria


The design criteria for the proposed TWRMF are provided on Table 4.

5 **Conceptual Design of TWRMF**

5.1 Sizing

The sizing of the TWRMF is based on the projected production schedule shown in Table 3. The volumes shown on Table 3 were generated based on the tonnages shown in Table 2.

The TWRMF is designed to contain all of the PAG waste rock and tailings produced during the life of the mine. As shown in Table 3, the total volume of tailings produced is 23.0 million cubic meters (M-m³) and the total volume of PAG waste rock is 17.9 M-m³. The total volume required to accommodate the all the waste material is 37.7 M-m³, or 43.3 M-m³ including a 15% contingency.

An approximate stage-storage curve for the proposed TWRMF is shown below:

Figure B – Stage-Storage Curve for the Proposed TWRMF

The available storage in the proposed facility is approximately 48.3 M-m³ or 53.8 M-m³ assuming the facility is filled to a constant elevation of 264m (2m below dam crest) or 265m (1m below dam crest), respectively. In reality, the tailings will not be deposited to a constant elevation. Assuming a 360 degree deposition from an elevation of 264m toward the center of the facility and a final average deposition slope of 0.2%, a reduction in available storage of approximately 10.5 M-m³ is expected from the 48.3 M-m³ or 53.8 M-m³ struck level volumes. Therefore, the effective storage volume is reduced to approximately 37.7 M-m³ or 43.3 M-m³, assuming a 2 m and 1 m freeboard, respectively. Note that the 43.3 M-m³includes a 15% contingency capacity.

5.2 Layout

The proposed layout of the TWRMF is shown in Figure 4. The two existing dolomite bluffs have been utilized to provide containment along the "sides" of the storage area. Dams are

proposed on the northeast (North Dam) and south west (South Dam) ends, along with smaller dams along the sidewalls to provide additional containment and prevent infiltration of water into the dolomite bluffs. The TWRMF covers 595 hectare (ha) and the PP covers 120 ha.

The top elevation of the dams is proposed to be at an elevation of 266 m. The floor of the facility will be the existing ground. A PAG waste rock divider dyke and separation dykes will be constructed across the floor as shown in Figure 4. The dykes are intended to divide deposition cells and facilitate deposition and decanting of supernatant water.

The PP is situated to the northeast of the TWRMF and seepage collection ditches are included along the North and South Dams. An additional ditch for runoff diversion is included south of the TWRMF and is designed to intercept water from the head of the valley across to the drainage system around the pit.

5.3 Alternatives Analysis

Three design options were considered:

- 1. A repeat of the existing Wardrop design.
- 2. The current design with the TWRMF nestled between the bluffs.
- 3. An option with the side walls moved in to facilitate drainage around TWRMF.

The first Option was discounted because the new proposed site offered 600 ha in valley (Figure 2) underlain by a thick clay deposit which allowed for minimizing the height of the dam.

The alternative TWRMF arrangement, option 3 involved moving the side dams away from the dolomite bluffs by 100 m to areas of greater clay thickness. This would have resulted in an increased dam height along the sides of the TWRMF but allowed for the construction of seepage collection ditches along the sides of the facility.

Option two was selected as the preferred solution to take full advantage of the natural landscape and the containment afforded by the dolomite bluffs. By careful selection of the side dam location to position these where the in situ clay thickness is assured, option 2 will be the lower cost option. In addition to the in situ clay, the seepage through the sides of the facility is minimized by the compacted clay liner.

5.4 Dam Design

The perimeter containment dams are to be raised from a starter dam to afford a consolidation period before the construction of the balance of the dam. The dam is designed with the required factors of safety against failure in accordance with the design criteria. The required factors of safety are shown in Table 4 and the calculated factors of safety are shown in Appendix B. Figures 5 and 6 show the typical design sections for TWRMF containment dams. The dams are constructed in two main phases: the Pre-load/Starter dam and the Ultimate Dam.

The objectives of the Pre-load/Starter Dam are to:

• allow for displacement and compression of the peat foundation soils;

- develop sufficient strength gain in the clay foundation soils by consolidation before construction of the ultimate dam;
- provide a working platform for construction of the ultimate dam; and
- provide containment for the initial quantities of frac sand tailings and ultramafic PAG waste rock produced during Year -1 (Table 2).

The dams are to be constructed of the dolomite waste rock with a 15 m wide crest at an elevation of 266 m, with 3H:1V side slopes. A 1 m thick zone of compacted clays is provided as a low permeability liner on the upstream slope of the dam and the liner will extend to the TWRMF floor and be keyed into the existing native clay (Appendix A) as shown on Figures 5 and 6. Layers of crushed dolomite filters are to be provided between the compacted clay liner and dam fill materials if the gradation of the fill materials warrant.

Given the abundance of dolomite rock available during the Mine Development Phase, this was the obvious choice of construction material. Similarly, the abundance of clay of suitable moisture content is available from the Open Pit and the TWRMF Site. The option to use crushed dolomite as potential filter materials was addressed in the previous design (Wardrop, 2010) and will be addressed again during the Detail Design Phase. Alternatively, outwash sand and gravel could be considered as a suitable filter materials if identified by future investigations.

5.5 Stability

The stability of the downstream slopes of the Ultimate Dam at Closure was analyzed using a limit equilibrium method with slope stability software Geostudios Slope/W (version 7.21). The upstream slope of the Ultimate Side Dams along the dolomite ridges was also analyzed. The minimum factors of safety against slope failure were calculated using the Morgenstern-Price Method. The slope stability analyses were performed at the critical sections under both static loading and pseudo static earthquake loading conditions.

Different failure modes and mechanisms were considered in the analyses including potential shallow or deep-seated slip surfaces and optimized circular or block type slip surfaces with minimum calculated factors of safety reported. Appendix B presents the details of the stability analyses carried out for the TWRMF dams.

The calculated factors of safety against dam failure for all stability analyses reported in Appendix B ranged from 1.3 to 1.7 and meet the requirements of the design criteria.

5.6 Seepage

The compacted clay liner and thick base of native clay is intended to minimize seepage flows from the TWRMF to the environment. Seepage flow through the North and South dams make up the majority of the seepage flows leaving the TWRMF, and will be collected in seepage collection ditches, diverted to collection ponds, and pumped back into the TWRMF. The rate of seepage flows through both the typical North/South Dam section and the typical Side Dam section at the final stage of the deposition were estimated by carrying out seepage analyses using Geostudios Seep/W (version 7.21). The results of the analyses are presented in Appendix C and include a sensitivity analysis for varying compacted clay liner thicknesses.

The calculated seepage flow through the dams for the entire TWRMF at closure is 23.1cubic meters per day (m^3/d) with a compacted clay liner thickness of 1 m, which meets the requirements of the design criteria (Table 4). Sensitivity analysis results indicated a seepage rate of 853.1 m³/d for an unlined rock fill dam. Actual seepage flow may vary due to uncertainties associated with hydraulic conductivity of the clay liner, tailings, and waste rock.

5.7 Appurtenances

5.7.1 Decant Siphon System

A Decant Siphon System is included to allow passive overflow from the Decant Cell to the PP (Figure 4). The siphon inlet will be raised as required. Figure 5 shows that the siphon inlet is at least 2.5 m below the crest of the dam. Additional siphons will be employed as needed to accommodate increasing levels of hydraulic head in the Decant Cell.

5.7.2 Emergency Spillway

An emergency overflow spillway is provided on the North Dam as shown in Figure 4. The spillway is to be constructed out of dolomite waste rock and non-woven geotextile and remain in a single location for the life of the mine. The spill way will be raised with the dam, and will be designed to accommodate a 1 in 1000 year 24 hours storm in accordance with the Design Criteria (Table 4). Additional design details will be included in the FSU.

5.7.3 Polishing Pond

A site wide water balance was performed by Victory Nickel in 2011 (Victory Nickel, 2011). In the water balance, the following three seasonal periods were considered:

- May
- June to October
- November to April

An understanding of the water balance is essential for sizing of the PP and to ensure the retention time meets the design criteria (Table 4) for settling of suspended solids. An approximate summary of the water balance during normal operations as it pertains to the PP water inputs is provided in Table 6. As expected, the table indicates that the critical PP inflow occurs during the May freshet, when the daily flow is $67,532 \text{ m}^3/d$ during normal climatic conditions.

Similar to the previous TWRMF design (Wardrop, 2010), a 120 ha PP was selected, as shown on Figure 4. For a pond depth of 1.5 m and a throughput of $67,532 \text{ m}^3/\text{d}$, the retention time during normal operations in May is calculated to be approximately 27days and is in accordance with the design criteria.

An extreme 1 in 200 year, 24-hour storm event would contribute an additional 714,000 m³ of water to the TWRMF. This would result in an excess of approximately 1.5 m of water in the TWRMF Decant Cell. In order to maintain the 7 days retention criteria in the PP, the excess

water will be held in the TWRMF Decant Cell and released to the PP at a maximum rate of $217,000 \text{ m}^3/\text{d}$. At this rate, it will take approximately 3.3 days to release the excess water to the PP. Sufficient capacity will be maintained in the Decant Cell to accommodate the excess storm runoff.

The layout of the PP is shown on Figure 4. The PP is situated immediately downstream of the TWRMF and is founded on a thick clay base (Foth, 2013). The proposed PP containment dam has a 15 m wide crest at elevation 254.5 m with 3H:1V side slopes and a 1 m thick compacted clay liner on the upstream slope that is keyed into the native clay soils, similar to the typical TWRMF dam section shown on Figure 5. This allows for a maximum pond elevation of 253.5 m, average depth of 1.5 m and a 1.0 m of freeboard.

5.7.4 Water Cover

A water balance of the proposed TWRMF closure pond suggests that a permanent tailings pond covering the entire TMRMF surface area cannot be maintained without perpetual pumping of water from the open pit dewatering wells. The water balance calculations summarized in Figure 7 shows that the post-closure tailings pond area would reach a steady state area between approximately 21% and 50% of the TWRMF area, resulting in a water cover thickness between 1.1 and 1.8 m above the PAG waste rock.

To illustrate the robustness of the partial cover scenario, Figure 7 also shows the effects of a 1 year dry event with a return period of 100 years. In this case we estimate that the pond would shrink to an area between approximately 12% and 40% of the TWRMF area, resulting in a water cover thickness between 0.9 and 1.6 m above the PAG waste rock.

All of the scenarios shown in Figure 9 meet the design criteria (Table 4) for water cover thickness except for the dry year scenario resulting with a water cover thickness of 0.9 m above the PAG waste rock. It should be noted that this scenario used an unlikely upper bound evapotranspiration rate for the tailings 'Beach Above Water' (BAW) coupled with an unlikely dry event. Further consideration of the evapotranspiration rates will be required during the preparation of the FSU and detailed design.

During operations, PAG waste rock will not be exposed to the atmosphere for more than one year before being covered and saturated by tailings and water to minimize ARD.

5.7.5 Ditches

Seepage collection ditches are proposed along the North and South Dams of the TWRMF to collect seepage and pump back to the TWRMF, as shown in Figure 4. The compacted clay liner along the east and west Side Dams minimizes seepage into the Dolomite Bedrock.

A runoff diversion ditch is required along the southwest side of TWRMF (Figure 4) to collect water from the head of the sub-watershed. As noted previously this ditch will drain to the perimeter drainage systems to be constructed for the Open Pit. In the current plan, this drainage is taken to a silt trap at Highway 6 and ultimately to the wetland area to the east of Highway 6.

Additional ditch design details will be included in the FSU.

6 Deposition Strategy

The TWRMF comprises three cells designed to facilitate tailings deposition and co-mingling with waste rock. The deposition plan has flexibility in the design that allows for modifications, if required, in the future once actual deposition characteristics are determined during the initial years of operation. The deposition plan and staged construction plan for the TWRMF is shown in Figures 8 and 9 and summarized in Table 5. An adaptive management program shall be in place during operations to optimize the deposition plan based on the observed conditions.

6.1 **Deposition Quantities**

The following assumptions for deposition quantities have been made for the design:

- The TWRMF will receive approximately 34.1 Mt of nickel and frac sand tailings, and 35.7 Mt of ultramafic PAG waste rock.
- Approximately 60% of the voids in the ultramafic PAG waste rock (3.2 M-m³ out of 5.4 M-m³ of total void space) will be filled with tailings.
- Maximum tailings elevation in the proposed deposition plan (Figure 9) is at an elevation of 264 m with the dam crest at an elevation of 266 m which allows for 2 m of freeboard.
- The 2.0 m of freeboard allows for contingency capacity for entrapped ice, modifications to geochemical characterization of waste, and increased project resource.
- The nickel and frac sand tailings are deposited as conventional slurry at approximately 20% and 50% solids, respectively (Wardrop, 2010), as shown in Table 3.
- The average final density of the nickel and frac sand tailings is assumed to be 1.5 metric tonnes per cubic meter (t/m³) and 1.6 t/m³, respectively (Wardrop, 2010), as shown in Table 3.
- The average final density of the ultramafic PAG waste before tailings ingress is 2.0 t/m³ (Wardrop, 2010), as shown on Table 3.

6.2 Deposition Method

The following assumptions for the deposition method have been made for the design:

- Tailings deposition will be sub-aerial from around the perimeter of the cells to promote drainage northeast towards the Decant Cell, and to encapsulated the PAG waste rock in the center of the facility.
- Tailings can be deposited from the cell divider dyke.
- Separation dykes will provide containment for the decant cell and prevent significant amounts of silt from entering decant pipes. The Decant Cell will ultimately be filled with tailings and PAG waste rock.

- A beach will form with a slope of approximately 0.5%.
- Trestles may be used to achieve flatter overall slopes or to optimize the filling and closure of the TWRMF.
- PAG waste rock will be mechanically placed within the PAG waste rock footprint shown In Figure 8, in lifts of 0.5 to 1.0 m thickness, with alternating layers of tailings in lifts of 0.5 to 1.0 m thickness.

6.3 **Operational Considerations**

The following operational considerations will apply:

- Based on geochemical characterization results (URS, 2008), PAG waste rock will not be exposed to the atmosphere for more than one year before being covered and saturated by tailings and water to minimize ARD.
- Maximum PAG waste rock elevation at 261.5 m. A piezometric surface must be maintained above an elevation of 262.5 m post-closure to maintain the minimum water cover thickness criteria of 1.0 m.
- A key objective of the co-disposal plan is to induce migration of tailings into the voids of the PAG ultramafic waste rock and to encapsulate the PAG waste rock in tailings. The following practices should be considered to enhance migration of tailings into PAG waste rock voids:
 - Placing alternating layers of PAG waste rock and tailings in a "layer-cake" fashion.
 - Ripping upper surfaces of disposed waste rock the enhance tailings ingress.
 - Controlled blasting of tailings to induce liquefaction and enhance migration of tailings into waste rock voids, provided stability of the TWRMF containment dam is not compromised.
 - Maintaining a hydraulic head difference across the disposed waste rock.

The configuration of PAG waste rock disposal should allow for a minimum of 1 m of saturated tailings and water cover at the end of the deposition, in accordance with the design criteria. During operations, the water level in the TWRMF shall be maintained sufficiently below the PAG waste rock surface to ensure stability and the safety of personnel and equipment operating on the PAG waste rock.

6.4 **Deposition Phases**

Mine waste deposition activities are divided into the following 4 phases:

- Construction Years -2 to -1
- Normal operations Years 1 to 10
 - Includes pre-closure operations from Years 7 to 10.
- Post-closure After Year 10

6.4.1 During Construction – Years -2 to -1

Following construction of the Starter Dam/Pre-load in Year -2, deposition of initial quantities of PAG waste rock and frac sand tailings will begin (Year -1), as shown in Figure 8. It is proposed that the PAG waste rock is used to construct the Divider Dyke and Separation Dykes which will divide the three disposal cells. It is proposed that the frac sand tailings are deposited in the proposed Decant Cell.

6.4.2 During Normal Operations – Years 1 to 10

During Years 1 to 6, deposition of frac sand tailings, mill tailings, and PAG waste rock will be taking place (Figure 8). It is proposed that the frac sand tailings are discharged sub-aqueously in the Decant Cell. The Decant Cell was selected as the proposed disposal area for the frac sand tailings for the life of the mine with the intention of minimizing the operational requirements associated with moving multiple discharge locations. Alternatively, the frac sand tailings of the mill tailings are deposited in the East Cell, while PAG waste rock is deposited in the West Cell (Figure 8).

Further deposition of mill tailings and PAG waste rock shall be in lifts of approximately 0.5 to 1 m thick and alternate between the East and West Cells approximately every 6 months, so that PAG waste rock is placed on top of a previously placed lift of tailings, before being covered by the subsequent lift of tailings in a "layer-cake" fashion, as shown in Figure 9. This alternating disposal scheme will promote co-mingling of the tailings and PAG waste rock (tailings ingress into the voids of the PAG waste rock). At no time shall mill tailings and PAG waste rock be disposed of in the same cell simultaneously.

Supernatant water from the mill tailings along with storm runoff will be collected in the Decant Cell, either by seeping through the Separation Dykes or through temporary cross sectional swales cut across the crest of the Separation Dykes. The Separation Dyke shall be raised progressively with the tailings pond level so that swales can be easily excavated as needed.

6.4.2.1 During Pre-closure Operations – Design For Closure

During Years 7 to 10, pre-closure operations will commence and the deposition strategy will be altered so that the desired post-closure geometry of the facility can be achieved (Figures 7 and 8). During this period, the crest of the central PAG waste rock stockpile will remain at its ultimate elevation of 261.5 m and there will no longer be division between the East and West Cells. The final quantities of PAG waste rock in Years 7 and 8 will be dumped into the Decant Cell and the frac sand tailings disposal site will change to the north ends of the East and West Cells, to ensure there is sufficient capacity for disposal of PAG waste rock in the Decant Cell, and to contribute to the tailings cover in the East and West Cells. Mill tailings will continue to be discharged from the perimeter dam towards the center of the facility, while contributing to the tailings cover and desired post-closure tailings beach geometry, and shown in Figures 7 and 8.

During Years 9 and 10, there will be no further PAG waste rock disposal and only frac sand tailings and mill tailings will be deposited in the TWRMF (Table 2). Frac sand tailings (or mill tailings) will be used to cover the PAG waste rock in the Decant Cell, filling the cell so there will no longer be division between the East, Well, and Decant Cells. Mill tailings will continue to be

discharged from the outer portions of the facility towards the center, as shown in Figure 9. At this time, trestles will be required to achieve overall deposition slopes flatter than the angle of repose of the tailings (assumed to be 0.5%) to contribute to the final tailings cover and desired post-closure tailings beach geometry near the center of the facility.

6.4.3 Post-closure – After Year 10

After Year 10, there is no further deposition in the TWRMF and the desired post-closure geometry of the facility will be achieved, which will consist of a conical shaped tailings beach with a central closure pond, as shown in Figures 7 and 8. A permanent closure pond will exist to maintain saturation of the PAG waste rock to minimize the potential for ARD.

6.5 Safety

Careful planning is needed to ensure safety of personnel and equipment operating on the deposited PAG waste rock within the repository. Vibratory loads from haul trucks and dozers may cause liquefaction of the rock fill with voids filled with saturated tailings. The potential for liquefaction of the co-mingled tailings and PAG waste rock can be minimized by ensuring adequate compaction and by preventing saturation the PAG waste rock. This can be achieved by compacting the PAG waste rock and by controlling the water level in the TWRMF so it is at least 1 to 2 m below the crest of the current lift being placed.

7 Water Management

7.1 Water Management System

The following two seasonal periods were considered in the development of the Water Management System:

- Warm months (May to October)
- Winter months (November to April)

The overall Water Management System (Figure 4) incorporates the following components:

- A decant cell within the co-disposal facility where the order of 500,000 cubic meter (m³) of water resides at all times.
- A decant barge system which allows overflow from the Decant Cell to the PP (Figure 4).
- A PP that provides the minimum retention time for the settling out of suspended solids.
- A pump and channel system to allow PP overflow to be discharged to the Minago River.
- An emergency spillway and stilling basin designed to convey the design storm (Figure 4).
- Seepage collection ditches along the north and south dams with collection ponds and a pump-back systems (Figure 4), designed to convey seepage and runoff from the design storm (Table 4).
- A runoff diversion ditch along the south seepage collection ditch (Figure 4), to intercept runoff from the head of the valley where the proposed clay dump is located, and diverted to the site drainage system around the pit to avoid the Oakley Creek. The runoff diversion ditch will be designed to convey the design storm (Table 4).
- Silt traps will be employed as needed.
- All discharges from the PP will be directed to the Minago River.

Water will be released to the receiving environment to feed the Minago River through two structures depending upon the season:

- In the warm months a distribution manifold will feed water to the muskeg over a reasonable width of muskeg to mimic the natural flow.
- In the winter months the pipe outlet will discharge to an open ditch located after the distribution manifold at the Minago River.

7.2 Water Management Phases

Similar to the mine waste deposition activities, the water management activities can also be divided into the following 4 phases:

- Construction Years -2 to -1
- Normal operations Years 1 to 10
 - Includes pre-closure operations from Years 7 to 10.
- Post-closure After Year 10

7.2.1 During Construction – Years -2 to -1

During site preparation (early Year -2, winter months), a drainage ditch will be excavated along center of the valley to promote drainage of the muskeg during the May freshet. This will facilitate the construction of the Starter Dam/Pre-load and the compacted clay key trench (Figures 5 and 6). The key trench, seepage collection ditches, and runoff diversion ditches will also be excavated at this time.

During construction of the Pre-Load/Starter Dam and PP (Year -2, warm months), runoff will be collected in the ditches and diverted to the environment in order to maintain dry site conditions and avoid pooling of water. Silt traps will be employed as needed.

During construction of the Ultimate Dam (Year -1, warm months), deposition of initial quantities of PAG waste rock and frac sand tailings will be under way (Figure 8). Water from the frac sand tailings, frac sand plant, sewage treatment plan and from storm runoff within the TWRMF will be collected at the northeast end of the facility in the Decant Cell. A Decant Barge System will be constructed to allow overflow from the Decant Cell to the PP. PP inflows will include TWRMF overflows and water from the dewatering of the Open Pit. PP overflow will be discharged to the Minago River.

An Emergency Spillway will also be constructed to convey runoff from extreme storm events. Seepage will be collected in the Seepage Collection Ditches (Figure 4) and pumped back to the TWRMF. Runoff from the head of the valley will be collected in the Runoff Diversion Ditch and diverted to silt traps and the environment.

7.2.2 During Normal Operations – Years 1 to 10

During Years 1 to 6, deposition of frac sand tailings, mill tailings, and PAG waste rock will be taking place. It is proposed that the frac sand tailings are discharged sub-aqueously in the Decant Cell and that the mill tailings and PAG waste rock are deposited in the East and West Cells (Figure 8).

7.2.2.1 During Warm Months

During the warm months, supernatant water in the TWRMF is collected in the Decant Cell, either by seeping through the Separation Dykes (Figure 4) or through temporary swales in the Separation Dykes. A water balance, including a list of TWRMF water inputs, is shown in Table 6. The Decant Barge System continues to allow overflow from the Decant Cell to the PP.

The average TWRMF overflow rate ranges from approximately 27,532 m³/d to 18,574 m³/d during normal climatic conditions (Table 6), reaching a rate of approximately 217,000 m³/d during a 1 in 200 year, 24-hour storm event, as described in section 5.7.3 of this report. PP water inputs will include TWRMF plus an additional 40,000 m³/d from the dewatering of the Open Pit (Table 6). PP overflow will be discharged to the Minago River at an average rate ranging from approximately 67,532 m³/d to 58,574 m³/d during normal climatic conditions (Table 6), reaching a maximum of approximately 257,000 m³/d during extreme storm events, as described in 5.7.3 of this report.

The Emergency Spillway will remain in place to convey runoff from extreme storm events from the TWRMF to the PP. Seepage will continue to be collected in the Seepage Collection Ditches (Figure 4) and pumped back to the TWRMF. Runoff from the head of the valley will continue to be collected in the Runoff Diversion Ditch and diverted to silt traps and the environment.

7.2.2.2 During Winter Months

During the winter months, it is assumed that the majority of the water in and around the TWRMF will remain entrapped in ice until the May freshet (Table 6). Any liquid water will report to the overall Water Management System as described in Section 7.2.2.1. The Emergency Spillway will allow overflow to the PP in the event that ice blockage occurs. PP overflow will consist primarily of water from the dewatering of the Open Pit and will be discharged to the Minago River at a rate of approximately 41,680 m³/d (Table 6).

7.2.2.3 During Pre-Closure Operations – Design for Closure

During Years 7 to 10, pre-closure operations will commence and the deposition strategy will be altered so that the desired post-closure geometry of the facility can be achieved (Figures 7 and 8), as discussed in Section 6.4. During this period, the crest of the central PAG waste rock stockpile will remain at its ultimate elevation of 261.5 m and be covered by tailings. The final quantities of PAG waste rock (in Years 7 and 8) will be dumped into the Decant Cell. During Years 7 and 8, the water management activities will be the same as during normal operations. However, during the final 'tailings only' years (Years 9 and 10), the PAG waste rock in the Decant Cell will be covered by tailings so that the tailings pond shifts from the Decant Cell, towards the center of the TWRMF. At this time, the Decant Barge System will be decommissioned and another temporary decant system will be employed, which will involve pumping of water from the tailings pond to the PP through temporary pipelines. The temporary decant system will be decommissioned in the final weeks of pre-closure operations so that the desired closure pond is allowed to form (Figures 7 and 8). The Emergency Spillway and ditches will continue to operate normally.

7.2.3 Post-Closure

After Year 10, there is no further deposition in the TWRMF and the desired post-closure geometry of the facility will be achieved, which will consist of a conical shaped tailings beach with a central closure pond, as shown in Figures 7 and 8. The closure pond will increase in size due to precipitation and shrink due to evaporation. Evaporation rates will increase as the size of the pond increases, which will result in the closure pond reaching a steady-state size (essentially when precipitation equals evaporation). This process was modeled by performing a water balance of the post-closure TWRMF. The water balance is summarized in Figure 9, and a

steady-state pond with surface area between approximately 21% and 50% of the total TWRMF area, resulting in a water cover thickness between 1.1 and 1.8 m above the PAG waste rock, as discussed in Section 5.7.4.

7.3 Effluent Quality

For the current TWRMF design (Wardrop, 2010), Victory Nickel evaluated the contaminant levels at the final PP effluent and at various other stages in the water management system (Victory Nickel, 2011). As the contaminant levels have not changed and the quantity of storm runoff being routed through the TWRMF has increased (due to increased catchment area), the trace contaminant levels projected at the various stages will be further diluted with the proposed TWRMF design.

8 Construction Considerations

8.1 Construction Requirements

Effective drainage of the TWRMF area as a pre-construction activity perhaps a year prior will facilitate construction. The removal of water will improve excavation operations and reduce the amount of material to be removed as ice. Once drainage has been implemented, the tree clearing which is required beneath the perimeter dam footprint can begin.

The existing drainage trench which was cut in the area of the open pit in March 2012 has proved very effective at this location. This ditching exercise demonstrated that ditches cut along the existing 1/500 land profile would provide effective drainage.

Excavation of muskeg and soft clay will be facilitated by a frozen surface during the winter months suggesting a January start. With these initial activities complete the fill placement activities can commence in the spring, summer and fall. The placement of frozen fill containing snow or ice within the dam structure will limit these winter operations.

8.2 Construction Staging

Access to the site is available along the access road to the dolomite bluff which will serve as a staging post for the TWRMF site. The TWRMF construction could start with the east wall of the TWRMF which abuts the east dolomite bluff.

8.2.1 Starter Dam – Pre-load Construction

The Pre-load/Starter Dam lift has to be sufficient to safely support equipment but is limited to a maximum of 1.0 m above original ground. Proof rolling of the Pre-load/Starter Dam lift is required to verify competent dam foundation conditions.

8.2.2 Ultimate Dam

Subsequent lifts of dolomite are to be placed in lifts of 0.5 to 1.0 m thickness and compacted to 95% of the Standard Proctor Maximum Dry Density (SPMDD). A field trial will be carried out during construction to verify compaction requirements and the optimal lift thickness. The construction schedule has been structured to allow for displacement and compression of the muskeg and clay foundation. This will allow for the necessary strength gain in the supporting clay before the construction of the ultimate dam. To optimize the consolidation times, the initial lifts of dolomite will be placed at the north dam, where the dam height is highest and clay thickness is greatest.

The construction quantities are included in Table 5.

8.3 Construction Schedule

The Pre-load/Starter Dam are scheduled to be constructed during the first year of mine development (Year -2) when dolomitic limestone will be available from overburden removal. The Ultimate Dam is scheduled to be constructed during the second year of mine development (Year -1) with the dolomite waste rock and clay overburden from the open pit. Direct disposal of

the dolomite waste rock and clay overburden at the site of the TWRMF perimeter dam will minimize double handing of material.

The delivery of ultramafic PAG rock is schedule for the middle of Year -1, frac sand tailings at the end of Year -1 and nickel tailings at the end of Year 1. TWRMF site preparation and mine development will start approximately one year prior to the disposal of PAG ultramafic waste rock and 2 years prior to the deposition of nickel tailings.

A simplified construction schedule is shown in Figure C below. Construction quantities are shown in Table 5.

Figure C – Simplified TWRMF Construction Schedule

9 Monitoring and Surveillance

The following is a general list of monitoring and surveillance requirements during construction and operation of the TWRMF. An Operations, Maintenance, and Surveillance (OMS) Manual will be developed for the facility after the first stage of construction is complete.

- Daily monitoring of dyke for subsidence, cracking, and water flow, during construction.
- Regular surveying for as-build reporting, settlement identification and quantity measurements during construction.
- Monitor grain size distribution, bulk density and moisture content of all material used for dam construction or deposited in the TWRMF cells.
- Four cross sections instrumented with vibrating wire piezometers, thermistors, settlement plates and inclinometer casings will be included around the co-disposal facility to measure pore water pressure dissipation, temperature settlement and lateral deformation, during construction, operations, and closure.
- Environmental monitoring wells will be installed downstream of the TWRMF for future groundwater monitoring during operations and closure.

10 Closure Considerations

The goal of the proposed TWRMF closure concept is to encapsulate all PAG waste rock in saturated tailings and water at closure. This will be achieved by maintaining a permanent closure pond as shown in Figures 7 and 8. The closure pond will ensure saturation of the PAG waste rock and minimize ARD.

In addition, the following closure considerations will apply:

- The Decant Barge System will be decommissioned.
- Emergency spillway will remain in operation at closure, and will be designed to convey the design storm.
- Seepage collection ditches, ponds, and pump back systems will remain operational post closure.
- The tailings BAW is expected to retain moisture from closure pond which will minimize dusting.

11 References

Canadian Dam Association, 2007. Dam Safety Guidelines.

- Foth, 2013. Design Basis and Criteria Technical Memorandum, Minago Project. Dated May 21, 2013.
- Golder, 2009a. Hydrologic Baseline Study, Minago Project, Manitoba. Report No. 08-1428-0024. March 6, 2009.
- Golder, 2009b. Hydrogeologic Investigations of Dewatering Requirements for the Proposed Open Pit, Minago, Manitoba, Version 2. Report No. 08-1428-0001/7000. June 4, 2009.
- Government of Manitoba, 2011. Environmental Act License (EAL) No. 2981. Dated August 23, 2011.
- SGS Lakefield Research Limited, 2006. An Update on Metallurgical Testwork on the Minago River Deposit, prepared for Nuinsco Resources Ltd., Project 11241-001 – Report 1, July 25, 2006.
- URS, 2008, Geochemical (ARD/ML) Assessment, Minago Project Near Grand Rapids, Manitoba (Project # 3954824). Dated November 24, 2008.

Victory Nicke1, 2011. Water Balance: Specific Q-CoD Closure Scenarios, April 18, 2011.

Wardrop, 2010. Feasibility Study – Minago Nickel Mine. Report No. 0951330400-REP-R0001-02. March 4, 2010. Tables

Table 1Meteorological Data

Table 1a: Estimate	d Monthly Precipitation,	Evaporation and Tem	perature at the Minago Si
Month	Mean Precipitation	Lake Evaporation	Mean Temperature
WOITT	(mm)	(mm)	(degrees Celsius)
January	20.2	0	-21.5
February	17.8	0	-17.3
March	22.4	0	-10.4
April	26.8	17.6	0.2
May	42.8	112	8.2
June	74.4	121	14.3
July	78.3	127	17.6
August	69.6	107	16.2
September	65.8	64.1	9.8
October	39	17.6	3
November	28.2	0	-8
December	25	0	-17.3
Annual	510	566	-0.4

Table 1a: Estimated Monthly Precipitation, Evaporation and Temperature at the Minago Site

	A ran wal Bus shak	Annual Precipitation (mm/yr)						
Return Period —	Annual Precipi	24 hr Rainfall Event						
	Wet Year	Dry Year	(mm)					
5 year	577	446	67					
10 year	610	410	79					
20 year	637	380	89					
50 year	666	346	102					
100 year	686	323	111					
200 year	703	301	120					
500 year	724	275	132					
1000 year	739	257	141					
Source: Golder 2009a		Prepared By:	MJV2					
		Checked By:	MAN					

			Country	Mill (Ni)	Frac Sand Plant	Mill (Ni) Tailings to	Frac Sand Tailings to	Ultramafic (PAG) Waste Rock	Total Tailings to
Unit (tonne)	Overburden	Dolomite	Rock	Production	Production	TWRMF	TWRMF	To TWRMF	T&PAGWRM
Year - 2	6,600,000	29,653,000	0	0	0	0	0	0	0
Year - 1	2,685,000	41,066,000	3,389,000	0	285,000	0	68,000	2,026,000	68,000
Year 1		26,060,000	11,031,000	900,000	1,140,000	889,000	356,000	4,189,000	1,245,000
Year 2		13,928,000	12,465,000	3,600,000	1,140,000	3,555,000	356,000	5,896,000	3,911,000
Year 3		325,000	27,165,000	3,600,000	1,140,000	3,555,000	356,000	4,945,000	3,911,000
Year 4		0	27,200,000	3,600,000	1,140,000	3,555,000	356,000	4,100,000	3,911,000
Year 5		0	16,236,000	3,600,000	1,140,000	3,555,000	356,000	4,223,000	3,911,000
Year 6		0	11,043,000	3,600,000	1,140,000	3,555,000	356,000	5,218,000	3,911,000
Year 7		0	6,836,000	3,600,000	1,140,000	3,555,000	356,000	4,449,000	3,911,000
Year 8		0	786,000	3,600,000	1,140,000	3,555,000	356,000	613,0000	3,911,000
Year 9		0	0	3,600,000	1,140,000	3,555,000	356,000	0	3,911,000
Year 10		0	0	1,254,000	770,000	1,238,,000	240,000	0	1,478,000
Year 11		0	0	0	0	0	0	0	0
Total	9,285,000	111,032,000	116,147,000	30,954,000	11,315,000	30,567,000	3,512,000	35,659,000	34,079,000

Table 2Tailings and Waste Rock Production Schedule (tonnes)

Prepared by: JMH3 Checked by: JBH1

Item	Value
Life of TWRMF	10 years
Total Nickel Tailings (Tonnes)	30,567,000
Total Sand Tailings (Tonnes)	3,512,000
Total Combined Tailings to TWRMF (Tonnes)	34,079,000
Total PAG Waste Rock (tonnes)	35,569,000
Tailings Specific Gravity (Nickel)	2.6
Initial Tailings Void Ratio (Nickel)	1.0
Initial Tailings Density (Nickel)	1.30 t/m ³
Average Final Tailings Density (Nickel)	1.46 t/m ³
Tailings Pulp Density (solid weight) (Nickel) ¹	45%
Average Initial Tailings Density (Sand)	1.40 t/m ³
Average Final Tailings Density (Sand)	1.60 t/m ³
Tailings Pulp Density (solid weight) (Sand)	20%
Ultramafic Waste Specific Gravity	2.59
Ultramafic Waste Swelling	30%
Void Space in PAG Waste Rock	5,369,502 m ³
Total Volume of Ni Tailings	20,807,560 m ³
Total Volume of Sand Tailings	2,195,000 m ³
Total Combined Tailings Volume	23,002,560 m ³
Total PAG Waste Rock (solids and voids)	17,858,166 m ³
Total Ni-Tailings Ingress into Voids of Ultramafic Waste Rock (at initial tailings	3,221,701 m ³
density) ²	
Required TWRMF	37,679,199 m ³
Required TWRMF Storage (with 15% contingency included)	43,331,079 m ³

Table 3 Design Basis for the TWRMF

Prepared by: MJV2 Checked by: JPH3

Notes:

¹ A 45% tailings solids density is used in the current study. However, higher water-to-solids ratios to enhance transport into and through the rock fill are recommended for consideration in detailed engineering.

² It is assumed that 60% of the voids in the PAG ultramafic waste rock will be filled with tailings during codisposal. The actual amount of tailings ingress into waste rock voids is dependent on the grain size of the PAG waste rock and the method of deposition. Sensitivity analysis should be carried out to assess the impact of varying levels of tailings ingress into the voids of the waste rock. During construction, field trails should be carried out to determine the actual amount of tailings migration into waste rock voids that can be achieved.

Table 4

Design Criteria for the TWRMF

	Item	Target	Comments
1.	Geotechnical Slope Stability Factor of Safety (F.O.S)		
•	Construction (in stages)	• Static F.O.S. 1.3, pseudo static F.O.S 1.05.	
٠	Normal Operating	• Same as above.	
•	Closure	• Static F.O.S. 1.5, pseudo static F.O.S 1.05.	
2.	Seepage	 Target seepage volume of less than 50m³/day¹. 	 Analyses to be carried out using Geostudios SEEP/W software. Low permeability barrier to be provided on the upstream face of the containment structure to reduce seepage through ultramafic waste rock – tailing composite. Seepage from the TWRMF to be collected via collection ditches o ponds.
3.	Hydro technical		
•	Construction Diversion Peak Flow	• 1:20 yr - 24 hr rainfall	 All peak flows are estimated from catchment time of concentration and storm. Seepage to be collected via collection ditches or ponds reporting to the overall water management system
•	Operation peak flow	• 1:200 yr – 24 hr rainfall	 Runoff to be segregated from seepage, with seepage reporting to the overall water management system.
•	Closure Spillway and Diversion peak flow	1:1000 yr – 24 hr rainfall	• Determine wave run-up in the freeboard
•	Freeboard	 1.0 m on the top of Closure Spillway wet section for 1:200 year runoff 1.0 m operational freeboard 	e
•	Closure Flood Runoff Coefficient	 1:1000 yr - 24 hr rainfall 1 	• All runoff derived from
•	Kunon Coemclent	• 1	 All runoff derived from precipitation falling on the TWRMF will report to the PP, via decant structure, emergency spillway, or seepage collection ditches and ponds.

Table 4 (Continued)

4. ◆	Polishing Pond Water Storage	•	Minimum seven days retention.		
5.	Closure Cover	•	A minimum of 0.5m of water in the permanent tailings pond at closure, a minimum of 1.0m of saturated tailings and water over PAG waste rock at all times.	•	Consider runoff (dry year), seepage, infiltration and evaporation to ensure a minimum thickness water cover.
6.	Seismicity				
•	Operating Design Basis Earthquake	•	1: 475 year return		
٠	Closure Earthquake	•	1:2,475 year return		

Prepared by: MJV2 Checked by: JBH1

Note:

Seepage target rate was selected by Foth based on the results of seeepage sensitivity analysis.

Table 5TWRMF Construction and Deposition Schedule

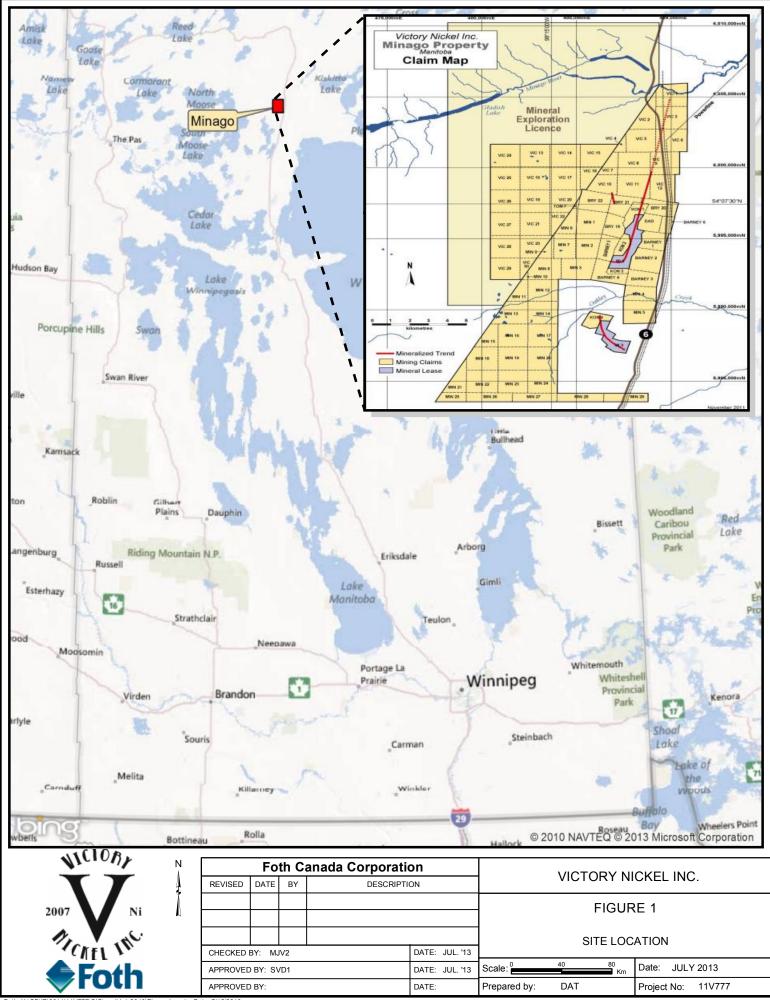
Operating Period	Duration (years)	TWRMF Operating Phase	Dolomit	e Placement	Compacted C	lay Placement	Frac Sand	Tailings Deposition	Nickel T	ailings Deposition	PAG Wa	ste Rock Deposition
			Quantity (M-m ³)	Location	Quantity (M-m ³)	Location	Quantity (M-m ³)	Location	Quantity (M-m ³)	Location	Quantity (M-m ³)	Location
Year -2	1	Starter Dam / Pre-	1.3	TWRMF Dams	0.1	TWRMF Dams	-	-	-	-	-	-
Tedi -2	I	load Construction	0.3	Polishing Pond Dams	0.05	Polishing Pond Dams	-	-	-	-	-	-
Year -1	1	Ultimate Dam Construction	1.9	TWRMF Dams	0.2	TWRMF Dams	0.04	Decant Cell	-	-	1.0	Divider Dyke and Separation Dyke
Year 1	1	Operations	-	-	-	-	0.3	Decant Cell	0.6	East Cell	2.1	West Cell
Year 2 to Year 3	2	Operations	-	-	-	-	0.4	Decant Cell	4.8	Alternating between East and West Cells	5.5	Alternating between East and West Cells
Year 4 to Year 6	3	Operations	-	-	-	-	0.7	Decant Cell	7.3	Alternating between East and West Cells	6.8	Alternating between East and West Cells
Year 7 to Year 8	2	Operations / Closure	-	-	-	-	0.4	Tailings Cover	4.8	Tailings Cover	2.5	Decant Cell
Year 9 to Year 10	2	Operations / Closure		-	-	-	0.4	Tailings Cover	3.3	Tailings Cover	-	-
		Total	3.5		0.35		2.2	-	20.8	-	17.9	-

Prepared by: MJV2 Checked by: JBH1

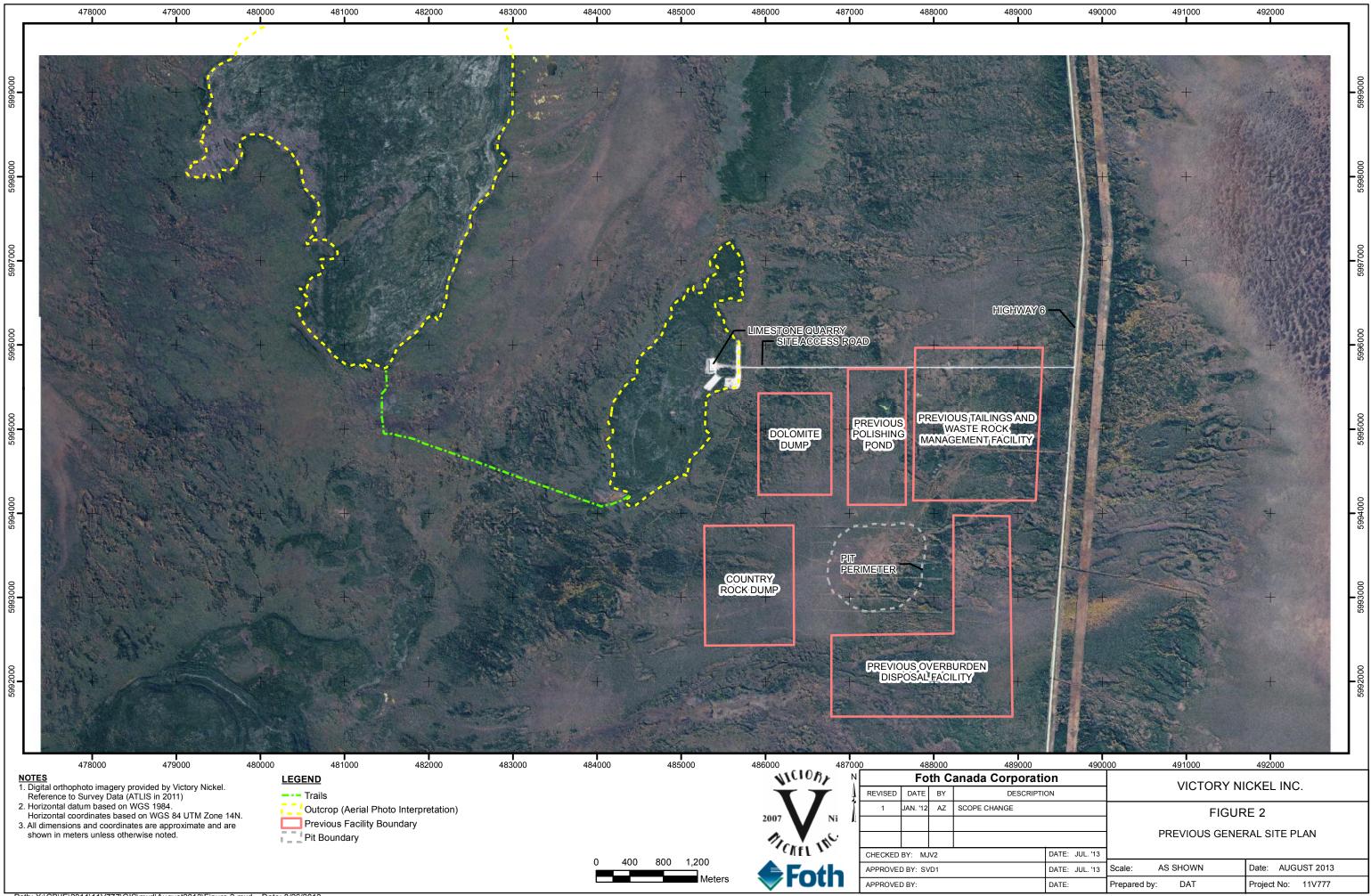
Table 6 **TWRMF Water Balance for Sizing of Polishing Pond**

Deried	TWRMF W	ater Inputs ¹		Water Retained	n TWRMF	Water Discharged to Polishing Pond from TWRMF			
Period	Flow	Quantiy (m ³ /day)	Reference	Flow	Quantiy (m ³ /day)	Reference	Flow	Quantiy (m ³ /day)	Reference
	Water from Mill Tailings	12,072	Victory Nickel, 2013	Water Retained in Voids of Tailings and Waste Rock	1,467	Victory Nickel, 2013	Water from Open Pit Dewatering Wells	32,000	Victory Nickel, 2013
	Water from Frac Sand Plant	2,892	Victory Nickel, 2013	Evaporation ²	10,748	Golder, 2009a	Water from Open Pit	8,000	Victory Nickel, 2013
May	Water from Frac Sand Tailings	772	Victory Nickel, 2013				Water from TWRMF ⁵	27,532	(24,627-12,215+15,121)
	Water from Sewage Treatment Plant	676	Victory Nickel, 2013		1				
	Precipitation	8,215	Golder, 2009a						
	May Total TWRMF Inputs	24,627	(sum)	May Total Retained / Lost	12,215	(sum)	May Total PP Inputs	67,532	(sum)
	Water from Mill Tailings	12,072	Victory Nickel, 2013	Water Retained in Voids of Tailings and Waste Rock	1,467	Victory Nickel, 2013	Water from Open Pit Dewatering Wells	32,000	Victory Nickel, 2013
	Water from Frac Sand Plant	2,892	Victory Nickel, 2013	Evaporation ²	8,436	Golder, 2009a	Water from Open Pit	8,000	Victory Nickel, 2013
Jun-Oct	Water from Frac Sand Tailings	772	Victory Nickel, 2013				Water from TWRMF	18,574	(28,477-9,903)
	Water from Sewage Treatment Plant	103	Victory Nickel, 2013						
	Precipitation	12,638	Golder, 2009a						
	Jun-Oct Total TWRMF Inputs	28,477	(sum)	Jun-Oct Total Retained / Lost	9,903	(sum)	Jun-Oct Total PP Input	58,574	(sum)
	Water from Mill Tailings	12,072	Victory Nickel, 2013	Water Retained in Voids of Tailings and Waste Rock	1,467	Victory Nickel, 2013	Water from Open Pit Dewatering Wells	32,000	Victory Nickel, 2013
	Water from Frac Sand Plant	2,892	Victory Nickel, 2013	Sublimation ³ + Evaporation ²	2,109	Golder, 2009a	Water from Open Pit	8,000	Victory Nickel, 2013
Nov-Apr	Water from Frac Sand Tailings	772	Victory Nickel, 2013	Water Entrapped in Ice4	15,121	(20377-1467-2109)*0.9	Water from TWRMF	1,680	(20,377-18,697)
	Water from Sewage Treatment Plant	0	Victory Nickel, 2013						l l
	Precipitation	4,641	Golder, 2009a						
	Nov-Apr Total TWRMF Inputs	20,377	(sum)	Nov-Apr Total Retained / Lost	18,697	(sum)	Nov-Apr Total PP Input	41,680	(sum)

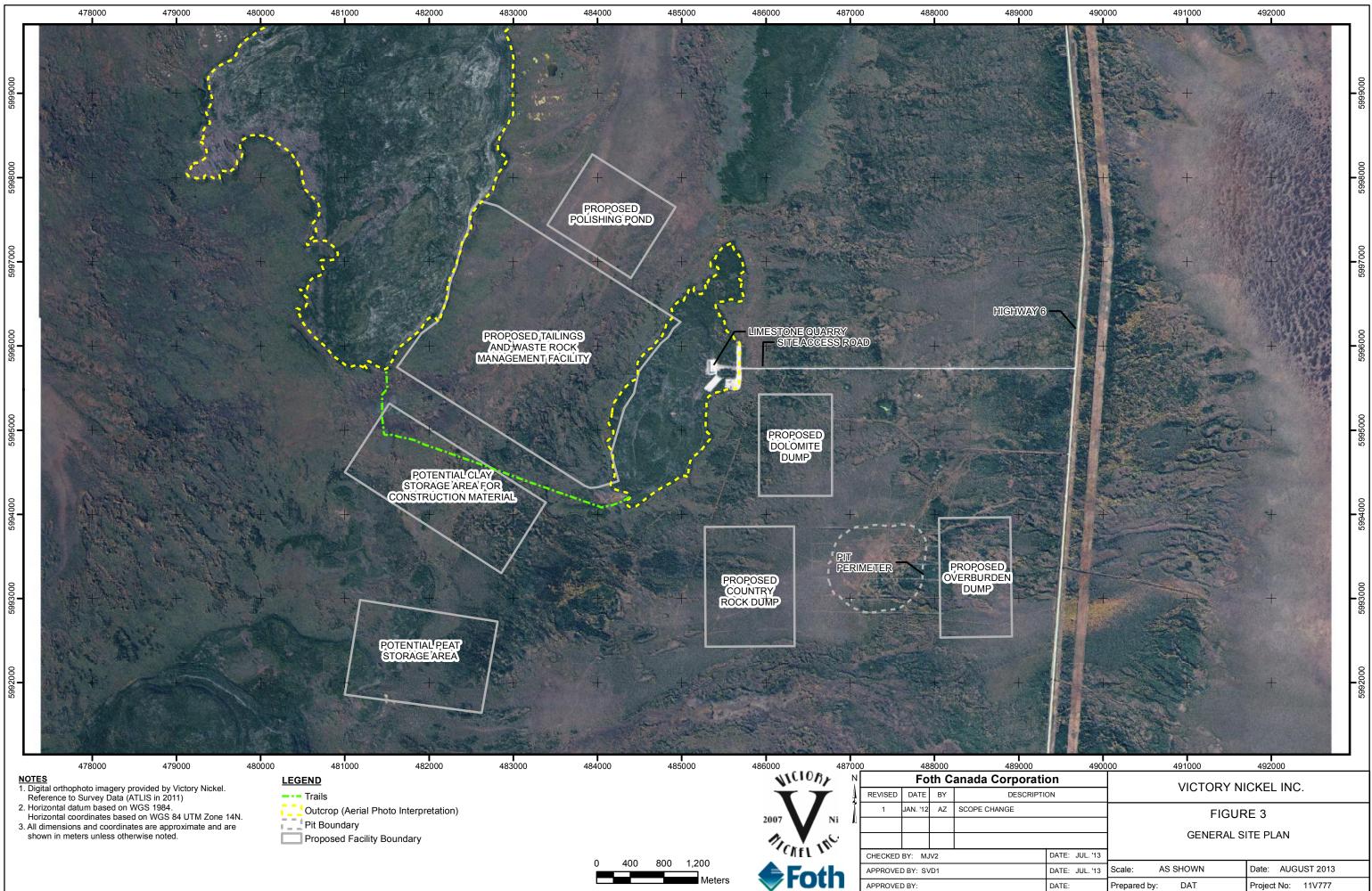
Notes: 1. TWRMF Water Inputs do not include seepage collection return water which will vary over the life of the mine untill it reaches a maximum of approximately 23 m³/d at closure (Appendix C).

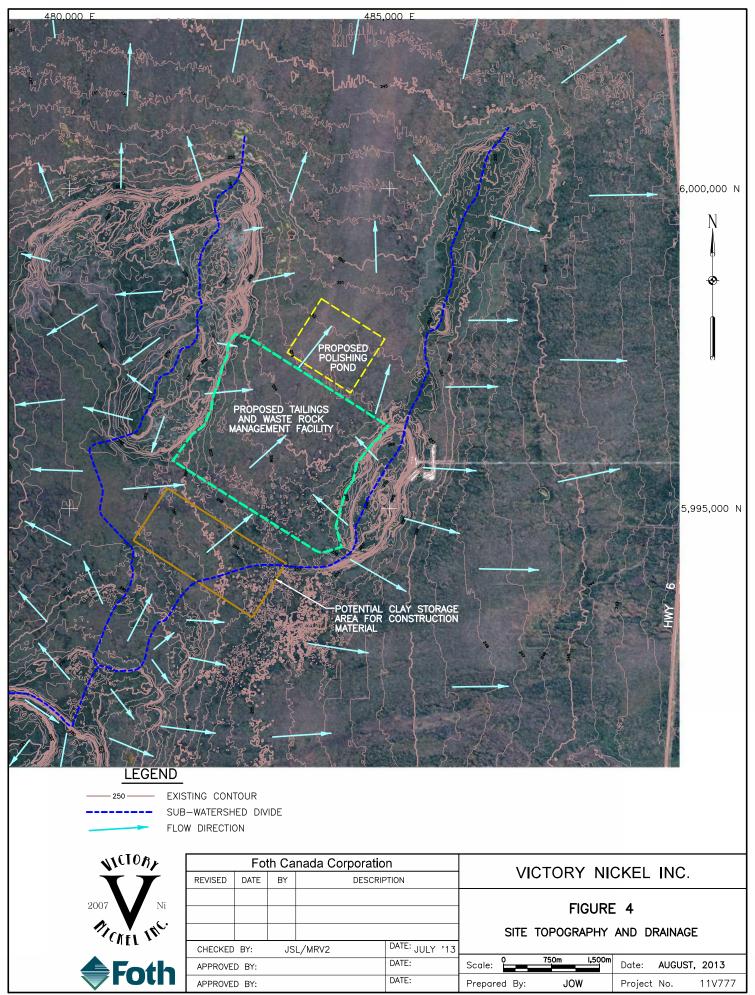

2. Evaporation rates from the TWRMF are assumed to be 50% of the lake evaporation measured for big lakes in the vicinity of the Minago Project. Lake evaporation rates are based on Golder, 2009a. 3. Sublimation rates are assumed to be 39% of annual snowfall (Golder, 2009a).

4. It is assumed that 90% of the supernatant water in the TWRMF remains entrapped in ice during the winter months.

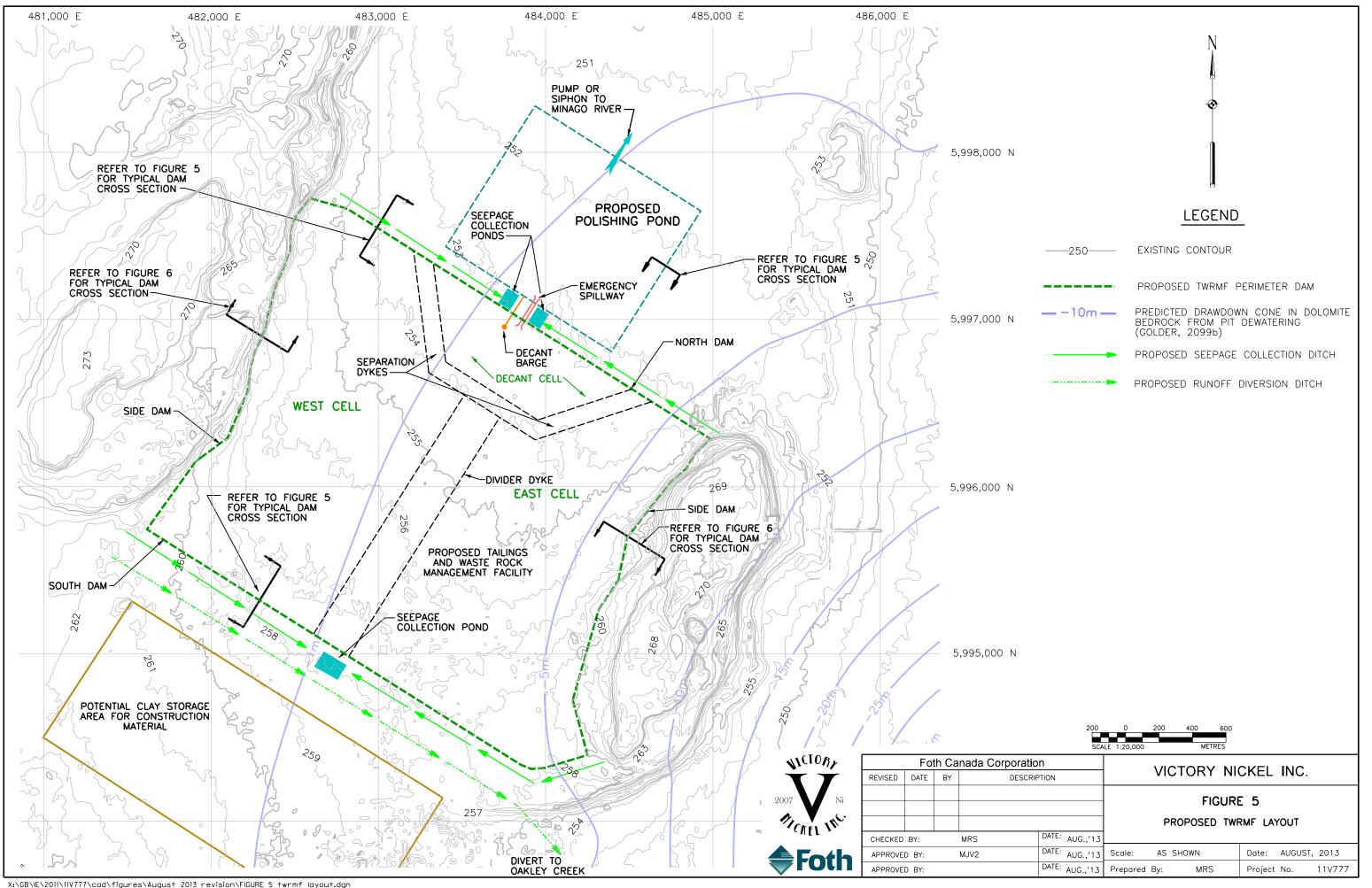

5. Includes water entrapped in ice in the TWRMF during the winter months.

Prepared By: MJV2 Checked By: MAN

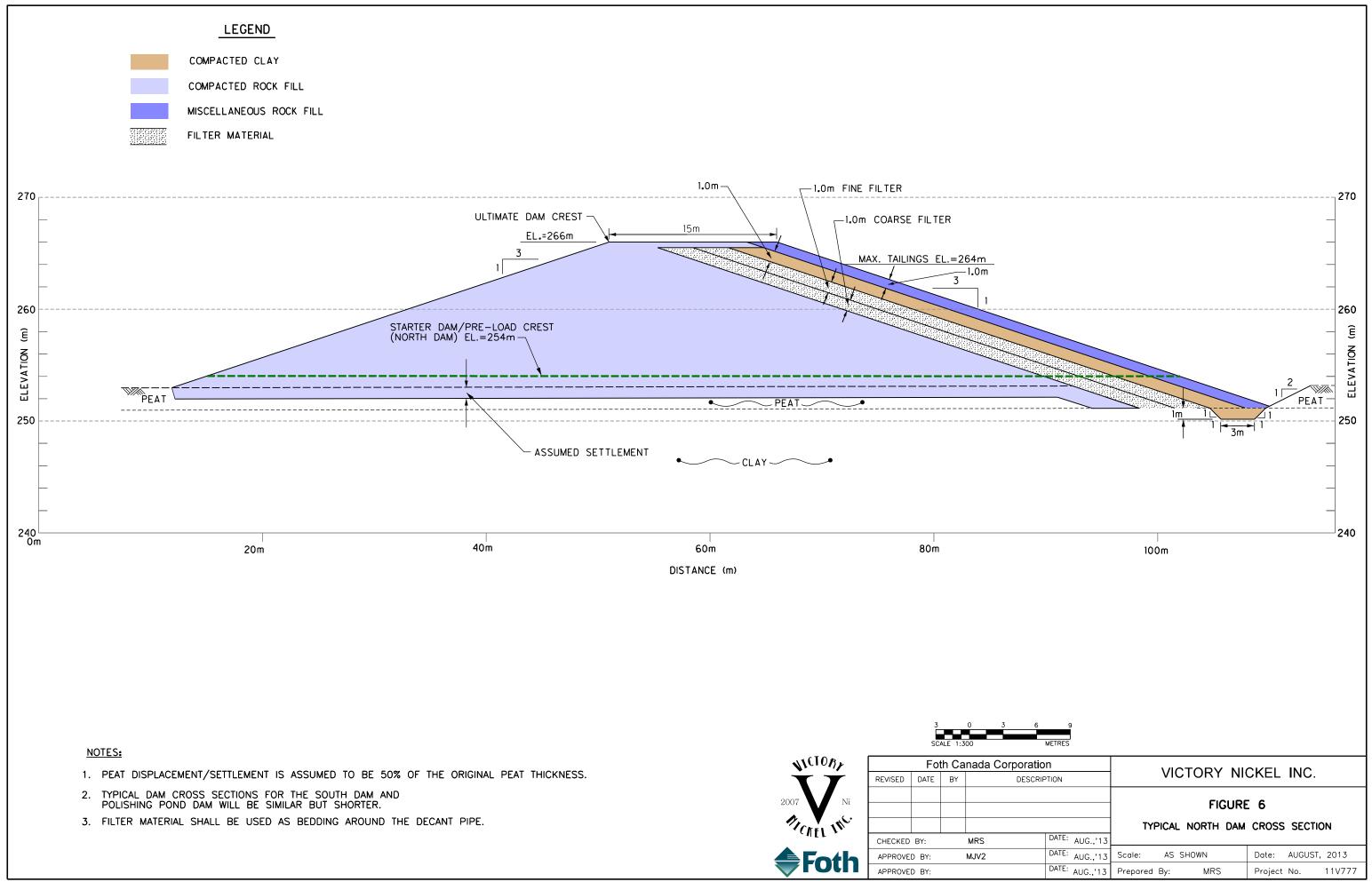

Figures

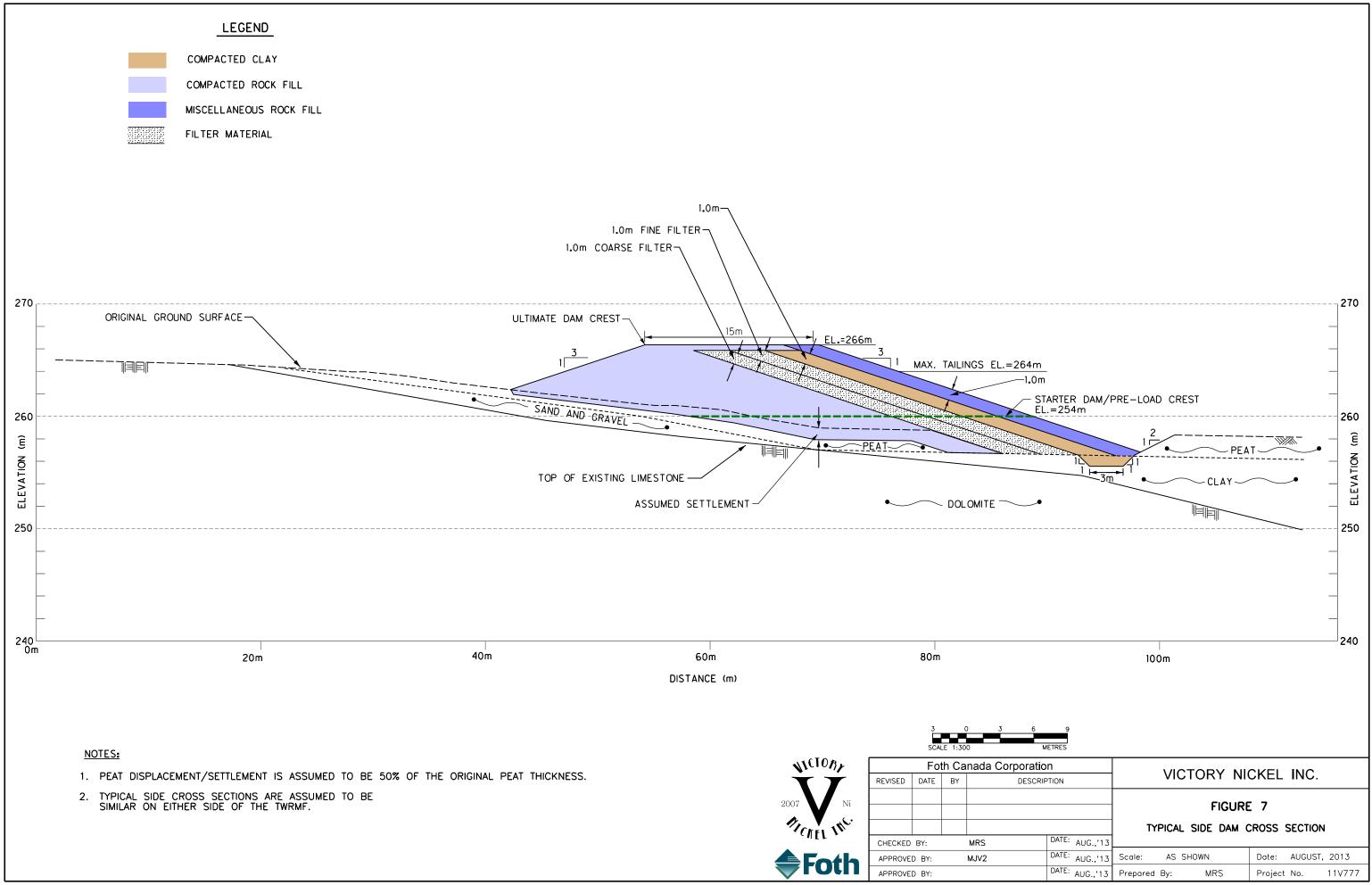


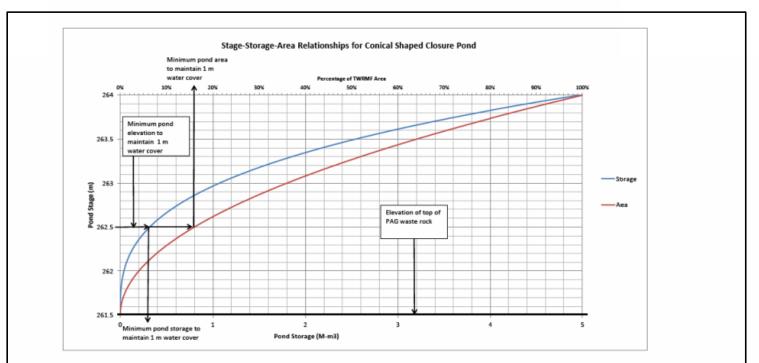
Path: X:\GB\IE\2011\11V777\GIS\mxd\July2013\Figure 1.mxd Date: 7/15/2013



489000 490	000 404	1000 1001	
+00000 +00	491	1000 4920	000




X:\GB\IE\2011\11V777\cad\figures\August 2013 revision\FIGURE 4 existing conditions.dgn 8/28/2013 JOW


X:\GB\E\2011\11V777\cad\figures\August 2013 revision\FIGURE 5 twrmf layout.dgn 8/28/2013 bjwl

X:\GB\E\2011\11V777\cad\figures\August 2013 revision\FIGURE 6 north dam cross section.dgn 8/28/2013 bjwl

X:\GB\E\2011\11V777\cad\figures\August 2013 revision\FIGURE 7 side dam cross section.dgn 8/28/2013 bjw1

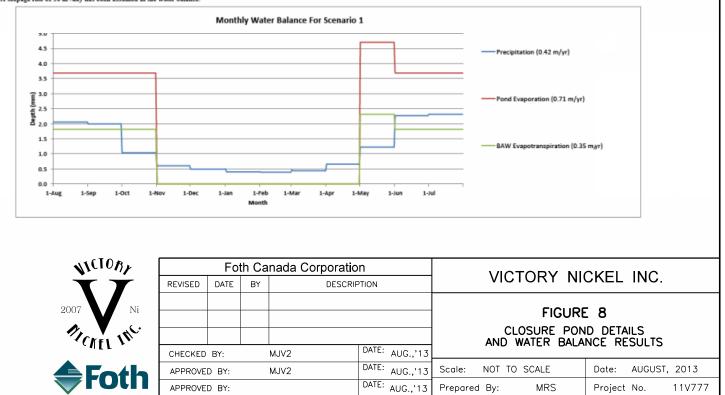
Closure Pond Water Balance Results

Scenario		ipitation ¹ /yr)	Pond Evaporation Rate ² (m/yr)	BAW Evapotranspiration Rate ³ (m/yr)	Pond Size (% of Total TWRMF Area)	Pond Surface Elevation (m)	Water Cover Thickness Above Top of PAG Waste Rock (m)	Comment
1	0.424	mean	0.71	0.35	21%	262.6	1.1	Long-term steady state pond size
2	0.288	100-yr dry year	0.71	0.35	12%	262.4	0.9	After 1 year dry event, beginning with 21% pond area.
3	0.424	mean	0.71	0.25	39%	263	1.5	Long-term steady state pond size
4	0.288	100-yr dry year	0.71	0.25	29%	262.8	1.3	After 1 year dry event, beginning with 39% pond area.
5	0.424	mean	0.71	0.15	50%	263.3	1.8	Long-term steady state pond size
6	0.288	100-yr dry year	0.71	0.15	40%	263.1	1.6	After 1 year dry event, beginning with : 50% pond area,

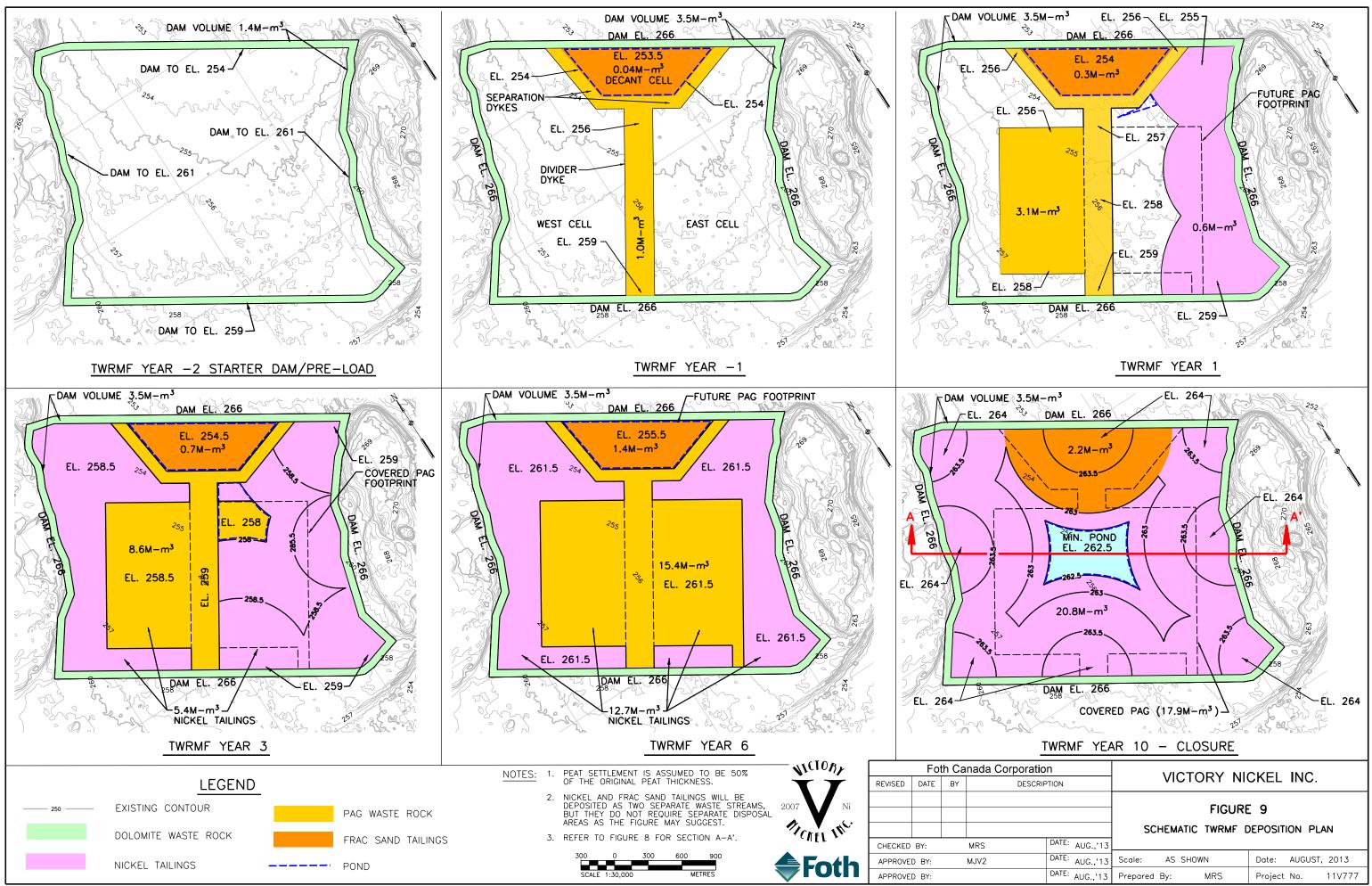
Notes:

1. Net precipitation is equal to the total annual precipitation minus sublimation (Golder 2009a). The monthly distribution of precipitation shown in Table 1 of this report was considered in the water balance. 2. Pond evaporation rate is assumed to be equal to the pan evaporation rate estimated to be 710 mm/yr (Golder 2009a). The monthly distribution of evaporation rates was considered in the water balance,

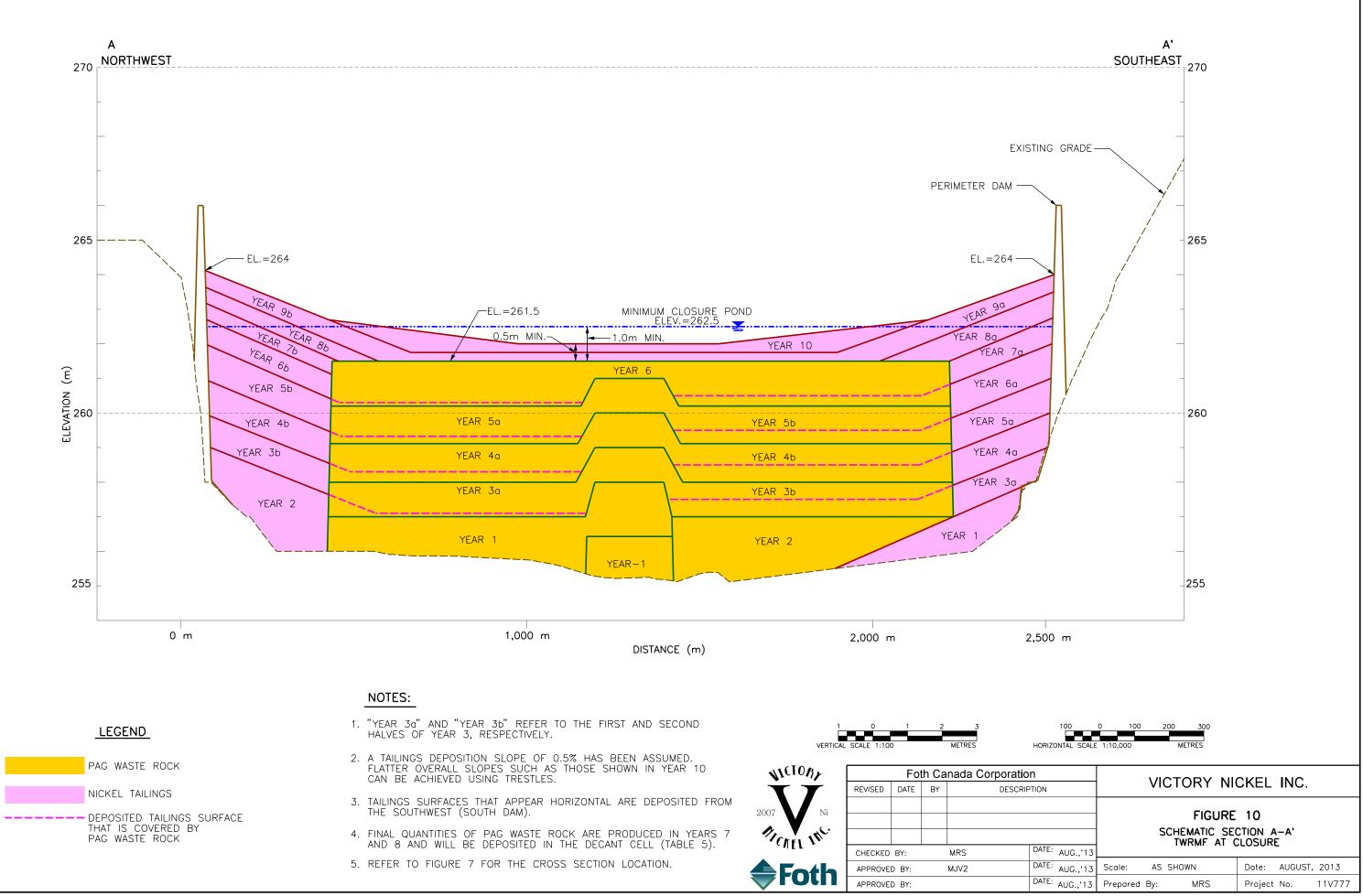
2. Fond evaporation rate is assumed to be equal to the pain evaporation rate estimated to be 710 m and was based on the ratios shown for lake evaporation rates in Table 1 of this report.


3. "BAW" refers to the tailings 'Beach Above Water'. Evapotranspiration estimates at the Minago site range from 338 mm/yr (Golder 2009a) to as much as 400mm/yr (EMRC, 1995).

Actual evapotranspiration rates for the TWRMF BAW are expected to be lower, due to the presence of an unsaturated tailings barrier and minimal vegetation growth. The monthly distribution of the


evapotranspiration rates was considered in water balance, and was based on the ratios shown for lake evaporation lakes in Table 1 of this report.

4. A tailings porosity of 0.3 has been assumed in the water balance.


5. A seepage rate of 30 $\mathrm{m}^3/\mathrm{day}$ has been assumed in the water balance

X:\CB\IE\2011\11V777\cad\figures\August 2013 revision\FIGURE 8 closure pond detail.dgn 8/28/2013 bjw1

X:\GB\E\2011\11V777\cad\figures\August 2013 revision\FIGURE 9 DEPOSITION PLAN.dgn 8/28/2013 bjw1

X:\GB\E\2011\11V777\cad\figures\August 2013 revision\FIGURE 10 cross section.dgn 8/28/2013 bjw1

Appendix A

Geotechnical Investigation Factual Report

Report

Geotechnical Investigation Factual Report

Minago Nickel Mine Project I.D.: 11V777

Victory Nickel Inc. Toronto, Ontario

August 2013

Geotechnical Investigation Factual Report Minago Nickel Mine

Distribution

1 Dr. David Mchaina Victory Nickel Inc. 1802 – 80 Richmond Street We Toronto, Ontario M5H 2A4	'est

Geotechnical Investigation Factual Report Minago Nickel Mine

Project ID: 11V777

Prepared for Victory Nickel Inc.

Toronto, Ontario

Prepared by Foth Canada Corporation

August 2013

REUSE OF DOCUMENTS

This document has been developed for a specific application and not for general use; therefore, it may not be used without the written approval of Foth. Unapproved use is at the sole responsibility of the unauthorized user.

Copyright©, Foth Canada Corporation 2013

401 Bay Street, Suite 1600 • Toronto, ON M5H 2Y4 • (416) 646-6603 • Fax: (416) 363-0406 • www.foth.com

Geotechnical Investigation Factual Report Minago Nickel Mine

Contents

		Pa	ige
List	of Ab	breviations, Acronyms, and Symbols	iii
1	1 Overview		
	1.1	Introduction	1
	1.2	Project Description	1
2	Back	ound Information	
	2.1	Site Geology	2
	2.2	Site Hydrology and Drainage	2
3	Geotechnical Investigation		3
	3.1	Previous Investigations	3
	3.2	Current Investigations	3
	3.3	Current Field Identification	4
	3.4	Current Observation Wells	4
4	4 Geotechnical Profile		5
	4.1	Peat	5
	4.2	Colluvium	6
	4.3	Upper Clay	6
	4.4	Intermediate Clay	6
	4.5	Lower Clay	8
	4.6	Glacial Till	9
	4.7	Dolomite Bedrock	10
	4.8	Remoulded Clay	10
5	Grou	Indwater Conditions	11
	5.1	General	11
	5.2	Confining Conditions	11
	5.3	Vertical Gradient	12
6	Conc	clusions and Recommendations	13
	6.1	Conclusions	13
	6.2	Recommendations	13
7	Refe	rences	15

Tables

Table 1	Results of Peat Field Tests
Table 2	Results of Peat Laboratory Tests
Table 3	Results of Upper Clay Field Tests
Table 4	Results of Upper Clay Laboratory Tests
Table 5	Results of Intermediate Clay Field Tests
Table 6	Results of Intermediate Clay Laboratory Tests

- Table 7Results of the Lower Clay Field Tests
- Table 8Results of the Lower Clay Laboratory Tests
- Table 9Results of Till Field Tests
- Table 10Results of Till Laboratory Tests
- Table 11Results of Dolomite Field Tests
- Table 12
 Results of Remoulded Clay Laboratory Tests
- Table 13
 Groundwater Level Measurements

Figures

- Figure 1 Site Location
- Figure 2 Site Topography and Drainage
- Figure 3 Historic Boreholes and Test Pits Investigation Plan
- Figure 4 Borehole and Test Pit Investigation Plan
- Figure 5 Cross Section Location Map
- Figure 6 Cross Section A-A'
- Figure 7 Cross Section B-B'
- Figure 8 Trench Section Location Map
- Figure 9 Trench Sections
- Figure 10 Peat Thickness Isopach Contours
- Figure 11 Clay Thickness Isopach Contours
- Figure 12 Overburden Thickness Isopach Contours
- Figure 13 SPT "N" Vs. Depth
- Figure 14 Undrained Shear Strength Measured by Penetrometer vs. Depth
- Figure 15 Undrained Shear Strength Measured by Shear Vane vs. Depth
- Figure 16 Normalized Undrained Shear Strength Measured by Shear Vane vs. Depth
- Figure 17 Natural Moisture Content vs. Depth
- Figure 18 Groundwater Hydrograph
- Figure 19 Groundwater Elevation vs. Ground Surface Elevation

Appendices

- Appendix A Victory Nickel Field Investigations
- Appendix B Borehole and Test Pit Locations and Stratigraphy
- Appendix C Borehole Logs
- Appendix D Test Pit Logs
- Appendix E Project Geotechnical Investigation Photo Logs
- Appendix F Core Photo Logs
- Appendix G Packer Test Analyses
- Appendix H Geotechnical Laboratory Results

List of Abbreviations, Acronyms, and Symbols

Cc	compression index
cm/s	centimeters per second
CU	Consolidated Undrained
Foth	Foth Canada Corporation
ASTM	American Society for Testing and Materials
Golder	Golder Associates Ltd.
FI	Fracture Indices
ISRM	International Society for Rock Mechanics
km	kilometer
mm	millimeter
O.D.	outer diameter
PP	Polishing Pond
PVC	polyvinyl chloride
RQD	Rock Quality Designation
SCR	Solid Core Recovery
Site	Minago Site
SPT	Standard Penetration Tests
TCR	Total Core Recovery
TWRMF	Tailings and Waste Rock Management Facility
USCS	Unified Soil Classification System
yr	year

1 Overview

1.1 Introduction

Foth Canada Corporation (Foth) conducted geotechnical site investigations known as Phase 1 and Phase 2 during January and March 2012, respectively. These investigations were conducted in an area of additional recent land lease purchase that was unavailable during the previous 2010 Feasibility Study (Wardrop, 2010). The scope of this work comprises the compilation of the Factual Data pertaining to the 2012 investigations and the subsequent Material Testing by Golder Associates Ltd. (Golder).

The Phase 1 site investigation program included geotechnical drilling, performing in-situ tests, installation of monitoring wells, and soil sampling for laboratory testing. The Phase 2 site investigation involved test pit and trench excavations with a specific focus on characterizing the bedrock topography in the overburden areas bordering bedrock outcrops proposed for the containment structures. The results of these geotechnical investigations are used to define the geotechnical profile including the overburden soils, the upper dolomite bedrock, as well as groundwater conditions in the area of investigation.

1.2 Project Description

The Minago Site (Site) is located in Manitoba's Thompson Nickel Belt on Highway 6, approximated 225 kilometer (km) south of Thompson Manitoba, Canada (Figure 1). It is situated within a water-saturated peat terrain, a topographically low area with isolated bedrock outcrop "islands" (Figure 2). The previous Geotechnical Investigation work by Wardrop in 2007 and 2008 focused on an area to the east of the 2012 investigation, on the other side of a limestone bluff (Wardrop, 2010). Because of the discovery of mineral resources below the current Tailings and Waste Rock Management Facility (TWRMF), an alternative site to the west of the limestone bluff was investigated.

The structures which are to be relocated to the proposed site comprise:

- The TWRMF to store some 44 million cubic meters of rock and tailings.
- The associated Polishing Pond (PP) designed to receive effluent from the TWRMF.

The TWRMF and PP are proposed to occupy a long, narrow water-saturated muskeg/peat wetland with some forested areas approximately 4 km northwest of the proposed pit. This lowland extends approximately 8 km from the southwest to the northeast and is bound on the east and west by sub-parallel dolomite bedrock ridges, approximately 2.5 km apart. The ridges rise nearly 20 meters above the wetland valley that slopes gently (approximately 0.2%), but consistently to the north-northeast. The proposed TWRMF and PP structures would be situated between the ridges, and along the lowland.

2 Background Information

2.1 Site Geology

The relevant units of the stratigraphic column are the unconsolidated Quaternary to Recent overburden of the Manitoba Plain, which in this area includes an uppermost peat horizon overlying stratified clay horizons with a clastic base and the underlying upper Ordovician dolomite bedrock.

2.2 Site Hydrology and Drainage

Regionally the project site is located within the Nelson River sub-basin, which contains the Minago River, Hargrave River, and William River with the Oakley Creek tributaries. The catchments of these three rivers are within the Lake Winnipeg basin, which ultimately drains northward into Hudson Bay. Within a 30 km radius of the project site there are several small-to-medium sized surface water bodies, including Limestone Bay, which forms the northeastern end of Lake Winnipeg.

The Minago and Hargrave Rivers flows in the northeast direction into Cross Lake, before reaching the Nelson River. The Oakley Creek flows in the southeast direction into the William River. The William River flows from William Lake in the northeast direction until reaching about 20 km downstream of Highway 6, where it turns 90 degrees to the southeast direction, draining into Limestone Bay (part of Lake Winnipeg).

Annual precipitation is approximately 510 millimeter (mm), with approximately 40 mm consumed as sublimation during the winter. Evaporation from open water surfaces is estimated at approximately 560 mm/year (yr). Golder (2009) estimated average runoff from the overall area at approximately 117 mm/yr based on precipitation and stream gauging records. Recharge and evaporation in muskeg areas has not been directly measured.

Areas on the dolomite ridges will produce surface water runoff that will report towards the area under consideration. Inferred groundwater flow direction is north to northeast towards the Minago River. Although this will reflect pre-construction and post-closure conditions at the Minago project, open pit dewatering during site preparations and operations may have an impact on the groundwater flow patterns. Further evaluations may be required to allow regulatorsto establish monitoring requirements in relation to the compliance point, where water is discharged from the PP to the environment.

3 Geotechnical Investigation

3.1 **Previous Investigations**

The subsurface conditions in the vicinity of the deposit were investigated during the winter months of 2007 and 2008 under the supervision of Wardrop (Wardrop, 2010). For these investigations by Wardrop, a total 90 boreholes were drilled and 8 test pits were excavated (Figure 3). Additional test pits were excavated by Victory Nickel in 2011. The locations of the 2011 test pits are shown on Figure 3 and the results are shown in Appendix A. Since the current investigation is some five km from the area of the original investigations, that information is not presented with this Factual Report.

3.2 Current Investigations

The subsurface conditions in the vicinity of the proposed TWRMF and PP were investigated during the winter months, January and March of 2012. This field work was supervised on a full-time basis by Foth's field representative who observed drilling, excavating, sampling, and in-situ testing procedures.

The drilling was completed using an Acker Soil Sentry track-mounted hydraulic rig equipped with a 125 mm diameter solid/hollow stem continuous flights auger operated by Paddock Drilling Ltd. of Winnipeg, Manitoba. Samples from the upper 3.5 meters of soil were recovered at 0.76 meter intervals using a 50 mm outer diameter (O.D.) split-spoon sampler by conducting Standard Penetration Tests (SPT) in accordance with the procedures outlined in the American Society for Testing and Materials (ASTM) Specification D1586. Below this depth of 3.5 m, the soil samples were recovered at 1.52 meter intervals until refusal to auguring. Upon determining the continuity of the peat and clay formations, sample intervals varied between 1.52 and approximately 6 meters.

A total of 17 boreholes were advanced to characterize the proposed TWRMF and five boreholes were advanced to characterize the proposed PP (Figure 4). Of the 22 boreholes advanced, 8 boreholes were advanced to auger refusal without sampling the overburden. Single piezometers were installed in 8 boreholes and nested piezometers were installed in 2 boreholes. Bedrock was cored in 2 boreholes. A complete list of test pits and as-drilled boreholes conducted by Foth, including the coordinates, elevations, and other pertinent information such as thickness and depth to the individual soil strata encountered, total drilled depths in overburden and bedrock is provided in Appendix B. Details about the subsurface conditions and observation well construction are provided in the Borehole and Test Pit Logs in Appendix C and D, respectively. Photo log documentation from the test pit/trench investigation is shown in Appendix E and the drill core photos is provided in Appendix F. Appendix G includes the packer test data. The geotechnical laboratory report prepared by Golder is included as Appendix G.

Four trench and test pit transects were excavated along each ridge that bounds the proposed TWRMF (Figure 4). The transects extended from bedrock exposures into the lowlands in order to characterize the subsurface conditions along the margins of the wetland valley. The transect was terminated when two meters of clay was encountered in the excavation.

Additional test pits were excavated by Victory Nickel during the 2012 Geotechnical Investigation completed by Foth. The proposed test pit locations are also shown on Figure 4.

3.3 Current Field Identification

Field identification of the unconsolidated soil formations was based on visual and tactile examination of the samples obtained from the split-spoon barrel, auger cuttings, excavation equipment, and from the bottom of thin-walled Shelby tubes. The in-situ undrained shear strength of cohesive soils was estimated using pocket penetrometer, nilcon vane, and standard vane equipment. The pocket penetrometer tests were conducted on recovered cohesive soil samples, while the vane tests were conducted down-hole.

Disturbed and undisturbed soil samples were collected from boreholes and test pits for geotechnical laboratory analysis. Disturbed samples were collected from split-spoon barrels or as grab samples and were logged and placed in labeled plastic bags. Undisturbed samples were collected using thin-walled Shelby tubes which were sealed with plastic end caps and duct tape and placed in insulated boxes. Soil samples were shipped to Golder's Mississauga geotechnical laboratory for analysis.

A total of two out of 16 boreholes were drilled into the bedrock along the east and west margin of the wetland basin within the proposed TWRMF footprint, where the overburden thickness was minimal. The use of HQ size wireline equipment allowed recovery of 63.5 mm diameter rock cores. The recovered cores were placed in core boxes, logged and photographed and then shipped and stored at Victory Nickel's core shack in Grand Rapids, Manitoba. Total Core Recovery (TCR), Solid Core Recovery (SCR), Rock Quality Designation (RQD) values, and Fracture Indices (FI) were recorded by Foth's representative at the site. These parameters were recorded in accordance with the conventions used by the International Society for Rock Mechanics (ISRM). Two in-situ single packer tests were conducted in the lower 3 meters of bedrock to determine the hydraulic conductivity ("K" value) of the Ordovician dolomite.

3.4 Current Observation Wells

A total of eight 50 mm diameter observation wells were installed in the clay overburden at the proposed TWRMF and PP to monitor piezometric heads. Two additional 50 mm diameter observation wells were installed at the bottom of the boreholes drilled into the bedrock in order to monitor the piezometric heads originating in bedrock. The wells were designed with a screened portion at the bottom of a polyvinyl chloride (PVC) pipe with an above-grade extension of approximately one meter. Well gravel was placed in the annular space between the borehole and the PVC pipe up to 50 mm above the screen segment. A mixture of granular bentonite and soil cuttings was used for sealing the wells above the screen. The borehole survey was conducted by Pollock and Wright contracted directly by Victory Nickel in March 2012, approximately one month after completion of the field investigation program.

Victory Nickel personnel conducted additional geotechnical investigations in the area of the proposed pit. This data is not included in this report.

4 Geotechnical Profile

The area of investigation is approximately 3 km by 4 km, centered on a wetland valley bounded on the east and west by bedrock ridges (Figure 4). The flanking ridges define the long dimension of an asymmetrical bedrock valley that is partially filled with overburden formations. These are, from youngest to oldest: Peat, Colluvium, Upper Clay, Intermediate Clay, Lower Clay, and Glacial Till all underlain by Dolomite Bedrock.

The transect basemap and geotechnical cross-sections from the geotechnical drilling are shown on Figures 5, 6, and 7. The test pit subsurface data was interpreted into multiple transects along the east dolomite bedrock ridge and west dolomite bedrock ridge. The transect basemap and geotechnical cross-sections from the test pit excavations are shown on Figures 8 and 9.

A brief unit specific summary is provided below, including a summary of all field and geotechnical laboratory results. A detailed summary of supporting field and laboratory data in a table format is presented in Tables 1 through 12.

4.1 Peat

Peat is found at the surface in the lowest part of the valley between the two limestone bedrock ridges. The peat is comprised of fine to coarse organic material formed from muskeg, which is an accumulation of sphagnum moss, leaves, and decayed wetland vegetation. Peat generally exhibits coarse to fine fibrous structure with woody and non-woody components, grading downward into granular, then amorphous organic material.

A total of 8 SPTs were conducted in the field on the peat unit. The SPT results ranged from one (very soft) to seven (firm) blows per 0.3 meters, with an average SPT of 2.8 indicating a soft unit. The field results are summarized in Table 1.

Laboratory tests were conducted on peat samples including moisture content Atterberg limits, specific gravity, hydraulic conductivity, and consolidation. The laboratory results are presented in Appendix H and summarized in Table 2.

Moisture content tests were generally high, ranging from 43% to 1,184%, with an average of 491%. Specific gravity test was conducted on one sample, resulting in a value of 1.65. Atterberg Limit tests were conducted on two samples: one that had approximately the average moisture content of all samples tested, and the other with moisture content on the lower end. Liquid limit, plastic limit, and plasticity index of the sample with the average moisture content 305%, 269%, and 36%, respectively. The Unified Soil Classification System (USCS) symbol for this soil unit is peat.

Liquid limit, plastic limit, and plasticity index of the sample with the lower end moisture content is 65%, 36%, and 29%, respectively. The liquid limit plasticity classification indicated the samples exhibit a high plasticity; and the plasticity chart indicated the sample behavior is comparable to high plasticity silt or organic clay (MH/OH).

Hydraulic conductivity and one-dimensional consolidation test was conducted on one peat sample. The peat sample had a hydraulic conductivity of 3.26E-7 m/s indicating a low relative permeability. The consolidation tests compression index (Cc) for the material was 2.1.

4.2 Colluvium

Clastic material was found overlying the flanking bedrock ridges extending down to the wetland valley. This earth material consists of silty sand, gravel and cobbles that has accumulated along the slope of the bedrock ridge as a result of erosion. Moderately sorted sand lenses are locally intercalated with the colluvium.

This unit was identified in all test pits and trenches except FCD-11, which is located within the wetland valley. These deposits are characterized by wide variations in grain size over short distances. The tabular or "flag stone" nature of the coarsest fraction of these deposits display a distinctive imbricate structure.

4.3 Upper Clay

The upper clay unit is 1-2 meters thick and exhibits a high plasticity and typically soft to firm consistency. This upper unit occurs directly beneath the peat on the west side of the valley. The inclusion of similarly soft, but slightly less plastic clay extends the limits of this upper horizon to all borehole locations except the two northern-most logged boreholes. The upper clay unit is underlain by an intermediate clay unit.

SPT values ranged from 3 (soft) to 6 (firm) in this material with an average of 4 blows per 0.3 meters, suggesting a firm clay. Undrained shear strengths measured using the pocket penetrometer ranged from 24 (soft) to 96 kPa (stiff) averaging 72 kPa (stiff). One in-situ vane shear test recorded initial 57 kPa (stiff) and remoulded 11 kPa, indicating a low sensitivity. The field results are summarized in Table 3.

Laboratory tests were conducted on the upper clay samples including moisture content, specific gravity, and consolidation. The laboratory results are presented in Appendix H and summarized in Table 4.

Moisture contents ranged from 22.5% to 38.2%, with an average of 28%. Specific gravity test resulted in a value of 2.68. One-dimensional odometer consolidation tests were conducted on one undisturbed (Shelby tube) sample taken from FTWR30. The sample was subjected to various increments of constant stress and then unloaded. Based on the test results, the upper clay unit is considered to be in an over-consolidated state, with an over-consolidation ratio of 3.3; the Cc was 0.16.

4.4 Intermediate Clay

The Intermediate Clay unit occurs below the peat unit or below the upper clay unit where present. This clay unit displays a generally consistent thickness of approximately five meters in the wetland valley, becoming somewhat thicker to the east and south. Near the east side of the wetland valley the intermediate clay thins to approximately two meters before grading laterally into and becoming locally overlain by colluvium derived from the flanking ridges.

The intermediate clay unit exhibits evidence of clay weathering that extends from approximately half to the entire thickness of the unit. The clay weathering was observed in test pits (FCD11; VNEE01-TP06; VNEE01-TP07; VNEE02-TP04; VNEE02-TP06; and VNEE03-TP04), and in soil boring samples at the geotechnical laboratory. The observations of clay weathering included a range of features including:

- Grey colouration over the entire interval or grey colored inclusions within brown mass;
- "Mottled" texture;
- Presence of organics or trace organics;
- Friable fabric;
- Planar lamination features that appear as fissures, running parallel and/or perpendicular to bedding; fissures may also exhibit grey coloration; and
- Blocky structure.

The potential cause of the clay weathering could be explained by dessication of the sample, unloading of the overlying soil column, or post-glacial weathering prior to the development of the peat horizon.

The unit is underlain by the lower clay unit over the majority of the valley, where the soil column exceeds six meters on the west and 10 meters on the east. Along the western and eastern edges of the valley, this unit is underlain by dolomite bedrock and ranges in thickness from 1 to 7 meters.

A total of 63 field tests were conducted on the Intermediate Clay including SPT and undrained shear strength based on the pocket penetrometer and in-situ vane shear. The SPT results range from 3 (soft) to 21 (very stiff), with an average 12.8 blows per 0.3 meters, indicating a stiff material. Undrained shear strengths measured using the pocket penetrometer ranged from 0 (very soft) to 431 kPa (hard), with an average of 262 indicating a hard material. The in-situ vane shear test initial strength ranged from 29 (firm) to 76 (stiff), with an average of 53 kPa indicating a stiff material. A calculation of the initial to remoulded undrained shear strength indicated a low sensitivity on average. The field results are summarized in Table 5.

A total of 60 laboratory tests were conducted on intermediate clay samples including grain size distribution, Atterberg limits, moisture content, unit weight, specific gravity, hydraulic conductivity, consolidation, and triaxial tests. The laboratory results are presented in Appendix H and summarized in Table 6.

The grain size distribution results ranged from: silt with trace fine-medium sand (ML), to silty clay with some fine-coarse sand and trace fine gravel (CL), to clayey silt with trace fine-medium sand (CL-ML).

The liquid limit, plastic limit, and plasticity index of the samples averaged 43%, 17%, and 26%, respectively. The liquid limit plasticity classification indicated the samples exhibit a medium plasticity; and the moisture contents ranged from 18% to 48%, with an average of 24%. The unit weight of the material averages 20 kN/m3.

Hydraulic conductivity tests were carried out on undisturbed (Shelby tube) samples taken from FTWR-11 and FTWR-16. Note: both of these samples were collected from the zone of observed clay weathering. The sample tested from FTWR-11 had a hydraulic conductivity of 5.10E-9 centimeters per second (cm/s) and the sample from FTWR-16 was 1.21E-8 cm/s, indicating relatively impervious materials.

One-dimensional odometer consolidation tests were conducted on two undisturbed (Shelby tube) samples taken from FPP4 and FTWR11. The samples were subjected to various increments of constant stress and then unloaded. Based on the test results, the intermediate clay unit is considered to be in an over-consolidated state, with an average over-consolidation ratio of 4.0; the average Cc was 0.17.

Consolidated Undrained (CU) Triaxial tests with pore pressure measurements were carried out on undisturbed (Shelby tube) samples recovered from FPP4 and FTWR11. Three samples were trimmed from each Shelby tube and tested under different confining pressures. Each specimen was saturated using the backpressure technique, consolidated, and then subjected to compressive loading. The effective internal angle of friction is 28 degrees and 26 degrees for FPP4 and FTWR11, respectively. The effective cohesion is 31 kPa and 35 kPa for FPP4 and FTWR11, respectively.

4.5 Lower Clay

The lower clay unit exhibits a high plasticity and the consistency of the clay becomes softer as the thickness of the unit increases. The lower clay always occurs directly beneath the stiff clay unit described above, reaching a thickness of 16 meters. This unit is thickest to the east of the long axis of the valley and thins to approximately two meters at the foot of the east and west limestone ridges. The lower clay unit is underlain by dolomite bedrock, except in isolated areas where a meter or less of poorly sorted, clastic material separates this unit from the bedrock.

A total of 75 field tests were conducted on the lower clay including SPT and undrained shear strength based on the pocket penetrometer and in-situ vane shear. The SPT results range from 1 (very soft) to 27 (very stiff), with an average of 7 blows per 0.3 meters, indicating a firm material. Undrained shear strengths measured using the pocket penetrometer ranged from 0 (very soft) to 431 kPa (hard), with an average of 93 kPa indicating a stiff material. The in-situ vane shear test initial strength ranged from 1 kPa (very soft) to 24 kPa (soft), with an average of 10 kPa indicating a very soft material. A calculation of the initial to remoulded undrained shear strength indicated a high sensitivity on average. The field results are presented in Appendix H and summarized in Table 7.

Laboratory tests were conducted on samples from this unit including grain size distribution, Atterberg limits, moisture content, unit weight, specific gravity, consolidation, and triaxial tests. The laboratory results are presented in Appendix H summarized in Table 8. The grain size distribution results ranged from: clay (CH), to clay with some fine-coarse sand, and trace fine gravel (CH), to clay with trace fine-medium sand (CH).

The liquid limit, plastic limit, and plasticity index of the samples averaged 53%, 21%, and 36%, respectively. The liquid limit plasticity classification indicated the samples exhibit a high plasticity; and the plasticity chart indicated the sample behavior is comparable to high plasticity clay (CH).

Moisture contents ranged from 7.4% to 60.5%, with an average of 35.3%. The unit weight of the material averages 19 kN/m3.

One-dimensional odometer consolidation tests were conducted on two undisturbed (Shelby tube) samples taken from FTWR14 and FTWR30. The samples were subjected to various increments of constant stress and then unloaded. Based on the test results, the lower CH unit is considered to be in a slightly over-consolidated state. The average over-consolidation ratio is 1.3. The average Cc is 0.4.

CU Triaxial tests with pore pressure measurements were carried out on four undisturbed (Shelby tube) samples recovered from FPP12, FPP14, FPP4, and FTWR30. Three samples were trimmed from each Shelby tube and tested under different confining pressures. Each specimen was saturated using the backpressure technique, consolidated and then subjected to compressive loading. The effective internal angle of friction ranged from 19 degrees to 27 degrees with an average of 23 degrees. The effective cohesion ranged from 18 kPa to 24 kPa with an average of 21 kPa.

4.6 Glacial Till

Silt-rich and gravel-rich diamictons that may represent glacial till or clastic erosional debris were encountered sporadically within the wetland valley. The material is typically less than two meters in thickness and is underlain by dolomite bedrock. This unit is overlain by the lower clay unit.

A total of six SPTs were conducted on the till. The SPT results range from 3 (soft) to 97 (hard) with an average 45 blows per 0.3 meters, indicating a hard unit. The field results are summarized in Table 9.

A total of nine laboratory tests were conducted on till samples including Atterberg limits, moisture content, unit weight, and grain size analysis. The laboratory results are presented in Appendix H summarized in Table 10.

The grain size distribution results ranged from silt and well graded sand with some clay and trace fine gravel (ML/SW), to silt with some clay and some fine-coarse sand and trace fine gravel (ML).

The liquid limit, plastic limit, and plasticity index of the sample was 19%, 11%, and 9%, respectively. The liquid limit plasticity classification indicated the samples exhibit a low

plasticity; and the plasticity chart indicated the sample behavior is comparable to low plasticity clay (CL).

Moisture contents ranged from 11% to 30%, averaging 15%. The unit weight of the material was 23 kN/m3.

4.7 Dolomite Bedrock

The dolomite is generally fine grained with some shell and crinoid stem fossil fragments. In FTWR-11BR the bedrock is highly weathered to 1.2 meters below the subcrop surface grading to moderately weathered with depth. The weathered dolomite is generally Grade R2, weak rock with poor to fair quality. The grade increased to R3 or a medium strong rock as the weathering intensity decreased. The drill core is moderately jointed with very rough joint surfaces and wavy bedding. RDQ ranged from 26.3% to 88.8% (poor to good quality).

In FTWR-16BR the dolomite bedrock is slightly weathered with a Grade R3 indicating a medium strong rock. Joints observed were generally widely spaced with very rough joint surfaces and wavy bedding. RQDs ranged from 34.4% to 100% with most of the core falling into the category of excellent quality.

Dolomite bedrock was encountered between 0.6 meters and 24.7 meters below grade in two drill holes (FTWR-11BR and FTWR-16BR) and most of the test pits. Figures 10, 11, and 12 show the thickness of unconsolidated material overlying the bedrock surface.

Two field hydraulic conductivity tests were conducted in the dolomite using an inflatable packer and "Lugeon" methodology. The tests were conducted over an approximate 4-meter interval within boreholes FTWR-11BR and FTWR-16BR. The field results ranged from 10⁻⁴ cm/s to 10⁻⁵ cm/s indicating an equivalent permeability that would be characteristic of sandy silt to silt soil. The field results are summarized in Table 11.

4.8 Remoulded Clay

Clay samples collected from Test Pit FCD11 at depths of 2 meters and 6.1 meters, Test Pit VNEE02 at a depth of 3.5 meters and Test Pit VNWE03 at a depth of 4.2 meters were remoulded to approximately 93 percent of Standard Proctor Density at the appropriate moisture content for that density in order to run consolidation, hydraulic conductivity, standard proctor and triaxial compression tests.

The test results will assist in determining the workability of the clays that will be utilized in the planning of the test fill sections and as part of the overall usage of the clays as liner materials in the TWRMF. The testing was completed at Golder's Missisauga geotechnical laboratory and the results are presented in Appendix H and summarized in Table 12.

5 Groundwater Conditions

5.1 General

A total of eight observation wells were installed in the clay overburden, and two observation wells in the dolomite bedrock. The dolomite bedrock wells were nested with two of the clay overburden observation wells. Groundwater level measurements were collected from the observation wells on February 7, 2012 and April 26, 2012. In addition, groundwater levels observed in open test pits were recorded in March 2012. The water level measurements are summarized in Table 12.

Figure 18 is a hydrograph of groundwater elevation for the observation wells and test pits. The groundwater hydrograph shows an upward trend for all of the observations wells, with the exception of FTWR16U. This may suggest that the groundwater elevations measured in February following well construction may not have been fully equilibrated to static conditions. The upward trend was most pronounced in FTWR16BR, potentially suggesting a slow recharge rate from the dolomite bedrock. Additional measurements will be required to confirm this trend. Also, in April the groundwater was frozen at observation wells FPP14, FTWR12, and FTWR11U, and the water level meter became stuck at FTWR16U, possibly the cause of the anomalous trend at FTWR16U.

5.2 Confining Conditions

Relatively high piezometric heads were observed in the two dolomite bedrock observation wells FTWR16BR and FTWR11BR; located on the east ridge and west ridge, respectively. The groundwater elevation observed in the bedrock observation wells was generally above the elevation of the dolomite bedrock unit. This observation may indicate that the bedrock unit is in a confined or semi-confined condition. During the April monitoring event, the groundwater elevations were within less than 0.01 meter and 0.07 meter of ground surface in FTWR16BR and FTWR11BR, respectively. With only one bedrock observation well on each ridge and limited data, the presence of groundwater mounding cannot be proved. Additional observation wells along the dolomite ridges should be considered to establish the presence and persistence of groundwater mounding, and to further explore the potential for dynamic containment as a design consideration.

There is some evidence of the clay acting as a confining layer separating an upper aquifer from a bedrock aquifer in the test pit investigations. During both the Victory Nickel test pit investigation (2008) and the more recent test pit investigation performed by Foth, a number of the excavations observed inflowing of groundwater to the pit once the bedrock surface was exposed. Flow was measured at Victory Nickel TP17 and the groundwater filled the trench to a depth of 1 meter in about 8 minutes. Test pits VNWE01-TP07 and VNWE02-TP02 both indicated percolating groundwater when the bedrock surface was exposed. Test pit VNWE02-TP03 documented heavy groundwater flow at the bedrock/soil interface.

5.3 Vertical Gradient

Two overburden observation wells FTWR11U and FTWR16U were nested with the bedrock wells FTWR11BR and FTWR16BR, respectively. The nested groundwater observations wells were installed to determine if vertical gradients are present between the dolomite bedrock and clay layer. The groundwater elevations in the nested observations wells are shown in Table 13.

The vertical gradient in February was likely misleading as the groundwater elevations may not have been fully equilibrated to static conditions. In April 2012, both nests exhibited an upward vertical gradient, however, as noted above, FTWR11U was frozen and the water level meter became stuck at FTWR16U. In May 2013, the FTWR11 nest exhibited a downward gradient. At this point there is presumptive evidence of upward vertical gradients in the dolomite ridges, but not conclusive. Additional measurements should be collected to establish the definitive presence and/or seasonal fluctuation of vertical gradients within the dolomite bedrock.

Figure 19 is a scatter plot of groundwater elevation vs. ground surface elevation measured in April at each overburden observation well. The observed trend indicates that the groundwater elevation correlates with topographic elevation for the overburden observation wells, with the exception of FTWR16U and FTWR11U. As noted above, FTWR11U was frozen in April 2012. This trend reflects the correlection between the topography of the overburden aquifer and that of the surface, resulting in flow direction within overburden groundwater that mimic flow directions on the ground surface. The groundwater elevation was generally measured approximately 1 to 2 meters below the ground surface.

6 **Conclusions and Recommendations**

6.1 Conclusions

During geotechnical drilling, field data was collected from overburden formations and dolomite bedrock. Following geotechnical drilling and test pit excavations and the completion of geotechnical laboratory testing, geotechnical cross-sections were interpreted from the subsurface data. The geotechnical drilling subsurface data was interpreted along an axial and longitudinal transect of the TWRMF. The transect basemap and geotechnical cross-sections from the geotechnical drilling are shown on Figures 5, 6, and 7. The test pit subsurface data was interpreted into multiple transects along the east dolomite bedrock ridge and west dolomite bedrock ridge. The transect basemap and geotechnical cross-sections from the test pit excavations are shown on Figures 8 and 9.

The following discussion generally describes the geotechnical profile depicted on the crosssections. The peat is comprised of fine to coarse organic material, typically 1 to 3 meters thick, and grades laterally into a thin organic soil on the edge of the wetland valley and up onto the bedrock ridges. The colluvium is comprised of clastic sediments including silty sand with locally abundant gravel and cobbles, approximately 3 meters thick, and occurs beneath the organic soil on the ridges. Glacial lacustrine clays, typically 3-20 meters thick, occur beneath the peat and thin rapidly near the bedrock ridges. The lacustrine clays were divided into three geotechnical units based on stratigraphy and physical/mechanical properties including an upper clay (typically 2 meters thick), an intermediate clay (typically 5 meters thick), and lower clay (typically 13 meters thick).

These units exhibit the following general distribution of key properties derived from both in-situ and laboratory tests:

- The geotechnical profile by SPT (Figure 13) exhibits a relatively lower SPT in the peat and upper clay, a relative SPT increase in the intermediate clay, and a modest to substantial decrease with depth in the lower clay. The geotechnical profile by pocket penetrometer (Figure 14) exhibits a similar distribution of strength as the SPT.
- The geotechnical profile determined by shear vanes (Figure 15) exhibits a similar distribution of strength as the pocket penetrometer and SPT profiles. The shear vane results were normalized for vertical lithostatic stress, which are provided on Figure 16.
- The geotechnical profile by moisture content (Figure 17) exhibits extreme moisture content in the peat, a relatively low moisture content in the upper clay and intermediate clay, and a relatively high moisture content in the lower firm clay.

With regard to the conditions at the two flanks to the valleys, uncertainty exists with regard to the thickness, consistency, and condition of the clay.

6.2 Recommendations

The existing Site Investigation is assumed to be appropriate for a feasibility level study. Any shortcomings in the scope or extent of the data will become apparent at the start of the future

studies. At that time specific recommendations as to further Site Investigation should be advised to Victory Nickel, to better characterize the geotechnical and hydrogeologic conditions along the valley and dolomite ridges.

The initial decision to evaluate this location for the T&WRMF and PP was based on the assumption that a natural clay seal was present along the floor of the valley and the overall profile. This investigation has confirmed the presence of a significant thickness of clay to provide a seal to the valley floor.

7 References

- Golder, 2009a. Hydrologic Baseline Study, Minago Project, Manitoba. Report No. 08-1428-0024. March 6, 2009.
- Golder, 2009b. Hydrogeologic Investigations of Dewatering Requirements for the Proposed Open Pit, Minago, Manitoba, Version 2. Report No. 08-1428-0001/7000. June 4, 2009.
- Wardrop, 2010. Feasibility Study Minago Nickel Mine. Report No. 0951330400-REP-R0001-02. March 4, 2010.

Tables

Table 1 Results of Peat Field Tests Minago Nickel Mine Victory Nickel Inc.

1.52 2.29 1.52	1 7 2	Very Soft Firm
1.52	2	
	2	Soft
1.52	5	Firm
0.76	1	Very Soft
1.52	2	Soft
0.76	1	Very Soft
0.76	3	Soft
Average	3	Soft
Median	2	Soft
Range	1 - 7	
	0.76 1.52 0.76 0.76 Average Median	0.76 1 1.52 2 0.76 1 0.76 3 Average 3 Median 2

Table 2 **Results of Peat Laboratory Tests** Minago Nickel Mine Victory Nickel Inc.

					Atterberg Limit	ts							1-D	Consolidation		
Borehole Number	Sample ID	Start Depth (m)	End Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Moisture (%)	Hydraulic Conductivity (m/s)	Specific Gravity	Plasticity Chart USCS Symbol	Plasticity Classification	Overburden (kPa)	Preconsolidation (kPa)	Over Consolidation Ratio	Swell Index (Cs)	Compression Index (Cc)
FPP12	SS2	1.5	2.0				614.4									
FPP12	SS3	2.3	2.7				42.6									
FPP14	SH1	0.0	0.8				1184.4									
FPP14	SS3	1.5	2.0	305.3	269.3	36	461.7				High					
FPP4	SS1	1.5	2.0								-					
FTWR11	SS1	0.8	1.4	435.8	347	88.7	626.3				High					
FTWR11	SS2	1.5	2.0	455.8	547	88.7	442.3				-					
FTWR12	SH1	0.8	1.2					3.26E-07	1.65			27	-	-	0.88	2.1
FTWR14	SS1	0.8	1.2				493.1									
FTWR16	SS1	0.0	0.6				481									
FTWR30	SS1	0.8	1.2	65	35.8	29.2	73.9			MH / OH	High					
			Average Median Range	268.7 305.3 65 - 435.8	217.4 269.3 35.8 - 347	51.3 36.0 29.2 - 88.7	491.1 481.0 42.6 - 1184.4				High High					

Prepared by: BMS2 Checked by: MJV2

Table 3 Results of Upper Clay Field Tests Minago Nickel Mine Victory Nickel Inc.

Borehole Number	Depth (m)	SPT (N)	Consistency Based on SPT	Undrained Shear Strength-Pocket Penetrometer (kPa)	Consistency Based on Pocket Penetrometer	Undrained Shear Strength-Initial Vane (kPa)	Undrained Shear Strength- Remoulded Vane (kPa)	Sensitivity	Sensitivity Classification
FPP14	2.29	4	Firm	96	Stiff				
FTWR11	2.29	6	Firm	24	Soft				
FTWR12	1.52	5	Firm	72	Stiff				
FTWR14	1.52			72	Stiff				
FTWR16	0.76	4	Firm						
FTWR30	3.51					57	11	5	Low
FTWR6	0.76	3	Soft	48	Firm				
	Average	4	Firm	62	Stiff	57	11	5	Low
	Median	4	Firm	72	Stiff	57	11	5	Low
	Range	3 - 6		24 - 96		57 - 57	11 - 11	5 - 5	

Table 4 Results of Upper Clay Laboratory Tests Minago Nickel Mine

Victory Nickel Inc.

							1-D	Consolidation		
Borehole Number	Sample ID	Start Depth (m)	End Depth (m)	Moisture (%)	Specific Gravity	Overburden (kPa)	Preconsolidation (kPa)	Over Consolidation Ratio	Swell Index (Cs)	Compression Index (Cc)
FPP14	SS4	2.29	2.74	26.7						
FTWR11	SS3	2.29	2.74	30.2						
FTWR12	SS2	1.52	1.98	38.2						
FTWR14	SH2	1.52	2.13	27.9						
FTWR16	SS2	0.76	1.22	22.7						
FTWR30	SH3	3.51	4.11		2.68	75	250	3.3	0.04	0.16
FTWR6	SS2	0.76	1.22	22.5						
			Average Median Range	28.0 27.3 22.5 - 38.2	2.68 2.68 2.7 - 2.7	75 75 75 - 75	250 250 250 - 250	3.3 3.3 3.3 - 3.3	0.04 0.04 0.04	0.16 0.16 0.16 - 0.16

Table 5 Results of Intermediate Clay Field Tests Minago Nickel Mine Victory Nickel Inc.

Borehole	Depth		Consistency	Undrained Shear Strength-Pocket Penetrometer	Consistency Based on Pocket	Undrained Shear Strength-Initial	Undrained Shear Strength- Remoulded Vane		Sensitivity
Number	(m)	SPT (N)	Based on SPT	(kPa)	Penetrometer	Vane (kPa)	(kPa)	Sensitivity	Classification
FPP12	2.29			96	Stiff				
FPP12	3.05	11	Stiff						
FPP12	3.81	21	Very Stiff						
FPP12	4.57	17	Very Stiff	335	Hard				
FPP14	3.05	15	Very Stiff	383	Hard				
FPP14	4.57	16	Very Stiff	335	Hard				
FPP4	2.29	4	Firm						
FPP4	3.05	14	Stiff	431	Hard				
FPP4	4.57	18	Very Stiff	359	Hard				
FPP4	6.10			192	Very Stiff				
FPP4	8.08					29	15	2	Low
FTWR11	3.05			359	Hard				
FTWR11	4.11					76	8	10	Medium
FTWR12	2.29	9	Stiff	192	Very Stiff				
FTWR12	3.05	14	Stiff	383	Hard				
FTWR12	3.81	10	Stiff	287	Hard				
FTWR14	2.29	4	Firm	120	Very Stiff				
FTWR14	3.05	10	Stiff	192	Very Stiff				
FTWR14	3.81	18	Very Stiff	383	Hard				
FTWR14	4.57	12	Stiff	383	Hard				
FTWR16	1.52	9	Stiff						
FTWR16	2.29			239	Hard				
FTWR16	3.05	13	Stiff	144	Very Stiff				
FTWR16	3.81	17	Very Stiff	287	Hard				
FTWR16	4.57	10	Stiff						
FTWR16	6.10	7	Firm						
FTWR30	0.91			0	Very Soft				
FTWR30	1.52	4	Firm	96	Stiff				
FTWR30	2.29	9	Stiff	335	Hard				
FTWR6	1.52	10	Stiff	287	Hard				
FTWR6	2.29	18	Very Stiff	383	Hard				
FTWR6	3.05	19	Very Stiff	431	Hard				
FTWR6	3.81	20	Very Stiff	10	T '				
FTWR8	0.76	3	Soft	48	Firm				
FTWR8	1.52	13	Stiff	263	Hard				
FTWR8	2.29	18	Very Stiff	335	Hard				
FTWR8	3.05	20	Very Stiff	0.42					
FTWR8	3.81	14	Stiff	263	Hard				
	Average	12.8	Stiff	269	Hard	53	11	6	Low
	Median	13.0	Stiff	287	Hard	53	11	6	Low
	Range	3 - 21		0 - 431		29 - 76	8 - 15	2 - 10	

Table 6

Results of Intermediate Clay Laboratory Tests

Minago Nickel Mine

Victory Nickel Inc.

				At	terberg Lir	nits									1-D 0	Consolidation			Triaxial Con	nsolidation
Borehole Number	Sample ID	Start Depth (m	End 1) Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Unit Wt (kN/m ³)	Moisture (%)	Hydraulic Conductivity (m/s)	Grain Size USCS Symbol	Specific Gravity	Plasticity Chart USCS Symbol	Plasticity Classification	Overburden (kPa)	Preconsolidation (kPa)	Over Consolidation Ratio	Swell Index (Cs)	Compression Index (Cc)	Effective Internal Friction Angl (degrees)	e Effective Cohesion (kPa)
FPP12	SS4	3.05	3.51					25.9												
FPP12	SS5	3.81	4.27					21.2		CL-ML										
FPP12	SS6	4.57	5.03					24.3												
FPP14	SS5	3.05	3.51					18.6												
FPP14	SS7	4.57	5.03	39.7	16.6	23.1	20.92	19.5		CL-ML		CL	Medium							
FPP4	SS2	2.29	2.74																	
FPP4	SS3	3.05	3.51					23.7												
FPP4	SS4	4.57	5.03					19.5												
FPP4	SH1	6.10	6.71							CL-ML	2.65			131.5	530	4.0	0.05	0.19	30	6
FTWR11	SH4	3.05	3.66						5.10E-11	CL	2.67			68	280	4.1	0.06	0.15	28	21
FTWR12	SS3	2.29	2.74					25.1												
FTWR12	SS4	3.05	3.51	46.8	18.7	28.1	19.66	24.3		CL		CL	Medium							
FTWR12	SS5	3.81	4.27					21.1												
FTWR14	SS6	2.29	2.74	42	17.8	24.2		26		CL		CL	Medium							
FTWR14	SS7	3.05	3.51					25.5												
FTWR14	SS8	3.81	4.27					21.4												
FTWR14	SS9	4.57	5.03					24.5												
FTWR16	SS3	1.52	1.98					24.6												
FTWR16	SH4	2.29	2.90																	
FTWR16	SS5	3.05	3.51					18.6												
FTWR16	SS6	3.81	4.27	47.5	20	27.5	19.89	17.6		CL		CL	Medium							
FTWR16	SS7	4.57	5.03					28.1												
FTWR16	SH9	7.62	8.23	36.2	13.4	22.8	19.38	30.1	1.21E-10	CL		CL	Medium							
FTWR30	SS2	1.52	1.98	41.9	18	23.9	19.68	29.8		CL-ML		CL	Medium							
FTWR30	SS10	2.29	2.74					27												
FTWR6	SS3	1.52	1.98					21.4												
FTWR6	SS4	2.29	2.74					47.8												
FTWR6	SS5	3.05	3.51	45	15.9	29.1		20.1		ML		CL	Medium							
FTWR8	SS2	0.76	1.22					27.6												
FTWR8	SS3	1.52	1.98					18.6		CL-ML										
FTWR8	SS4	2.29	2.74					24.1												
FTWR8	SS5	3.05	3.51					19.5												
FTWR8	SS6	3.81	4.27					27.3												
			Average Median Range	42.7 42.0 36.2 - 47.5	17.2 17.8 13.4 - 20	25.5 24.2 22.8 - 29.1	19.9 19.7 19.4 - 20.9	24.2 24.3 17.6 - 47.8			2.66 2.66 2.7 - 2.7		Medium Medium	100 100 68 - 131.5	405 405 280 - 530	4.1 4.1 4.1 - 4.1	0.06 0.06 0.1 - 0.1	0.17 0.17 0.2 - 0.2	29 29) - 0 28 - 30	14 14 6 - 21

Table 7Results of the Lower Clay Field TestsMinago Nickel MineVictory Nickel Inc.

Borehole Number	Depth (m)	<u>SPT (</u> N)	Consistency Based on SPT	Undrained Shear Strength-Pocket Penetrometer (kPa)	Consistency Based on Pocket Penetrometer	Undrained Shear Strength-Initial Vane (kPa)	Undrained Shear Strength- Remoulded Vane (kPa)	Sensitivity	Sensitivity Classification
FPP12	6.10	8	Stiff	287	Hard				
FPP12	7.62	4	Firm	24	Soft				
FPP12	9.45					4	0.02	162	High
FPP12	10.67			24	Soft				
FPP12	12.19	3	Soft	0	Very Soft				
FPP12	13.72	2	Soft	0	Very Soft				
FPP14	3.81	16	Very Stiff						
FPP14	6.10	9	Stiff	287	Hard				
FPP14	7.77			24	Soft	24	11	2	Low
FPP14	9.14	5	Firm						
FPP14	12.19	5	Firm	0	Very Soft				
FPP14	13.72	4	Firm	0	Very Soft				
FPP14	15.24	5	Firm						
FPP14	16.76	6	Firm						
FPP4	9.14	2	Soft	0	Very Soft				
FPP4	12.19			24	Soft				
FTWR11	4.57	11	Stiff						
FTWR11	6.10	27	Very Stiff						
FTWR12	4.57	9	Stiff	263	Hard				
FTWR12	6.10	4	Firm	24	Soft				
FTWR12	7.62	2	Soft	0	Very Soft				
FTWR12	9.14	4	Firm	0	Very Soft				
FTWR14	6.10	12	Stiff	383	Hard				
FTWR14	7.62	9	Stiff						
FTWR14	7.62			359	Hard				
FTWR14	9.14			72	Stiff				
FTWR14	10.67					17	11	2	Low
FTWR14	13.72	1	Very Soft	0	Very Soft				
FTWR14	16.76	6	Firm	24	Soft				
FTWR14	19.81			48	Firm				
FTWR16	7.62			38	Firm				
FTWR30	3.81			192	Very Stiff				
FTWR30	4.57	8	Stiff	192	Very Stiff				
FTWR30	6.10	4	Firm	96	Stiff				
FTWR30	7.62	4	Firm	0	Very Soft				
FTWR30	8.53			48	Firm				
FTWR30	9.60					4	hit center rod		
FTWR30	11.13					1	0.02	37	Medium
FTWR30	13.72	6	Firm	0	Very Soft				
FTWR6	4.57	22	Very Stiff	431	Hard				
FTWR6	6.10	10	Stiff	120	Very Stiff				
FTWR6	7.62	7	Firm	24	Soft				
FTWR8	4.57	5	Firm	239	Hard				
FTWR8	7.62			10	Very Soft				
FTWR8	9.14			10	Very Soft				
FTWR8	12.19	3	Soft	0	Very Soft				
	Average	7	Firm	93	Stiff	10	6	51	High
	Median	5	Firm	24	Soft	4	6	20	Medium
	Range	1 - 27		0 - 431		1 - 24	0 - 11	2 - 162	

Table 8 Results of the Lower Clay Laboratory Tests Minago Nickel Mine

Victory Nickel Inc.

			-	4	Atterberg Limit	ts								1-D	Consolidation			Triaxial Con	solidation
Borehole Number	Sample ID	Start Depth (m)	End Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Unit Wt (kN/m ³)	Moisture (%)	Grain Size USCS Symbol		Plasticity Chart USCS User Symbol	Plasticity Classification	Overburden (kPa)	Preconsolidatio n (kPa)	Over Consolidation Ratio	Swell Index (Cs)	Compression Index (Cc)	Effective Internal Friction Angle (degrees)	Effective Cohesion (kPa)
PP12	SS7	6.10	6.55					24.2											
PP12	SS8	7.62	8.08					40											
PP12	SH9	10.67	11.28															20	12
PP12	SS10	12.19	12.65					54.4											
PP12	SS11	13.72	14.17					54.4											
PP14	SS6	3.81	4.27					20.4											
PP14	SS8	6.10	6.55					25											
PP14	SS9	9.14	9.60						CH									24	-
PP14	SH10	10.67	11.28	51.0	10.0	22.1		20.0	CH		CII							24	7
PP14	SS11	12.19	12.65	51.9	19.8	32.1		38.9			CH	High							
PP14	SS12	13.72	14.17					12.6											
PP14	SS13	15.24	15.70					43.6											
PP14	SS14	16.76	17.22					60.5											
PP4	SS5	9.14	9.60	<i>co</i> o				43.8											10
PP4	SH2	12.19	12.80	68.2	23.5	44.7		25.2	CH		СН	High						16	18
TWR11	SS5	4.57	5.03					25.3	CH										
FWR11	SS6	6.10	6.55	50.1	10.5	22.6	10.04	35.8	CH		CII								
FWR12	SS6	4.57	5.03	52.1	19.5	32.6	18.96	26.4	CH		СН	High							
FWR12	SS7	6.10	6.55					39.5											
TWR12	SS8	7.62	8.08					47.3											
TWR12	SS9	9.14	9.60					46.6											
FWR14	SS3	6.10	6.55				20.00	21.9											
TWR14	SS4	7.62	8.08				20.09	23.9											
TWR14	SH5	9.14	9.75					35.9											
TWR14	SS10	13.72	14.17					43.7											
TWR14	SS11	16.76	17.22					46.7		0.67			242			0.15	0.51		
TWR14	SH6	19.81	20.42					25.0		2.67			342	-	-	0.15	0.51		
TWR30	SS4	4.57	5.03					25.9											
TWR30	SS5	6.10	6.55																
TWR30	SS6	7.62	8.08					27.1	CH	0.67			166	220	1.2	0.07	0.20	25	
TWR30	SH7	8.53	9.14	67.4	20	27.4	17.72	16.2	СН	2.67	CH	TT: 1	166	220	1.3	0.07	0.29	25	11
TWR30	SS8	13.72	14.17	57.4	20	37.4	17.73	46.3			CH	High							
TWR30	SH9	16.76	17.37					57.3											
TWR6	SS7	4.57	5.03				10.11	17.2	CII										
TWR6	SS8	6.10	6.55				19.11	27.6	СН										
TWR6	SS9	7.62	8.08					28.1											
TWR8	SH8	6.10	6.71	52.4	20.1	22.2		35.8	CH		CII								
TWR8	SS9	7.62	8.08	53.4	20.1	33.3		40.5	СН		CH	High							
TWR8	SH10	9.14	9.75					21.2											
TWR8	SS11 SS12	12.19	12.65					51 7.4											
TWR8	5512	15.24	15.70					7.4											
			Average Median Range	56.6 53.4 51.9 - 68.2	20.6 20.0 19.5 - 23.5	36.0 33.3 32.1 - 44.7	19.0 19.0 17.7 - 20.1	35.3 35.9 7.4 - 60.5		2.67 2.67 2.67 - 2.67		High High	254.0 254.0 166 - 342	220.0 220.0 220 - 220	1.3 1.3 1.3 - 1.3	0.11 0.11 0.07 - 0.15	0.40 0.40 0.29 - 0.51	21 22 16 - 25	12 12 7 - 18

Table 9 Results of Till Field Tests Minago Nickel Mine Victory Nickel Inc.

Borehole Number	Depth (m)	SPT (N)	Consistency Based on SPT
FPP12	15.24	39	Hard
FPP12	16.76	76	Hard
FPP4	15.24	3	Soft
FTWR12	10.67	30	Hard
FTWR6	9.14	25	Very Stiff
FTWR8	15.24	97	Hard
	Average Median	45 35	Hard Hard
	Range	3 - 97	minu

Table 10 **Results of Till Laboratory Tests** Minago Nickel Mine Victory Nickel Inc.

				Att	erberg Lim	its			Grain Size	Plasticity	
Borehole		Start Depth	End Depth	Liquid	Plastic	Plasticity	Unit Wt	Moisture	USCS	Chart USCS	Plasticity
Number	Sample ID	(m)	(m)	Limit	Limit	Index	(kN/m ³)	(%)	Symbol	Symbol	Classification
FPP12	SS12	15.2	15.7					13.3	ML		
FPP12	SS13	16.8	17.2					11.3			
FPP4	SS6	15.2	15.7								
FTWR12	SS10	10.7	11.1					10.6			
FTWR6	SS10	9.1	9.6	19.4	10.7	8.7	23.25	11.1	ML/SW	CL	Low
FTWR8	SS7	4.6	5.0					30.1			
			Average	19.4	10.7	8.7	23.3	15.3			Low
			Median	19.4	10.7	8.7	23.3	11.3			Low
			Range	19.4 - 19.4	10.7 - 10.7	8.7 - 8.7	23.3 - 23.3	10.6 - 30.1			

Table 11Results of Dolomite Field Tests

Minago Nickel Mine

Victory Nickel Inc.

	Start	End	Hydraulic				
Borehole	Depth	Depth	Conductivity				
Number	(m)	(m)	(cm/s)	Strength	Strength Designation	RQD %	RQD Designation
FTWR11BR	8.5	12.2	4E-04				
FTWR11BR	6.1	7.62		R2	Weak	26.3	Poor Quality
FTWR11BR	7.62	9.14		R2	Weak	57.2	Fair Quality
FTWR11BR	9.14	10.67		R2	Weak	54.9	Fair Quality
FTWR11BR	10.67	12.19		R2 - R3	Weak to Medium Strong	88.8	Good Quality
FTWR16BR	8.5	12.5	3E-04				
FTWR16BR	6.48	7.87		R3	Medium Strong	34.5	Poor Quality
FTWR16BR	7.87	9.37		R3	Medium Strong	100.0	Excellent Quality
FTWR16BR	9.37	10.97		R3	Medium Strong	93.1	Excellent Quality
FTWR16BR	10.97	12.5		R3	Medium Strong	98.7	Excellent Quality
		Average	3.5E-04			69.2	
		Median	3.5E-04			73.0	
		Range	3E-04 - 4E-04			26.3 - 100	
						Prepared by	v:BMS2
						<u> </u>	

Checked by: MJV2

Table 12 Results of Remoulded Clay Laboratory Tests Minago Nickel Mine Victory Nickel Inc.

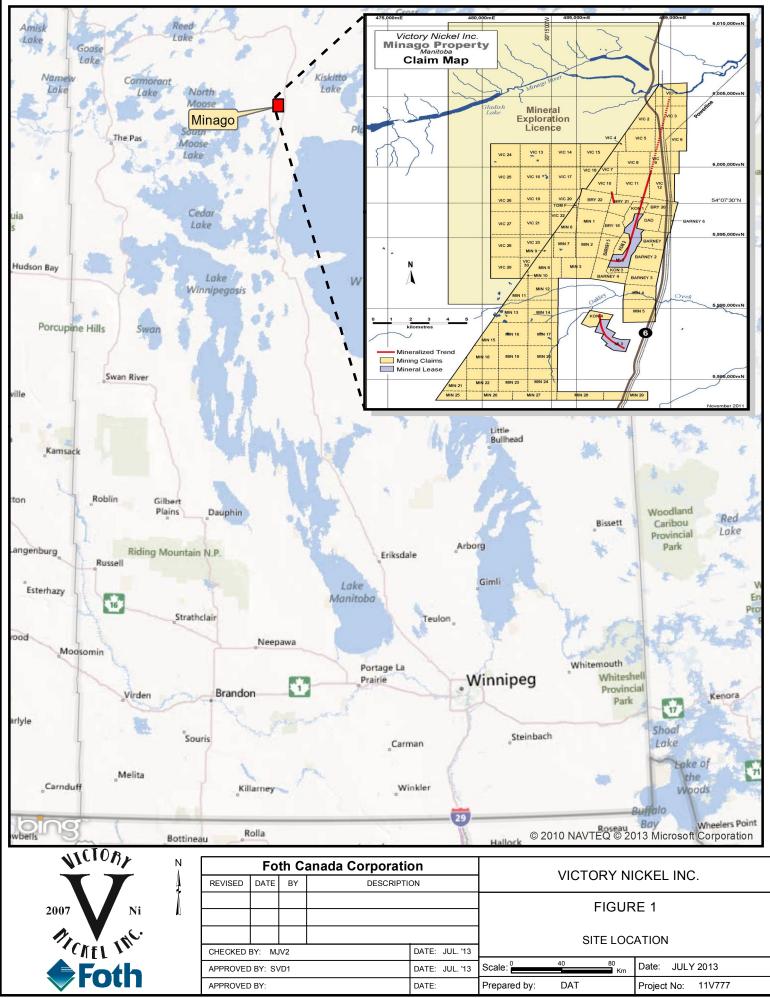
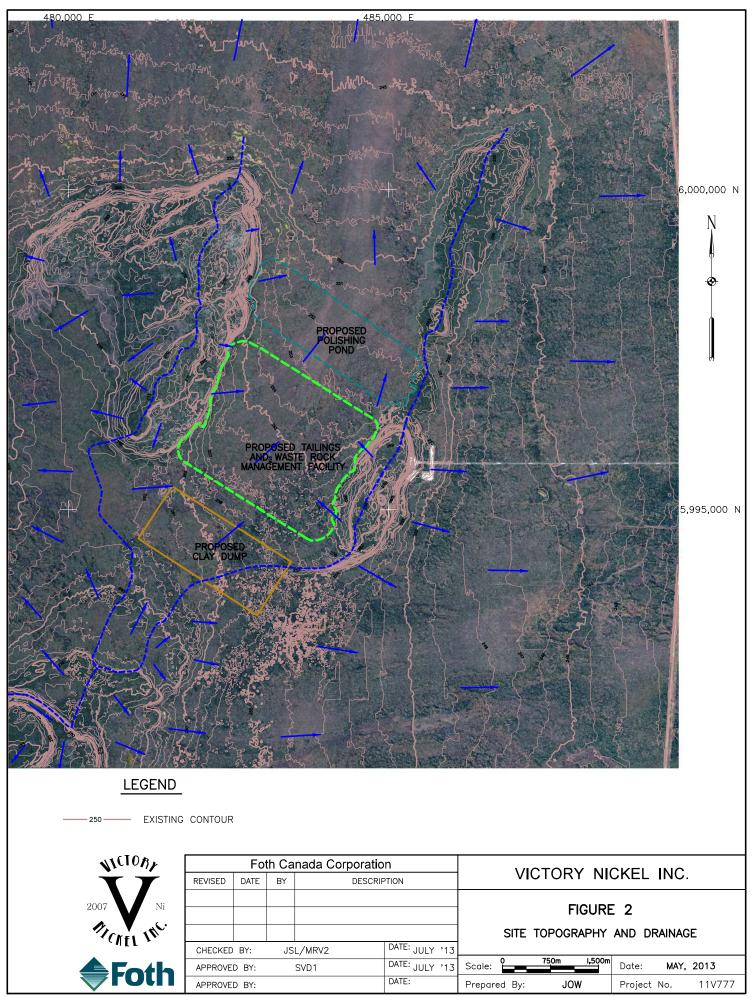
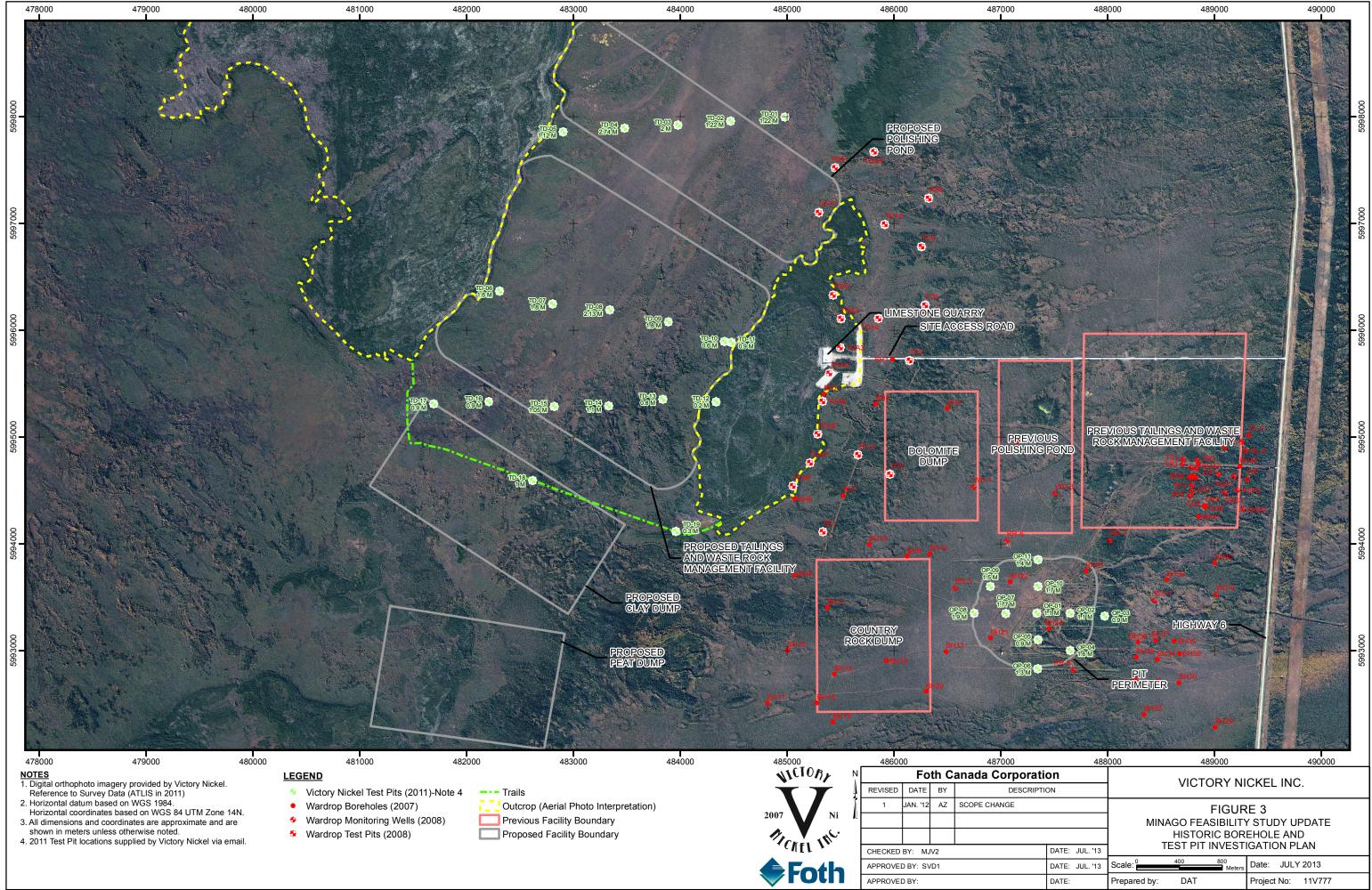
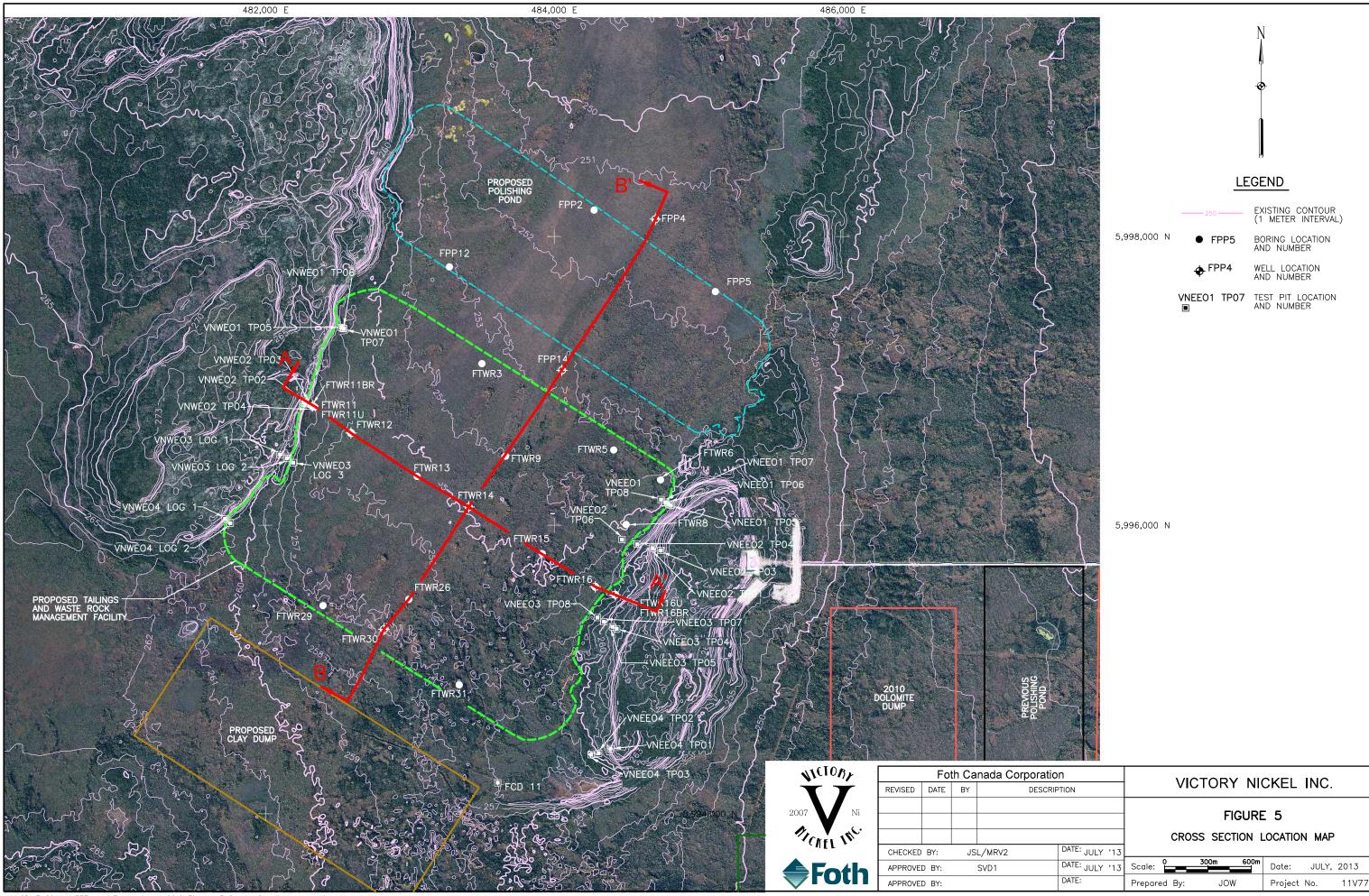

				1	Atterberg Limits		-								1-D	Consolidation			Triaxial Cor	solidation	Standard	Proctor
Borehole Number	Sample ID	Start Depth (m)	End Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Unit Wt (kN/m ³)	Moisture (%)	Hydraulic Conductivity (cm/s)	Grain Size USCS Symbol	Specific Gravity	Plasticity Chart USCS Symbol		Overburden (kPa)	Preconsolidation (kPa)	Over Consolidation Ratio	Swell Index (Cs)	Compression Index (Cc)	Effective Internal Friction Angle (degrees)	Effective Cohesion (kPa)	Maximum Dry Density (Mg/m ³)	Optimum Water Content (%)
FCD11	BS01	2.00	2.00	39.7	15.2	24.5	19.81	18.5 19.9 18.8 16.9 19	1.1E-08 5.8E-09	CL	2.76	CL	Medium	16	52	3.3	0.04	0.08	27	8	1.726	18.6
FCD11	BS02	6.10	6.10	38.8	14.7	24.1	20.68	18.1 19.5 20.8 18.8 22.1	1.1E-08 4.5E-09	CL/ML	2.78	CL	Medium	94	97	1.0	0.05	0.22	22	0	1.692	20.5
VNWE03	BS01	4.20	4.20																		1.616	28.1
VNEE02	BS01	3.50	3.50	38.3	13.6	24.7		14.4 20 18.5 20.1		CL											1.726	19.6
			Average Median Range	38.9 38.8 38.3 - 39.7	14.5 14.7 13.6 - 15.2	24.4 24.5 24.1 - 24.7	20.25 20.25 19.8 - 20.7	19.0 18.8 14.4 - 22.1	7.50E-09 8.40E-09 5.8E-09 - 1.1E-08		2.77 2.77 2.8 - 2.8			55 55 16 - 94	75 75 52 - 97	3.3 3.3 3.3 - 3.3	0.05 0.05 0.04 - 0.04	0.15 0.15 0.08 - 0.22			1.69 1.71 1.62 - 1.73	21.70 20.05 18.6 - 28.1

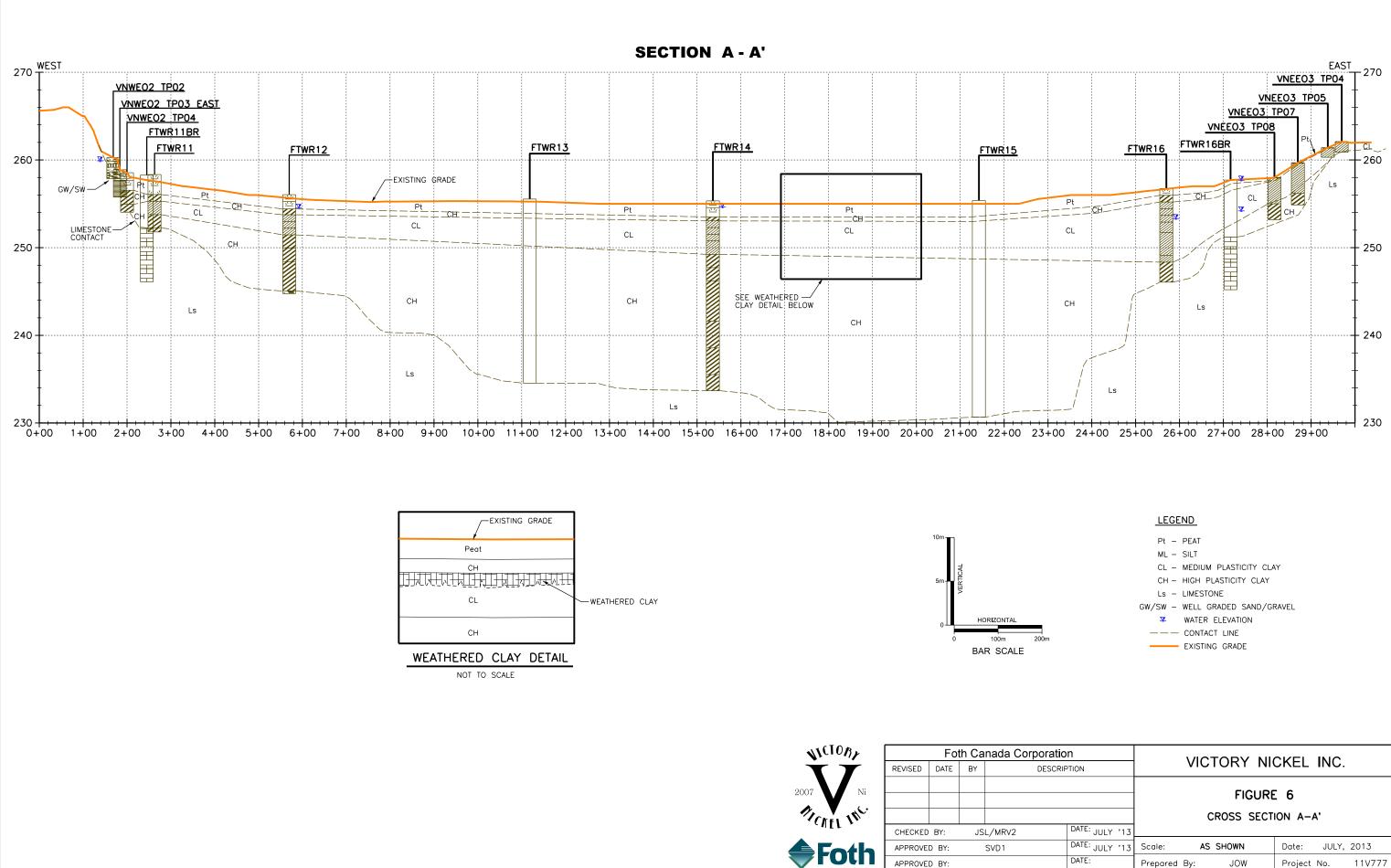
Table 13 Groundwater Level Measurements Minago Nickel Mine Victory Nickel Inc.

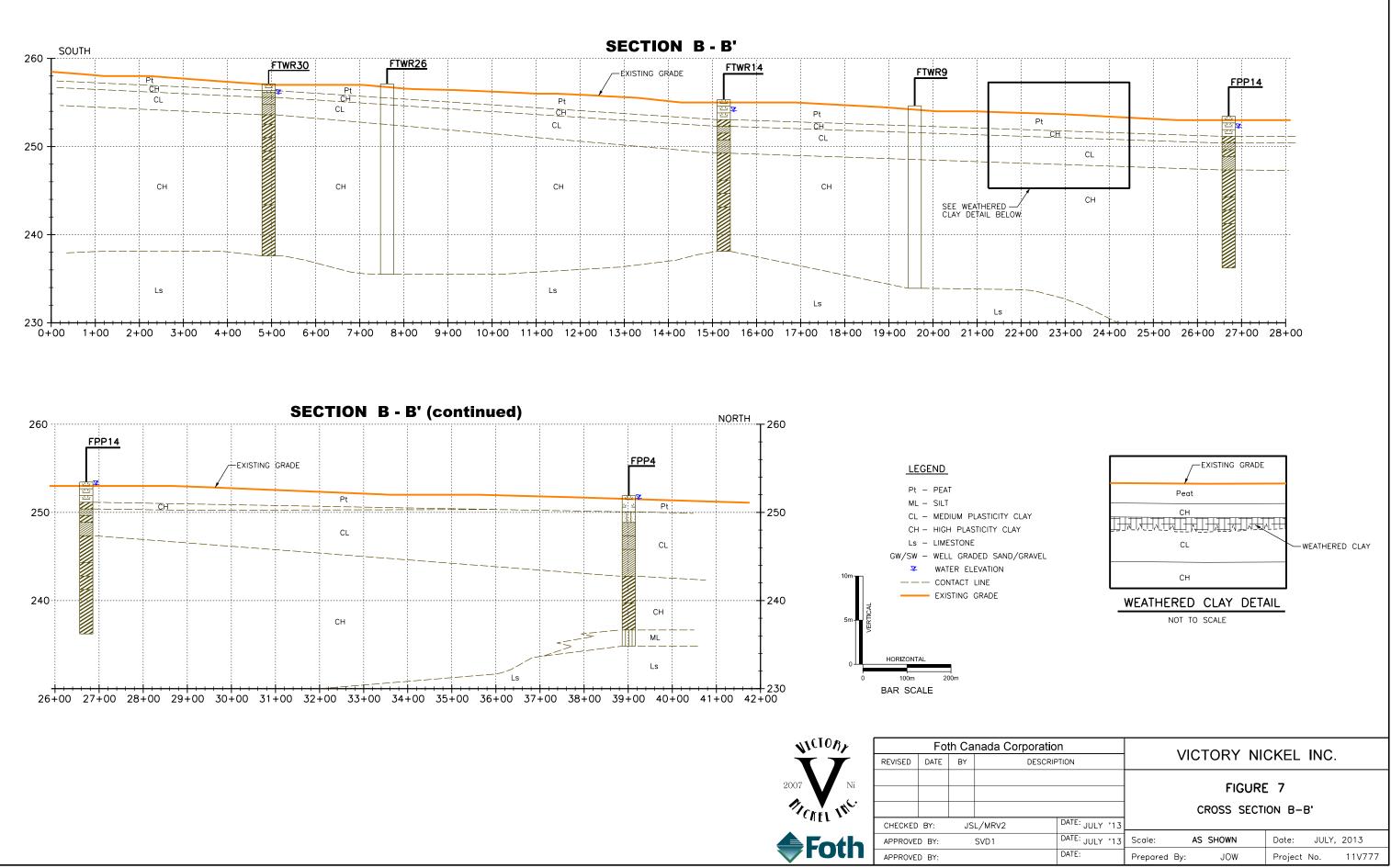

Bo	orehole Number	Surface Elevation (amsl)	(m	Groundwater Elevation measured 02/07/12 (m amsl)	Groundwater Elevation measured 03/20/12 (m amsl)	Groundwater Elevation measured 04/26/12 (m amsl)	Groundwater Elevation measured 05/28/13 (m amsl)
	FPP14	253.44		251.34	-	253.24	253.47
	FPP4	251.90		249.69	-	251.56	251.85
	FTWR11BR	258.28		257.12	-	258.21	256.86
ter	FTWR11U*	258.34		254.65	-	258.03	258.29
Piezometer	FTWR12	256.04		253.58	-	255.88	256.06
oze	FTWR14	255.34		253.63	-	255.27	255.48
Pie	FTWR16	256.73		252.43	-	254.20	253.83
	FTWR16BR	257.70		249.48	-	257.71	256.68
	FTWR16U	257.88	256.2	256.22	-	255.72	254.35
	FTWR30	257.11		255.22	-	257.13	257.03
le	VNWE01 TP05	256.27		-	254.47	-	-
Hole	VNWE01 TP06	256.00		-	254.30	-	-
Open	VNWE02 TP02	262.30		-	259.90	-	-
OF	VNWE03 log 3	259.14		-	255.14	-	-
	Highest	251.90		249.48	254.30	251.56	251.85
	Lowest	262.30		257.12	259.90	258.21	258.29
	Average	256.89		253.34	255.95	255.70	255.39

*Water level meter consistently gets stuck at this location. Readings may be anomolous.

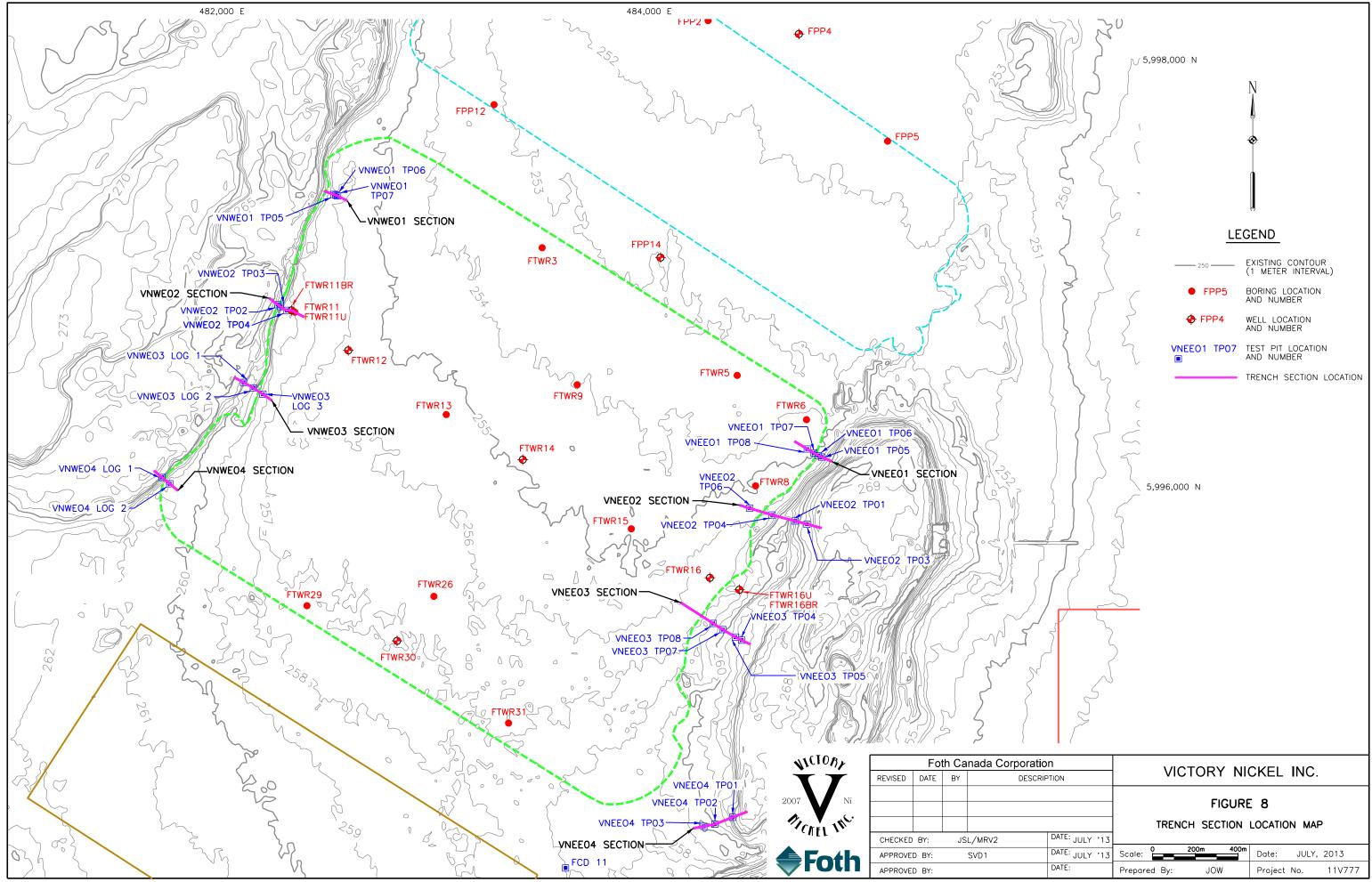

Figures


Path: X:\GB\IE\2011\11V777\GIS\mxd\July2013\Figure 1.mxd Date: 7/15/2013

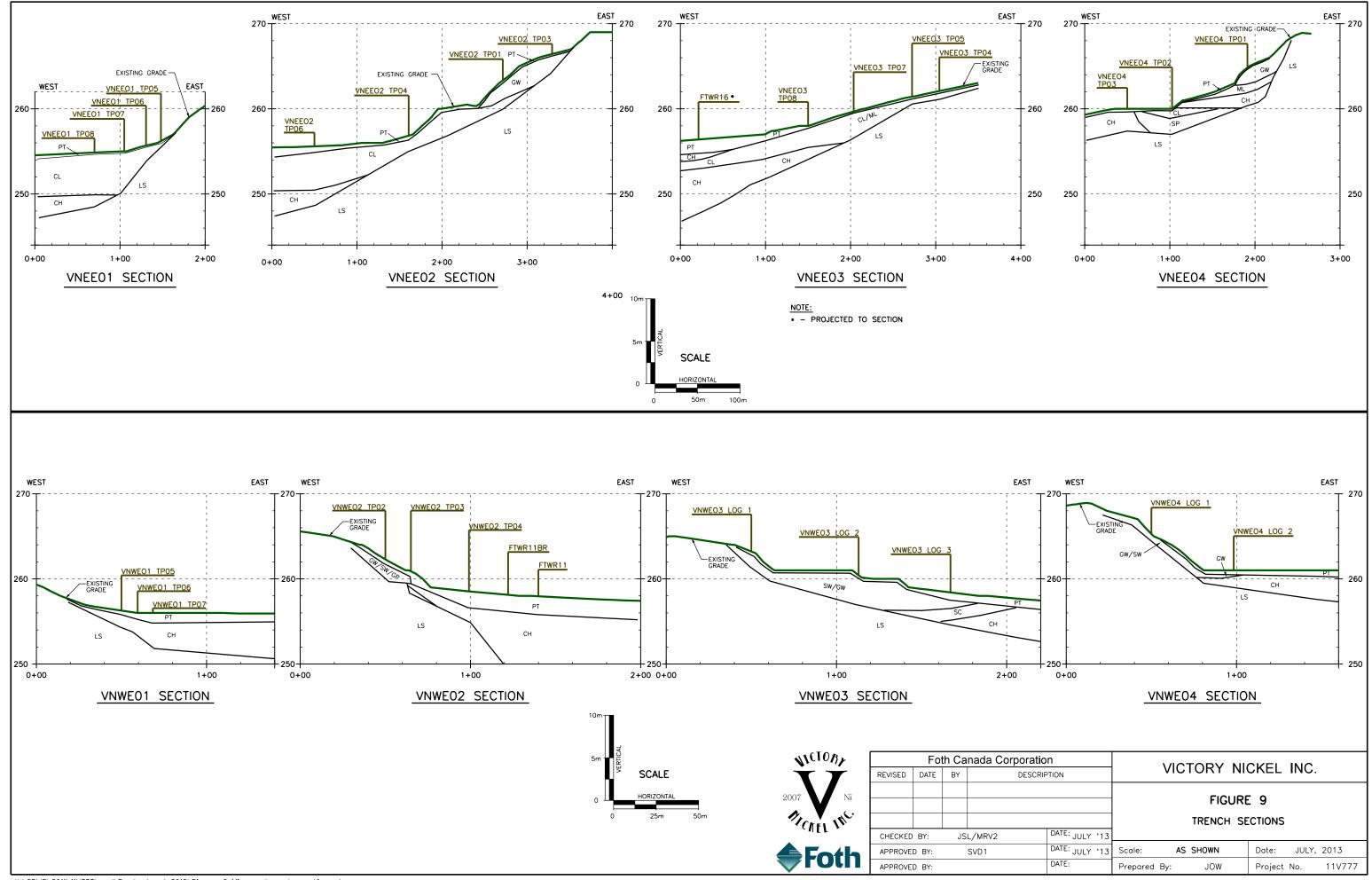

X:\GB\IE\2011\11V777\cad\Factual_rpt_2012\Figure 2 existing conditions.dgn 7/15/2013 JOW

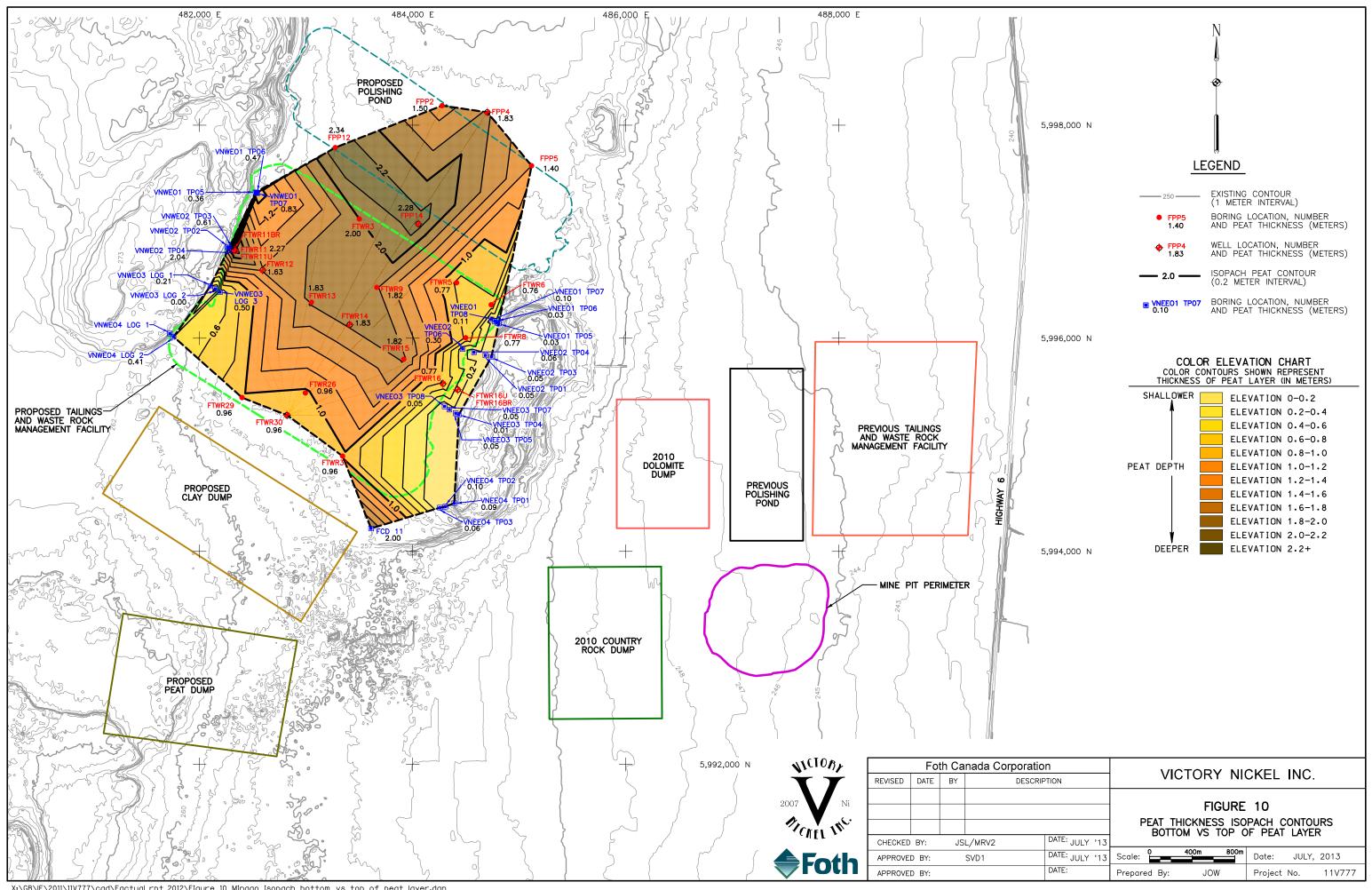

478000	479000	480000	481000	482000	483000	484000	485000	486000	487000	488000	489000	490000
		Star Star						1	I server and the server			
Boreholes	and Test Trenches	s (2012)				and the second					Propose	d VN Test Pits (2012)
ID	Easting No	rthing TYPE					A A A				ID	Easting Northing
FTWR-8	484498.53 5996	U U U				X	Rep.		Charles and the second		VNOP1	487250 5993375
FTWR-6	484736.85 5996										VNOP2	487625 5993375
FTWR-5		6521.36 Boring		the second second		FPP-2					VNOP3	487875 5993375
FPP-5	485116.64 5997					+	FPP-4		A CARLES		VNOP4	487500 5993200
B FPP-4 FPP-2	484701.16 5998					+	+ + SI	+	4 4 5	4	VNOP5	487750 5993000
6 FPP-2 FPP-12	484276.36 5998 483274.14 5997							PROPOSED	and the second		VNOP6	487250 5993050 🛛 👸
FPP-14	484053.36 5997			WINWERSTOR7	EPP-12		EDD'S	POLISHING	The shares he	152 ALL	VNOP7	487250 5992750
FTWR-3	483499.42 5997			VNWE01 TP06			÷	POND	1 Charles	A CALLER AND A CALLER AND A	VNOP8	487000 5993200
FTWR-11U	482323.38 5996		and self	VNWE01 TP05				A STATE OF			VNOP9	486750 5993000
FTWR-11BR	482325.98 5996	6826.39 Boring									VNOP10	487000 5993375
FTWR-11	482341.66 5996	-	A THE MERIDIAN		FT	WR-3					VNOP11	486625 5993375
8 FTWR-12	482592.08 5996	-		VNWE02TP04	•	€FFF=14) ⊕					VNOP12	0
FTWR-13	483050.5 5996		N + N	WE02TP03WEST			+ 6	+	to to the	here the second	VNOP13	0
ន៍ FTWR-14 FTWR-9		6126.98 Boring 96477.7 Boring		VNWE021702	WR-110 WR-11BR		North Plan		and the second	a share	VNOP14	487250 5993625 B
FTWR-9	483663.41 599 483916.82 5995		vi i i i i i i i i i i i i i i i i i i	WE03log3 -			A State		and the second		VNOP15	487250 5993875
FTWR-16	484284.33 5995			WE03log 1	+ FTWR-12	FTWR-9	NR-5			a an anna an		
FTWR-16U	484423.87 5995				FTWR-13	Φ	ETWR-6		ALL PERSON		A State of the second s	
FTWR-16BR	484422.4 5995				ϕ				· · · · · · · · · · ·			
FTWR-16 (original)	484321.82 5995	-		DOTTO THE OWNER	FTWR	-14	VINEEOU TPOS	- LIMESTONE QUA	NRRY		CONTENT.	
g FTWR-31	483342.09 5994	4893.59 Boring		VNWE04log/2	1 ×		FTWR-8 VNEE01 TP05		ESS ROAD		MARKET ST.	
g FTWR-26		95486.6 Boring				FTWR-15	VNEE02TP01 VNEE02TP03			Sector Provent		
FTWR-30		5278.49 Boring	Sant's le		• • • • •	• • • • • •						
FTWR-29	482398.36 5995	-		The second			VNEE02TP06					
VNEE01 TP05 VNEE01 TP06		996139 Test Pit 996146 Test Pit		FTM	R-29	FIWR-16 (original)	FTWR-16BR FTWR-16U					
VNEE01 TP07		996159 Test Pit			ETWR-30			Contraction of the				
VNEE01 TP08		996177 Test Pit			+ + + + + + + + + + + + + + + + + + +							
S VNEE02 TP01		995840 Test Pit		S. See			VNEE03TP04			PREVIOUS TAILI		
ស្តី VNEE02 TP03		995825 Test Pit	+		FTWR-31		VNEE03TP07 +	434 A	PREVIOUS	ROCKMANAGE	MENT FACILITY	82 -
VNEE02 TP04		995868 Test Pit						DOLOMITE	POLISHING PO	ND		
VNEE02 TP06		995900 Test Pit			Not a start		NEE04 TP03	DUMP			and the second se	
VNEE03 TP04		995282 Test Pit	1 Carlos				-VINEE04)TP01			No and a starting		
VNEE03 TP05		995296 Test Pit										
VNEE03 TP07 VNEE03 TP08		995331 Test Pit 995360 Test Pit	Con the		A CARLON AND A	- A Carto	Contract of the					
v NEE04 TP01		994452 Test Pit			and the second		2				and the second s	
VNEE04 TP02		994420 Test Pit		the second					+	12 200	+ ***	
g VNEE04 TP03		994410 Test Pit			A CARLER AND	AND WAST	DTAILINGS	and the second	T VNOP15	VNOP17		5994 •
VNWE01 TP05		997369 Test Pit	AND A CONTRACT OF			MANAGEM	ENT FACILITY	Cart and		VAIODIA	Je 1-	A 12 30-
VNWE01 TP06		997366 Test Pit										
VNWE01 TP07		997362 Test Pit		C. B. G. F.	PI	ROPOSED	and the second second	VI	IOP11 VNOP10 VNOP1	VNOP2 VNOP3	R. Andrews	
VNWE02 TP02		996853 Test Pit			Q.	LAY DUMP				(3)		
VNWE02 TP03 EA VNWE02 TP03 WE		996836 Test Pit 996844 Test Pit		A PARAMAN			the second states and second	COUNTRY	NNOP8	VNOP4	HIGHWAY 6	
8 VNWE02 TP03 WE		996826 Test Pit			The state	A CONTRACTOR	R	COUNTRY COCK DUMP	VNOP9	VNOP5		
VNWE03 log 1		996489 Test Pit	ATV. TO BE		PROF	OSED +					+	
VNWE03 log 2		996489 Test Pit			PEAT	DUMP			VNOP7	PIT		
VNWE03 log 3	482201 5	996489 Test Pit	a seller a seller	A State State	CAR DESTRICT					PERIMETER	8	
VNWE04 log 1		996044 Test Pit		5 Har all		- All Astron						
VNWE04 log 2		996014 Test Pit	A CONTRACTOR			The second second		A second second	the second second			
FCD 11	483609 5	994215 Test Pit			A SALES	State of the state		- 2007 - 4 CT		and the second second		
			Production and the second				and the second			Contraction of the	DEP.	
500		and the second				ALL PROPERTY	1 K Train	172 - P 2 19				200
60 62 478000	479000	480000	481000	482000	483000	484000	485000	486000	487000	488000	489000	490000
NOTES		LEGE					VICTORY		anada Corporatio			
1. Digital orthophoto imagery Reference to Survey Data	provided by Victory Nickel.	· • E		_	Trails			REVISED DATE BY	DESCRIPTIO		VICTORY	NICKEL INC.
2. Horizontal datum based or	WGS 1984.		est Pit		Outcrop (Aerial Photo	Interpretation)			SCOPE CHANGE			
Horizontal coordinates bas		14IN.	Proposed Open Pit Test Pits	(VN 2012)-Noto 4	Previous Facility Bour	• •	2007 Ni				FIGL	JRE 4
3. All dimensions and coordin shown in meters unless ot	erwise noted.	ait 🧎 F	Toposed Open Fil lest Pils		Proposed Facility Bou	-	N. 💙					TY STUDY UPDATE
4. Locations proposed by Vic							MICHEL INC.		i		HOLE AND TEST F	PIT INVESTIGATION PLAN
							чць А — /-	CHECKED BY: MJV2		DATE: JUL: 13	400 800	Date: JULY 2013
							Foth	APPROVED BY: SVD1		DATE: JUL. '13 Scale:	Mete	
	IS\mxd\Julv2013\Figure 4.							APPROVED BY:		DATE: Prepared b	y: DAT	Project No: 11V777

DATE: JULY '13				
DATE: JULY '13	Scale: 0	300m 600m	Date: JULY	, 2013
DATE:	Prepared By:	JOW	Project No.	11V777

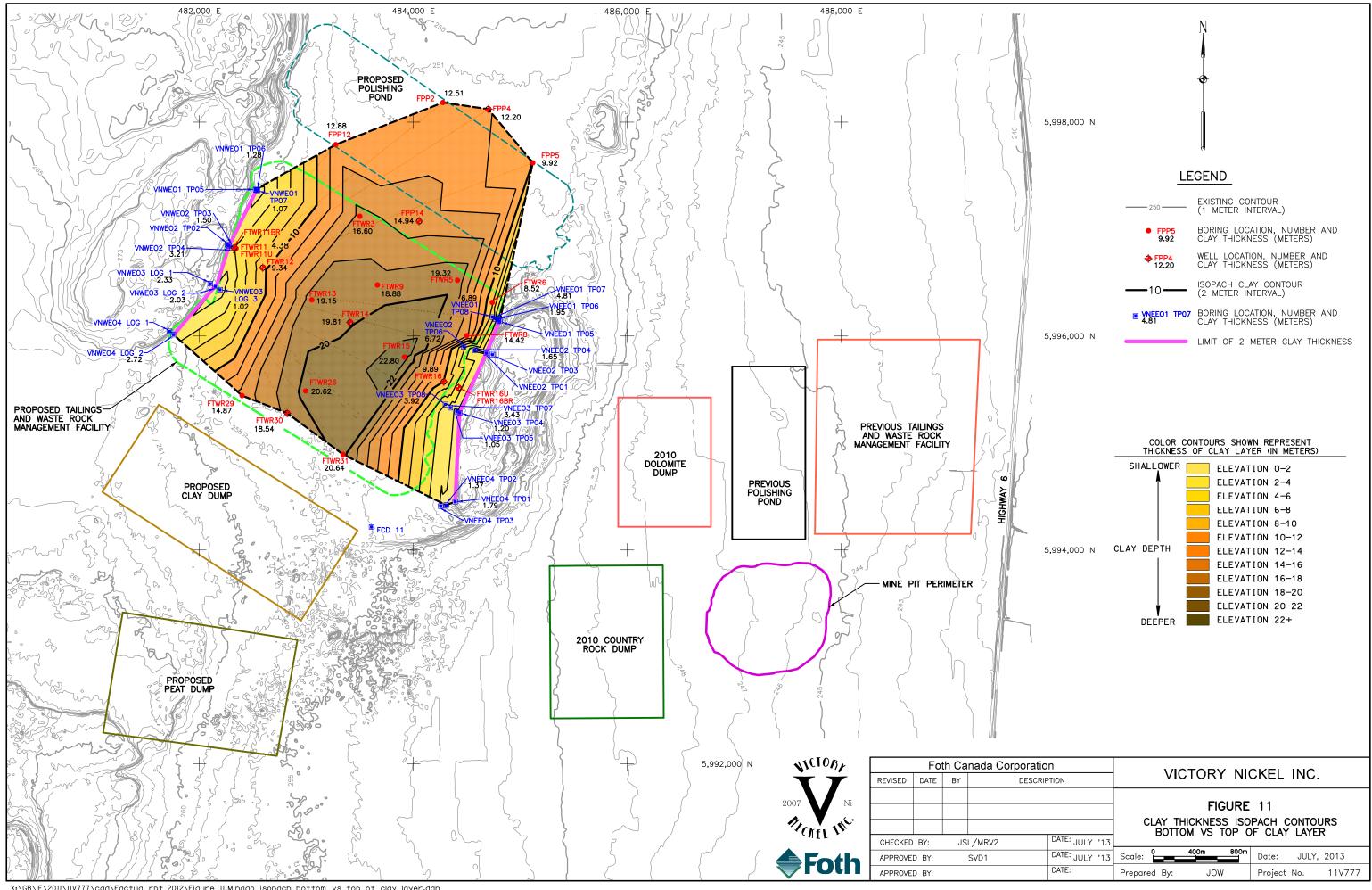


poratio	n								
DESCRIF	PTION	VICTORY NICKEL INC.							
		FIGURE 6							
			С	ROSS SEC	TION A-	۹'			
	DATE: JULY '13								
	DATE: JULY '13	Scale:	AS	SHOWN	Date:	JULY,	2013		
	DATE:	Prepared E	By:	JOW	Project	No.	11V777		

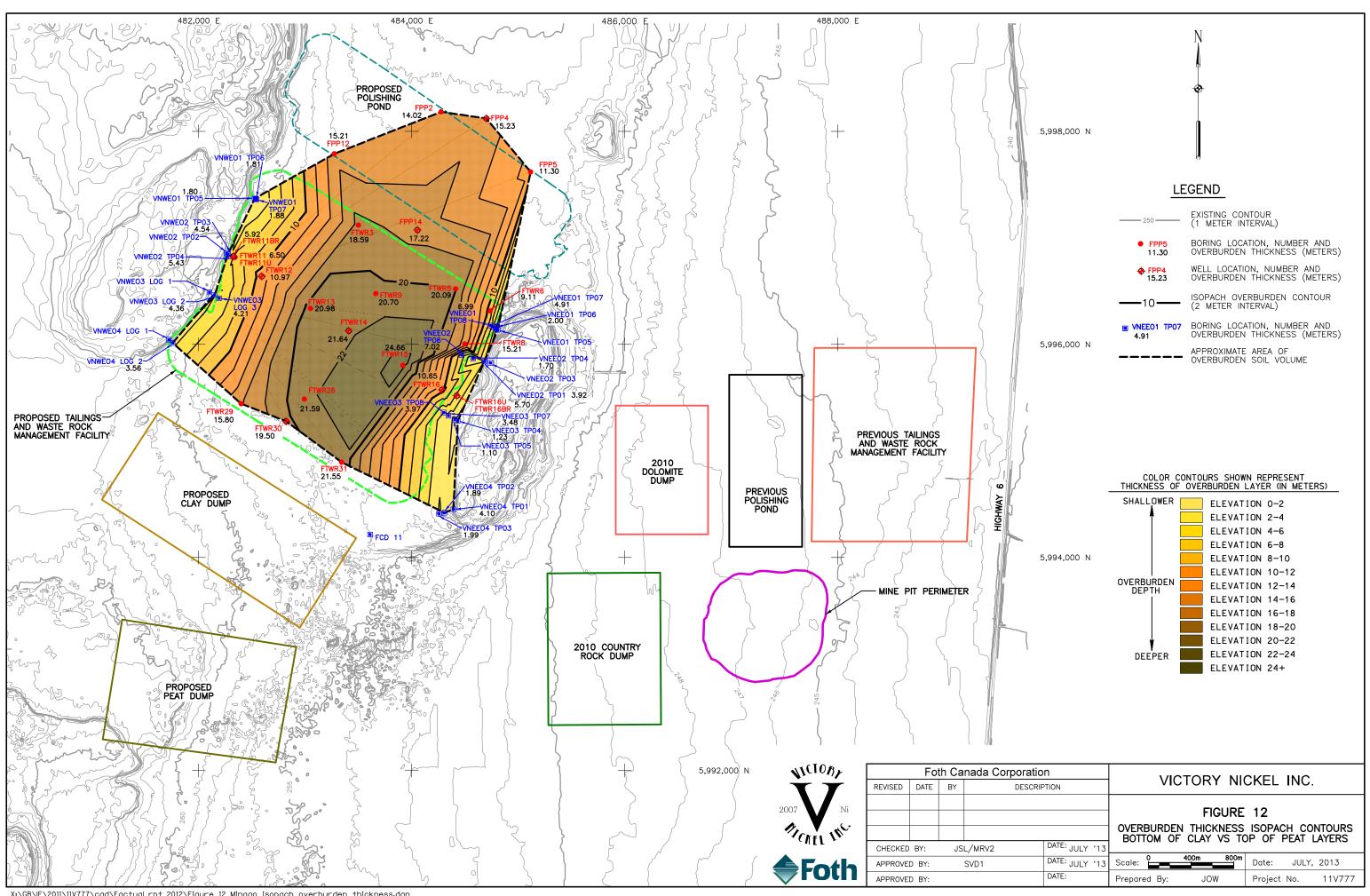



CROSS	SECTION	B-B'

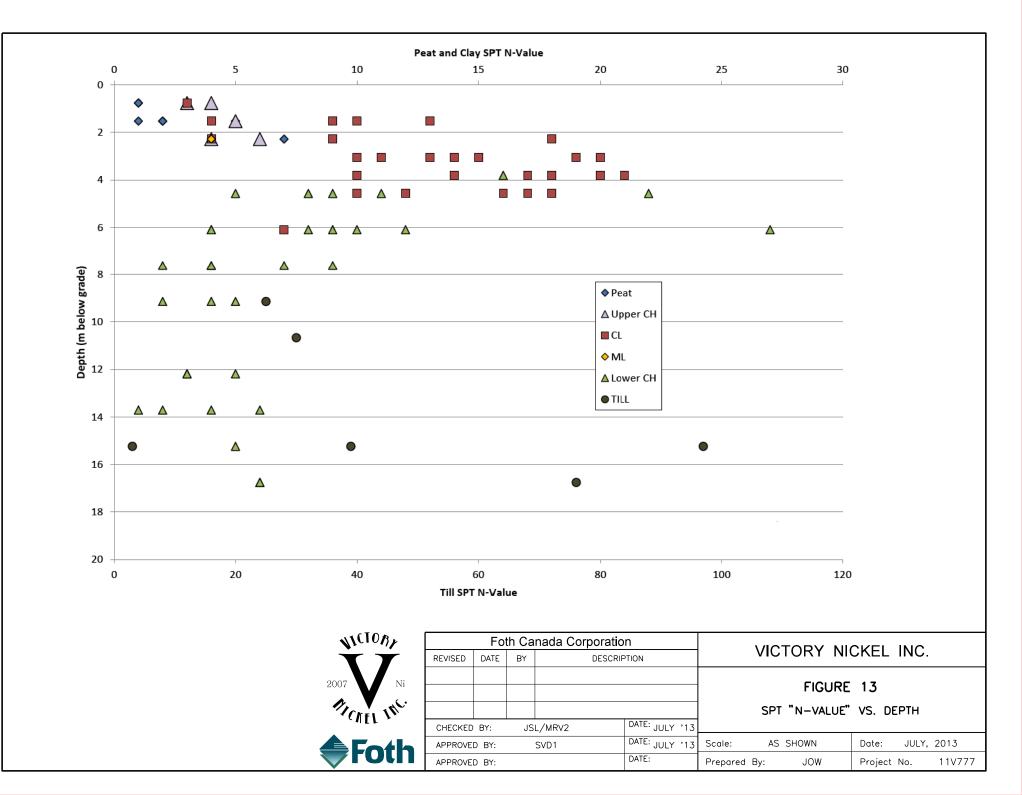
JULY 13						
DATE: JULY '13	Scale:	A	S SHOWN	Date:	JULY,	2013
DATE:	Prepared	By:	JOW	Project	No.	11V777



X:\GB\E\2011\11V777\cad\Factual_rpt_2012\Figure 8 Minago plan view trench locations.dgn 7/15/2013 JOW



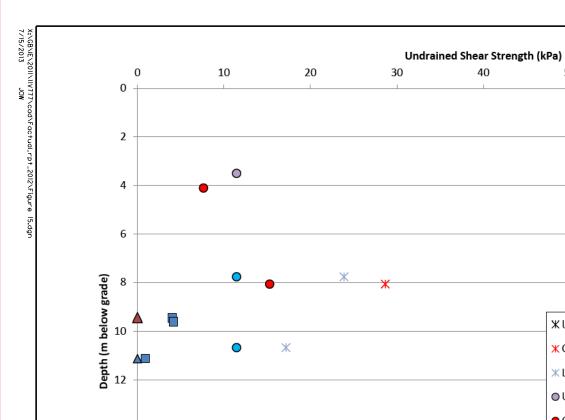
X:\GB\|E\2011\11V777\cad\Factual_rpt_2012\Figure 10 Minago isopach bottom vs top of peat layer.dgn 7/15/2013 JOW

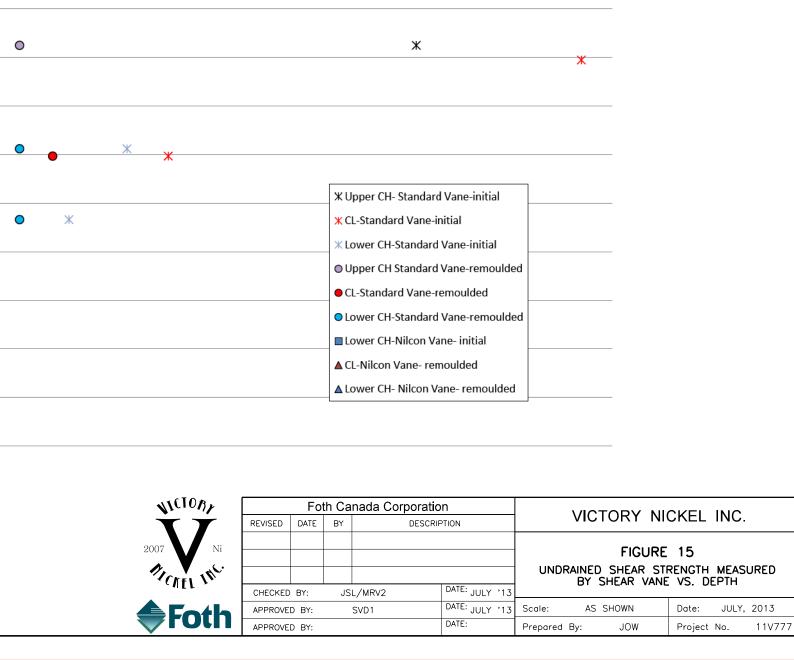

X:\GB\E\2011\11V777\cad\Factual_rpt_2012\Figure 11 Minago isopach bottom vs top of clay layer.dgn 7/15/2013 JOW

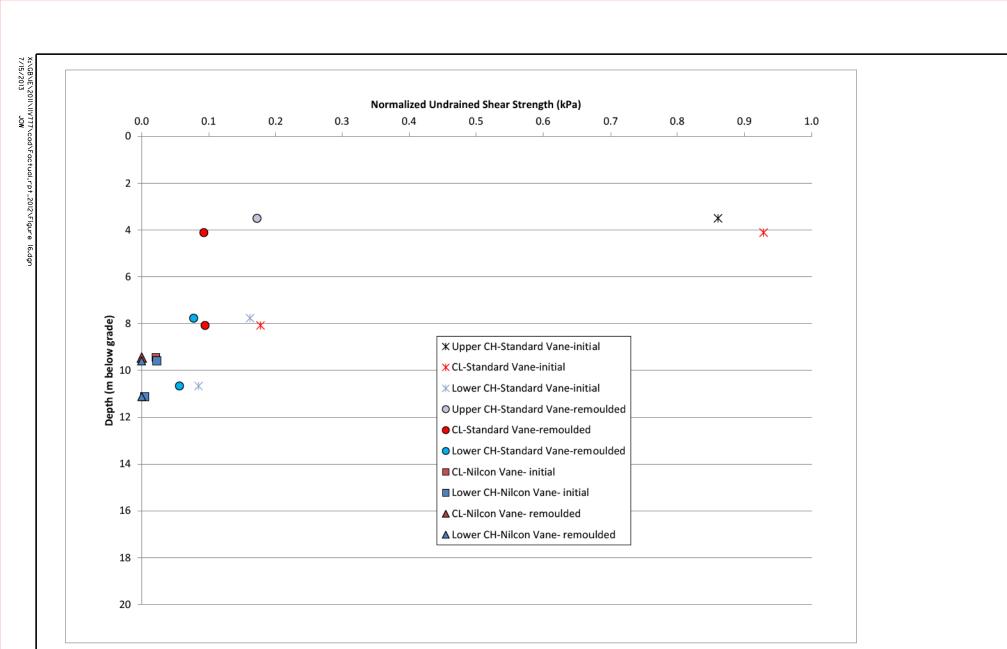
DATE: JULY '13						
DATE: JULY '13	Scale:	400m	800m	Date:	JULY,	2013
DATE:	Prepared B	y: JO	N	Project	No.	11V777

X:\GB\E\2011\11V777\cad\Factual_rpt_2012\Figure 12 Minago isopach overburden thickness.dgn 7/15/2013 JOW

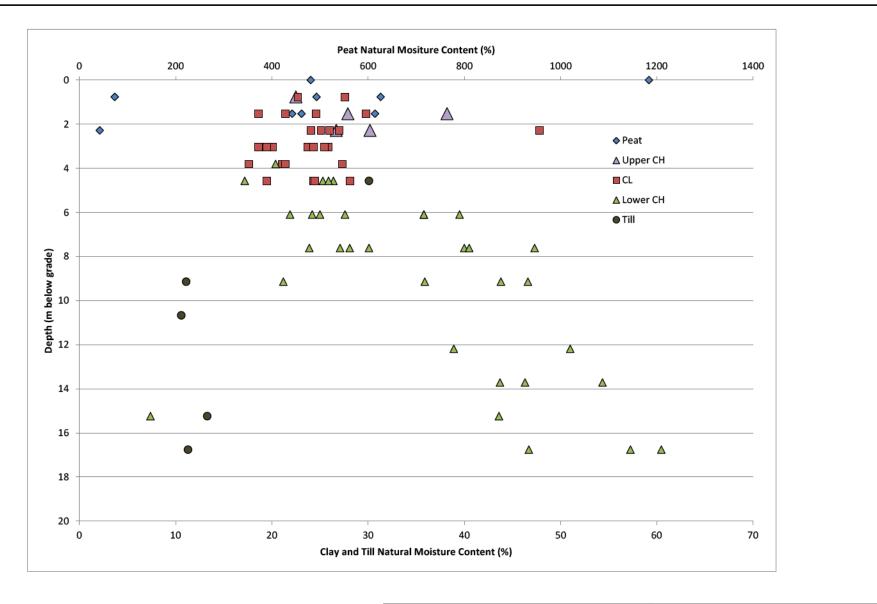
rporation							
DESCRIPTION	VICTORY NICKEL INC.						
DATE: JULY '13	FIGURE 12 OVERBURDEN THICKNESS ISOPACH CONTOURS BOTTOM OF CLAY VS TOP OF PEAT LAYERS						
DATE: JULY '13	Scale: 400m 800m Date: JULY, 2013						
DATE:	Prepared By: JOW Project No. 11V777						

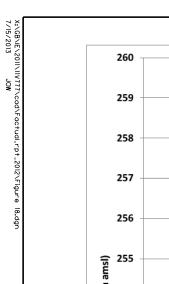


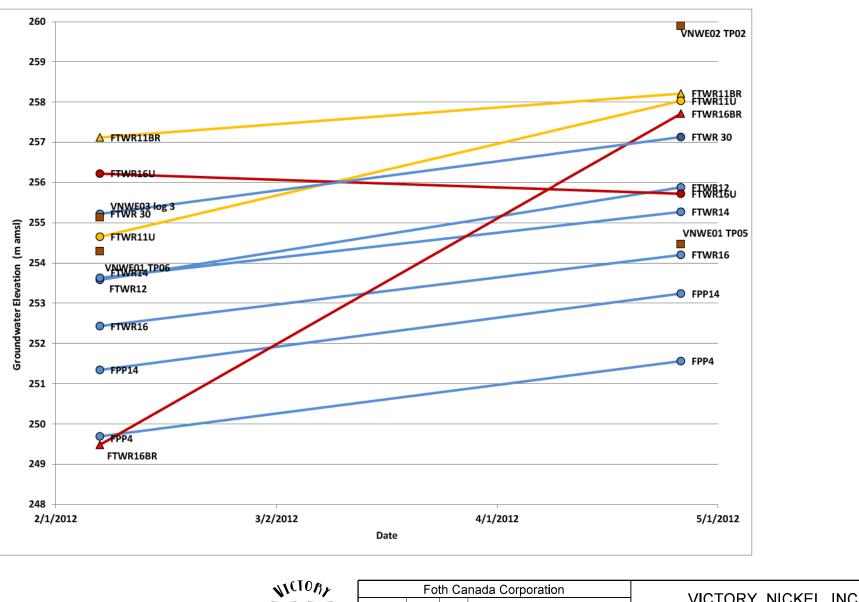




UNDRAINED SHEAR STRENGTH MEASURED


/ # V V I				BI PENEIRUMEIER VS. DEPIH						
·//[l >	CHECKED BY:	JSL/MRV2	DATE: JULY '13							
Foth	APPROVED BY:	SVD1	DATE: JULY '13	Scale:	AS SHOWN	Date: JULY, 2013				
FUII	APPROVED BY:		DATE:	Prepared B	y: JOW	Project No. 11V777				





VICIOBY	Foth Canada Corporation				tion	VICTORY NICKEL INC.			
ττ	REVISED	DATE	BY	DESCRIPTION		VICTORY NICKEL		JKEL ING.	
						FIGURE 16 NORMALIZED UNDRAINED SHEAR STR MEASURED BY SHEAR VANE VS. DI) SHEAR STRENGTH	
	CHECKED	BY:	JSL	/MRV2	DATE: JULY '13	MLASUNED	DI SILAN	VANL VS. DEFIN	
Foth	APPROVE	D BY:	S	SVD1	DATE: JULY '13	Scale: AS	SHOWN	Date: JULY, 2013	
FUII	APPROVE	D BY:			DATE:	Prepared By:	JOW	Project No. 11V777	

VICTORY		Fot	h Ca	nada Corporatio	n		
TT	REVISED	DATE	BY	DESCRIF	PTION	VICTORY NI	CREL INC.
2007 Ni						FIGURE	17
The MEL MC.						NATURAL MOISTURE CO	ONTENT VS. DEPTH
- 1 - 1	CHECKED	BY:	JSI	L/MRV2	DATE: JULY '13		
Foth	APPROVE	D BY:		SVD1	DATE: JULY '13	Scale: AS SHOWN	Date: JULY, 2013
FOUI	APPROVE	D BY:			DATE:	Prepared By: JOW	Project No. 11V777

NICTORY	Fot	h Car	nada Corpora	ation		
REVISED	DATE	BY	DES	CRIPTION		IICKEL INC.
2007 Ni					FIGUR	E 18
	BY:	JSL	./MRV2	DATE: JULY '13	GROUNDWATER	HYDROGRAPH
	D BY:	5	SVD1	DATE: JULY '13	Scale: AS SHOWN	Date: JULY, 2013
	D BY:			DATE:	Prepared By: JOW	Project No. 11V777

Appendix A

Victory Nickel Field Investigations

MINAGO VISIT 29, 30, 31 MARCH 2011

Test Pit Results

		COORE	DINATES	PEAT			SOFT ROCK 1						SOFT ROCK 2				ELEV	ATIONS	COMMENTS
		Northing (m)	Easting (m)	Depth (m)	Туре	Depth (m)	Descriptors	Sample	Strength kPa	Depth (m)	Туре	Depth (m)	Descriptors	Sample	Strength kPa	Depth (m)	Surface (m)	Base (m)	Comments
+	TD-01	5,997,994	484,979	1.22	Grey Clay	3.68	Moist	1	25 250	2.24	Brown Clay	4.82		3	450	3.68		4.82	Hole to limit of machine
F	TD-02	5,997,957	484,472	1.22	Grey Clay	4.50	Moist	1	125	1.30	Brown Clay	5.00		3	450	4.82	256.50	251.50	Hole to limit of machine
F	TD-03	5,997,920	483,978	2.00	Grey Clay	3.70	Moist	2	475 200	3.30	Brown Clay	5.00		2	4500	4.70	-		Hole to limit of machine
ł	TD-04	5,997,892	483,477	2.74	Grey Clay	2.00	Wet sand seam	1	175	3.00	Brown Clay	4.10		2	225	3.80	252.00		Hole to limit of machine
F	TD-05	5,997,857	482,903	1.12	Brown	tbc	Soft to firm							_			-	1	Limestone at base
	TD-06	5,996,365	482,307	1.60	Grey Clay	5.50	Soft to firm	1	350	4.50							259.00		Some water at base probably from limeston Hole to limit of machine
+	TD-07	5,996,246	482.805	1.80	Grey Clay	3.50	Water from peat	1	350	3.50							257.50		Hole abandoned at 3.5 m
-	TD-08	5,996,189	483,337	2.13	Grey Clay	4.20	Hole abandoned	1	150	3.95	Brown Clay	4.40	Very wet clay at base				207.00		Hole abandoned
-	TD-09	5,996,077	483,888	1.80	Grey Clay	2.50	Water from peat			1000000	crown cray	4.40	Sandy clay						
								1	15	3.50									Hole abandoned
		5,995,892	484,413	0.60	Brown	5.00	Dry, friable	1 2	350 450	3.00 4.40							259.00		Hole to limit of machine
	TD-11	5,995,885	484,478	0.90	Brown	2.15	Friable	1	465	2.15							259.50		Hole abandoned Water in hole
$^{+}$	TD-12	5,995,329	484,335	0.20	Brown Clay	4.90	Light to darker brown	1	475	2.00									Hole to limit of machine
ŀ	TD-13	5,995,353	483,835	0.80	Brown Clay	5.20	Boulders at base Light to darker brown	1	350	2.90							251.50		Bedrock semed close Hole to limit of machine
\mathbf{F}	TD-14	5,995,291	483,328	1.10	Grey Clay	3.00	Moist	1	200	1.25	Brown Clay	5.10	Dry and friable	2	350	3.10	255.50		-
ŀ	TD-15	5,995,286	482,819	1.05	Grey Clay	2.00	A-9501454	1	150	2.00	Brown Clay	3.25		2	250	3.00	255.00		Hole abandoned
+	TD-16	5,995,330	482,207	0.90	Grey Clay	2.40	Sandy and silty but dry	1	tba	1.25	Brown Clay	4.90	Dry and friable	2	400	2.60	259.00		Water from peat
ŀ	TD-17	5,995,308	481,690	0.90	Grey Clay	2.40	Light brown	1	450	2.00	brown oray	4.00	Dry and mable	-	400	2.00			Hole to limit of machine
							Dry and friable		450								261.50		Limestone at base 1 m of water in 12 minutes
L		5,994,592		1.00	Grey Clay	1,80	Soft	1		1.00	Brown Clay	5.50	Friable but moist at base	2	450 350	2.00 4.80	259.00		Hole to limit of machine
	TD-19	5,994,115	483,959	0.30	Brown Clay	4.90	Light to darker brown Dry and friable	1 2	150 350	1.50 4.50									Hole to limit of machine
+	OP-01	5,993,349	487,338	1.10	Blue Clay	3.50	Firm, friable at depth	1	50	2.20				_			248.00	244.50	Limestone at base
ł	OP-02	5,993,350	487,650	1.10	Grey Clay	3.50	Soft at top	2		3.00							246.50	243.00	Some water at base probably from limeston Limestone at base
+	OP-03	5,993,321	487,974	0.90	Grey Clay	2.50	Friable and dry at base Soft then friable with sand	1	none	1.00	Brown Clay	4.90	Soft at top	2	350	2.50	245.50	241.60	Some water at base probably from limeston
-	OP-04	5,993,000	487,650	1.60	Green Clay	1.80	Soft at top		TIONE	1.00			Friable and dry at base				19993393		Some water at base probably from limeston
			1.000000000	A10000			Friable at base				Brown Clay	4.50	Friable Boulders at base	1	350	4.50	243.00	238.50	Hole to limit of machine Some inflow of water at base
	OP-05	5,993,100	487,350	0.90	Brown Clay	2.50	Friable and dry at base	1	200	2.00							243.50	241.00	Limestone at base No water
L	OP-06	5,992,828	487,347	1.30	Green Clay	2.30	Fraible				Brown Clay	4.80	Friable	1	300	4.80	247.50	242.70	Hole to limit of machine Little water at base
	OP-07	5,993,346	487,046	1.77	Blue Clay	2.80	Soft at top then firm	1	50	1.80	Brown Clay	6.00	Friable	23	175 300	3.30 3.90	253.00	247.00	Boulders at 3.90 m Hole to limit of machine
H	OP-08	5,993,350	486,750	1.90	Green Clay						Brown Clay	5.50	Friable	4	250 450	5.70 5.50	246.60	241.00	Some water at base suggesting limestone clo Hole to limit of machine
L	OP-09	5,993,600	486,900	1.50	Green Clay	5 50	Friable		450	2.30	c.own oray	0.00	r native		430	3.30			
L	2010102020101							2	450 400	5.50							249.00	243.50	Hole to limit of machine
L	OP-10	5,993,600	487,350	1.70	Green Clay	2.40	Soft going dry and friable	1		2.40	Brown Clay	5.20	Fraible boulders at base	2	400	5.20	247.00	241.80	Hole to limit of machine Some water at base suggesting limestone clo
	OP-11	5,993,850	487,350	1.40	Green Clay	1.70					Brown Clay	5.50	Dry at base	1	300	5.20	247.00	241.50	Limestone at base Some water at base probably from limeston

OPEN PIT AREA

Dep	pth		0	DP 1	0	P 2	OP 3		OP 4	OF	o 5	OP	6	OP 7	OP	8	OP	9	OP 1	0	OP 1	1	OP 12	OP	13	OP 14	4	OP 1	5	OP 16	C	OP 17
m Nortl East Gra Ro	ft hing ting ade	m m m m	T 5,99 48 24	G 93,375 7,250 6.850 2.735	T 5,99 487 246	G 3,375 7,625 5.050 .173	T 0 5,993,375 487,875 245.650 242.297	5 5		T 5,993 487, 245. 240.	G 3,000 750 300	T 5,993, 487,2 246.6 245.2	G ,050 250 500	T G 5,992,750 487,250 246.450 244.317	T 5,993, 487,0 247.1 241.8	G ,200)00 150	T 5,993, 486,7 247.4 241.0	G 000 750 400		G 375 00 50	T 5,993, 486,6 247.7 238.2	G 375 25 00	T G 5,993,625 487,100 247.050 239.735	T 5,993, 486,8 247.2 239.8	G ,750 350 200		G 25 50 50		G 875 50 50	T G 5,993,625 487,625 246.050 239.345	T 5,9 48 24	93,850 93,875 15.500 10.014
.524	5	Flight 1				soft		oft			soft soft soft soft		soft soft	firm firm firm firm firm firm																		SC SC
048	10	Flight 2		firm firm firm firm firm firm firm firm		soft soft soft soft soft firm firm firm	ព័រ ព័រ ព័រ ព័រ ព័រ ព័រ ព័រ ព័រ	m m m m m m m m m m m m m m m	soft soft soft firm firm firm firm		firm firm firm firm firm firm firm firm			firm firm firm firm		soft soft firm firm firm firm firm firm firm		soft soft firm firm firm firm firm firm firm		soft firm firm firm firm firm firm firm		firm firm firm firm firm	s/firm s/firm s/firm firm firm firm firm firm firm firm		s/firm s/firm firm firm firm firm firm firm firm	S/ S/ 1 1 1 1 1 1 1	/firm /firm /firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	s/firi s/firi firm firm firm firm firm firm firm		s s f f f f f f f f
72	15	Flight 3		firm firm firm firm firm firm	-	firm firm firm firm firm firm firm firm	fii	m m	firm firm firm firm firm		firm firm firm firm firm firm firm firm					firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	fim fim fim fim fim fim fim fim fim fim		
096	20	Flight 4				firm firm	,				firm firm firm firm					firm firm firm firm firm		firm firm firm firm firm firm soft soft soft		firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	t t t t t t t t	firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	firm firm firm firm firm firm firm firm		
520	25	Flight 5																soft		firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm	firm firm firm firm firm firm firm s/firm		firm firm firm firm firm firm firm firm				firm firm firm firm firm firm	firm firm firm		
44	30	Flight 6																		firm firm		firm firm firm firm firm firm firm firm										
agniur	Peat T m Peat T wn Clay T Depth		0.457 1.219 2.438 4.115	4.00 8.00		3.50 11.50	0.152 0. 1.067 3. 2.133 7. 3.353 11	50 1.3 00 1.9	72 4.50 81 6.50	0.457 4.267	14.00	0.610 0.305	1.50 2.00 1.00 4.50	0.305 1.00 0.305 1.00 1.524 5.00 2.133 7.00	3.810	3.50 12.50	0.457 1.372 4.572 6.400	4.50 15.00	0.610 1.219 6.096 7.924	4.00 20.00	0.457 1.829 7.162	firm soft 1.50 6.00 23.50	0.610 2.00 0.610 2.00 6.096 20.00 7.315 24.00	0.610 5.791	2.00 19.00	0.305 1 1.219 4 4.572 1 6.096 2	4.00 5.00		4.50 17.50	0.457 1.50 1.067 3.50 5.181 17.0 6.705 22.0	0.610) 7
			0	OP 1	O	P 2	OP 3		OP 4	OF	°5	OP	6	OP 7	OP	8	OP	9	OP 1	0	OP 1	1	OP 12	OP	13	OP 14	4	OP 1	5	OP 16	c	OP 1'

Ave. Fibrous Peat T m Ave. Spagnium Peat T m Ave. Grey&Brown Clay T m Ave. Rock Depth

0.457 1.004 4.061 5.522

Fibrous Peat Spagnium Peat Grey Clay Brown Clay Silty Grey Clay Swelling Brown Clay

m

MISCELLANEOUS AREAS

Depth m ft		Trial T	Pit 1 G	NL T	01 G	NL T	. 02 G	NL T	. 03 G	NL T	. 04 G	NL T	05 G	NL T	. 06 G	NL T	. 07 G	LB T	3 01 G
Northing Easting Grade Rock	m m m m	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
1.524 5	Flight 1				soft soft soft soft soft		soft soft soft soft soft		soft						soft soft soft				
3.048 10	Flight 2		firm firm firm firm firm firm firm		soft soft soft soft soft firm firm firm firm		soft soft firm firm firm firm firm firm firm		soft firm firm firm firm firm firm firm firm		soft soft firm firm firm firm firm firm firm		soft soft soft firm firm firm firm firm firm		firm firm firm firm firm firm firm firm		soft soft firm firm firm firm firm firm firm		ព៍ ព៍ ព៍ ព៍ ព៍ ព៍ ព័
4.572 15	Flight 3		firm firm firm firm firm firm firm firm		firm firm firm firm firm		firm firm firm firm firm firm firm firm		firm firm firm firm		firm firm firm firm firm firm firm firm		firm firm firm firm firm		firm firm firm firm firm firm firm firm		firm firm firm firm firm firm firm firm		f f f f f f f f f f
6.096 20	Flight 4		firm firm firm firm firm firm firm firm								firm firm firm firm firm firm soft soft				firm firm firm firm firm firm firm firm		firm firm firm firm firm soft soft soft		f f f f f s s s s s s s
7.620 25	Flight 5		firm firm firm firm firm firm firm firm												firm firm firm firm firm soft		firm firm soft soft soft soft soft soft soft soft		f f f f f s
9.144 30	Flight 6		firm firm firm firm firm firm firm														soft soft		
Fibrous Peat T Spagnium Peat T rey&Brown Clay Rock Depth	Г	0.152 1.676 7.010 8.839	0.50 5.50 23.00 29.00	0.305 0.457 3.048 3.810	1.00 1.50 10.00 12.50	0.305 0.457 3.657 4.419	1.00 1.50 12.00 14.50	0.305 1.067 2.286 3.657	1.00 3.50 7.50 12.00	0.305 1.219 4.267 5.791	1.00 4.00 14.00 19.00	0.610 0.914 2.438 3.962	2.00 3.00 8.00 13.00	0.457 0.610 5.943 7.010	1.50 2.00 19.50 23.00	0.610 0.914 6.400 7.924	2.00 3.00 21.00 26.00	0.610 0.914 3.962 5.486	2 3 13 18

C:\Documents and Settings\cat\Local Settings\Temporary Internet Files\Content.Outlook\FPQJ03LG\Copy of VN Log Summary

2007 DRILLING

2011 TEST PITS

BH	21	BH	122	BH	23	BH	124
Т	G	Т		Т	G	Т	
5,993	3,118	5,993	3,642	5,993	3,745	5,993	3,205
486	,904	487	,089	487	796	487	,454
247			.050	245			.050
240			.040	238			.869
0	≠		.010 ≠		<i>≠</i>		.00) ≠
	≁ ≠		<i>∓</i> ≠		≁ ≠		<i>∓</i> ≠
	, ≠		, ≠		, ≠		, ≠
	£						
	firm firm						
	firm						
	firm				firm		
	firm				firm		
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm firm
	firm firm		firm firm		firm firm		firm firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		firm
	firm		firm		firm		
	firm		firm		firm		
	firm firm		firm firm		firm firm		
	firm		firm		firm		
	firm		firm		firm		
	firm		firm		firm		
	firm		firm		firm		
	firm		firm		firm		
	firm		firm		firm		
	firm		firm		firm		
	firm		firm		firm		
0.457	1.50	0.457	1.50	0.457	1.50	0.457	1.50
0.914	3.00	1.676	5.50	1.372	4.50	1.676	5.50
5.639	18.50	4.877	16.00	5.181	17.00	3.048	10.00
7.010	23.00	7.010	23.00	7.010	23.00	5.181	17.00
						1	
BH			122	BH			124

OP		OP			03	OP		OP	
Т	G	Т	G		G	Т	G	Т	G
5,993		5,993		5,993		5,993		5,993	
487,			650	487,		487,			300
246.		245.		245.		246.			650
243.		242.		240.		243.		241.	
	¥		¥		<i>≠</i>		<i>≠</i>		¥
	≠,		≠,		≠,		≠,		ŧ,
	¥		≠		≠		Ź		ŧ
					firm		firm		
	firm		firm		firm		firm		
	firm		firm		firm		firm		
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm		firm		firm		firm		firm
	firm firm		firm Gimm		firm firm		firm Gunu		firm Gunn
	firm		firm		firm firm		firm firm		firm firm
					firm firm		firm firm		firm firm
					firm firm		firm firm		firm firm
					jirm firm		firm firm		firm firm
					firm		<i>j</i> 17711		firm
					firm				firm
					firm				firm
		İ			firm	1			firm
					firm				firm
						1			firm
									firm
									firm
									firm
		0.457	1.50	0.457	1.50	0.457	1.50	0.457	1.50
0.457	1.50		2.00	0.457	1.50	0.457	1.50	0.914	3.00
0.610	2.00	0.610							
0.610 2.438	2.00 8.00	2.438	8.00	3.962	13.00	1.676	5.50	4.115	13.50
0.610	2.00			3.962 4.877	13.00 16.00	1.676 2.591	5.50 8.50	4.115 5.486	13.50 18.00
0.610 2.438	2.00 8.00 11.50	2.438	8.00 11.50		16.00		8.50		18.00

Ave. Fibrous Peat T m Ave. Spagnium Peat T m Ave. Grey&Brown Clay T m Ave. Rock Depth m

Fibrous Peat Spagnium Peat Grey Clay Brown Clay Silty Grey Clay Swelling Brown Clay

0.457 0.965 3.708 5.131

Appendix B

Borehole and Test Pit Locations and Stratigraphy

Borehole and Test Pit Locations and Stratigraphy

						Peat	Sand and	Gravel	Clay	y	Bedrock
Во	rehole / Test Pit Number	Location Description	Northing	Easting	Ground Surface Elevation (m)	Thickness (m)	Depth to the Surface (Below Grade) (m)	Thickness (m)	Depth to the Surface (Below Grade) (m)	Thickness (m)	Depth to the Surface (Below Grade) (m)
	VNEE01 TP05	Tailings and Waste Rock Area East	5996139	484808	256.21	0.05			0.05	0.6	0.6
	VNEE01 TP06	Tailings and Waste Rock Area East	5996146	484792	255.68	0.03			0.03	2.0	2.0
	VNEE01 TP07	Tailings and Waste Rock Area East	5996159	484770	255	0.10			0.10	4.9	5.0
	VNEE01 TP08	Tailings and Waste Rock Area East	5996177	484740	254.86	0.10			0.10	6.9	7.0
	VNEE02 TP01	Tailings and Waste Rock Area East	5995840	484683	263.34	0.05	0.05	0.16	2.10	1.8	3.9
	VNEE02 TP03	Tailings and Waste Rock Area East	5995825	484739	266.44	0.05	0.05	1.95			2.0
	VNEE02 TP04	Tailings and Waste Rock Area East	5995868	484576	256.85	0.05			0.05	1.7	1.7
	VNEE02 TP06	Tailings and Waste Rock Area East	5995900	484470	255.59	0.30			0.30	6.7	7.0
	VNEE03 TP04	Tailings and Waste Rock Area East	5995282	484433	262.09	0.01			0.01	1.2	1.2
	VNEE03 TP05	Tailings and Waste Rock Area East	5995296	484404	261.41	0.05			0.05	1.1	1.1
	VNEE03 TP07	Tailings and Waste Rock Area East	5995331	484345	259.68	0.05			0.05	3.5	>4.8
	VNEE03 TP08	Tailings and Waste Rock Area East	5995360	484300	258	0.05			0.05	>4.8	>4.8
Ś	VNEE04 TP01	Tailings and Waste Rock Area East	5994452	484391	264.89	0.10	0.10	1.60	2.40	1.8	4.2
Pits	VNEE04 TP02	Tailings and Waste Rock Area East	5994420	484308	260	0.10	0.70	3.70			4.4
est	VNEE04 TP03	Tailings and Waste Rock Area East	5994410	484256	260	0.05			0.05	>2.6	>2.6
Ĕ	VNWE01 TP05	Tailings and Waste Rock Area West	5997369	482525	256.27	0.30			0.30	1.5	1.8
	VNWE01 TP06	Tailings and Waste Rock Area West	5997366	482534	256	0.40			0.40	1.3	1.7
	VNWE01 TP07	Tailings and Waste Rock Area West	5997362	482542	256	0.90			0.90	>3.0	>3.9
	VNWE02 TP02	Tailings and Waste Rock Area West	5996853	482262	262.30		0.00	2.40			2.4
	VNWE02 TP03 EAST	Tailings and Waste Rock Area West	5996836	482290	258.87	0.50	0.50	2.60			3.1
	VNWE02 TP03 WEST	Tailings and Waste Rock Area West	5996844	482274	260.90	1.50			1.50	1.6	3.1
	VNWE02 TP04	Tailings and Waste Rock Area West	5996826	482303	258.54	2.00			2.00	2.5	4.5
	VNWE03 log 1	Tailings and Waste Rock Area West	5996489	482101	263.22	0.20	0.20	1.00			1.2
	VNWE03 log 2	Tailings and Waste Rock Area West	5996489	482159	261	0.30	0.30	2.10	2.40	1.9	4.3
	VNWE03 log 3	Tailings and Waste Rock Area West	5996489	482201	259.14	0.50	0.50	2.70	3.20	1.0	4.2
	VNWE04 log 1	Tailings and Waste Rock Area West	5996044	481720	257.35		0.00	1.20		0.0	1.2
	VNWE04 log 2	Tailings and Waste Rock Area West	5996014	481756	257	0.40	0.40	0.40	0.80	2.7	3.5
	FCD 11	Southeast of Tailings and Waste Rock Area	5994215	483609	258.00	2.00			2.00	>5.6	>5.6

Borehole and Test Pit Locations and Stratigraphy

						Peat	Sand and	Gravel	Clay	y	Bedrock
Во	rehole / Test Pit Number	Location Description	Northing	Easting	Ground Surface Elevation (m)	Thickness (m)	Depth to the Surface (Below Grade) (m)	Thickness (m)	Depth to the Surface (Below Grade) (m)	Thickness (m)	Depth to the Surface (Below Grade) (m)
	FTWR-8	Tailings and Waste Rock Area East	5996004.412	484498.530	255.420	0.762			0.762	14.478	16.0
	FTWR-6	Tailings and Waste Rock Area Northeast	5996314.245	484736.846	254.252	0.762			0.762	8.382	9.6
	FTWR-5	Tailings and Waste Rock Area East	5996521.356	484412.096	253.431						20.1
	FPP-5	Polishing Pond North	5997618.633	485116.637	252.031						11.3
	FPP-4 Well	Polishing Pond North	5998120.563	484701.161	251.901	1.829			3.048	12.192	17.1
	FPP-4 Well Pipe Top	Polishing Pond North	5998120.594	484701.303	252.902						
	FPP-2	Polishing Pond North	5998183.076	484276.363	251.755						14.0
	FPP-12	Polishing Pond Southwest	5997789.392	483274.139	253.621	2.347			2.347	12.893	17.2
	FPP-14 Well	Polishing Pond South	5997073.442	484053.357	253.441	2.286			2.286	14.934	17.2
	FPP-14 Well Pipe Top	Polishing Pond South	5997073.300	484053.300	254.340						
	FTWR-3	Polishing Pond North	5997119.446	483499.417	253.673						18.6
	FTWR-11U Well	Tailings and Waste Rock Area West	5996825.343	482323.382	258.344						
	FTWR-11BR Well	Tailings and Waste Rock Area West	5996826.395	482325.981	258.282						6.1
	FTWR-11BR Well Pipe Top	Tailings and Waste Rock Area West	5996826.343	482325.974	259.297						
	FTWR-11U Well Pipe Top	Tailings and Waste Rock Area West	5996825.268	482323.331	259.330						
	FTWR-11	Tailings and Waste Rock Area West	5996817.986	482341.665	258.339	2.286			2.286	4.267	6.6
les	FTWR-12 Well	Tailings and Waste Rock Area West	5996639.115	482592.080	256.035	1.625			1.625	9.345	11.3
Boreholes	FTWR-12 Well Pipe Top	Tailings and Waste Rock Area West	5996639.036	482592.174	256.997						
OLE	FTWR-13	Tailings and Waste Rock Area Center	5996338.035	483050.504	255.546						21.0
Ш	FTWR-14 Well	Tailings and Waste Rock Area Center	5996126.981	483408.514	255.335	1.829			1.829	19.811	21.6
	FTWR-14 Well Pipe Top	Tailings and Waste Rock Area Center	5996127.037	483408.573	256.373						
	FTWR-9	Tailings and Waste Rock Area Center	5996477.701	483663.407	254.623						
	FTWR-15	Tailings and Waste Rock Area East	5995803.148	483916.820	255.371						24.7
	FTWR-16 Well	Tailings and Waste Rock Area East	5995573.346	484284.330	256.731	0.762			0.762	9.908	10.7
	FTWR-16 Well Pipe Top	Tailings and Waste Rock Area East	5995573.377	484284.118	257.703						
	FTWR-16U Well	Tailings and Waste Rock Area East	5995520.131	484423.874	257.880						
	FTWR-16BR Well	Tailings and Waste Rock Area East	5995517.713	484422.401	257.704						6.5
	FTWR-16BR Well Pipe Top	Tailings and Waste Rock Area East	5995517.704	484422.356	258.815						
1	FTWR-16U Well Pipe Top	Tailings and Waste Rock Area East	5995520.206	484423.939	259.572						
	FTWR-16 (original location)	Tailings and Waste Rock Area East	5995509.816	484321.820	257.218						
	FTWR-31	Tailings and Waste Rock Area South	5994893.592	483342.090	257.487						21.6
	FTWR-26	Tailings and Waste Rock Area South	5995486.600	482992.457	257.102						21.6
1	FTWR-30 Well	Tailings and Waste Rock Area South	5995278.491	482820.120	257.106	0.962			0.962	18.548	19.5
1	FTWR-30 Well Pipe Top	Tailings and Waste Rock Area South	5995278.492	482819.963	257.990						
	FTWR-29	Tailings and Waste Rock Area South	5995443.038	482398.357	257.662						15.8
			1								Prepared by: JOE

Prepared by: JOE Checked by: BMS2

Appendix C

Borehole Logs

	Foth	F	REC	OR	D O	FB	OREHO	DLE	No.	FP	P-1	2							JRE NO ET 1 OF	
PRO	JECT Victory Nickel - Mina	igo Geotechni	cal Inve	estiga	ition											ENG	SINE	ER		
PRO	JECT NO. <u>11V777</u>	DRILLER	Paddo	ock D	rilling		BORING I	NETHO	DD_⊢	lollow	Stem	Auger				LOC	GEE) BY	JS	L
CLIE	NT Victory Nickel			Po	lishing	Pond S	Southwest			DAT	UM _	MSL				cor	MPIL	ED B	Y _ J	IOE
ELE	ATION 253.62m	COORD.	N: 5,99	7,78	9.39m,	E: 483	,274.14m	BORI		re	15 Jar	n 12				CHE	ECKE	ED B'	Y!	SL
-	PLE TYPES RC	Rock Core				AB	BREVIATIO	ONS					1.01			<i>a</i> .				
AU BU GB PS	Grab Sample VA Piston Sampler WS	Split Spoon Thin-Walled (Vane Wash Sample	e			U.W PT	Pocket Pe Wet Unit V Standard	Veight		RQI	Poir D Roc R Soli Per	k Qua	ility De e Recc	signa	tion	(I ₅₀)		C	onsolid J Triax rain Siz	
	SOIL PROFIL	_E		SAN	MPLE I		eter			=	e s Dynamio	PT N V Cone		ation	stic	Natural	ntent nid	, it	_	
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	⊕ Va		ct noulded	ł	V		≌8 ≞ v ≺ (Permeability (cm/s)	Remarks
	Ground S					S	-				30 1 I	60 2 · · · ·	40 3	20	1	15 3	60 4	5		
	Peat, very soft to firm, v non woody, amorphous granular (6), fibrous (14	. 4.3	N.																	Helper left
			SH	1															-	caps in tube failed sp1.
			ss	2	15.3	1			-252-									614	↓.4 ≮	Took cuttings from auger.
<u>251.2</u> 2.3		tiff,	ss	3	65.6	7				•	▲ 96						×			
	plasticity, moist. Rare 2 subangular limestone p	cm ///																		
	Laboratory observation suggests evidence of c weathering (mottled, tra	lav	ss	4	76.6	11				•				4	383	×			-	Fissures
	organics, friable, fissure decreasing with depth of the entire CL interval, approximately 3 meters	ed) over	ss	5	87.5	21		- 4 -								x				GS Fissures
			ss	6	100.0	17				•				▲ 33	5	×				Fissures
248.0	3																			
5.5	(CH) Clay, stiff, brown, plasticity, moist, trace limestone clasts up to 1							6 -	-248-											
			ss	7	135.6	8				•				287		×				Fissures
246.5																				
246.5	9 (CL) Clay, firm, grey-bro medium plasticity, mois																		-	
			ss	8	-	4		- 8 -		• 24							×			
244.2 9.3		gh	VA						0.02	4.03 D									-	9.45m
	plasticity, high sensitivit moist.								-244-											Nilcon vane tapered

'ictory Nickel - Minago Geol 11V777 DRILL ory Nickel	ER LOCAT DN ore ooon alled Op	Paddo 10N _ 1: 5,99 pen (S	Pol 7,789	rilling lishing 0.39m, () /) //PLE	Pond S E: 483, ABI P.P. U.W PT S	Couthwest 274.14m BREVIATIC Pocket Pe . Wet Unit \ Standard	BORIN BORIN DNS enetrom Weight	DD NG DAT	ollow St DATUI	em Au VII Jan 1 Point	uger <u>VISL</u> 12	Strer	ath Ir			GED MPILE CKE	D BY ED B ED B	<u>JSI</u> Y <u>J</u>	OE SL
ory Nickel 253.62m COOR ES RC Rock C SS Split Sp TW(SH) Thin-W pler VA Vane mpler WS Wash S SOIL PROFILE Description ay, soft, grey, high y, high sensitivity,	D. N ore boon alled Op Sample	10N _ 1: 5,99 pen (S	Pol 7,789 helby).39m,).39m, /) /PLE	Pond S E: 483, ABI P.P. U.W PT S	BORING I couthwest 274.14m BREVIATIO Pocket Pe . Wet Unit V Standard	BORIN BORIN DNS enetrom Weight	DD NG DAT	ollow Str DATUI E 15	em Au VII Jan 1 Point	uger <u>VISL</u> 12	Strer	ath Ir			APILE CKE	ED B D B)	<u>ر ۲</u>	OE SL
ory Nickel 253.62m COOR ES RC Rock C SS Split Sp TW(SH) Thin-W pler VA Vane mpler WS Wash S SOIL PROFILE Description ay, soft, grey, high y, high sensitivity,	D. N ore boon alled Op Sample	10N _ 1: 5,99 pen (S	Pol 7,789 helby).39m,).39m, /) /PLE	Pond S E: 483, ABI P.P. U.W PT S	Couthwest 274.14m BREVIATIC Pocket Pe . Wet Unit \ Standard	BORIN DNS enetrom Veight	NG DAT	DATUI E <u>15</u>	VI Jan 1 Point	MSL 12	Strer	nath Ir		CHE	CKE	D B)	<u>(</u>]8	SL
ES RC Rock C SS Split Sp TW(SH) Thin-W pple VA Vane mpler WS Wash S SOIL PROFILE Description ay, soft, grey, high y, high sensitivity,	ore poon alled Op Sample	pen (S	helby	/) //PLE	ABI P.P. U.W PT S	Pocket Pe . Wet Unit \ Standard	DNS enetrom Veight	neter	PI	Point	Load	Strer	nath Ir	ndex (l)				
ES RC Rock C SS Split Sp TW(SH) Thin-W pple VA Vane mpler WS Wash S SOIL PROFILE Description ay, soft, grey, high y, high sensitivity,	ore poon alled Op Sample	pen (S	helby	/) //PLE	ABI P.P. U.W PT S	Pocket Pe . Wet Unit \ Standard	DNS enetrom Veight	neter	PI	Point	Load	Strer	nath Ir	ndex (l)				
SS Split Sp TW(SH) Thin-W uple VA Vane <u>mpler WS Wash S</u> SOIL PROFILE Description ay, soft, grey, high y, high sensitivity,	ooon alled Oj Sample		SAN	ЛРLE	P.P. U.W PT	Pocket Pe Wet Unit V Standard	enetrom Veight		P.L. RQD SCR	Point Rock	Load Qual	Strer	ngth Ir signat	ndex (l tion	I ₅₀)	с	Со	nsolid	
Description ay, soft, grey, high y, high sensitivity,	Strata Plot		-		_			· Text	k	Perm	Core eabili	Řeco ty	ivery			CU GS	CL Gr	J Triaxi ain Siz	ation ial :e Analysis
ay, soft, grey, high y, high sensitivity,	Strata Plot	Type	mber	(%)		ter			= Dyn	SP'	T N Va	alue		tic	Limit Natural Moisture	tent			
y, high sensitivity,			N	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	25 ℃ ₽ Undrain	Pene Vane Vane Nane	50 etrome e Intac e Rem ear Str	75 eter t oulded ength (l [kPa)	 		₩ (Permeability (cm/s)	Remarks
y, high sensitivity,					0,				80	160	24	0 3	20						large
		SH	9					 	• 24			· ·							vane. CU
		ss	10	135.6	3		 - 12 - 	-242-	0			A A A A A A							
		ss	11		2		- 14 -		•0			· ·					×		
	,	ss	12	48.1	39							· ·		×					GS
nd and silt, very dense, to subangular							- 16 -												
limestone at bottom of		ss	13		76						111	•		×					
	ht grey, low plasticity, M) well graded gravel d and silt, very dense, to subangular ne frags up to 2cm.	M) well graded gravel nd and silt, very dense, to subangular ne frags up to 2cm. limestone at bottom of	At with trace fine gravel, the gray, low plasticity, M) well graded gravel and silt, very dense, to subangular ne frags up to 2cm. limestone at bottom of	It with trace fine gravel, ot gravel, sht grey, low plasticity, SS 11 M) well graded gravel and silt, very dense, to subangular ne frags up to 2cm. limestone at bottom of SS 12	M) well graded gravel to subangular ne frags up to 2cm. limestone at bottom of	M) well graded gravel to subangular he frags up to 2cm. limestone at bottom of SS 13 76	It with trace fine gravel, oth grey, low plasticity, to subangular ne frags up to 2cm. limestone at bottom of Image: SS 12 48.1 39 M) well graded gravel and silt, very dense, to subangular Image: SS 12 48.1 39	SS 10 135.6 3 SS 10 135.6 3 It with trace fine gravel, the gravel phane frags up to 2cm. limestone at bottom of SS 11 2	SS 10 135.6 3 SS 10 135.6 3 It with trace fine gravel, the gravel, the gray, low plasticity, the gray, low plasticity, the gray, low plasticity, the gray by to 2cm. limestone at bottom of SS 11 2 M) well graded gravel and silt, very dense, to subangular the frags up to 2cm. limestone at bottom of SS 13 76	SS 10 135.6 3 SS 10 135.6 3 It with trace fine gravel, the gravel and silt, very dense, to subangular ne frags up to 2cm. limestone at bottom of SS 11 2	SS 10 135.6 3 SS 10 135.6 3 It with trace fine gravel, the gravel, the gravel regression of and silt, very dense, to subangular the frags up to 2cm. limestone at bottom of SS 12 48.1 39	SS 10 135.6 3 SS 10 135.6 3 It with trace fine gravel, that grey, low plasticity, that grey, low plasticity, the grey low plasticity, the frags up to 2cm. limestone at bottom of SS 12 48.1 39 M) well graded gravel ne frags up to 2cm. limestone at bottom of SS 13 76 I I	SS 10 135.6 3 SS 10 135.6 3 It with trace fine gravel, oth gray, low plasticity, the gray, low plasticity, to subangular ne frags up to 2cm. limestone at bottom of SS 12 48.1 39	Image: sign of the second s	t with trace fine gravel, the trace fine gravel of the trace fine grave	Image: sign of the second s	Image: SS 10 135.6 3 Image: SS 10 135.6 3 Image: SS 11 2 Image: SS 12 48.1 39 Image: SS 12 48.1 39 Image: SS 12 48.1 39 Image: SS 13 76	SS 10 135.6 3 SS 10 135.6 3 It with trace fine gravel, this gray, low plasticity, to subanyular ne frags up to 2cm. limestone at bottom of SS 12 48.1 39	Image: SS 10 135.6 3 Image: SS 10 135.6 3 Image: SS 11 2 Image: SS 12 48.1 39 Image: SS 12 48.1 39 Image: SS 12 48.1 39 Image: SS 13 76

	Foth	F	REC	OR	D C)F B	OREHO	DLE	No.	FP	°P-1	4							IRE NC ET 1 O	
PRO	JECT Victory Nickel - Minago	Geotechni	cal Inve	estiga	ation											ENG	GINE	ER		
PRO	JECT NO. <u>11V777</u> D	RILLER _	Paddo	ock D	rilling		BORING	метно	DD _⊢	lollow	Stem	Auger				LOC	GGEI	D BY	JS	L
CLIE	NT Victory Nickel	LOCA		Po	lishing	Pond	South			DAT	UM _	MSL				co	MPIL	ED B	Y	IOE
ELE\	ATION 253.44m C	Dord.	N: 5,99	7,073	3.44m,	E: 484	,053.36m	BORI	NG DAT	Е	13 Jai	า 12				СН	ECKE	ED B'	Y _ J	SL
		ck Core				AB	BREVIATIO	ONS		D 1	Dei		d Otro	a a tha la	adav	4.)				
BU GB	Bulk TW(SH) Th Grab Sample VA Va		• •	Shelb	y)		. Pocket Pe /. Wet Unit ' Standard	Weight		RQ	D Roo R Sol	nt Loa ck Qua id Core meabi	ality De e Reco	siana	tion	(I ₅₀)		J CL	onsolid J Triax ain Siz	
	SOIL PROFILE			SA	MPLE	S					• 5	SPT N \ c Cone	/alue	otion	ģ					
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♪ Pe ♪ Va ◆ Va	netrom ne Inta ne Ren Shear Si	eter ct nouldeo	d	-				Permeability (cm/s)	Remarks
	Ground Sur				Ŕ	SP	5			8				120		15 3	30 4	15		
	Peat, woody and non woo fibrous, held in coarse fibr to granular framework (14	ous 1/ S	SH	1	70.5													1184	.4 K	
								252.2												
251.92		1/ 5	эп	2				- <u> </u>	-252-											
	Peat, soft, predominantly amorphous granular containing woody fibers (4).	ss	3	43.7	2		2 -										461	.7 6	
<u>251.31</u> 2.13		<u>\. 1</u>		_							96									
250.55			ss	4	61.2	4		.		•	<u> </u>					×				
2.90	(CL) Clay, very stiff, browr dark brown-grey, low plasticity, moist.	to	ss	5	65.6	15									383	×				
249.74									-250-											
	suggests evidence of clay weathering (mottled, trace organics, friable,		ss	6	61.2	16		- 4 -		•						×				Fissures
	micro-fissures, blocky) decreasing with depth over	r		-	85.3	40								▲ 33	5	×	0			Figures
	the CL interval, approxima 2 meters thick.	tely	ss	· ·	85.3	16			 							×	0			Fissures GS
247.88 ≤ 5.56		t							-248-											
	brown to light grey, high plasticity, low sensitivity, n to wet.			_				- 6 -												Shelby
	to wet.		ss	8	80.9	9				•			.	287		×				tube didn't pick up pound
20.0																				spoon.
									-246-											
			VA					8 -	11.47	23.89 • 24										7.77m Standard
																				vane test small vane
																				tapered.
			SH	9	122.5	5				0										
									-244-											
								10	ed Ne>	t Par	<u>רבי</u> ו (בי			1::::	<u> :::</u>		[::::			

		Fot	h	I	REC	OR	DO	FΒ	OREH	OLE	No.	FP	P-1	4							RE NO ET 2 OF	
	PROJ	IECT Victory	Nickel - Min	ago Geotechn	ical Inve	estiga	tion											ENG	SINE	ER _		
	PROJ	IECT NO	V777	DRILLER	Paddo	ock D	rilling		BORING	метно	DD _⊦	lollow	Stem	Auger				LOC	GGE) ВҮ	JSI	
	CLIE	NT Victory Nic	ckel	LOC	ATION	Po	lishing	Pond S	South			DAT	UM	MSL				CO	MPIL	ED B	Y _ J	OE
	ELEV	ATION253.4	4m	COORD. $_$	N: 5,99	97,073	3.44m,	E: 484	,053.36m	BORI	NG DAT	ſE	13 Ja	n 12				CHE	ECKE	ED B	r 5	SL
	AU BU GB	PLE TYPES Auger Bulk Grab Sample Piston Sampler	VA	Rock Core Split Spoon Thin-Walled Vane Wash Samp		Shelb	y)	P.P	BREVIATI Pocket P Wet Unit Standard	enetrom Weight		ROL		int Loa ck Qua lid Core rmeabi	ality De	signat	tion		C CU GS	Co I CL G Gr	onsolida J Triaxi ain Siz	ation al e Analysis
Γ			IL PROFI			SAN	MPLE		ter				•	SPT N \ ic Cone	/alue			Natural				
	<u>=lev.</u> Depth (m)	De	scription	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Undr	 25 ↓ Pe ↓ Va ↓ Va ↓ Va ↓ and \$ 	50 enetrom ane Inta ane Rer Shear S	rs eter ct nouldee trength	d	v		۷ ۲ (VL D	Permeability (cm/s)	Remarks
Γ		(CH) Clay, so brown to ligh	t grey, hig	h 🖌																		
		plasticity, low to wet. <i>(contil</i>	v sensitivit nued)	y, moist				-			-											
					SH	10	100.0															GS CU
								-				▲ ²⁴										grinding
											-242-											noted while
										- 12 -												augering 11.28- 11.89m.
						/																
					ss	(11	135.6	5				•0	· · · · ·						×	Ð		GS
											[
											-240-											
											ļ .	0										
					ss	12	135.6	4		- 14 -	· ·											
					ss	13	135.6	5			-238-	0										
2					<u> </u>		155.0	5														
5										- 16 -			· · · · ·									
5					ss	14		6			.	•								60	.5 <	
	2 <u>36.22</u> 17.22	END OF THE	EHOLE			<u>\</u>				<u> </u>	1			1::::	::::	::::	::::	1::::				

	Foth		F	REC	OF	rd (OF B	OREH	OLE	No.	F	PP-:	2							JRE NO. ET 1 OF	
PRO.	JECT Victory Nickel - Min	ago Geote	chnic	al Inve	estiga	tion											ENG	SINE	ER		
PRO	JECT NO	DRILLE	R	Paddo	ock D	rilling		BORING	метно	DD_⊢	lollow	Stem	Auger								
CLIE	NT Victory Nickel	L			Po	lishing	Pond N	lorth			DAT	им_	MSL				cor	MPIL	ED B	Y J	OE
ELEV	/ATION251.76m	COORD	^	N: 5,99	8,183	3.08m,	E: 484,	276.36m	BORI		E _						CHE	ECKE	ED B'	YJS	3L
SAM	PLE TYPES RC	Rock Co	re				ABI	BREVIATI	ONS												
BU GB	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spo Thin-Wal Vane Wash Sa	led O		Shelb	y)		Pocket P . Wet Unit Standard	Weight		RQ SCI	D Ro R Sol	ck Qua	ality De e Rece	ngth li esigna overy	tion			J CL	onsolida J Triaxi rain Siz	
	SOIL PROFI				SAN	MPLE						• :	SPT N V	Value	ration	. <u>c</u>					
<u>Elev.</u> Depth (m)	Description		Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Unc	25 ♣ Pe ♣ Va ♣ Va hrained \$	⁵⁰ enetrom ane Inta ane Rer Shear S	neter lict moulde strength	d (kPa)	- \		۷ ۲ (v₁ Đ	Permeability (cm/s)	Remarks
	Ground S Overburden, Blind drille						0,					BO 1	160 2	240	320		15 3	1::::	•5 ::::		
	auger refusal. No reco																				I
									+ -												1
																					1
									- 2 -	-250-											l
																					I
																					1
										-248-											1
									- 4 -												1
																					I
																					1
									6 -	-246-										-	1
																					1
																					1
																					I
									8	-244-											1
2																					l
- - -																					1
										-242-											1
									- 10 -												I
																					I
																					1
																					1
										-240-											1
									- 12 -												1
																· · · · · · · · · · · · · · · · · · ·					I
										-238-											1
237.76	END OF THE HOLE								14				<u> :::</u>	<u> </u>	1::::		1				
- ட																					

		Foth	I	REC	OF	RD (OF B	OREH	OLE	No.	FI	PP-4	4							IRE NO ET 1 OF	
	PROJ	ECT Victory Nickel - Minago Geo	technic	cal Inve	estiga	tion											ENG	SINE	ER		
	PROJ	IECT NO DRILL	ER _	Paddo	ock D	rilling		BORING	метно	DD_⊢	lollow	Stem	Auger				LOG	GE	BY	JSI	
	CLIE	NT Victory Nickel	LOCA	TION	Po	lishing	Pond N	orth			DAT	. МО	MSL				cor	IPIL	ED B	Y _ J	OE
	ELEV	ATION 251.90m COOR	D	N: 5,99	8,120).56m,	E: 484,	701.16m	BORI		Е_	20 Jar	า 12				CHE	CKE	DB	YJ8	SL
	SAMF	PLE TYPES RC Rock C	ore				ABE	BREVIATIO	ONS												
	BU GB	Auger SS Split Sp Bulk TW(SH) Thin-W Grab Sample VA Vane Piston Sampler WS Wash S	alled C		Shelb	y)		Pocket Pe Wet Unit Standard	Weight		RQI SCF	Poi D Roc R Soli Per	ck Qua	ality De e Reco	Nignat	tion	,		Cl	onsolida J Triaxi ain Siz	
Γ		SOIL PROFILE			SAN	MPLE		er			_	e s Dynami			ation	i	य व	ent ent			
	<u>Elev.</u> Depth (m)	Description Ground Surface	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	25 ♣ Pe ♣ Va ♣ Va rained S	netrom ne Inta ne Ren Shear Si	eter ct nouldeo trength	ł	v		۷ ۲		Permeability (cm/s)	Remarks
F		Peat, firm, woody (14),	<u>\</u>																		
		non-woody, fibrous. Amorphous, granular (6) to 1.8m.	<u>1/ 1/</u> <u>1/ 1/</u>																		
			<u>\\/</u>						250.6 又 1.35												
	250.07		<u> \//</u>	ss	1	39.4	5				•										
		(SM) Silt, firm, grey, medium			<u> </u>	00.1			- 2 -	-250-											
		dilatency.																			
				ss	2	43.7	4				•										
	249.01				-																
	2.90	(CL) Clay, firm to verry stiff, brown, low to medium plasticty, moist.		ss	3	45.9	14				•					43	1 ×				
									4												
				ss	4	100.0	18									359	×				
5/11/12																					
FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12				ян	1	91.9	-		- 6 -				1	92							GS C
- 1 1 0																					
D.GP																					
DATE																					
SOLIE																					
CON	243.98									044											
00		(CH) Clay, soft, grey, high		VA					- 8 -	- 244 - 15.29	_28.6	7									8.0772m-
MIN		plasticity, low sensitivity, moist.																			Standard Vane.
0RD																					
REC																					
HOLE					-	-					0										
BORE				ss	5		2		ļ .									::: >			
FOTH									10	-242-											

		Foth	F	REC	OF	RD (of e	BOREH	OLE	No.	FI	PP-	4						FIGU SHEE	RE NO ET 2 OF	1
	PROJ	IECT Victory Nickel - Min	ago Geotechnic	al Inve	estiga	tion											ENG	SINE	ER		
		IECT NO						BORING	метно	ор н	lollow	Stem	ı Auger								
		NT Victory Nickel																		Y J	
		ATION 251.90m																			
		PLE TYPES RC	Rock Core					BREVIATIO				20 00					••••				
	AU BU GB	Auger SS	Split Spoon Thin-Walled C Vane Wash Sample		Shelby	()	P.P	. Pocket Pe V. Wet Unit	enetrom Weight		RQ	D Ro R So	oint Loa ock Qua olid Cor ermeab	ality D e Rec	esiona	tion	(00)	C CU GS	CL	nsolida I Triaxi ain Siz	
Γ		SOIL PROFI			SAN	/IPLE	-	ter			-		SPT N		ration	, i		tent ent	2		
	<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♣ Pe ⊕ Va ♣ Va	⁵⁰ enetron ane Inta ane Rei	neter Ict moulde	d	-			E E E	Permeability (cm/s)	Remarks
			S			Re	SPT	We					Shear S	•	(kPa) 320	.	15 3	80 4			
		(CH) Clay, soft, grey, h plasticity, low sensitivit moist. <i>(continued)</i>	igh y,																		
							-		- 12 -	-240-	▲ 24										
				SH	2	67.3	-												¢	38)	GS CU
	237.88								- 14 -	-238-											
	14.02	(ML) Silt, soft, 15% fine coarse gravel, grey, mo																			
																					Stony
11/12				ss	6		3				•										Stony drilling 15.24- 16.76m.
TH.GDT 5/									- 16 -	-236-											
D.GPJ FO	234.83																				
FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12	17.07	END OF THE HOLE																			

	Foth		F	REC	OF	RD (of B	OREH	OLE	No	. Fl	PP-	5							IRE NO ET 1 OF	
PRO	JECT Victory Nickel - Min	ago Geote	chnic	al Inve	stiga	tion											ENG	GINE	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLE	R	Paddo	ock Di	rilling		BORING I	NETHO	DD_⊢	lollow	Stem	Auger								
CLIE	NT Victory Nickel	L(Po	lishing	Pond N	lorth			DAT	тим _	MSL				cor	MPIL	ED B	Y _ J	OE
ELE\	/ATION252.03m	COORD	N	N: 5,99	7,618	3.63m,	E: 485	116.64m	BORI		re _						CHE	ECKE	D B	Y J	SL
SAM	PLE TYPES RC	Rock Cor	e				AB	BREVIATIO	ONS												
AU BU GB PS	Auger SS Bulk TW(SH) Grab Sample VA Piston Sampler WS	Split Spo Thin-Wal Vane Wash Sa	on led O mple	pen (S	shelby	/)		Pocket Pe Wet Unit V Standard	Veight			D Roi R Sol Per						C CU GS	CL	onsolid J Triax ain Siz	
	SOIL PROFI				SAN	/PLE	-					• s Dynami	SPT N \	/alue		.0		ent ent			
<u>Elev.</u> Depth (m)	Description		Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ Pe ⊕ Va	netrom ine Inta ine Ren	eter ct noulder	d	- \		× (V.	Permeability (cm/s)	Remarks
	Ground S Overburden. Blind drill						0					BO 1	60 2	40 3	320		15 3	30 4	5		
	auger refusal. No reco																				
									- 2 -	-250-											
									4 -	 -248-											
										 -246-											
										-240-											
21 10 10										 											
240.73 11.3C										 -244-											
									- 10 -	-242-											
										- · · -											
240.73	END OF THE HOLE									+ -				1::::		1::::	1::::	<u> ::::</u>			
	- ··																				

		Foth		RE	CO	RE) Of	F BC	REHO	LEN	lo.	FT\	NR	2-11							IRE NO ET 1 OF	
	PROJ	ECT Victory Nickel - Mina	ago Geote	chnic	al Inve	stiga	tion											EN	GINE	ER		
	PROJ	ECT NO	DRILLE	R	Paddo	ick Di	rilling		BORING	метно	DD	Iollow	Ster	n Auge	er			LO	GGEI	D BY	JS	_
	CLIEN	T Victory Nickel	L	OCAT	ION	Tai	lings a	ind Wa	ste Rock Are	ea West		DA	гим	MS	L			со	MPIL	ED B	Y_J	OE
	ELEV	ATION 258.34m	COORD	. N	l: 5,99	6,817	7.99m,	E: 482	,341.67m	BORI	NG DA	ГЕ	16 J	an 12				СН	ECKI	ED B'	Y J	SL
	SAMF	PLE TYPES RC	Rock Co	re				AB	BREVIATI	ONS												
	BU GB	Auger SS Bulk TW(SH) Grab Sample VA Piston Sampler WS	Split Spo	on lled O		helby	()		. Pocket Po /. Wet Unit Standard	Weight		PO	DR RS	ock O	ad Stre Jality D re Rec	ociana	tion		C CL	J CL	onsolid J Triax	
F	10	SOIL PROFI		ampie		SAN	/IPLE				TEAL		•	SPTN	Value		-		00			
	<u>Elev.</u> Depth (m)	Description Ground S	Surface	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Unc	25 ▲ ⊕ \	⁵⁰ Penetro √ane In √ane R	meter tact emoulde Strength	5 ed	- \		X	Nr ∋	Permeability (cm/s)	Remarks
F		Peat, very soft to soft, v	woody,	<u>\//</u>																		
		non woody (14), fibrous amorphous, granular (6	s, 5)	1/ 1/							-258-											
		anterpriede, grandiar (<u>\\ //</u>							L .											
				<u>// \\</u>	ss	1	43.7	1		F -										626	6.3 K	
				<u>\\ /</u> // \\	/																	
															<u> </u>					442	2	
				· //	ss	2	37.2	2		[]		•								442		
	256.21			11	/					- 2 -				: :::	<u>: : : : :</u>							
	2.13	(CH) Clay, firm, brown- high plasticity, moist.	grey,		1/	-					-256-											
		high plasticity, moist.			ss	3	52.5	6				• 24	•						*			
	255.44	(OL) Ola															250					
	2.90	(CL) Clay, stiff, brown, plasticity, moist.	low					1		L -							359					
		Laboratory observation suggests evidence of c			SH	4	100.1														1	GS C
		weathering (mottled)						-														
	251 22	decreasing with depth of the entire CL interval,	over							4 -	7.64		-76.	45								
	4.11	approximately 1 meter			VA						-254-	•	0									4.11m small
		(CH) Clay, stiff to very s brown to light grey, ~15	stiff, 5% fine								-204-			<u> </u>	<u> </u>							tapered standard
		to coarse gravel, moist	, high		ss	5	94.1	11		-		•						×				vane. GS
		plasticity, medium sens Spoon and auger refus	al at		/\	-																65
		6.55m.																				
5															<u></u>							
5/11/1																						
DT					1	-				- 6 -												
DTH.0	251.79				ss	6		27			-252-		•						×			
FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12		END OF THE HOLE				N		I	<u> </u>	1	1					1:::			1::::	1::::		<u> </u>
ED.GF																						
DATE																						
SOLI																						
CON																						
Q0 ₽00																						
MIN																						
ORD																						
REC																						
10LE																						
ORE																						
TH B(
Ö																						

	Foth	REC	COR	D	OF I	BOR	EHOLI	E No). F	TWI	R-1 1	IBF	ł						RE NO. ET 1 OF	
PRO	JECT Victory Nickel - Minago	o Geotechnic	al Inve	stiga	tion											ENG	INE	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLER	Paddo	ck Di	rilling		BORING	метно	D _ F	lock C	ore					LOG	GED	ВY	JSL	
CLIE	NT Victory Nickel	LOCA		Tai	lings a	nd Was	te Rock Are	a West		DAT	им _	MSL				CON	/IPILI	ED B	Y _ J	OE
ELE	ATION 258.28m C		N: 5,99	6,826	6.40m,	E: 482,	325.98m	BORIN	IG DAT	E	26 Jan	n 12				CHE	CKE	DB	r 5	SL
		ock Core plit Spoon				ABI	BREVIATIO	ONS		РI	Poir	nt L o a	d Strer	ath Ir	ndev ((I)				
BU GB PS	Bulk TW(SH) TH Grab Sample VA Va		•	helby	/)		Pocket Pe Wet Unit Standard	Weight		RQE) Roc Soli	k Qua	ility De e Recc	signat	tion	(*50)	C CU GS	CL	onsolida J Triaxi ain Siz	
	SOIL PROFILE	<u> </u>		SAN	/IPLE		ter			= 0	• S	PT N V Cone	/alue Penetra	ation	stic	Limit Natural Moisture	itent id	t.		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♣ Per ⊕ Var ♣ Var	⁵⁰ netrom ne Inta ne Ren	eter	i	-		₩ •		Permeability (cm/s)	Remarks
	Ground Sur				ш	ŝ	>	250.4		8	0 16	50 2	40 3	20	1	5 3	04	5		
	Overburden. Blind drilled. recovery.	. No						258.1 - <u>×</u> - - 0.23-	-258-											14/1 1
																				WLI stuck/ice
								- 2 -	-256-		· · · · ·							· · · · · ·		
																		· · · · · · · · · · · · · · · · · · ·		
																		· · · · · · · · · · · · · · · · · · ·		
								4			· · · · ·									
									-254-									· · · · · · · · · · · · · · · · · · ·		
252.18 6.10	LIMESTONE: Beige, very grained, moderately	/ fine						- 6 -	-252-											
	weathered, weak rock (R2 R2/R3), poor to good qua		RC	1	93.4	26														
	moderately jointed, subhorizontal with very ro				50.4	20														
	surfaces, wavy bedding.																			
								- 8 -												
			RC	2	96.1	57			-200-											
AI EU.																				
OCLIL OCLIL																				
			RC	3	98.0	55														
				J	00.0			- 10 -	-248-											
			RC	4	100.0	89														
246.09	3						X H X	- 12 -												
	END OF THE HOLE							1							<u></u>	1				

	Foth	R	ECO	RD	OF	во	REHOL	E N	o. F	TW	/R- 1	10						FIGL SHE	JRE NO. ET 1 OF	1
PRO	DJECT Victory Nickel - Min	ago Geotechi	nical Inve	estiga	tion											ENG	SINE	ER		
	DJECT NO. 11V777						BORING	METHO	DD_⊦	Hollow	Stem								JSL	
CLI	ENT Victory Nickel		ATION	Та	ilings a	and Wa	ste Rock Are	a West	t	DAT	им_	MSL				CO	MPIL	ED B	Y _ J	OE
ELE	VATION _ 258.34m	COORD.	N: 5,99	96,828	5.34m,	E: 482	,323.38m	BORI	NG DA	TE _	26 Jai	12 ו				CHE	CKE	ED B'	YJS	SL
	IPLE TYPES RC	Rock Core				AB	BREVIATIO	ONS								a .				
AU BU GB PS	Grab Sample VA Piston Sampler WS	Split Spoon Thin-Walled Vane Wash Samp	Open (S			U.W PT	. Pocket Pe /. Wet Unit Standard	Weight			. Poi D Roo R Sol Per						C CU GS	CL	onsolida J Triaxi rain Siz	
	SOIL PROFI	LE	_	SAN	MPLE		eter			-	e e Dynami	SPT N V c Cone	′alue Penetr	ation	stic	Limit Natural	isture ntent	≓		
<u>Elev.</u> Depth (m)			Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		🗘 Va	50 netrom ne Inta	eter ct		-	v₀ V₽			Permeability (cm/s)	Remarks
. ,		C tro		Ž	Seco	PT "	Vell		ш	Unc	rained S	ne Ren Shear St							Pe	
	Ground S Overburden. Blind drill		_		-	S					80 1	60 2	40 3	320	1	5 3	80 4	5		
	recovery.	ea. No							-258-											
									ļ .										-	
								- 2 -											-	
								255.5	-256-										-	
							\otimes	- <u>v</u> .												
								2.80												
																			-	
								- 4 -											-	
									-254-											
<u>253.7</u> 4.5	7 ⁷ END OF THE HOLE																		-	
FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12																				

	Foth	RE	ECO	R) Of	= BC	REHO	LEN	lo.	FTV	VR-	12							JRE NC ET 1 OI	
PRO.	JECT Victory Nickel - Minago Geot	echnic	al Inve	stiga	tion											ENG	SINE	ER		
PRO.	JECT NO. <u>11V777</u> DRILLI	ER	Paddo	ock D	rilling		BORING I	метно	D	lollow	Stem	Auger	-			LOG	GE) BY	JS	L
CLIE	NT Victory Nickel			Та	lings a	and Was	e Rock Are	a West		DAT	им _	MSL	-			CON	/IPIL	ED E	SY	OE
ELEV	ATION 256.04m COORI	DN	N: 5,99	6,639	9.12m,	E: 482,	592.08m	BORIN	IG DAT	Е	16 Ja	n 12				CHE	СК	ED B	YJ	SL
AU BU GB	Auger SS Split Sp Bulk TW(SH) Thin-Wa Grab Sample VA Vane	oon alled O		shelb	()	P.P. U.W	Pocket Pe Wet Unit \	enetrom Weiaht		RQI SCF	Ro Ro	ck Qua id Cor	ality De e Rec	esigna overy	tion		CU	C	J Triax	ial
Bulk TW(SH) Thin-Walled Open (Shelby) P.P. Percekt Penetrometer RQD Rock Quality Designation C. C. consolidation PS Pston Sample V/S Wash Sample V/S Wash Sample V/S Value U.W. Wet Unit Wet Penetrometer RQD Rock Quality Designation C. C. consolidation Description Total SAMPLES Sandard Protor See TM Value Penetometer Penetometer <t< td=""></t<>																				
Depth			Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezomete Installation	Depth (m)	Elevation (m)	Und	 25 ▲ Pe ⊕ Va ♦ Va rained 3 	50 enetrom ane Inta ane Rei Shear S	neter act moulde Strength	d (kPa)	v	v _₽ ₩→	<	V. D	Permeability (cm/s)	Remark
Auger BU Bukk TW(Sh) Thin-Walled Open (Shelby) P.P. Pocket Penetrometric U.W. Wet Unit Weight Unit Weigh																				
	amorphous, fibrous (14) to	<u></u>	SH	1	47.6	-													1	с
	(CH) Clay, firm, grey-brown,	34	ss	2	80.9	5		_ <u>▼</u> 1.52		•	72						×			
	(CL) Clay, stiff, brown to grey-brown, low to medium		ss	3	83.1	9		- 2 -	-254-			1	92			×				
	medium gravel. Laboratory observation															×				Fissures
	weathering (trace organics, friable, fissured) decreasing with depth over the entire CL		ss	4	100.0	14														GS
	meters thick.		ss	5	76.6	10		- 4 -	-252-					287		×		Ð		
7.72	grey-brown, high plasticity,		ss	6	91.9	9				•						١×		-0		GS
			ss	7	135.6	4		- 6 -	-250-	a 24							×			
				v																
										_ 0									-	
			ss	8	135.6	2		- 8 -	-248-									*		
			ss	9	135.6	4				•0								×		
								10 2000 Dontinue												

	Foth	R	ECC	RD	OF	BC	REHO	LEN	lo.	FTWR-12	FIGURE NO SHEET 2 O	
	ECT Victory Nickel - Mina											
										Hollow Stem Auger		
										DATUM MSL		
			N: 5,99	96,639	.12m,				IG DA	FE 16 Jan 12	CHECKED BY	SL
U U BB	PLE TYPES RC Auger SS Bulk TW(SH) Grab Sample VA Piston Sampler WS	Rock Core Split Spoon Thin-Walled (Vane Wash Sample	• •	Shelby)	P.P	BREVIATIC Pocket Pe Wet Unit V Standard	enetrom Veight		P.L. Point Load Strength Inde RQD Rock Quality Designation SCR Solid Core Recovery k Permeability	x (l ₅₀) C Consolic CU CU Triax GS Grain Si	kial
	SOIL PROFI			SAM	1PLE	S				 SPT N Value Dynamic Cone Penetration 	d d d	
epth m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	25 50 75 ▲ Penetrometer ↔ Vane Intact ◆ Vane Remoulded Undrained Shear Strength (kPa)	Permeabi (cm/s)	Rema
	(CH) Clay, soft to stiff,	arev to				S				80 160 240 320	15 30 45	
	grey-brown, high plasti moist. <i>(continued)</i>											
4.76	(GW-GM) Silt with grav dense, angular to suba limestone fragments in	ngular 🔎	ss	10		30				•	×	
	silt. Till.	sanuy										
	END OF THE HOLE											

	Foth	R	ECC	R) Of	= BC	REHO		lo.	FTV	VR-	13							IRE NO ET 1 OF	
PRO	JECT Victory Nickel - Min	ago Geotechni	cal Inve	estiga	tion											ENC	SINE	ER _		
PRO	JECT NO. 11V777	DRILLER	Paddo	ock D	rilling		BORING	метно	DD_⊢	lollow	Stem	Auger				LOC	GE	ЭBY	JSI	
CLIE	NT Victory Nickel	LOCA	TION	Tai	lings a	ind Was	ste Rock Are	ea Cente	er	DAT	тим _	MSL				co	MPIL	ED B	Y _ J	OE
ELE	/ATION255.55m	COORD.	N: 5,99	96,338	3.04m,	E: 483,	050.50m	BORI	NG DAT	E _						CHE	CK	ED B	YJ	SL
	PLE TYPES RC Auger SS	Rock Core Split Spoon				ABI	BREVIATI	ONS		ΡI	Poi	ntloa	d Stre	nath Ir	ndex	(1)				
BU GB	BulkTW(SH)Grab SampleVAPiston SamplerWS	Thin-Walled C Vane Wash Sample		Shelby	/)		Pocket P Wet Unit Standard	Weight		RQI SCF	D Roc R Soli Per	ck Qua id Core	ality De e Reco	esignat overy	tion			Cl	onsolid J Triax ain Siz	
	SOIL PROFI	ILE		SAN	/PLE		eter			=[● S Dynamio	SPT N V c Cone		ation	stic	Natural	ntent nid	, i		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	▲ Pe ⇔ Va	netrom ne Inta ne Ren Shear Sl	eter ct noulde	d	-	₽∃ ₽: Np ┣━>			Permeability (cm/s)	Remarks
	Ground				Ŕ	SF	>					60 2		320	-	15 3	80 4	5		
	Overburden. Blind drill auger refusal. No reco	ed to very.							-255-											
								- 5 -												
									-250-											
								- 10 -												
									-245-											
								- 15 -									· · · · · · · · · · · · · · · · · · ·			
									-240-											
1																				
									1 -											
234.55 21.00								- 20 -												
234.55									-235-											
21.00) END OF THE HOLE																			

	Foth	RE	ECO	R) Of	во	REHO		lo.	FTV	٧R	-14							JRE NO ET 1 OF	
PRO	JECT Victory Nickel - Minago Geote	echnic	al Inve	estiga	ition											ENG	SINE	ER		
PRO	JECT NO. <u>11V777</u> DRILLE	R	Paddo	ock D	rilling		BORING	метно	D _⊦	lollow	Stem	Auge	r			LOC	GEI	DBY	JS	L
CLIE	NT Victory Nickel L	OCA	TION	Та	ilings a	nd Was	te Rock Are	ea Cente	er	DAT	им.	MSL	-			cor	NPIL	ED E	BY	OE
ELE	ATION _255.34m COORE)1	N: 5,99	6,12	6.98m,	E: 483,	408.51m	BORI		E _	17 Ja	n 12				CHE	СК	ED B	Y;	SL
AU BU GB	PLE TYPES RC Rock Cc Auger SS Split Spc Bulk TW(SH) Thin-Wa Grab Sample VA Vane Piston Sampler WS Wash Sa	oon Illed O		Shelb	y)	P.P.	Pocket P Wet Unit Standard	enetrom Weight		RQI	D Ro R So	ck Qu lid Cor	ality D e Rec	ength I esigna overy	ation		C CU GS	J C	onsolid U Triax rain Siz	
	SOIL PROFILE			SAI	MPLE	S					•	SPT N	Value							
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	25 ♣ Pe ♣ Va ♣ Va rained	enetron ane Inta ane Re Shear S	neter act moulde Strength	s :d	\		< (VL D	Permeability (cm/s)	Remarks
	Ground Surface Peat, very soft, woody to	<u>\//</u>										160	240	320						
	non-woody, amorphous, fibrous (14), granular (6).	<u>v</u> <u>v</u>						254.6 										49;	2 1	
		<u>1</u> 1 <u>1</u>	<u> </u>	1	32.8	1		0.72			72								*	
253.51 1.83	(CH) Clay, soft, grey-brown,		SH	2	82.0											×			-	
2.2	high plasticity, wet. (CL) Clay, firm to very stiff, brown to grey-brown, low to medium plasticity, moist, trace		ss	6	76.6	4				•		120				×	C		-	GS
	coarse gravel.		ss	7	65.6	10			 -252-			1	92			×			_	
	suggests evidence of clay weathering (mottled, trace organics, friable, horizontal micro-fissures with grey		ss	8	85.3	18									383	×			_	
	coloration, blocky) decreasing with depth over the entire CL interval and into the top of the														383				_	
	lower CH interval, approximately 5 meters thick.		ss	9	100.0	12								4		×			_	
249.77 5.56	CH) Clay, very soft to stiff, brown to light grey, high																		-	
5	plasticity, low sensitivity, moist. Horizontal micro fissures with		ss	3	87.5	12				•					383	×			_	Fissures
248.24	grey coloration.																		_	
			ss 🕅	4	135.6	9			-240-	•					359	×			_	
								- 8 -											-	
			_						 		72								-	
			SH	5	100.0				-246- 								×		_	
								- 10 -		-17.0-									_	
			VA						11.47 ⁻	-17.2 ∎≎										10.67m Tapered

$(m) \qquad		Foth	RE	CO	RD) OI	= BC	REHO		lo. I	ти	VR-	14						FIGL SHE	IRE NO ET 2 OF	. 1 2
CLIENT Ucdary Nickel LOCATION Tailings and Waste Rock Area Center DATUM MSL COMPILED BY JUE ELEVATION 255.34m COORD N: 5.996,128.99m, E: 483.408.51m BORING DATE 17. Jan 12 CHECKED BY JSL SAMPLE TYPES RC Rock Core Split Scoon Split Scoon P.P. Pocket Penetrometer PL Point Load Strength Index (Ip) C Consolidation Value Solid Sprople Value Solid Sprople Value Solid Core Rock Carely Split Spoon CLIC Consolidation CLIC UT Totaking PS Potent Sample Value Solid Sprople Value Solid Core Rock Carely Split Spoon CLIC UT Totaking CLIC UT Totaking PS Potent Sample Value Solid ProFile SAMPLES Solid Core Rock Carely Split Spoon CLIC UT Totaking CLIC UT Totaking CLIC UT Totaking Description O O O O O O O O O O O O Presenter Split Spli	PRO	JECT Victory Nickel - Minago	Geotechnic	al Inve	estiga	tion											ENG	SINE	ER		
ELEVATION	PRO	JECT NO. <u>11V777</u> D	RILLER	Paddo	ock Di	rilling		BORING	METHO	ю _н	ollow	Stem	Auger				LOG	GEE	ЭBY	JSI	
SAMPLE TYPES AU Bublic sample PS RC SS SS Piston Sample PS Rack Core SS SS Piston Sample WS Rack Core SS Wash Sample Rack Core SS Wash Sample Rack Core SS Wash Sample Part PS Potent Penetometer Standard Prodor Text P.L. PCD Rock Penetometer WS Point Load Strength Index (lp) Rock Part Product Penetometer WS C.U. Ull Trackal CS Consolidation CS VS Wash Sample SAMPLES SAMPLES P.P. Standard Prodor Text P.L. Potential WS Point Load Strength Index (lp) Rock Penetometer WS Our Ull Trackal CS Caralh Sole Analysis Elev. (m) Description Tot age Track and the trackal to book the track	CLIE	NT Victory Nickel			Tai	ilings a	ind Was	te Rock Are	a Cente	er	DAT	им_	MSL				CON	MPIL	ED B	Y_J	OE
AU Auger SS Spit Spon BU Buk TW(K) TW(K) TW(K) GB Grab Sample TW Vare Vare PS Pison Mark Sample P.P. Pocket Penetrometer P.M. PS Pison SOIL PROFILE SAMPLES P.M. Portext and Protoc Text Depth Description Tot and Sign Provide Den (Shelly) P.S. Point Lad Strength Index (La) CU Trixial Status Analysis CU Cu Cu Trixial Description Tot and Sign Provide P.S. Point Lad Strength Index (La) (m) Description Tot and Sign Provide Point Lad Strength Index (La) (m) Description Tot and Sign Provide Point Lad Strength Index (La) (m) Description Tot and Sign Provide Point Lad Strength Index (La) (m) Description Tot and Sign Provide Point Lad Strength Index (La) (m) Description Tot and Sign Provide Point Lad Strength Index (La) (m) Description Tot and Sign Provide Point Lad Strength Index (La) (m) Description Tot and Sign Provide Point Lad Strength Index (La) (m) Descriptin Index (La) Tot and Sign Pr	ELE\	ATION _ 255.34m _ CO		l: 5,99	6,126	5.98m,	E: 483,	408.51m	BORI	NG DAT	E	17 Jar	12				СНЕ	ECKE	ED B'	Y	SL
Bulk TW(SH) Thin-Walled Open (Shelby) P.P. Pocket Penetrometer C.C. Consolidation PS Pston Sampler WS Wast Sample P.P. Pocket Unit Weight SCR Solid Core Recovery CL CL CL Consolidation PS SOIL PROFILE SAMPLES Sandard Proctor Text Permeability GSR Solid Core Recovery CL C							ABI	BREVIATIO	ONS												
Elev. (m) Description index of the second participation index o	BU GB	BulkTW(SH)ThGrab SampleVAVaPiston SamplerWSWa	in-Walled O ne		Shelby	y)	U.W	. Wet Unit \	Neight		RQI SCF	D Roc R Soli	k Qua d Core	lity De Recc	signat	ion	(I ₅₀)	CU	CL	J Triax	ial
Description Image: second		SOIL PROFILE			SAN	MPLE		ter			=[ation	stic	t ural	tent id	2		
(CH) Clay, very soft to stiff, plasticity, low sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Horizontal micro fissures with grey coloration. (continued) Image: sensitivity, moist. Image: sensitivity, moist. SS 10 133.4 Image: sensitivity, moist. Image: sensitivity, moist. Horizontal micro fissures with grey coloration. (continued) Image: sensitivity, moist. Image: sensitivity, moist. SS 10 133.4 Image: sensitivity, moist. Image: sensitivity, moist. Horizontal micro fissures with grey coloration. (continued) Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. Image: sensitivity, moist. <td< td=""><td>Depth</td><td>Description</td><td>Strata Plot</td><td>Type</td><td>Number</td><td>Recovery (%)</td><td>PT "N" Values or RQD</td><td>Well / Piezome Installation</td><td>Depth (m)</td><td>Elevation (m)</td><td></td><td>25 ▲ Pe ⇔ Va ● Va</td><td>netrome ne Intao ne Rem</td><td>75 eter ct noulded</td><td>i</td><td>v</td><td>V_₽ ₩</td><td>۷ ۲ (</td><td>V.</td><td>Permeability (cm/s)</td><td>Remarks</td></td<>	Depth	Description	Strata Plot	Type	Number	Recovery (%)	PT "N" Values or RQD	Well / Piezome Installation	Depth (m)	Elevation (m)		25 ▲ Pe ⇔ Va ● Va	netrome ne Intao ne Rem	75 eter ct noulded	i	v	V _₽ ₩	۷ ۲ (V.	Permeability (cm/s)	Remarks
brown to light grey, high plasticity, low sensitivity, moist. Horizontal micro fissures with grey coloration. (continued)							S	_				30 1	i0 24	40 3 	20	1	5 3	60 4	5		emall
Horizontal micro fissures with grey coloration. (continued)		brown to light grey, high plasticity, low sensitivity,								-244 -											standard
		Horizontal micro fissures v							- 12 -							· · · · · · · · · · · · · · · · · · ·					
SS 10 133.4 1 Image: SS 11 133.4 6		grey coloration. (continued																			
SS 10 133.4 1 Image: SS 11 133.4 6																					
										-242-											
ss / 11 133.4 6				ss	10	133.4	1		- 14 -		0							· · · >	(
ss / 11 133.4 6											· · · · ·										
ss / 11 133.4 6																					
SS 11 133.4 6										-240-			· · · · ·								
									- 16 -												
	N			ss	11	133.4	6				•								×		
$ \begin{array}{c c} & -18 \\ & -18 \\ & -18 \\ & -18 \\ & -236 \\ $	/11/0									-238-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									- 18 -												
	2																				
	LIDALEL															 			· · · · · · · · · · · · · · · · · · ·		
										-236-	24					 					
				SH	6	100.0			- 20 -			48									С
										-234-											
233.69 231.64 END OF THE HOLE	233.69	END OF THE HOLE		L		I			<u></u>	<u> </u>		1::::			1::::	1					

PROJECT VOUND DESCRIPTION DESCRIPANDESCRIPTION DESCRIPTION		Foth		RE	CO	RD) Of	во	REHO	LEN	lo.	FTV	VR-	15							IRE NO ET 1 OF	
PROJECT NO. 101777 DRILER Packbook Dating DORMO METHOD Heldes Stem Auger LOGGED BY SIL CUENT Manual Masket COUNCIDE COUNCIDE <td>PRO</td> <td>JECT</td> <td><u>ago Ge</u>otec</td> <td>:hnica</td> <td><u>al In</u>ve</td> <td>stiga</td> <td>tion</td> <td></td> <td>ENG</td> <td>SINE</td> <td>ER</td> <td></td> <td></td>	PRO	JECT	<u>ago Ge</u> otec	:hnica	<u>al In</u> ve	stiga	tion											ENG	SINE	ER		
	PRO	JECT NO	DRILLER	2	Paddo	ck Di	rilling		BORING	метно	D _⊦	lollow	Stem	Auger						_		
SAMPLE TYPES Rot Option Participation Participatio	CLIE	NT Victory Nickel	LO	CAT		Tai	lings a	nd Was	te Rock Are	a East		DAT	UM _	MSL				CON	MPIL	ED B	Y _ J	OE
Under Bis Ström Spir Ström Spir Ström PP Proceet Presentation term PP Proceet Presentation ter	ELE	ATION 255.37m	COORD.	N	l: 5,99	5,803	8.15m,	E: 483,	916.82m	BORI		re						CHE	СК	ED B'	Y	SL
Bull Bulk State TW(H) Third Wild Constraints Proceed Protectional State Constraints Constraints <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ABE</td><td>BREVIATIO</td><td>ONS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-							ABE	BREVIATIO	ONS												
Electron Description Image: Second Surface Second Surf	BU GB	Bulk TW(SH) Grab Sample VA	Thin-Walle Vane	ed O		helby	()	U.W	Wet Unit	Weight		RQI SCF	D Roc R Soli	k Qua d Core	ality De e Reco	esignat overy	tion		C CU GS	CL	J Triax	al
Bown Dreit Description 00 		SOIL PROFI	LE			SAN	/IPLE	-	eter			=[ation	cita	it c	itent itent	2.±		
Control Surface 0	Depth	Description		Strata Plot	Type	Number	ecovery (%)	T "N" Values or RQD	ell / Piezome Installation	Depth (m)	Elevation (m)		25 ♣ Pe ♣ Va ♣ Va	⁵⁰ netrom ne Inta ne Ren	eter ct noulded	ł	-				Permeability (cm/s)	Remarks
auger refusal. No recovery.		Ground		0,			R	SP	3						•	• •		15 3	04	5		
											-255-											
			very.																			
										L .												
										5												
											-250-											
																			· · · · · ·			
										[-	-				+	+						
										- 10 -												
											-245-											
															1 1 1 1 1	1 : : : :						
	4																					
	5									- 15 -												
											-240-											
	5																					
																+						
										[1	+ · · · ·						
											L											
230.67	5									20 -												
											-235-					1 2 2 2 2						
230.67	2									F -												
230.67	0																					
230.67																						
230.67	2									F -	-											
230.67	230.6 ⁻ 24.7 ⁻										L											
	230.6									1	[<u></u>					1					

	Foth	RE	ECO	R) Of	= BO	REHO	LEN	lo.	FTV	VR-	16						GURE NO	
PRO	JECT Victory Nickel - Minago Geote	echnic	al Inve	estiga	tion											ENG	INEEF	R	
PRO	JECT NO. <u>11V777</u> DRILLE	ER	Paddo	ock D	rilling		BORING	метно	DD _⊦	ollow	Stem	Auger				LOG	GED I	BY JS	L
CLIE	NT Victory Nickel L	OCA		Та	ilings a	ind Was	te Rock Are	ea East		DAT	UM	MSL				CON	IPILED) ВҮ	JOE
ELE	ATION 256.73m COORE	D1	N: 5,99	5,573	3.35m,	E: 484,	284.33m	BORI	NG DAT	Е	10 Ja	n 12				CHE	CKED	BY _J	SL
	PLE TYPES RC Rock Co					AB	BREVIATIO	ONS											
BU GB	AugerSSSplit SpitBulkTW(SH)Thin-WaGrab SampleVAVanePiston SamplerWSWash S	alled O		Shelby	y)		Pocket Pe Wet Unit Standard	Weight		RQ	D Ro R Sol	ck Qua	ality De e Reco	ngth In esignat overy	tion			Consolic CU Triax Grain Si	
	SOIL PROFILE			SAN	MPLE		er			_ [• :	SPT N \	/alue	ation	i	tal tra	Content Liquid Limit		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	25 ♣ Pe ♣ Va ♣ Va rained \$	⁵⁰ enetrom ine Inta ine Rer Shear S	neter let moulder trength	d (kPa)	- N	/ _P >		Permeability (cm/s)	Remarks
	Ground Surface Peat, fibrous, brown-black,	<u>\\/</u>				0,				8 ::::	30 1 	60 2	240 :	320		5 5			
	wet, some rootlets. Grading to granular peat with woody fibers(4) with soft clay at end of run on augers.	1/ 1/	SS	1	0.0													481 *	
256.05									-256-										
	trace gravel, medium plasticity, moist.		ss	2	76.6	4		- 1 -		•						×			Fissures
255.36																			
1.37	stiff, light brown to dark grey, trace fine gravel, low to medium plasticity, moist. Laboratory observation suggests evidence of clay		ss	3	65.6	9			-255-							×			Fissures
	weathering (mottled, trace organics, friable, fissured) decreasing with depth over the CL interval, approximately 5 meters thick.												239						
			SH	4					-254 -										
			ss	5	65.6	13		253.3 - <u>\</u> - 3.41				144				×			Fissures
5				/					-253-										
251.43			ss	6	91.9	17		- 4 -						287		×	, , , , , , , , , , , , , , , , , , , 		GS Fissures
			ss	7	100.0	10			-252-					287		×			PP from Laborator
251.43 5.30	<u></u>								 ed Ne>										

	Foth	R	ECC	R) OI	F BC	REHO		lo.	FTV	VR-	16						FIGL SHE	IRE NC ET 2 O	0. 1 7 2
PRO	JECT Victory Nickel - Mina	ago Geotechn	ical Inve	estiga	tion											ENG	SINE	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLER	Paddo	ock D	rilling		BORING	метно	DD_⊢	lollow	Stem	Auger				LOG	GEL	DВY	JS	L
CLIE	NT Victory Nickel			Tai	ilings a	and Wa	ste Rock Are	a East		DAT	им _	MSL				CON	/IPIL	ED B	Y	IOE
ELE\	/ATION _ 256.73m	COORD.	N: 5,99	95,573	3.35m,	E: 484	,284.33m	BORI		E	10 Jar	12				CHE	CKE	ED B'	Y _ J	SL
	PLE TYPES RC	Rock Core				AB	BREVIATIO	ONS												
BU GB	Grab Sample VA Piston Sampler WS	Split Spoon Thin-Walled Vane Wash Samp	• •	-		U.W PT	. Pocket Pe /. Wet Unit V Standard	Neight		RQE SCR	Roc Soli	nt Load k Qua d Core meabil	lity De Reco	esignat overy	tion	(I ₅₀)		CL	onsolid J Triax ain Siz	
	SOIL PROFI	LE		SAN	MPLE		eter			= D	• S ynamio	PT N V Cone	'alue Penetr	ation	astic	Natural	intent	, iii	~	
Elev. Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Undr	⊕ Va	50 netrome ne Intao ne Rem hear St	ct noulded rength	ł	v	K5 ₽2 N,- I→	< (V. D	Permeability (cm/s)	Remarks
	(CL) Clay, very soft to v	/ery																		
	stiff, light brown to dark trace fine gravel, low to medium plasticity, mois								-251-											
	Laboratory observation suggests evidence of c							- 6 -	1											
	weathering (mottled, tra	ace																		
	organics, friable, fissure decreasing with depth of	over	ss	8	0.0	7		ļ .		•										
	the CL interval, approxi 5 meters thick. (continu	imately ed)		}																
								[_250_		· · · · · · · · · · · · · · · · · · ·									
									1		· · · · · · · · · · · · · · · · · · ·	· · · · ·								
								- 7 .			· · · · ·	· · · · ·								
								ļ .			· · · · ·	· · · · ·								
											· · · · ·									
									1.											
									-249-	3	3									
									-249-		· · · · ·									
			SH	9				- 8 -			· · · · ·	· · · · ·					€ 0:		1	GS
											· · · · ·									
248.35									1.		· · · · ·									
8.38	(CH) Clay, firm to soft,	dark							1											
1	grey, high plasticity, mo	oist.																		
								ļ .	-248-											
								9.			· · · · ·									
								- 9 -	1.											Push
									1		· · · · ·	· · · · ·								nilcon vane to
											· · · · ·									9.45m
								L .												clamp slips ending
									-247-											test. Push
								F .	1.											to 9.75m for
								- 10 -												another test
																				refusal. Becoming
								ļ .												stony at 9.75m
1																				grinding against
246.06	END OF THE HOLE						K#KI	<u> </u>	1											cobbles 9.75-
																				10.67m.

	Foth	R	ECC	ORD	OF	BOR	EHOL	E No). F1	WI	R-1(6BR	2		_				RE NO. ET 1 OF	
PRO	JECT Victory Nickel - Min	ago Geotecl	hnical I	Investiga	ation											ENG	SINEI	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLER	Pa	ddock E	rilling		BORING	метно	D _ R	ock C	ore					LOC	GGED	ЭBY	JSL	
CLIE	NT Victory Nickel	LO	CATIO	N <u>T</u> a	iilings a	nd Was	te Rock Are	ea East		DAT	υм _	MSL			_	CO	MPILI	ED B	Y _ J)E
ELEV	ATION 257.70m	COORD.	N: 5	5,995,51	7.71m,	E: 484,	422.40m	BORIN	IG DAT	Е	26 Jar	n 12				CHE	ECKE	D B	r JS	SL
	PLE TYPES RC	Rock Core				ABE	BREVIATI	ONS												
BU GB	Grab Sample VA Piston Sampler WS	Split Spoor Thin-Walle Vane Wash San	ed Oper	n (Shelb	y)		Pocket P Wet Unit Standard	Weight		P.L. RQI SCF k	Poi Roc Soli Per	nt Load k Qua d Core meabi	d Stre Ility De Rece lity	ngth Ir esigna overy	ndex tion	(I ₅₀)	C CU GS	CL	onsolida J Triaxi ain Siz	
	SOIL PROFI	LE		SA			ter				• 8	PT N V Cone	/alue			Limit Natural		t		
<u>Elev.</u> Depth (m)	Description		Strata Plot	I ype Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♣ Pe ⊕ Va ♣ Va		eter ct noulde	d	- \	v _₽ ₩	۷ ۲ (V.	Permeability (cm/s)	Remarks
	Ground				<u> </u>	<u>v</u>	-			8	0 1	60 24	40	320		15 3	60 4	5		
	Overburden. Blind drill recovery.	ed. No																		
	,																			
									-256-		· · · · ·									
								2 -	200											
								- 2 -												
									-254-											
								- 4 -												
										· · · · ·										
2									-252-											
251.22 6.48								- 6 -												
251.22			_																	
-	LIMESTONE: Light bro very fine grained, sligh	own, tlv		н						· · · · ·										
2	weathered, medium str rock (R3), poor to exce	rong		н				250.5												
	quality, one joint parall	ed to		C 1	49.6	35		- <u>7.21</u> -												
	core axis at top of bedi other joints below that	rock, all _ are _		н					050											
5	widely spaced, sub hor with very rough surface	rizontal, ⊢		╢					-250-											
	wavy bedding.	,						- 8 -												
		F	+							· · · · ·										
		F		C 2	100.0	100			[1											
		F						F -	╞╶┤	· · · · ·										
		F	+					L												
		F						[-248-											
í L								10						1	<u> </u>					

	Foth	RE	COF	RD	OF	BOF	REHOLE	Nc). F	TWR-16BR		RE NO. 1 T 2 OF 2
PRO	JECT Victory Nickel - Minago G	eotechni	cal Inve	estiga	ation						ENGINEER	
	JECT NO DRI											
CLIE	NT Victory Nickel	LOCA	TION	Та	ilings a	ind Wa	ste Rock Area	East		DATUM MSL	COMPILED B	JOE
	VATION _ 257.70m COO											JSL
		Core					BREVIATIO					
BU GB	AugerSSSplitBulkTW(SH)Thin-Grab SampleVAVane	Spoon Walled (• •	Shelb	у)		Pocket Per Wet Unit W Standard P	/eight		P.L. Point Load Strength Inc RQD Rock Quality Designation SCR Solid Core Recovery k Permeability	n C Col CU CU	nsolidation Triaxial iin Size Analysis
	SOIL PROFILE	- oumpi		SAI	MPLE					SPT N Value		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	■ Dynamic Cone Penetration 25 50 75 ▲ Penetrometer ↔ Vane Intact ♥ Vane Remoulded Undrained Shear Strength (kPa)		Permeability (cm/s) Kemarks
			+ •							80 160 240 320	15 30 45	
	LIMESTONE: Light brown, very fine grained, slightly weathered, medium strong rock (R3), poor to excellent quality, one joint paralled to core axis at top of bedrock, other joints below that are			3	96.9	93						
	widely spaced, sub horizont with very rough surfaces, wavy bedding. (continued)	al,		4	98.7	99			 -246-			
								- 12 -				
245.20	O END OF THE HOLE		T				-					

FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12

	Foth	RE	COI	RD	OF	во	REHOL	E N	o. F	TW	′R-1	6U							JRE NO ET 1 OF	
PRO	JECT Victory Nickel - Min	ago Geotechni	al Inve	estiga	tion											ENG	SINE	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLER	Paddo	ock D	rilling		BORING	метно	DD_⊢	ollow	Stem /	Auger				LOG	GEE) ВҮ	JSI	
CLIE	NT Victory Nickel	LOCA	TION	Tai	ilings a	and Wa	ste Rock Are	a East		DAT	им _	MSL				CON	MPIL	ED B	Y _ J	OE
ELE	/ATION257.88m	COORD.	N: 5,99	5,520).13m,	E: 484	,423.87m	BORI		Е	11 Jan	n 12				CHE	CKE	ED B'	Y	SL
	PLE TYPES RC	Rock Core				AB	BREVIATI	ONS												
BU GB	Grab Sample VA Piston Sampler WS	Split Spoon Thin-Walled (Vane Wash Sample	9			U.W PT	. Pocket Po V. Wet Unit Standard	Weight		RQE SCR) Roc Soli	nt Load k Qua d Core meabil	lity De Reco	ngth In signat overy	ndex (tion	(I ₅₀)	C CU GS	CL	onsolid J Triax rain Siz	
	SOIL PROFI	LE		SAN	MPLE		ster			= 0	S Synamic	PT N V Cone	alue Penetr	ation	stic	Natural	ntent id			
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Undr	⊕ Va ♦ Va	⁵⁰ netrome ne Intao ne Rem Shear St	t oulded	i	v	v _₽ ₩→	۷ ۲	V L	Permeability (cm/s)	Remarks
	Ground S					S	-			8	0 16	50 24	ю з 	20	1	5 3	0 4	5		
	Overburden. Blind drill recovery.	ed. No						257.1												
								- <u>V</u> - 0.83												WLI stuck/ice
																		· · · · · · · · · · · · · · · · · · ·		
								- 2 -	-256-										-	
																		· · · · · · · · · · · · · · · · · · ·	-	
																			-	
								- 4 -	-254-											
050.04																		· · · · · · · · · · · · · · · · · · ·		
<u>253.31</u> 4.57	I END OF THE HOLE		I		I	ļ	<u>KA-KA</u>	1	I										1	
1/12																				
H.GDI 5/11																				
GPJ FOIL																				
LIDATED.																				
CONSO																				
0 MINAGO																				
FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12																				
OREHOLE																				
FOIHB																				

	Foth	R	ECC	R) Of	= BC	REHO		lo.	FT\	VR-	26							JRE NO. ET 1 OF	
PRO	JECT Victory Nickel - Mina	ago Geotechni	cal Inve	estiga	tion											ENG	SINE	ER		
	JECT NO						BORING	ИЕТНО	DD -										JSL	
CLIE	NT Victory Nickel		TION	Tai	lings a	ind Was	ste Rock Are	a East		DAT	им _	MSL				CON	NPIL	ED B	BY J	OE
ELE	VATION 257.10m	COORD.	N: 5,99	5,486	6.60m,	E: 482	,992.46m	BORI		re _						CHE	CKE	ED B'	YJS	SL
	PLE TYPES RC	Rock Core					BREVIATIO													
AU BU GB PS	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spoon Thin-Walled (Vane Wash Sample		Shelby	()		Pocket Pe Wet Unit V Standard	Neight			D Roo R Soli Per		"				C CU GS	J CL	onsolida U Triaxi rain Siz	ation al e Analysis
	SOIL PROFI			SAN	/IPLE	S						SPT N V	/alue							
Elev.		Ħ			(%	SPT "N" Values or RQD	Well / Piezometer Installation	_	5			50			Dad	Natural	Sont Cont		Permeability (cm/s)	
Depth	Description	Strata Plot	Type	Number	Recovery (%)	" Val RQD	Piez	Depth (m)	Elevation (m)		🗘 Va	netrom ne Inta	ct		\ \	$\stackrel{N_{P}}{\mapsto}$	v v	N.	neat cm/s	Remarks
(m)		Strat	L L	Nur	ecov	T "N or F	/ell / Ins		Ť	Unc	Va Irained S	ne Ren	noulded					9	Perr	
	Ground S				Ŕ	SP	5					60 2	•	(*** *) 120		15 3	04	15		
	Overburden. Blind drille auger refusal. No recov																			
	auger refusal. No reco	very.								::::					::::			: : : : 		
									-255-										1	
								L .												
									[-											
								_ 5 .												
								- 5 -	- 1											
								L .	L.											
										::::			::::		::::					
									-250-											
																			1	
									- 1											
									L .											
								- 10 -												
																			1	
																			_	
									-245-				::::					: : : : : : : :		
2																				
ò																				
2								L .												
2									F -											
C D								- 15 -												
									- 1											
								L .	-240-											
DAN																				
≥																				
2								[<u> </u>											
Ĭ								- 20 -	ļ .									<u>[]</u>		
235.5) END OF THE HOLE		<u> </u>		l			1	I						1::::		<u> </u>	<u>1::::</u>		

	Foth	F	REC	ORI	D OI	F BC	REHO	LEN	lo.	FT\	NR-:	29							JRE NO. ET 1 OF	
PRO	JECT Victory Nickel - Min	ago Geotech	nical In [,]	vestiga	ation											ENG	SINE	ER		
	JECT NO						BORING	метно	DD_H	Hollow	Stem /	Auger								-
CLIE	NT Victory Nickel			Та	ilings a	and Was	ste Rock Are	a Sout	1	DAT	гим _	MSL				cor	MPIL	ED B	SY J	OE
	ATION _ 257.66m																		YJS	
SAM	PLE TYPES RC	Rock Core				ABI	BREVIATIO	ONS												
BU	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spoon Thin-Walled Vane Wash Sam	d Open	(Shelb	y)		Pocket Pe Wet Unit Standard	Weight		RQ SCI	. Poir D Roc R Soli Peri	k Qua	lity De Reco	signat	tion			J CI	onsolida U Triaxi rain Siz	
	SOIL PROFI	LE		SA	MPLE							PT N V	alue	ation	C	<u>a</u>				
<u>Elev.</u> Depth (m)	Description		Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Unc	25 ♣ Per ⊕ Var ♣ Var Irained S	netrom ne Intao ne Ren hear St	eter ct nouldeo rength	i (kPa)	v		< (N, D	Permeability (cm/s)	Remarks
	Ground S Overburden. Blind drille			-		0,				::::	80 16	i0 2	40 3	20	::::			+J	┥──┤	
	auger refusal. No reco											· · · · ·					· · · · · ·		-	
																			.	
								2	-256-											
								L												
									L .											
									-254-										1	
								- 4 -												
													<u></u>							
								6	-252-											
									[]											
									L .											
									-250-											
								- 8 -												
													<u></u>						-	
								10	-248-											
												· · · · ·								
									ļ .											
									-246-										1	
								- 12 -												
									 -244-											
								4	-244-]										
								- ·												
									ļ .											
241.86	6								-242-											
241.80 15.80	D END OF THE HOLE																			

	Foth		REC	OR	DO	F B	OREHC	DLE	No.	FT	WR	-3							JRE NO ET 1 OF	
PRO.	JECT Victory Nickel - Min	ago Geotechi	nical Inv	/estig	ation											ENC	SINE	ER		
PRO	JECT NO. 11V777	DRILLER	Pade	dock [Drilling															-
CLIE	NT Victory Nickel	LOC	ATION	Ta	ailings a	and Wa	ste Rock Are	a North	۱ <u> </u>	DAT	UM _	MSL				cor	MPIL	ED B	Y _J	OE
ELE\	ATION253.67m	COORD.	N: 5,9	97,11	9.45m	, E: 483	,499.42m	BORI	NG DA	re						CHE	ECKE	ED B'	YJ8	SL
-	PLE TYPES RC	Rock Core				AB	BREVIATIO	ONS												
BU GB	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spoon Thin-Walled Vane Wash Samp	Open	(Shelt	y)		. Pocket Pe /. Wet Unit V Standard	Neight					d Stre ality De e Reco ility				C CU GS	C	onsolida J Triaxi rain Siz	
	SOIL PROFI	LE		SA	MPLE		ster			=		SPT N \ c Cone	/alue Penetr	ation	cite cite	Limit	sture itent	2 t=		
Elev.		t	5		(%)	alues	zome	÷.	tion			50			Ē			56	ıbility s)	
Depth (m)	Description	Ctrata Diat	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	(m)	Elevation (m)		🗘 Va	ne Inta	ieter ict noulder		\	N _P →	۷ ۲	VL D	Permeability (cm/s)	Remarks
		U ^{to}		ź	Reco	" PT "	Well			Und			trength					-	Ре	
	Ground S Overburden. Blind drille		_	_		0 O				٤ : : : :	0 1	60 2	240 3	320		15 3	50 4	5		
	auger refusal. No reco																		-	
									1											
								L .												
																			-	
									-										-	
									-250-										-	
									1											
								- 5 -											-	
								L .												
																			-	
																			-	
								L .	-245-											
																			-	
								- 10 -	[]										-	
									1											
																			-	
																			-	
									240											
								- 15 -												
																			-	
																			-	
235.07																				
18.60	END OF THE HOLE																			

	Foth	RE	ECO	R) Of	= BO	REHO	LEN	lo. I	FTV	VR-	30							JRE NC ET 1 OI	
PRO	JECT Victory Nickel - Minago Geote	echnic	al Inve	stiga	tion											ENG	GINE	ER		
PRO	JECT NO. <u>11V777</u> DRILLE	R _	Paddo	ock D	rilling		BORING	метно	ю _н	ollow	Stem	Auger				LOC	GGEI) ВҮ	JS	L
CLIE	NT Victory Nickel L	OCA		Та	ilings a	ind Was	te Rock Are	ea South	<u>۱</u>	DAT	им _	MSL				co	MPIL	ED B	Y _J	IOE
ELEV	ATION 257.11m COORE)1	N: 5,99	5,278	3.49m,	E: 482,	820.12m	BORI	NG DAT	Е	23 Jar	12				СН	ECKE	ED B'	Y;	SL
	PLE TYPES RC Rock Co					AB	BREVIATI	ONS												
BU GB	AugerSSSplit SpoBulkTW(SH)Thin-WaGrab SampleVAVanePiston SamplerWSWash Sa	lled O		helb	y)		Pocket P Wet Unit Standard	Weight		RQ	Poir Roc Soli Per	k Qua	lity De Reco	signat	tion	(I ₅₀)		CL	onsolid J Triax rain Siz	
	SOIL PROFILE			SAN	NPLE		ter				• S Dynamic	PT N V		ation	i.	Natural	ture	2		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		_25 ▲ Pe ☆ Va	netrome ne Intao ne Rem	75 eter ct noulded	ł	V	N _P ├──>	۷ ۲ (V. D	Permeability (cm/s)	Remarks
	Ground Surface	<u></u>				S	_		057	8	0 16	i0 24	40 3 	20		15 3	30 4	5		
	Peat, soft, woody, non woody, amorphous, fibrous (14), granular (6).	<u> </u>	-						-257-			▲ 19	92							
		1/ \							[]										1	
256.14		11/						256.1	[]		· · · · ·							73	8.9	
	(CH) Clay, soft, grey, medium		ss	1	65.6	3		- 1	-256-	0								2	K	
255.73								_ 1.05 _												
1.37	(CL) Clay, firm to stiff, grey to brown, medium plasticity,			/					╞╶┤										-	
	moist.		ss	2	59.1	4			-	•	▲ 96									GS
								2 -											-	
254.91									-255-		· · · · ·									
2.20	Laboratory observation suggests evidence of clay										· · · · ·	· · · · ·		33	[::::					
	weathering (organic		ss	10	48.1	9				•	· · · · ·	· · · · ·		<u> </u>		×				
	inclusions, blocky) decreasing with depth over the CL interval																			
253.98	and into the top of the lower CH interval, approximately 3							- 3 -	-254										-	
3.12	meters thick.								[2]											
	(CH) Clay, soft to stiff, brown		VA						11.47	5	7.34	· · · · · · · · · · · · · · · · · · ·								3.51m-
	to grey, high plasticity, low to medium sensitivity, moist to										· · · · ·	▲ 19	2							Standard
	wet, trace gravel.		SH	3	82.0						· · · · ·									vane. C
								4 -	-253-											
5										<u> </u>									-	
5/11/					400.0							19	2							
La la			ss	4	100.0	8		5		•						×				
DTH.O									-252-											
									$\left - \right $											
251.51									╞╶┤											
5.60									╞╶┤	· · · · ·										
FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12 9995								- 6 -												
SNO								-	-251-			· · · · ·								
0			ss	5		4				•	▲ 96									
								- 7 -	250											
LER									-250-											
EHO									[]											
BOR			h,	-					[]											
HIO			ss	6		4			╞╴╡	•0						×	{ }			
ш	1			N.		1		<u>8</u>						1::::	1::::	1::::	1::::		I	1

(Continued Next Page)

D DO 0	Foth					-•	REHO											SHE	IRE NO ET 2 OF	- 3
	IECT Victory Nickel - Min:						BODING	METUC	י ח	lollow	Stor	Augor							JSI	
	NT Victory Nickel																		<u> </u>	
	ATION _ 257.11m										-									
			N . 0,00	0,210	.+5111		BREVIATI				20 00	11 12				0111			<u> </u>	
AU BU GB	Auger SS	Rock Core Split Spoon Thin-Walled C Vane Wash Sample		Shelby	y)	P.P.	Pocket P Wet Unit Standard	enetrom Weight			. Poi D Ro R Sol Pei		ality De e Reco	ociana	tion		C CU GS	J CL	onsolid J Triax ain Siz	
	SOIL PROFI	LE		SAN		-	ster			-	e s Dynami	SPT N c Cone	/alue Penetr	ation	ctio	Natural	sture itent	₹.±		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		⊕ Va ♦ Va Irained \$	50 enetrom ane Inta ane Ren Shear S	neter ict moulde trength	d			× (V L -)	Permeability (cm/s)	Remarks
	(CH) Clay, soft to stiff, to grey, high plasticity,	brown							-249-											
	medium sensitivity, mo	ist to																		
	wet, trace gravel. (cont	muea)									48									
			ѕн	7																GS C CU
								- 9 -	-248-											
																				9.60m-
																				Nilcon vane
								- 10 -	 -247-											pushed from
																				9.14m to 9.60m:
								t -												large tapered
																				vane. 10.67m-
								- 11 -	 _0.023	.92	 						 	· · · · ·		Nilcon vane test
			VA						_ <u>U.0</u> 23											smallest tapered
																				vane successful
																				completed test.
									-245-											
								- 13 -	_244_											
			N	\vdash]												
			ss	8	135.6	6		- 14 -	242	0						-		x 0		
			<u> </u>						-243-											
											· · · · ·									
									-242-											hitar t
								_												hit rocks while
																				drilling this interval.
														1::::		1::::				

> age) (Continued Next P

	Foth	RE	CC	RD) Of	= BC	OREHO	LEN	lo.	тν	/R-	30							IRE NO ET 3 OF	
PRO.	JECT Victory Nickel - Mina	ago Geotechnic	al Inve	estiga	tion											ENG	GINE	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLER	Paddo	ock Di	rilling		BORING	МЕТНС	DD _⊦	ollow	Stem	Auger				LOC	GGE	ЭBY	JSI	
CLIEI	NT Victory Nickel			Tai	lings a	and Wa	ste Rock Are	a South	<u>۱</u>	DAT	JM _	MSL				CO	MPIL	ED B	Y _ J	OE
ELEV	257.11m		l: 5,99	5,278	3.49m,	E: 482	,820.12m	BORI	NG DAT	Е <u> </u>	23 Jai	า 12				CHE	ECKE	ED B'	Y _JS	SL
AU BU	PLE TYPES RC Auger SS Bulk TW(SH) Grab Sample VA	Rock Core Split Spoon Thin-Walled O Vane	pen (S	Shelby	()	P.P.	BREVIATIO	enetrom		RQD	Ro	nt Loa ck Qua id Core	ality De	esiona	tion		C CU		onsolida J Triaxi	
	Piston Sampler WS SOIL PROFII	Wash Sample		SAN	/PLE	PT	Standard	Proctor	Text	k	Per	meabi SPT N \	ility ∕alue		1		GS	Gr		e Analysis
Floy		¥			(%	nes	omete		Б	D	ynami 25	c Cone	Penetr		Diactic	Natural	Contel	Limit	oility)	
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		⊕ Va ♣ Va	netrom ine Inta ine Rer Shear S	ict noulde		\	N _₽ ├──>	× (V L -)	Permeability (cm/s)	Remarks
					Ľ	ъ З	>		0.11	80) 1	60 2	240 3	320		15 3	80 4	5		
	(CH) Clay, soft to stiff, I to grey, high plasticity, I medium sensitivity, moi wet, trace gravel. (conti	ow to st to							-241-											
			SH	9				- 17 -	 -240-		· · · · ·							×		
										· · · · ·								· · · · · · · · · · · · · · · · · · ·		
																				hard
									-239-											drilling from 17.98m.
								 - 19 -	-238-											
237.60																				
FOIHBOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/17/12	END OF THE HOLE																			

PROJECT Utory Hidde DESCRIPTION ENGINEER DEGREG UTION ENGINEER PROJECT V0. 11/077 DRLER		Foth	R	ECC	R) Of	= BC	REHO		lo.	FT\	VR-	31							JRE NO. ET 1 OF	
PROJECT NO. 11V777 DRILER Paddock Dalling BORING METHOD Halses Stein Auger LOGGED BY LSL CLUNT Vdray Visciel LOCATION Tallings and Matel Book Area South DOWNOUTLD BY COMPLED BY LSL	PRO	JECT Victory Nickel - Mina	ago Geotechni	cal Inve	estiga	tion											ENG	SINE	ER		
ELEVITON 237.40m CORD N.5.994.893.50m E.43.342.05m Rest CHECKED BY LSL SAMPLE TYPES RC Rock Core south Wells CL CUI cuiting Surging Instantion CL <								BORING I	NETHO	DD											
SAMPLE TYPES NC Rote Core TWUE Built Canadian Service Market Service (Canadian Service) ABBREVIATIONS (Canadian Service) PL Point Canadian Service (Canadian) C.C. Consoliation (Canadian) C.C. Consoliati	CLIE	NT Victory Nickel	LOCA	TION	Tai	lings a	and Was	ste Rock Are	a Sout	<u>1</u>	DAT	им_	MSL				cor	MPIL	ED B	Y _ J	OE
AU Auger Sist Spon Spin Spon Participation Parit Paritipation Participation <th< td=""><td>ELE</td><td>VATION 257.49m</td><td>COORD.</td><td>N: 5,99</td><td>4,893</td><td>3.59m,</td><td>E: 483</td><td>342.09m</td><td>BORI</td><td>NG DA</td><td>re _</td><td></td><td></td><td></td><td></td><td></td><td>CHE</td><td>ECKE</td><td>ED B'</td><td>YJ§</td><td>SL</td></th<>	ELE	VATION 257.49m	COORD.	N: 5,99	4,893	3.59m,	E: 483	342.09m	BORI	NG DA	re _						CHE	ECKE	ED B'	Y J§	SL
Bull Build Amplitude TW(SH) This Wild Open (Sheby) P. Pocket Pereformed The State Pereformed The St	SAM	- 1.0					AB	BREVIATIO	ONS												
SOIL PROFILE SAMPLES Base of plan	BU GB	Bulk TW(SH) Grab Sample VA	Thin-Walled (Vane		Shelby	()	U.W	. Wet Unit \	Veight									C CU GS	I CL	U Triaxi	al
LB0/n (m) Description Bar gg Bar gg <th< td=""><td></td><td></td><td></td><td></td><td>SAN</td><td>/PLE</td><td>_</td><td></td><td></td><td></td><td></td><td>• s</td><td>PT N V</td><td>/alue</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>					SAN	/PLE	_					• s	PT N V	/alue							
Ground Surface Ø	Elev.		t			(%)	lues	tion	ے	io		25	50	75		Plas	Nat	Const	ŝĒ	bility s)	
Ground Surface Ø	Depth	Description	ta Plo	ype	mber	/ery (J" Va RQD	Piez stalla	(m)	(m)		🗘 Va	ne Inta	ct		V	N _P	× V	VL ->	meal (cm/s	Remarks
Ground Surface Ø	(11)		Strai	` `	N	(eco	or	Vell / Ins			Und						. /			Per	
23.88 24.8						ш	SF	>				80 1	60 24	40 3	120	1	15 3	4	5		
																				.	
										-											
										255-											
																				.	
																				-	
									- 5 -												
																				-	
										250										-	
																				-	
									- 10 -	-										.	
																				-	
										245											
									L .	-245-											
									15												
										ļ .										.	
										-										-	
										240											
	DOP 1								Ļ.												
										-											
									20	F -											
									- 20 ·].											
																				.	
	235.8			<u> </u>						<u> </u>						<u> </u>					

	Foth			R	ECC	DRI	DO	FBC	OREHC	DLE	No.	FT	WR	-5							JRE NO. ET 1 OF	
PRO	JECT Victory N	lickel - Min	ago Geote	chnic	al Inve	stiga	tion											ENG	SINE	ER		
	JECT NO 11V																			_		
	NT Victory Nick																	CON	/IPILI	ED B	J	CE
	ATION253.43																				Y JS	
		RC	Rock Co		,	,			BREVIATIO													
AU BU GB	Auger Bulk Grab Sample Piston Sampler	SS TW(SH) VA WS	Split Spo Thin-Wal Vane Wash Sa	on led O	-			P.P. U.W PT	Pocket Pe	enetron Neight		RQI SCF	Poir D Roc R Soli Per	k Qua	ility De Reco	esiana	tion		C CU GS	I CL	onsolida J Triaxi rain Siz	
	SOI	L PROFI	LE			SAN	/IPLE	-	eter			=	e s Dynamio	PT N V Cone		ation	stic	Natural	ntent id	it:		
<u>Elev.</u> Depth (m)	Des	cription		Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		🗘 Va	netrom ne Intao ne Ren	eter ct		-	≞ v₀ I→			Permeability (cm/s)	Remarks
. ,				Stra	-	N	Reco	PT "	vell. In		ш	Und	va rained S								Pe	
		Ground S					ш	ŝ				8	30 1	50 24	40 :	320	1	5 3	0 4	.5		
	Overburden. E auger refusal.																					
											_											
										F .	-250-											
										Ļ .												
										- 5 -	-											
										- ·	1.											
										Ļ.												
											-245-											
											-											
										- 10 -												
											-											
										F .	1.											
2										Ļ .												
5																						
											-											
											-240-											
2																						
2										- 15 -												
										- 13 .	1.											
										Ļ .												
5																						
2 2 2											-											
20										F .	-235-											
											-200-											
OLF.										[1.											
233.33										- 20 -												
20.10	END OF THE	HOLE														-						

	Foth	R	ECO	DR	DO	FBC	OREHO	LE	No.	FT	WR	-6							JRE NO ET 1 OF	
PRO	JECT Victory Nickel - Minago G	eotechnic	cal Inve	estiga	tion											ENG	SINE	ER _		
PRO	JECT NO11V777 DRI	LER _	Paddo	ock D	rilling		BORING N	ИЕТНО	DD _⊦	Iollow	Stem	Auger				LOC	GE) ВҮ	JSI	L
CLIE	NT Victory Nickel	LOCA		Та	ilings a	and Was	ste Rock Area	a North	east	DAT	UM _	MSL				cor	NPIL	ED B	Y _ J	IOE
ELEV	/ATION _254.25m COO	RD	N: 5,99	6,314	4.25m,	E: 484,	736.85m	BORI	NG DA	re	13 Jar	ו 12				CHE	CKE	ED B'	Y	SL
AU BU			Open (S	Shelb	y)	P.P.	Pocket Pe	enetrom		RQI	Poi D Roc R Soli	ck Qua	lity De	esigna	tion	(I ₅₀)	C		onsolid J Triax	
		n Sample		SVI	MPLE	PT	Standard I			k k	Per	meabi	lity	Jvery	-		GS	Gr		ze Analysis
							neter on		_	=	Oynamie	c Cone	Penetr		Jastic	Natural	Content	init.	ity	
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und			ct noulded rength	d (kPa)	v		۷ ۲	VL D	Permeability (cm/s)	Remarks
	Ground Surfa Peat, fibrous, brown-black,		M			0,7					30 1	60 2	40 3	320						
253.64	some rootlets, wet.	<u>// \\</u>	ss	1	0.0	-			-254-											
0.61	(CH) Clay, soft, light brown, high plasticity, moist.		ss	2	54.7	3				•	48					×				
252.88 1.37																				
	to medium plasticity, moist.	w	ss	3	48.1	10		- 2 -						287		×				Fissures
	Laboratory observation suggests evidence of clay weathering (mottled, trace		ss	4	65.6	18			-252-					4	383			×		
	organics friable, micro-fissures, blocky) decreasing with depth over																		-	
	portions of the CL interval, approximately 2 meters thic		ss	5	83.1	19									43	1 . ×		Ð:		GS
250.55 3.70			ss	6	0.0	20		4 -	 										-	
249.83					0.0				-250-											
	gravel, firm to very stiff, dark brown to grey, high plasticity moist. Rocks noted as		ss	7	87.5	22					•				43	1				
	grinding during augering to 7.62m																			
4								6 -												
5			ss	8	131.2	. 10			-248-		 1	20				×				GS
			ss	9	131.2	2 7				2 4						×				Grinding
								- 0 -	-246-											on rock from 7.92- 8.84m.
245.64 8.61																				Auger refusal at 8.84m.
	(limestone clasts), light grey very stiff, non-plastic, moist.	,	ss	10	65.6	25					•				*	0				GS
9.60	END OF THE HOLE		1 1	N	I	<u> </u>	I	<u> </u>	<u> </u>					1	<u> </u>	<u> </u>			L	Hard drilling auger refusal at
																				9.60m

FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12

	Foth	R	ECC	DR	DO	FBC	DREHO	LE	No.	FTWR-8		IRE NO. 1 ET 1 OF 2
PRO	IECT Victory Nickel - Minag	o Geotechnic	al Inve	stiga	tion						ENGINEER	
PRO	JECT NO	DRILLER	Paddo	ock D	rilling		BORING I	METHO	ם סב	Hollow Stem Auger		
CLIEI	NT Victory Nickel			Та	ilings a	ind Was	ste Rock Are	a East		DATUM MSL	COMPILED B	Y JOE
ELEV	ATION _255.42m		N: 5,99	6,004	4.41m,	E: 484,	498.53m	BORI		TE 12 Jan 12	CHECKED B	Y JSL
SAM		Rock Core				AB	BREVIATIO	ONS				
BU GB	Bulk TW(SH) T Grab Sample VA V	Split Spoon Thin-Walled C /ane Vash Sample	• •	helb	y)		Pocket Pe Wet Unit \ Standard	Veight		P.L. Point Load Strength Ind RQD Rock Quality Designatic SCR Solid Core Recovery k Permeability	n C Co CU Cl	onsolidation J Triaxial rain Size Analysis
	SOIL PROFILE	Ξ		SAI	MPLE		ter			 SPT N Value Dynamic Cone Penetration 	Plastic Limit Natural Moisture Content Liquid Limit	
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	25 50 75 ▲ Penetrometer ↔ Vane Remoulded Undrained Shear Strength (kPa) 80 160 240 320		Permeability (cm/s) Kewauks
	Ground Su Peat, brown to black, wo		L. N									
	and non woody, particles in fibrous peat, wet. Thin	light -	ss	1	0.0							
254.81 0.61	brown fine grained sand	and the										
	silt on bottom of auger at of run.	end	ssV	2	83.1	3		- 1		48	×	
054.00	(CL) Clay, soft to very sti	ff,		-					-			
1.40		wn,							-254-			
	moist.		ss	3	59.1	13				• 263	×	GS
	suggests evidence of cla	y 🦷						- 2 -	-			Fissures
	weathering (mottled, frial horizontal micro-fissures	ole, with						Ļ .		335		
	grey coloration, blocky) decreasing with depth ov		ss	4	26.2	18					*	
	the CL interval and into t	he ////							1			
	top of the lower CH inter- approximately 4 meters t		ss	5	0.0	20			[]		×	
					0.0	20			-252-		<u>^</u>	
									1.			
			ss	6	72.2	14		- 4 -	-	263	x	
251.00								L .		-		
4.42	(CH) Clay with up to 15% subangular gravel, soft to	b firm,	- N/	-								PP test
	light brown to dark grey,	high	ss	7	100.0	5			1	• 239	*	does not match
	plasticity, moist to wet.											SPT
249.92		//							-250-			
5.50								- 1				
								- 6 -	-			
			SH	8	70.5				-		×	
5			SIT	0	10.5						· · · · · · · · · · · · · · · · · · ·	
2]						
								ļ .				
									-248-			
			M	-	100.5			-	Ĺ	10		GS
			ss	9	100.0			- 8 -	-			
								L	-			
								[]] -			
								L.		10		stony
			SH	10	100.1				-246-		×	
									1			
								10		1		
							(Co	ontinue	ed Nex	xt Page)		

T 2 OF 2
JSL
JOE
JSL
nsolidation Triaxial ain Size Analys
Permeability (cm/s) Bemaul
becomir
very sto (grinding on auge

	Foth	R	EC	OR	DO	FBC	OREHC	DLE	No.	FT	WR	-9							IRE NO. ET 1 OF	
PRO	JECT Victory Nickel - Min	ado Geotechni	cal Inve	estida	tion											ENG	SINE	ER		
	JECT NO								DD ⊦											
	NT Victory Nickel																		-	OE
	ATION 254.62m																		Y JS	
-			1. 0,00	, , , , , , ,			BREVIATIO									0112				
AU BU GB	Auger SS Bulk TW(SH) Grab Sample VA Piston Sampler WS	Rock Core Split Spoon Thin-Walled C Vane Wash Sample				P.P. U.W PT	Pocket Pe	enetron Weight		RQ SCI	. Poi D Roc R Soli Per	k Qua	lity De Reco	esigna	tion			CL	onsolida J Triaxi ain Siz	
	SOIL PROFI	LE		SAN	/PLE		iter			_	e s Dynamie	PT N V Cone		ation	, ti	Natural	itent ind	2		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ Pe ⊕ Va	⁵⁰ netrom ne Inta ne Ren	eter ct nouldee	d	-				Permeability (cm/s)	Remarks
	Ground S				Ř	SP	\$						•	320		15 3	04	5		
	Overburden. Blind drill	ed to								· · · · ·										
	auger refusal. No reco	very.						L .												
									L _											
									-											
									-											
									0-0											
								- 5 .	-250-											
									-											
									-											
								F -	0.45											
								- 10 -	-245-											
									L											
									-											
									-											
									-											
									- 1											
									-240-											
								- 15 -	<u>-</u>											
									L _						-					
									-											
									-											
								F -	1											
								L	- †											
								[225											
233.92								20 -	-235-											
233.92									L _											
20.70	END OF THE HOLE		•	•		•		•												

Appendix D

Test Pit Logs

	\$Foth	R	EC	OR	DC)F B(OREHO	DLE	No.	FC	D 1	1						FIGL SHE	JRE NO. ET 1 OF	1
PRO	JECT Victory Nickel - Minago Geot	echnic	al Inve	estiga	tion											ENG	GINE	ER		
	JECT NO. <u>11V777</u> DRILLI						BORING	метно	<u>т</u> а	rack H	loe Te	est Pit						_	JM	
	NT Victory Nickel															со	MPIL	ED B	Y J	OE
ELEV	ATION _258.00m COORI	DN	N: 5,99	4,215	5.00m,	, E: 483,	609.00m	BORI		re	22 Ma	ar 12				СНІ	ЕСК	ED B	Y5	SL
SAM	PLE TYPES RC Rock Co	ore				AB	BREVIATI	ONS												
BU GB	AugerSSSplit SpBulkTW(SH)Thin-WaGrab SampleVAVanePiston SamplerWSWash S	alled O	-	Shelby	1)		Pocket P Wet Unit Standard	Weight		RQI	D Ro R Sol	int Loa ck Qua lid Core rmeabi	ality De e Rece	esigna	tion	(I ₅₀)		J CL	onsolida J Triaxi rain Siz	
	SOIL PROFILE			SAN	/IPLE	S			10/4		• :	SPT N \ ic Cone	/alue	ration	.c					o r andigolo
Elev.		Ŧ			(%	nes	omet tion		Б		25	50	75			Limit Natural	Mois Cont) (
Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	⊕ Va ♦ Va	enetrom ane Inta ane Rer Shear S	ct noulde		,	N _P	×	€	Permeability (cm/s)	Remarks
	Ground Surface				Ŕ	SP	5						•	320		15 3	30 ·	45		
257.70		<u>×1</u> /																		
0.30	Peat.	<u></u>																	-	
		<u>// \/</u>																		
		<u>1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1</u>																		
		<u>\\ /</u>						-	[
		1, 1																		
256.00		<u>\\/</u>	F	CD1	1			2 -	-256-											
2.00	(CH) Clay, gray to brown, blocky structure, hard to very		BS	01-2.	0m									A	43					
	hard, high plasticity, moist,																		-	
	water percolating from bottom of peat, gradational contact.																			
																			-	
																			-	
								4	-254-											
									201						44					
																			-	
																			-	
5																				
5/11/								- 6 -	-252-											
GDT			F BS	CD1 02-6.	1 1m			- 0 -	-252-											
OTH.																			-	
E E																				
D.G																			-	
IDAT.									+ -											
250.40																				
Z 7.60	END OF THE HOLE																			
NAGC																				
2 D																				
COR																				
FOTH BOREHOLE RECORD MINAGO_CONSOLIDATED.GPJ FOTH.GDT 5/11/12 2 09.05 09.05																				
HOL																				
BOR																				
OTH																				
± 																				

	♦Foth ^R	EC	ORI	DC)F E	BOR	EHOLE	E No	. VN	IEE	01	TPO	5						JRE NO	
PROJE	ECT Victory Nickel - Minago Geote	echnic	al Inve	estiga	tion											EN	GINE	ER		
	ECT NO. <u>11V777</u> DRILLE																		JM	
	IT Victory Nickel L																		BY J	
	ATION _256.21m COORD																ECK	ED B	Y J	SL
	LE TYPES RC Rock Co						BREVIATI													
BU B GB G	Auger SS Split Spo Bulk TW(SH) Thin-Wa Grab Sample VA Vane Piston Sampler WS Wash Sa	oon Illed O		Shelby	()		Pocket P . Wet Unit Standard	Weight		P.L. RQI SCF k	D Ro R So	oint Loa ock Qua olid Cor ermeab	ality De e Reco	ngth esigna overy	Index ation	: (I ₅₀)	C CL	J C	onsolid U Triax rain Siz	
	SOIL PROFILE			SAN	/IPLE	-					•	SPT N	Value	ration		2.2	Moisture			
Elev.		lot		er	(%)	SPT "N" Values or RQD	Well / Piezometer Installation	t c	ution		25		75		_				Permeability (cm/s)	
Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	"N" <	ll / Pie Install	Depth (m)	Elevation (m)		ტV ∳V	'ane Inta 'ane Rei	ict noulde	d		W _P	×	N. Ə	ermeabil (cm/s)	Remarks
	Creating of Cristians	St			Rec	SPT	We					Shear S	•	(kPa) 320		15	30	45	L.	
	Ground Surface Peat, vegetation- dead leaves,	<u>\</u>											240	320	:	:				
ł	pine.	1/ 1/																		
256.16 0.05	(CL) Clay, red-brown, moist,																			
	with silt, some small pebbles,																			
1	trace sand, variable gradational contact, firm to							L .							: :::					
	soft, residuum.																			
															· · · · ·					
									256.0											
								0-												
								- 0.5 -											1	

		Foth	R	EC	OR	DC)F E	BOR	EHOLE	No	. VN	IEE	01 [·]	TP0	6	_	_	_	_		RE NO ET 1 OF	
	PRO.	IECT Victory Nickel -	Minago Geote	echnic	al Inve	estigat	tion											ENC	GINEI	ER _		
	PRO.	IECT NO. <u>11V777</u>	DRILLE	ER	ET				BORING	METHO	<u>ד</u> סמ	rack H	loe Te	est Pit				LOC	GGED) BY	JM	Н
	CLIEI	NT Victory Nickel	L	.oca	TION	Tai	lings a	and Was	ste Rock Are	a East		DAT	им_	MSL				cor	MPILI	ED B	Y _J	OE
	ELEV	ATION 255.68m)1	N: 5,99	6,146	.00m,	E: 484	792.00m	BORI		re	21 Ma	ar 12				СНЕ	ECKE	D B	r 5	SL
F		PLE TYPES RC	Rock Co					AB	BREVIATIO	ONS												
	BU GB	Auger SS Bulk TW(Grab Sample VA Piston Sampler WS	Split Spo SH) Thin-Wa Vane Wash S	alled C		Shelby))		Pocket Pe Wet Unit Standard	Weight				int Loa ck Qua lid Core rmeabi						CL	onsolida J Triaxi ain Siz	
Γ		SOIL PR	OFILE			SAN	/IPLE	-	ter			=[SPT N \ ic Cone		ation	c +	Limit	sture tent id	·+-		
	<u>Elev.</u> Depth (m)	Descriptio	on	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ Pe ᠿ Va	50 enetrom ane Inta- ane Ren	eter ct		Ι,		× (Permeability (cm/s)	Remarks
				Str		z	Reco	" T4	Well			1	rained	Shear St	rength	(kPa)		15 3	0 4	F	Å.	
	255 65		nd Surface	<u>\\/</u>				05				٤ : : : :	30 1 	160 2	40	320		1.3	50 4	э :::::		
	255.65 0.03	(CL) Clay, brown, c hard, blocky structu angular limestone of and gravel, little fin upper 0.3m, fining	lry, very ure, trace cobbles e sand in								255.5											
		gradational contact plasticity when moi	t, high																			
										- 0.5 -												
											255.0											
										 - 1.0 -												
											254.5											
00000																						
										- 1.5 -												
											254.0											
	050.05																					
	<u>253.68</u> 2.00	END OF THE HOL	E		1			I		<u>2.0</u>		<u> </u>		<u></u>		1		1::::				

PRO	JECT Victory Nickel - M	nago Geote	chnica	al Inve	stigat	ion											ENC	SINE	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLE	R	ET				BORING	METHO	<u>T_</u> D	rack H	loe Te	est Pit				LOC	GEE	ЭBY	JM	Н
CLIE	NT Victory Nickel	L0	осат	ION	Tail	ings a	and Was	ste Rock Are	ea East		DAT	UM _	MSL				cor	MPIL	ED B'	Y _ J	OE
ELEV	ATION 255.00m		. <u> </u>	I: 5,99	6,159	.00m,	, E: 484	770.00m	BORI	NG DAT	Е	21 Ma	ar 12				CHE	ECKE	ED BY	<u>ر</u> ا	SL
AU BU GB	PLE TYPES RC Auger SS Bulk TW(SH Grab Sample VA Piston Sampler WS	Rock Col Split Spo) Thin-Wal Vane Wash Sa	on led O		Shelby)	P.P.	Pocket P Wet Unit Standard	enetrom Weight		P.L. RQI SCF k	Poi D Ro R Sol Pei	int Loa ck Qua lid Core rmeabi	d Stre ality De e Rec ility	ngth li esigna overy	ndex tion	(I ₅₀)	C CU GS	Co CU Gra	nsolida J Triaxi ain Siz	ation al e Analysis
	SOIL PRO	FILE			SAM	IPLE	-					•	SPT N \ ic Cone	/alue			Limit Natural		,		
<u>Elev.</u> Depth (m)	Description		Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	25 ♣ Pe ♣ Va ♣ Va rained \$	50 enetrom ane Inta ane Rer Shear S	reter ct noulde trength	d	- \		۷ ۲ (v .	Permeability (cm/s)	Remark
254.90	Peat/Vegetation, sam	<u>Surface</u> e as	<u>\//</u>											40							
0.10	(TP06 (CL) Clay, brown, dry at 4m, very hard, bloc prismatic structure, tr cobbles and small gra	ky ace																			
	plasticity when moiste Mottled gray at 4.5m	ened.							- 1 -												
									- 2 -	-253-											
									- 3 -	-252-											
					NEE0 01-4.				- 4 -	 -251-											
										+ - + -											
250.00																					

		Foth	REC	ORI	D C)F E	BOR	EHOLE	No	. VN	IEE	01 1	ГР0	8						IRE NO. ET 1 OF	
1	PRO.	JECT Victory Nickel - Mina	ago Geotechnic	cal Inve	estigat	tion											ENC	SINE	ER _		
1	PRO.	JECT NO. <u>11V777</u>	DRILLER	ET				BORING	METHO	<u>T_</u> D	rack H	loe Te	st Pit				LOC	GEE	DВY	JM	1
•	LIE	NT Victory Nickel	LOCA	TION	Tai	lings a	ind Wa	ste Rock Are	a East		DAT	'UM _	MSL				cor	MPIL	ED B	Y _ J	OE
1	ELEV	ATION 254.86m	COORD.	N: 5,99	6,177	.00m,	E: 484	,740.00m	BORI	NG DAT	ГЕ	21 Ma	r 12				CHE	ECKE	ED B'	Y5	SL
		PLE TYPES RC	Rock Core				AB	BREVIATIO	ONS		ы	Daii		d Otro	nath lu	aday	(1.)				
BG	U B	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spoon Thin-Walled C Vane Wash Sample	• •	Shelby	/)		Pocket Pe Wet Unit \ Standard	Weight		RQ	Poir Poir Roc R Soli Per	k Qua	ality De e Reco	esiana	tion	(I ₅₀)	C CU GS	CL	onsolida J Triaxi ain Siz	
		SOIL PROFI	LE		SAN	/IPLE		eter			=[• S Dynamic	PT N V Cone	/alue Peneti	ation	astic	Limit Natural	intent	it.	٢	
De	<u>ev.</u> epth m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Und	🗘 Va	netrom ne Inta ne Ren Shear St	ct noulde	d	v	v _₽ ⊢→	۷ ۲ (V L	Permeability (cm/s)	Remarks
21	4.76	Ground S Peat/Vegetation.	Surface				S				٤ 	0 1	60 2 · · · ·	40 :	320	44	15 3 1	50 4			
:	0.10	(CL) Clay, brown, dry, s at top to 0.7m, laminate bedding. Below 0.7m- i	sandy ed																		
		very hard, plastic when moistened, gradational contact, mottled gray @								 -254-											
									- 2 -												
										-252-											
										251-											
71./I.1/G																					
	9.86 5.00		ray,	V BS	NEE()1 0m			 - 5 -	 -250-						44	1				
		high plasticity, trace co very hard.	bbles,																		
										 -249-											
	7.86																				
	7.00						•		- <i>i</i>	•						<u> </u>	<u></u>	<u></u>	<u></u>	·1	

	ECT Victory Nickel - Minago								метно											JM	н
	T Victory Nickel																				OE
	ATION _ 263.34m C																			Y	
		ock Core		. 0,00	0,010			BREVIATI		10 2/1		2110									
AU BU GB	Auger SS S Bulk TW(SH) T Grab Sample VA V	plit Spoo	on ed Op	oen (S	Shelby	()	P.P.	Pocket P . Wet Unit	enetron Weight		ROI) Ro	oint Loa ock Qua olid Cor ermeab	ality De	signa	tion		C CU GS	Co I Cl GI	onsolid J Triax ain Siz	ation ial re Analysi
	SOIL PROFILE				SAN	/PLE	-	eter				•	SPT N V nic Cone	/alue				Moisture Content			
<u>Elev.</u> Depth (m)	Description		Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ P ⊕ V	⁵⁰ enetrom ane Inta ane Rer	75 neter		-		<u>کې کې</u> ۲ (Permeability (cm/s)	Remark
	Ground Su		St		2	Rec	SPT	We					Shear S	•	(kPa) 320	1	15 3	30 4	15	<u>م</u>	
2 <u>63.29</u> 0.05	Leaves/Pine - decayed																				
0.00	vegetation (GW) Gravel and sand, s																				
	and clay, well graded, cla supported yellow-brown, subrounded, imbricated, possible terrace deposit.	st dry,								263.0											
	Interbedded lenses of sar and cobble-based deposi Trace boulders, dry, distir	ts.																			
	contact.									262.5											
		•							- 1.0 -												
		•								262.0											
		•							- 1.5												Gravel and
										 											cobbles are main limestone
										261.5											with some granite / igneous erratics
2 <u>61.24</u> 2.10	some sand, dry, gradation															44	1				observed
	contact, very hard.									261.0 											
										260.5											
									- 3.0 -												
										260.0											
									- 3.5												
259.44										 259.5											

	Foth	REC	ORI	00	FBC	ORE	HOLE	No	. VN	EE	02 [·]	TP0	3					GURE NO	
PRO	JECT Victory Nickel - Mina	ago Geotechnic	al Inve	stigati	on											ENG	INEER		
PRO	JECT NO. <u>11V777</u>	DRILLER	ET				BORING I	метно	<u></u> d	rack H	loe Te	est Pit				LOG	GED B	Y	H
CLIE	NT Victory Nickel	LOCA		Taili	ngs and	Wast	te Rock Are	a East		DAT	UM _	MSL				CON	IPILED	BY	OE
ELE	/ATION266.44m		N: 5,99	5,825.	00m, E	484,7	739.00m	BORI	NG DAT	Е	21 Ma	ır 12				CHE	CKED	BY _J	SL
AU BU	PLE TYPES RC Auger SS Bulk TW(SH) Grab Sample VA	Rock Core Split Spoon Thin-Walled C Vane	pen (S	helby)		P.P.	Pocket Pe Wet Unit \	enetrom				nt Loa ck Qua id Core meabi	lity De	eianat	ion			Consolid CU Triax	
PS	Piston Sampler WS SOIL PROFI	Wash Sample		SAM	PLES	PT	Standard	Proctor	Text	k		meabi SPT N V						Grain Siz	e Analysis
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number		or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		Dynami 25 ▲ Pe ⊕ Va ● Va	c Cone	Penetr 75 eter ct noulder	d	l v		Content Scontent	Permeability (cm/s)	Remarks
	Ground S	Surface			a la	0	Ň					60 2	•	(KFa) 320	1	5 30) 45		
266.39 0.05	Peat, decayed vegetation/pine. Cobbles and gravel, imbricated, sand with s	ilt, clay	-																
	matrix, clast supported subangular to subround medium dense, erratics upward, moist, gradatic	, ded, s, fining																	
	contact, subangular weathered bedrock bel platy cobbles, possibly outwash.	ow bo							266.0										
								- 0.5 -											
								- 1.0 -	265.5										
21 11																			
264.44									 265.0	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·									
								- 1.5 -											
															· · · · · · · · · · · · · · · · · · ·				
								 							· · · · · · · · · · · · · · · · · · ·				
264.44	u l								264.5										
2.00			4	· · · ·	I			<u>2.0</u>			1					·ł			

	Foth	REC	OR	D C)F E	BOR	EHOLE	E No	. VN	IEE	02	TP0	4				FIGI SHE	URE NO	. 1 1
PR	DJECT Victory Nickel - Mir	ago Geotechnic	al Inve	estigat	tion											ENGI	NEER		
PR	DJECT NO	DRILLER	ET				BORING	METHO	<u></u> d	rack F	loe Te	est Pit				LOG	GED BY	JM	Н
CLI	ENT Victory Nickel	LOCA	TION	Tai	lings a	ind Was	ste Rock Are	ea East		DAT	им _	MSL				сом	PILED E	BY _ J	OE
	EVATION 256.85m		N: 5,99	95,868	3.00m,	E: 484,	576.00m	BORI	NG DAT	Е	21 Ma	ar 12				CHEC	KED B	Y _J	SL
AU BU GB	Bulk TW(SH) Grab Sample VA	Rock Core Split Spoon Thin-Walled C Vane		Shelby	()	P.P. U.W	Pocket P . Wet Unit	enetron Weight		RQ	Ro Rol	nt Loa ck Qua id Core rmeabi	ility De Reco	signat	ion		CU C	onsolid U Triax	al
PS	Piston Sampler WS SOIL PROF	Wash Sample		SAN	/PLE	PT S	Standard	Proctor	Text		• :	SPT N \	/alue					rain Siz	e Analysis
<u>Elev</u> Depti		Plot	a	ber	y (%)	/alues DD	Well / Piezometer Installation	Depth (m)	Elevation (m)	=[25 ▲ Pe	enetrom	75 eter		-	 Limit Natural Moisture 		Permeability (cm/s)	Remarks
(m)	Docomption	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Pi Insta	De	Elev (r		⊕ Va ↓	ane Inta ane Ren Shear S	ct noulded rrength	(kPa)		/ _₽ X 5 30		Perme (cn	Remarks
256.	Ground Peat/decayed vegetati					0)				8	0 1	160 2	40 3	20	441		45		
0.0	^{D5} (CL) Clay, brown, dry, hard, plastic when mo	very istened,													▲				
	blocky structure, trace limestone cobbles and Trace boulders.	l gravel.																	
									256.5										
								-0.5-										_	
									256.0										
								- 1.0 -											
									 255.5										
								- 1.5 -										-	
255.	15																		
	⁷⁰ END OF THE HOLE												<u>,</u>						

	Foth	REC	ORI	DO)F E	BOR	EHOLE	No	. VN	IEE	02 1	ГР0	6					FIGU SHEI	IRE NO. ET 1 OF	1
PRO.	JECT Victory Nickel - Minago	Geotechnic	al Inve	estigat	ion											ENG	SINE	ER _		
PRO	JECT NO. <u>11V777</u> [RILLER	ET				BORING I	METHO	<u>T</u>	rack H	loe Te	est Pit				LOG	GED) BY	JM	1
CLIE	NT Victory Nickel			Tail	lings a	ind Was	ste Rock Are	a East		DAT	UM _	MSL				CON	MPILI	ED B	Y _ J	OE
ELEV	/ATION _255.59m C		N: 5,99	5,900	.00m,	E: 484	,470.00m	BORI		re	21 Ma	r 12				CHE	CKE	D B	Y JS	SL
		ock Core				AB	BREVIATIO	ONS			Dei					<i>a</i>				
BU GB	BulkTW(SH)TIGrab SampleVAVAPiston SamplerWSW	ane 'ash Sample	•	Shelby	')		Pocket Pe Wet Unit V Standard	Neight		RQI SCF	Poii D Roc R Soli Per	ck Qua	lity De Reco	esignat overy	tion			CL	onsolida J Triaxi ain Siz	
	SOIL PROFILE			SAM	1PLE	-	ster				e s Dynamio	SPT N V Cone		ation	stic	Natural	sture itent	2.=		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ Pe ᠿ Va	⁵⁰ netrom ne Inta ne Ren	75 eter ct noulded	d	- - - V		≺ (Permeability (cm/s)	Remarks
	Ground Sur	face			ш	S					30 1I	60 2	40 3	320	1	5 3	0 4	5		
255.29	Peat.														46	6				
	(CL) Clay, gray, medium plasticity, very hard, block structure, moist.	y							 -255-											
									-254-											
								- 2 -												
									 -253-											
									-252-											
251.29			V B	NEE0 \$02-4)2 m			- 4 -							302					
4 0 0		у							 -251-						▲ [:] 392					
4.3U																				
I									-250-											
								- 6 -												
									-249-											
248.59 7.00			V B	NEE0 302-7) <u>2</u> m			7												

		Foth	REC	OR	DO	FE	BOR	EHOLE	No	. VN	IEE03	TP04		IRE NO. ET 1 OF	
F	ROJ	IECT Victory Nickel - Min	ago Geotechnic	al Inve	estigat	ion							ENGINEER		
F	ROJ	IECT NO. <u>11V777</u>	DRILLER	ET				BORING	метно	<u>T</u> סמ	rack Hoe T	est Pit	LOGGED BY	JM	1
0	LIE	NT Victory Nickel	LOCA	TION	Tai	ings a	and Was	ste Rock Are	ea East		DATUM	MSL	COMPILED B	Y _ J	OE
E	LEV	ATION 262.09m		N: 5,99	5,282	.00m,	E: 484,	433.00m	BORI	NG DAT	TE _ 22 Ma	ar 12	CHECKED B	Y _JS	SL
S		PLE TYPES RC Auger SS	Rock Core Split Spoon				ABI	BREVIATIO	ONS			int Load Strength Ir	aday (L_)		
BI G P	J B	Bulk TW(SH) Grab Sample VA Piston Sampler WS	Thin-Walled C Vane Wash Sample	• •	Shelby)		Pocket Pe Wet Unit Standard	Weight			in Load Strength in ck Quality Designat lid Core Recovery rmeability			
		SOIL PROFI	ILE		SAN	1PLE	-	eter				SPT N Value ic Cone Penetration	Plastic Limit Natural Moisture Content Limit	,	
De	<u>ev.</u> pth n)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	⊕ Vi ● Vi	50 75 enetrometer ane Intact ane Remoulded Shear Strength (kPa)		Permeability (cm/s)	Remarks
		Ground	Surface			Ř	SP	\$				160 240 320	15 30 45 441		
_26	8 :69	Peat/decayed vegetatii (CL-ML) Clay and silt, very hard (not frozen), low plasticity, prismatic structure, some rock, t gravel, subangular,	brown, moist, c							262.0					
		gradational contact.													
									- 0.5						
										261.5					
	1. <u>39</u> 0.70	(CL) Clay wtih cobbles limestone, subangular,	, verv												
1		hard, brown, residuum weathered limestone, j moist.	, ////												
									- 1.0 -	261.0					
	0.89														
	1.20	END OF THE HOLE													

	Foth	REC	ORI	DO)F E	BOR	EHOLE	No	. VN	IEE	03 -	TP0	5					IGURE NO HEET 1 O	
PRO	JECT Victory Nickel - Min	ago Geotechnic	al Inve	estigat	ion											ENG	INEEF	۲	
PRO	DJECT NO. 11V777	DRILLER	ET				BORING	метно	<u></u> d	rack ⊦	loe Te	est Pit				LOG	GED I	BY JN	IH
CLI	ENT Victory Nickel		TION	Tai	lings a	ind Was	ste Rock Are	a East		DAT	υм _	MSL				CON	IPILE) ВҮ	IOE
ELE	261.41m		N: 5,99	5,296	.00m,	E: 484	,404.00m	BORI	NG DAT	Е	22 Ma	ır 12				CHE	CKED	BY _J	SL
SAN AU	IPLE TYPES RC Auger SS	Rock Core Split Spoon				AB	BREVIATIO	ONS		ы	Poi	nt Loa	d Stro	nath li	adov (1 \			
BU GB PS	Bulk TW(SH) Grab Sample VA Piston Sampler WS	Thin-Walled C Vane Wash Sample	•	Shelby	')		Pocket Pe Wet Unit V Standard	Weight		RQE	Roc Roc Roc	ck Qua id Core meabi	ality De e Rece	esiana	tion	1 ₅₀ /	C CU GS	Consolic CU Triax Grain Siz	
	SOIL PROFI	LE		SAN	1PLE		ster			= D	• s	SPT N \ c Cone	/alue Peneti	ation	stic	it ural sture	Content Liquid Limit		
<u>Elev.</u> Deptr (m)		Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		⊕ Va ♦ Va	netrom ne Inta ne Ren	ct noulde	d	-			Permeability (cm/s)	Remarks
	Ground				Re	SPT	We					Shear St	•	(kPa) 320	1	5 30	0 45		
	Peat/decayed vegetati								- 1										
<u>261.3</u> 0.0		avel,									· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·				441	1			
	plastic when moistened	d.																	
											· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·								
									261.0										
								0.5											
								-0.5-											
211																			
									260.5		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·								
260.3	1							- 1.0 -									I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>		
	⁰ END OF THE HOLE			·												H			

	Foth	REC	ORI	DO)F B	BORI	EHOLE	No	VN	IEE	03 1	ГР0 ⁻	7						RE NO. ET 1 OF	
PRO	JECT Victory Nickel - Mina	ago Geotechnic	al Inve	estigat	ion											ENG	SINEI	ER _		
PRO	JECT NO. <u>11V777</u>	DRILLER	ET				BORING	METHO	D _T	rack ⊦	loe Te	est Pit				LOC	GGED) BY	JM	1
CLIE	NT Victory Nickel			Tai	lings a	nd Was	te Rock Are	a East		DAT	UM _	MSL				CO	MPILI	ED B	Y	<u>DE</u>
ELE	/ATION259.68m		N: 5,99	5,331	.00m,	E: 484,	345.00m	BORI	IG DAT	Е	22 Ma	r 12			_	CHE	ECKE	D B)	<u> </u>	iL
	PLE TYPES RC Auger SS	Rock Core Split Spoon				AB	BREVIATIO	ONS		ΡI	Poir	nt Load	l Strei	nath Ir	ndex	(1)				
BU GB	Bulk TW(SH) Grab Sample VA Piston Sampler WS	Thin-Walled C Vane Wash Sample				PT	Pocket Pe . Wet Unit Standard	Weiaht		RQE	Roc Soli	ck Qua id Core meabil	lity De Recc	signa	tion	(*507		CL	nsolida J Triaxi ain Siz	
	SOIL PROFI	LE		SAN	1PLE		eter				• S ynamic	SPT N V c Cone I	alue Penetra	ation	stic	Limit Natural	isture ntent uid	, ti		
Elev. Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Undr	⇔ Va ♦ Va	⁵⁰ netrome ne Intac ne Rem Shear Str	t iouldec	ł	v	v _₽ ₩	۷ ۲ (v .	Permeability (cm/s)	Remarks
259.6	Ground S Peat.					S	-			8	D 16	60 24	0 3	20	44	15 3 1	50 4	5		
0.0.	(CL-ML) Clay and silt, s gravel and cobbles, igr erratics, dry, very hard, medium plasticity wher brown, matrix supporte gradational contact.	neous n moist,						 - 1 - 	 -259- 											
								- 2 -												
									- 257-											
71/11																				
								- 3 -												
Н. Н								-												
256.18															44	1				
3.50	(ML) Silt with clay, gray moist, low plasticity, ve glacial erratics, gravel, supported.	ry hard,							-256-											
								- 4 -												
2011/1/1/2 3.50 2008/01/04/10/11/2011/10/11/2011/2011/2011/2																				
	END OF THE HOLE		I			ı		I						1::::	1	1				

	♦Foth R	ECC	ORI	00	F E	BOR	EHOLE	No	. VN	IEE	03 -	TP0	8				F	FIGURE 1 SHEET 1	JO. 1 OF 1
PRO	JECT Victory Nickel - Minago Geote	chnica	l Inve	stigat	ion											ENG	INEE	R	
PRO	JECT NO11V777 DRILLE	R	T				BORING	METHO	<u>T</u> D	rack H	loe Te	est Pit				LOG	GED	вү	MH
CLIE	NT Victory Nickel	OCATI		Tail	ings a	and Was	ste Rock Are	a East		DAT	υм _	MSL				CON	IPILE	D BY _	JOE
ELE\	ATION 258.00m COORD	. <u>N</u> :	5,99	5,360	.00m,	E: 484	,300.00m	BORI	NG DAT	Е	22 Ma	r 12				CHE	CKEI	О ВҮ _	JSL
AU BU	PLE TYPES RC Rock Col Auger SS Split Spo Bulk TW(SH) Thin-Wal Grab Sample VA Vane	on	en (S	helby)	P.P.	Pocket Pe	enetrom		ROL) Roc	nt Load ck Qua	lity De	signat	ion		C	Conso CU Tri	lidation
PS	Piston Sampler WS Wash Sa SOIL PROFILE	Imple		CAN	1PLE	PT	Standard			k		id Core meabil		very				Grain	Size Analysis
	SUIL PROFILE					_	neter n			= C)ynamie	SPT N V c Cone	Penetra		lastic	latural	Content Liquid	r⊈	
Elev. Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		⊕ Va	netromo ine Intao ine Rem Shear St	ct noulded rength (i (kPa)	v	v _₽ ₩→	¥0 <u>-</u> ₩. ← ○	Permeabi	Remarks
257.95	Ground Surface	àlí n				0,				8	0 1	60 24	40 3	20	44	1			
0.05	(CL-ML) Silt with clay, trace subrounded cobbles, boulders, gravel, limestone, igneous, hard, dry, medium plasticity when moistened,																		
	brown, gradational contact, till.																		
								- 1 -	-257-										
								- 2 -	-256-										
N																			
255.00 3.00								- 3 -	-255-				245						
3.00	trace erratic cobbles.																		
SULIDALEL																			
								- 4 -	254 -										
			VI BS	NEE0 01-4.	13 5m														
	END OF THE HOLE	*//				1		L	1					1	1				

	Foth	REC	OR	D C)F E	BOR	EHOLE	No	. VN	IEE	04 1	ГР0	1						RE NO. ET 1 OF	
PRO	JECT Victory Nickel - Min	ago Geotechnic	al Inve	estigat	tion											ENG	INE	ER _		
PRO	JECT NO. 11V777	DRILLER	ET				BORING	метно	<u>т_ מ</u>	rack H	loe Te	st Pit				LOG	GED	ЭBY	JM	-
CLIE	NT Victory Nickel	LOCA	TION	Tai	lings a	and Was	ste Rock Are	a East		DAT	UM	MSL				CON	/IPILI	ED B	Y J	OE
	/ATION 264.89m															СНЕ	СКЕ	D BY	′ JS	SL
	PLE TYPES RC	Rock Core					BREVIATIO													
AU BU GB PS	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spoon Thin-Walled C Vane Wash Sample	•			P.P. U.W PT	Pocket Pe Wet Unit Standard	enetron Weight			Poir Roc Soli Peri	k Ous	lity De	einnat	tion			CL	nsolida I Triaxi ain Siz	
	SOIL PROFI	LE		SAN	IPLE	_	ter			= 0	• S Synamic	PT N V Cone	/alue Penetr	ation	iti	Limit Natural Moistura	tent id	÷		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♣ Per ⊕ Var ♣ Var ♣ Var ♣ Var	50 netrom ne Intao ne Ren	eter ct noulded	ł	-				Permeability (cm/s)	Remarks
	Ground	Surface			ш	SI	>			8	0 16	60 24	40 3	20	1	53	04	5		
	Peat/decayed vegetati (GW) Cobbles/gravel, subrounded to rounder	d, thinly																		
	bedded channel depos sand, clay in matrix, cla supported, fining upwa repeating alluvial depo	ast ird, sits (4						- 0.5	264.5											
	beds), gradational con brown, dry, variable composition.	tact,`																		
								- 1.0	264.0											
									263.5											
263.19) (ML) Silt, some clay, bi	rown													441					
	very hard, dry, low plas gradational contact.	sticity,							263.0											
262.49	(CH) Clay, dry, brown y very hard, high plastici								 262.5						441					
- GDI 9/11	moist, trace cobbles ar boulders, variable composition.																			
								-3.0	262.0											
OLIDAIED.																				
								- 3.5	261.5											
OLE RECORD MINAGO_CONSOLIDATED.GP3 FOTRIGU																				
IOLE RECC								- 4.0	261.0											
260.69								<u> </u>	<u> </u>											
4.20) END OF THE HOLE																			

	Foth	REC	ORI	D C)F E	BOR	EHOLE	No	. VN	IEE	04 [·]	TP0	2						RE NO. ET 1 OF	
PRO	JECT Victory Nickel - Minago Geo	technica	al Inve	estiga	tion											ENG	GINE	ER		
PRO	JECT NO. <u>11V777</u> DRILL	ER	ET				BORING	метно	т_ О	rack H	loe Te	est Pit							JM	
CLIE	NT Victory Nickel	LOCAT		Tai	lings a	and Was	ste Rock Are	ea East		DAT	им_	MSL				со	MPIL	ED B	Y _ J(OE
ELE\	ATION _ 260.00m COOR	D N	l: 5,99	4,420	.00m,	E: 484	,308.00m	BORI		E	22 Ma	ır 12				СНІ	ECKE	ED BY	′_JS	SL
SAM	PLE TYPES RC Rock C					AB	BREVIATI	ONS			D-:	-41	-1 -04	41- 1		4.5				
BU GB	Auger SS Split	alled O	pen (S	Shelby	()		Pocket Po Wet Unit Standard	Weight			ם ר	nt Loa ck Qua id Core meabi	lity Do	niana	tion		C CU GS	CU	nsolida I Triaxi ain Size	
	SOIL PROFILE			SAN	/IPLE		eter				• 8	SPT N V c Cone	/alue			Limit Natural		2.t=		
Elev.		lot		-r	(%)	SPT "N" Values or RQD	Well / Piezometer Installation	÷.	Elevation (m)		25		75		-			括	Permeability (cm/s)	
Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	"N" RQI	/ Pie	Depth (m)	Eleva (m		🗘 Va	ine Inta ine Ren	ct			W _P	× (V, D	cm.	Remarks
				z	Reco	" T4S	Well				rained S	Shear St	trength	(kPa)		15 3	30 4		ď	
259.90	Ground Surface Peat/decayed vegetation.	<u>\//</u>				0,				8	30 1	60 2		20						
0.10	(CL) Clay and silt, brown,																			
	some gravel and cobbles, moist, some fine sand, low																			
	plasticity. Matrix supported, firm, distinct contact,																			
	cross-cutting into deposit below.							-0.5-	259.5											
259.30 0.70																				
	dense, yellow-gray, trace																			
	angular pebbles, some silt, trace cobbles, moist.							-1.0-	259.0		· · · · ·									
								- 1.5 -	258.5											
								t :		· · · · · · · · · · · · · · · · · · ·										
								-2.0-	258.0											
									 257.5											
21																				
1/0																				
1.60										· · · · ·										
								- 3.0 -	257.0	· · · · ·										
r of the second s																				
CINS								- 3.5 -	256.5											
									[]											
									-											
<u>P</u>								40	 256.0											
N HE																				
EHOLE RECORD MINAGO_CONSOLIDATED.GFJ FOTH.GDT 2711/12									-											
255.60									-											
4.40	END OF THE HOLE																			

	IECT Victory Nickel - Min							метнс										BY _		ł
	NT Victory Nickel																	ED BY		
	ATION _ 260.00m			94,410	.00m,				IG DAT	E	22 Ma	r 12				CHE	CKE	DBY	JS	L
AU BU GB	Grab Sample VA Ý	Rock Core Split Spoon Thin-Walled Vane Wash Sam	l Open (S			P.P. U.W PT	Pocket Po Wet Unit Standard	enetrom Weight				nt Load ck Qua id Core meabi	lity De	einna	tion		C CU GS	Con CU Grai	solida Triaxi in Size	ation al e Analysi
<u>Ξlev.</u> Depth (m)	SOIL PROF	- - -	Type	SAM	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Undr	25 ▲ Pe ⊕ Va ● Va rained S	SPT N V c Cone 50 netrom ine Intac ine Ren Shear St 60 2	Penetr 75 eter ct noulded trength	1	- \	v _₽ ₩→	A Content		rermeability (cm/s)	Remark
2 <u>59.95</u> 0.05	Peat. (CH) Clay, very hard, t dry, trace cobbles, mai supported, high plastic when moist.	$\overline{7}$													44	1				
		prown, trix tity						- 0.5 -	 259.5											
								- 1.0 -	 259.0											
									 258.5											
								- 2.0 -	258.0 											
257.40								-2.5-	257.5											

		Foth	RECO	ORD (of B	BORE	HOLE	No.	VN	WE	01 '	TP0)5				FIGI She	URE NO EET 1 OF	. 1 - 1
	PRO	JECT Victory Nickel - Mina	ago Geotechnica	al Investig	ation										_	ENGI	IEER		
	PRO	JECT NO. <u>11V777</u>		ET			BORING	METHO	<u>T</u> DC	rack ⊦	loe Te	est Pit				LOGG	ED BY	JM	Η
		NT Victory Nickel																BY _ J	
		/ATION256.27m	COORD. N	: 5,997,36	9.00m,				NG DAT	E	20 Ma	r 12				CHEC	KED B	YJS	SL
	AU BU GB	Grab Sample VA Piston Sampler WS	Rock Core Split Spoon Thin-Walled Op Vane Wash Sample			P.P. U.W PT	Pocket Pe Wet Unit V Standard	enetrom Neight) Por	nt Load ck Qua id Core meabi	lity De	eianat	ion		CU C	onsolida U Triaxi rain Siz	
		SOIL PROFI	LE	SA	MPLE T	_	eter			= D		SPT N V c Cone		ation	stic	Natural Moisture Content	itiq		
	<u>Elev.</u> Depth (m)	Description	Strata Plot	Type Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Undr	⊕ Va ● Va ained S	50 netrom ne Intao ne Ren Shear St	ct noulded rength	ł		5 30	WL O	Permeability (cm/s)	Remarks
ŀ		Ground S Peat.													::::				
	<u>255.97</u> 0.30		<u>// \</u>						256.0	▲ 25									
		high plasticity, trace lim pebbles, residuum, we	estone																
		Groundwater at bedroo interface.						- 0.5 -										_	
									255.5										
					-01														
				VNWI BS-01-	1.0m			- 1.0 -											
									255.0										
	254.47	,					254.5		254.5		· · · · ·								
	1.80	END OF THE HOLE					1.80												

	Foth	REC	ORD	OF	BOR	EHOLE	No.	VN	WE	01	TPO)6					GURE NO	
PRO	JECT Victory Nickel	- Minago Geotechnic	al Inves	stigatior	1										ENG	INEER		
PRO	JECT NO. 11V777	DRILLER	ET			BORING	метно	<u>T_</u> סכ	rack H	loe Te	est Pit				LOG	GED E	BY _JN	1H
CLIE	NT Victory Nickel	LOCA		Tailing	is and W	aste Rock Ar	ea West	t	DAT	им _	MSL				CON	IPILED	вү	JOE
ELE\	/ATION _ 256.00m	COORD.	N: 5,997	,366.00)m, E: 48	2,534.00m	BORI	NG DAT	Е	20 Ma	ar 12				CHE	CKED	BY _J	SL
	PLE TYPES RC Auger SS				A	BREVIATI	ONS		РІ	Po	int Loa	d Stro	nath Ir	ndev (1)			
BU GB	Bulk TW Grab Sample VA Piston Sampler WS	(SH) Thin-Walled C Vane Wash Sample		nelby)		P. Pocket P W. Wet Unit Standard	Weight		ROL) Ro	ck Qua lid Core	ality De	signat	tion		CU	Consolic CU Triax Grain Si	
	SOIL PF	ROFILE		SAMP		eter			= [SPT N \ ic Cone		ation	aștic	nit itural visture	Content Liquid	~	
Elev.		of .		er	/ (%) /alues	ation	Depth (m)	ation		25	50 enetrom	75 eter		-			abilit. Vs)	Demortes
Depth (m)	Descript	Strata Plot	Type	Number	SPT "N" Values or ROD	Well / Piezometer Installation	Del	Elevation (m)		⊕ Va ♦ Va	ane Inta ane Rer	ct nouldeo			v _₽ ⊢→	€ ₩-	Permeability (cm/s)	Remarks
	Grou	ர und Surface			SPT SPT	We					Shear Si	•	(kPa) 320	1	5 30	0 45		
	Peat.								· · · · · · · · · · · · · · · · · · ·	· · · · ·								
								L -										
		<u>\\/</u>						+ -	· · · · ·					· · · · · · · · · · · · · · · · · · ·				
		<u>// \/</u>																
		<u>\\ / /</u>						+ -									•••	
255.60																		
0.40	(CH) Clay, same a soft, brown-gray, h	as TP05,						T						· · · · · · · · · · · · · · · · · · ·				
	plasticity, trace lim pebbles, residuum	lestone					-0.5	255.5									· · ·	
	pebbles, residuuli	as TP05, high lestone h, wet.																
								+ -	· · · · ·					· · · · · · · · · · · · · · · · · · ·			• •	
								+ -										
									· · · · ·					· · · · · · · · · · · · · · · · · · ·			• •	
								- +									::: :::	
							- 1.0 -	255.0	· · · · ·	· · · · ·							· · · · · · · · · · · · · · · · · · ·	
4																		
5								† -										
							ļ .	- 1										
									· · · · ·	· · · · ·								
5								+ -	· · · · ·					· · · · · · · · · · · · · · · · · · ·				
								+ -										
							15	254.5	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			•••	
							- 1.J.	-04.9										
							.	-										
						254.3	3											
254.30	END OF THE HOI	_E				1.70					[::::	1::::	1::::	<u> </u>			::	
						1.70												

	Foth	REC	ORI	00	FΒ	ORE	EHOLE	No.	VN	WE	01	TPO)7					FIGURE NO	
PRO	JECT Victory Nickel - M	nago Geotechn	cal Inve	estigat	tion											ENG	SINEE	R	
PRO.	JECT NO	DRILLER	ET				BORING	метно	D _ T	rack ł	Hoe Te	est Pit				LOC	GED	BY _JN	ΛH
CLIE	NT Victory Nickel	LOCA	TION	Tai	lings a	ind Was	ste Rock Are	a West		DAT	UM _	MSL				CO	MPILE	D BY	JOE
ELEV	ATION 256.00m	_ COORD	N: 5,99	97,362	2.00m,	E: 482,	542.00m	BORIN	IG DAT	Е	20 Ma	ır 12				CHE	ECKE	D BY	ISL
AU BU GB	Grab Sample VA	Rock Core Split Spoon I) Thin-Walled Vane		Shelby	()	P.P. U.W	Pocket Pe	enetrom Weight				nt Loa ck Qua id Core meabi					C CU	CU Tria	xial
PS	Piston Sampler WS SOIL PROI	Wash Samp	e	SAN	/IPLE	PT S	Standard	Proctor	Text	ĸ	Per • s	meabl SPT N \	llity /alue		Τ.	. =	GS Br		ze Analysis
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♣ Pe ♣ Va ♣ Va	c Cone 50 enetrom ine Inta ine Ren Shear Si	eter ct noulde	d			A Content OMENTE	jde (s	Remarks
		Surface			Ŕ	SP	>					60 2	•	320		15 3	80 45	5	
	Peat.	$\frac{\sqrt{I}}{\sqrt{I}}$	<u>x</u> :							· ·									
		<u>×17</u>						-0.5-	255.5									· · · · · ·	
<u>255.10</u> 0.90			: <u>\</u>					 	 				221						
0.00	to hard, high plasticity	/, trace						- 1.0 -	255.0									· · · · · ·	
	limestone, residuum, wet. Groundwater per at 2.0m.	moist to rcolating																	
		rray, soft /, trace moist to rcolating						- 1.5 - 	254.5 										
								 - 2.0 - 	 254.0 										
								 - 2.5 -	 253.5										
								-3.0 -	253.0 										
								- 3.5 -	 252.5 										
<u>252.10</u>			NWEO	01-BS	02-3.7	'n													
3.90	END OF THE HOLE																		

	IECT Victory Nickel - Minago Ge								т_ о										JM	-
	NT Victory Nickel																		Y J	
	ATION _262.30m COO																		Y JS	
	PLE TYPES RC Rock						BREVIATI													
BU GB	Auger SS Split S Bulk TW(SH) Thin-V Grab Sample VA Vane Piston Sampler WS Wash			Shelby	()		Pocket P . Wet Unit Standard	Weight				nt Loa ck Qua id Core meabi	lity De	eiana	tion		C CU GS	U CL	onsolida J Triaxi ain Siz	
	SOIL PROFILE			SAN	/IPLE		eter				• 5	SPT N V c Cone	/alue			Natural		,		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♠ Pe ⊕ Va ♣ Va		eter ct noulded	1	-				Permeability (cm/s)	Remark
	Ground Surfac				Re	SP ⁻	Ň			8		60 2	•	(KFA) 20		15 3	30 4	45		
	(GW) Peat, decayed vegetation with subrounded																	· · · · · · · · · · · · · · · · · · ·		
	gravel and cobbles, imbricated, dry, fine sand and silt matrix, medium dense, dark brown.		,						 -262.0											
004.00									-202.9											
<u>261.90</u> 0.40	(GW) Gravel, subrounded cobbles, fining downward, gradational contact, silt to fin							- 0.5	+ -											
261.60																				
0.70	(SW) Sand, coarse, well graded with subrounded to rounded limestone and igneous gravel, medium dense, fining upward,								261.5											
261.20	gradational contact.							- 1.0 -												
	(GW) Cobbles, platy, fining upward, meduim sand matrix fining upward, gradational contact.								261.0											
260.60								- 1.5 -												
1.70	(GP) Weathered limestone, platy, dense, cobble to grave brown, dry.	0							 260.5											
	Weathered intact limestone,								+ -											
	light gray, dry, groundwater percolating from bottom of trench, wet.	000							+ -											
259.90	END OF THE HOLE						259.9		260.0											

	Foth	RECOR	DO	FΒ	OR	EHC	DLE No	. VI	IWE	02	TP0	3 E	EAS	т					IRE NO. ET 1 OF	
PRO	JECT Victory Nickel - Min	ago <u>G</u> eotechnic	al Inve	estigat	ion								_		_	ENG	SINEI	ER		
PRC	JECT NO	DRILLER	ET				BORING	метно	т а	rack ⊦	loe Te	st Pit						_	JM	
	NT Victory Nickel															cor	MPILI	ED B	Y J)E
	VATION _ 258.87m															CHE	ECKE	D B	YJS	SL
	PLE TYPES RC	Rock Core					BREVIATIO													
AU BU GB PS	Grab Sample VA Piston Sampler WS	Split Spoon Thin-Walled C Vane Wash Sample				U.W PT	Pocket Pe Wet Unit Standard	Weight				nt Loa k Qua d Core meabi		niana	tion		C CU GS	CL	onsolida J Triaxi ain Siz	
	SOIL PROF	ILE		SAN			neter			- C	ynamio	PT N V Cone	Penetr		astic	Limit Natural	onsture ontent auid	mit	ۍ	
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)	Undr	⇔ Va ♦ Va	netrom ne Inta ne Ren shear St	ct noulde	d	-	:∃ 2: V _P ├─>			Permeability (cm/s)	Remarks
	Ground				Ŕ	SP	>			8		50 2	•	320	1	15 3	80 4	5		
	Peat with organic matt																			
		<u>1/2 \</u>						L .			· · · · ·									
								L .												
		<u>\\ //</u>						L .	258.5											
258.3		<u>// \</u>						-0.5-												
0.5	⁰ (GW) Cobbles and sai subrounded, clay matr	nd, ix. well																		
	graded.							L .												
								L .												
								L .	258.0											
			,					- 1.0 -												
257.6																				
1.2	⁰ Weathered bedrock to highly fractured with so																			
	cavities, light yellow-gr	ay,	I						257.5											
	heavy groundwater flo bedrock/soil interface,	w at	I					1.5												
	pit.		I					- 1.5 -] _											
									-											
			I						_											
			I						257.0											
2			I					2.0	-											
1 10			I					-2.0-	1 1											
2									_											
Ē			I																	
É C			Ι						256.5											
			I																	
			Ι					-2.5-												
			I					F -	1											
			I																	
			I					F -	256.0											
			I								· · · · ·									
255.7	7		I					- 3.0 -												
3.1	⁰ END OF THE HOLE		-			· · · · · ·		1						1	1	1			<u> </u>	
- L																				

	JECT Victory Nickel - Mina	ago Geolecinic		suyaı																
	JECT NO	DRILLER	ET						т д										JM	4
CLIE	NT Victory Nickel																		Y J	
ELE\	VATION 260.90m		I: 5,99	6,844	.00m,	E: 482,	274.00m	BORI	NG DAT	Е	20 Mai	r 12				СНЕ	СКЕ	D BY	JS	L
	PLE TYPES RC	Rock Core				ABE	BREVIATIO	ONS												
BU GB	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spoon Thin-Walled O Vane Wash Sample		shelby)		Pocket Pe Wet Unit Standard	Weight			Poir Roc Soli Per	k Oua	lity Do	ciana	tion		C CU GS	Co CU Gra	nsolida I Triaxia ain Size	ition al e Analysis
	SOIL PROFI			SAM	1PLE	S						PT N V	alue							
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♣ Per ⊕ Var ♣ Var	50 netrome ne Intao ne Rem	eter eter et	1	-				Permeability (cm/s)	Remarks
	Ground S			2	Rec	SPT	We				rained S		•	(kPa) 20	.	15 30) 4		<u>د</u>	
	Peat.																			
		<u>1/</u> <u>1</u>																		
		<u>1/ 1/</u>							 260.5											
		<u>\' \'</u>						- 0.5 -												
		<u>\' \'</u>																		
		<u>\' \'</u>							260.0											
		<u>11</u>						- 1.0 -												
		<u> </u>																		
	_	<u>\\</u>							259.5											
<u>259.40</u> 1.50	O (CH) Silty clay with peb matrix supported, grada	ational						- 1.5 -				_	221							
	lateral contact, stiff, hig plasticity.	h 💋																		
	This trench marks the transition between wea bedrock and alluvial de	posits							259.0											
	and basin/peat and cla wetland deposits.	× //						-2.0-												
													· · · · · ·							
									258.5											
									258.0											
2 <u>57.80</u> 3.10	O END OF THE HOLE														[::::					

FOTH BOREHOLE RECORD MINAGO CONSOLIDATED.GPJ FOTH.GDT 5/11/12

	Foth	RECO	ORD	OF E	BORE	HOLE	No.	VN	WE	02 ⁻	TP0	4						RE NO	
PROJ	ECT Victory Nickel - Mina	ago Geotechnic	al Invest	gation											ENG	GINE	ER _		
PROJ	ECT NO. 11V777	DRILLER	ET			BORING	METHO	<u>T_</u> סמ	rack ⊦	loe Te	st Pit				LOC	GGE) BY	JM	-
CLIEN	IT Victory Nickel	LOCAT		Tailings a	and Was	ste Rock Are	a West		DAT	им _	MSL				co	MPIL	ED B	Y _ J	OE
ELEV	ATION258.54m		l: 5,996,	326.00m	, E: 482,	303.00m	BORI		E	20 Mai	r 12				СН	ECKE	ED BY	<u>الاا</u>	SL
	LE TYPES RC	Rock Core			ABI	BREVIATIO	ONS			<u> </u>									
BU GB	Auger SS Bulk TW(SH) Grab Sample VA Piston Sampler WS	Split Spoon Thin-Walled O Vane Wash Sample		elby)		Pocket Pe Wet Unit Standard	Weight		RQE	Poir Roc Soli Peri	k Qua	ility De Reco	signa	tion	(I ₅₀)		CL	nsolida I Triaxi ain Siz	
	SOIL PROFI	LE	S		-	ster			= 0	• S	PT N V Cone		ation	ctic	Limit Natural	sture itent	÷		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ Per ⊕ Var ♣ Var	ne Inta	ct		-		≣ō ≣ v ★ (Permeability (cm/s)	Remarks
			- :	Reco	SPT "	Well				ained S	hear St	rength	(kPa)		15 3	20 4	-	Pe	
	Ground S Peat.			_	00				8	0 16 ::::	50 2	40 3	120	: : : : :		30 4	5		
		<u>// //</u>																	
		<u>// \\</u>																	
		<u></u>						-258-											
		<u>1/ 1/</u>																	
		<u>v</u> v <u>v</u> v					- 1 -												
		<u> </u>						-257-											
050 54		<u>1/ \</u>																	
256.54 2.00	(CH) Clay, yellow-brow blue mottling, moist, wi	th fine		VE02 -01			- 2 -			****	147								
	sand, trace angular lim pebbles (0.6mm - 25m high plasticity, mottled peat flecks, medium sti	m), grav																	
	stiff, distinct contact.							-256-											
							- 3 -												
				VE02 -02				-255-			23								
1																			
							- 4 -												
254.04 4.50	END OF THE HOLE																		

		Foth	REC	ORE	00	FΒ	ORE	HOLE	No.	VN	WE	03	log	1						RE NO. ET 1 OF	
	PRO.	JECT Victory Nickel - Mina	ago Geotechnic	al Inve	stigati	on											ENG	SINE	R _		
	PRO.	JECT NO	DRILLER	ET				BORING	метнс	<u></u>	rack F	loe Tr	enchir	g			LOG	GED	BY	JM	1
	CLIEI	NT Victory Nickel			Taili	ngs a	nd Was	ste Rock Are	a West		DAT	υм _	MSL				CON	IPILE	ED BY	Y J	DE
1	ELEV	ATION 263.22m		l: 5,99	6,489.	00m,	E: 482,	101.00m	BORIN	NG DAT	Е	19 Ma	r 12				CHE	CKE	D BY	′JS	iL
		PLE TYPES RC Auger SS	Rock Core				AB	BREVIATIO	ONS		ы	Dai		d Otro	a artha lu	aday	<i>a</i>)				
B	U B	Bulk TW(SH) Grab Sample VA Piston Sampler WS	Split Spoon Thin-Walled O Vane Wash Sample		(helby)		Pocket Pe Wet Unit Standard	Weight				N Our	d Strei ality De e Reco lity	ciana	tion		C CU GS	CU	nsolida Triaxi ain Siz	ation al e Analysis
		SOIL PROFI	E		SAM	PLE	-	ter			=0	• S Vnamio	SPT N \ c Cone	/alue Penetr	ation	stic	Limit Natural	itent id	±		
De	ev. epth m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ♪ Pe ♪ Va ◆ Va	⁵⁰ netrom ne Inta ne Ren	75 eter	1	-	v₀ ►		ι Ξ	Permeability (cm/s)	Remarks
		Ground S	Surface			ш	ŝ	>			8	0 1	60 2	40 3	20	1	5 3	0 4	5		
		Peat, granular, basal fir sand, dark brown	ne <u>(//</u> // <u>//</u>																		
20	33.02																				
	0.20	(SW) Sand with rounde gravel, well graded, loo some clay lenses, brow outwash or alluvial.	se, 🌼							263.0											
									- 0.5 -												
			• • • • • • • • • •						- 0.0 -												
										262.5											
N			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		
0									- 1.0 -												
1 2/	62.02																				
	1.20	END OF THE HOLE																			

PROJECT Victory Nickel - Minago Geotechnical Investigation		
PROJECT NO 11V777 DRILLER BORING METHOD Track Hoe Trenching	LOGGED BY JMH	
CLIENT Victory Nickel LOCATION Tailings and Waste Rock Area West DATUM MSL	COMPILED BY JOE	Ξ
ELEVATION 261.00m COORD. N: 5,996,489.00m, E: 482,159.00m BORING DATE 19 Mar 12	CHECKED BY	
SAMPLE TYPES RC Rock Core ABBREVIATIONS		
AU Auger SS Split Spoon P.L. Point Load Streng BU Bulk TW(SH) Thin-Walled Open (Shelby) P.P. Pocket Penetrometer RQD Rock Quality Desi GB Grab Sample VA Vane U.W. Wet Unit Weight SCR Solid Core Recov PS Piston Sampler WS Wash Sample PT Standard Proctor Text k Permeability	ignation C Consolidation	
SOIL PROFILE SAMPLES		
Elev. Depth (m) Description to a b tr tr tr tr tr tr tr tr tr tr tr tr tr	Permeability Figure and Source a	
Elev. (m) Description Image: Algorithm of the state o		Remarks
	u)	
Ground Surface 00 80 160 240 320 Peat, granular, basal fine 310 110 <t< td=""><td>15 30 45</td><td></td></t<>	15 30 45	
sand, dark brown, frozen. $\underline{\nu}$		
260.70 <u>V/</u> 0.30 (GW) Cobbles and gravel with •		
sand, some clay lenses,		
subrounded, brown, well		
to medium dense, dry,		
small esker forms longitudinal		
ridge subparallel to outcrop trend (NNW).		
258.60 2.40 (CH) Clay, hard, brown to		
grey, high plasticity, moist, grading to gray, some angular		
cobbles.		
4.30 END OF THE HOLE		

	Foth	REC	ORD	OF E	BORE	HOLE	No.	VN	WE	03	og	3					FIGURE N SHEET 1	
PRC	JECT Victory Nickel - Min	ago Geotechnic	al Inves	tigation											ENG	INEE	R	
PRC	JECT NO. <u>11V777</u>	DRILLER	ET			BORING	метно	<u>т</u> ос	rack H	loe Tre	enchin	g			LOC	GED	BY _J	MH
CLIE	NT Victory Nickel	LOCA		Tailings a	and Was	te Rock Are	a West	t	DAT	UM _	MSL				cor	/IPILE	D BY	JOE
ELE	VATION259.14m		N: 5,996	,489.00m	, E: 482,	201.00m	BORI	NG DAT	Е	19 Mai	12				CHE	CKE	D BY _	JSL
SAM	PLE TYPES RC	Rock Core			ABI	BREVIATIO	ONS											
AU BU GB PS	Auger SS	Split Spoon Thin-Walled C Vane Wash Sample		elby)		Pocket Pe Wet Unit Standard	Neight			Poir Roc Solid Perr							CU Tri	lidation axial Size Analysis
	SOIL PROFI	LE	5	SAMPLE	_	ter					PT N V		ation	i.		ent d		
<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ Per ⊕ Var	50 netrome	75 eter ct		-		→ Content → Content	ig	Remarks
(11)		Strat	Γ́Ε΄	Recov	PT "N or	Well / Ins		Ξ		Var ained S								-
	Ground S Peat, granular, basal fi	Surface			S	-			8	0 16	0 24	40 3	20		15 3	0 45		
	sand, dark brown, froz	en. $\frac{i_2}{\sqrt{2}}$						259.0										
		<u>1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1</u>																
258.6 0.5	(GW) Sand, well grade	ed with					-0.5											
	round gravel, loose, so lenses, till or outwash.	ome clay						258.5										
							- 1.0 -											
257.9 1.2	(SC) Sandy clay, brow	n,						258.0										
	moist, medium stiff, hig plasticity, trace local lir pebble lenses, gradation	nestone																
	contact.						-1.5 - ·	257.5										
							2.0											
								 257.0										
4							- 2.5										· · · · · · · · · · · · · · · · · · ·	
5							 	256.5										
20.1								$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$										
255.9							- 3.0 -											
255.9	(CH) Clay, hard, high							256.0 										
	plasticity, moist, some cobbles, brown, gradin	g to																
	gray/blue-gray. Ground located at bedrock inte	awater rface.					-3.5-	255.5										
						255.1	 - 4.0 -											
254.9						4.00		 255.0										
	⁰ END OF THE HOLE																	,

Foth RECORD OF BOREHOLE No. VNWE04 log 1										FIGURE NO. 1 SHEET 1 OF 1											
	PROJECT Victory Nickel - Minago Geotechnical Investigation														ENGINEER						
	PRO.	IECT NO. <u>11V777</u>	DRILLER	ET			BORING METHOD Track Hoe Trenching						LOGGED BY JMH								
	CLIE	NT Victory Nickel	LOCA		Tai	lings a	and Was	ste Rock Are	ea West		DAT	им _	MSL				cor	MPIL	ED B	Y_J)E
	ELEV	ATION _ 257.35m	COORD.	N: 5,99	6,044	.00m,	E: 481	720.00m	BORIN	NG DAT	Е	19 Ma	ar 12				СНЕ	ECKE	D B	Y JS	SL
		PLE TYPES RC	Rock Core				AB	BREVIATI	ONS			_									
	BU GB	AugerSSBulkTW(SH)Grab SampleVAPiston SamplerWS	Split Spoon Thin-Walled (Vane Wash Sample		Shelby	')		Pocket Po Wet Unit Standard	Weight			Ro Ro	int Loa ck Qua lid Core rmeabi	ality De e Reco					CL	onsolida J Triaxi ain Siz	
		SOIL PROFI	LE		SAN	1PLE	_	ster			= C		SPT N \ ic Cone		ation	atic.	Natural	sture itent			
	<u>Elev.</u> Depth (m)	Description	Strata Plot	Type	Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		25 ▲ Pe ⊕ Va	50 enetrom ane Inta ane Rer	75 leter ct				<u>ة</u> ک ۷ ۲		Permeability (cm/s)	Remarks
					z	Rec	SPT -	Well			Undr	ained	Shear S	trength	(kPa)		15 3	30 4	5	ď	
F		Ground S (GW) Limestone grave	l with								8		160 2	40 3	320						
		silt, fine sand, wet, dec vegetation	ayed																		
		vegetation																			
			. •																· · · · · · · · · · · · · · · · · · ·		
				•																	
	256.95									257.0											
	0.40	(SW) Sand, brown, fier medium grained, well g	raded, 👯	•															· · · · · · · · · · · · · · · · · · ·		
		poorly sorted, moist, lo limestone gravel, silt.	ose,	•					-0.5-												
				•																	
				•																	
				•																	
				•																	
				•																	
711				•						256.5											
				•																	
			*** ***	。 。 。					- 1.0 -												
29.2			•`•` •`• •`•`	•																	
			`` *** ***	•																	
0000			\$ * * * \$ * * \$ * *	•																	
	256.15			•																	
FUTHBUREHULE RECURD MINAGU	<u>256.15</u> 1.20	END OF THE HOLE	<u>•</u> ••••	•	<u> </u>						::::	<u></u>	<u> ::::</u>	<u> ::::</u>	1::::		<u> ::::</u>	<u> ::::</u>			

	Foth	RECO	RD O	FΒ	ORE	HOLE	No.	VN	WE	04	log	2				FIG SHI	URE NO EET 1 OF	. 1 1
PRO	JECT Victory Nickel - Min	ago Geotechnical	Investigat	ion											ENG	INEER		
PROJECT NO DRILLER					BORING METHOD Track Hoe Trenching													
CLIENT Victory Nickel LOCATION Tailings a					nd Was	te Rock Are	ea West		DAT	υм _	MSL				CON	IPILED	BY	OE
ELEV	ATION 257.00m	COORD. N: 5	5,996,014	.00m,	E: 481,	756.00m	BORI	IG DAT	Е	19 Ma	r 12				CHE	CKED E	BY JS	SL
AU BU GB	PLE TYPES RC Auger SS Bulk TW(SH) Grab Sample VA Piston Sampler WS	Rock Core Split Spoon Thin-Walled Ope Vane Wash Sample	n (Shelby)	P.P.	Pocket Pe . Wet Unit Standard	enetrom Weight		P.L. RQE SCF	Poir Poir Roc Soli	nt Load k Qua d Core	d Stre lity De Reco	ngth Ir esignat overy	ndex (tion	(I ₅₀)		onsolid U Triax	ation ial e Analysis
FJ	SOIL PROFI		SAN	1PLES				TEAL		• 5	PT N V	/alue						e Analysis
<u>Elev.</u> Depth (m)	Description	St	l ype Number	Recovery (%)	SPT "N" Values or RQD	Well / Piezometer Installation	Depth (m)	Elevation (m)		 25 ↓ Pe ↓ Va ↓ Va ained S 	c Cone 50 netrom ne Intao ne Ren Shear St	eter ct nouldee rength	d	v	v _₽		Permeability (cm/s)	Remarks
	Peat, decayed vegetat frozen.									· · · · ·								
										· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·								
256.60	(GW) Gravel with fine	sand •								· · · · ·								
	loose, moist.						-0.5-	256.5										
256.20																		
	(CH) Clay, gray, firm to hard, with fine gravel, v	very well																
	graded, matrix support angular, yellow-brown, till, medium to high pla occasional limestone	moist,					- 1.0 -	256.0 										
	boulders.																	
							- 1.5 -	255.5										
								 255.0										
- -																		
								 254.5										
										• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •								
								 254.0										
										· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·								
253.50 3.50	END OF THE HOLE					I	3.5	1 <u>253.5</u> 1			<u> : : : :</u>	<u> ::::</u>	1::::	<u> ::::</u>	1			

Appendix E

Project Geotechnical Investigation Photo Logs

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Project No. 11V777

Photo No.	Date:	
1.	3/22/12	
Test Pit ID	:	
FCD 11		and the second part of the part of the part of the second s
Photo Take	en By:	
Ioromy Hoy	n 00	
Jeremy Hay Description		Manual Dennis (and) and a little of the second se
Description		
Very dark b	rown peat	
overlying gi	rey-brown	
fat clay.	5	AV THE REAL PROVIDENCE OF PROV
		AV VIE HA AV / LA
		Ling Balanta MIT
		and the second
Photo No.	Date:	
2.	3/22/12	
Test Pit ID		
FCD 11		
Photo Take	en By:	
Jeremy Hay		
Description	1:	
Very dark b	rown neat	and the set of the set
overlying gi		
fat clay.		
in only.		
		the second se

Photo No.

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Date:

Photographic Log

Project No. 11V777

1.3/21/12Test Pit ID:VNEE01 TP05Photo Taken By:Jeremy HaynesDescription:Peat above thin layer
of red-brown clay
with silt overlying
limestone bedrock.
Refusal at 0.6m on

competent bedrock.

Photo No.Date:2.3/21/12Test Pit ID:VNEE01 TP06Photo Taken By:Jeremy HaynesDescription:

Peat above clastsupported, bedded, cobble and gravel deposit with sand and clay matrix. This is underlain by silt and fat clay units. Refusal at 4.2m on limestone bedrock.

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Project No.	
11V777	

Photo No.	Date:	
3.	3/21/12	
Test Pit ID	•	A A A A A A A A A A A A A A A A A A A
VNEE01 TI	P07	a have been a stand of the second of the
Photo Take	en By:	A CONTRACT AND A CONTRACT
Jeremy Hay		
Description	n:	AND A CONTRACT OF THE STATES
Thin layer of overlying bi	of peat	

VNEE01 TP08

Photo Taken By:

Jeremy Haynes
Description:

Peat above brown lean clay, sandy at top, overlying 2m of gray fat clay. Refusal at 7m.

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

3/21/12

Photographic Log

Project No. 11V777

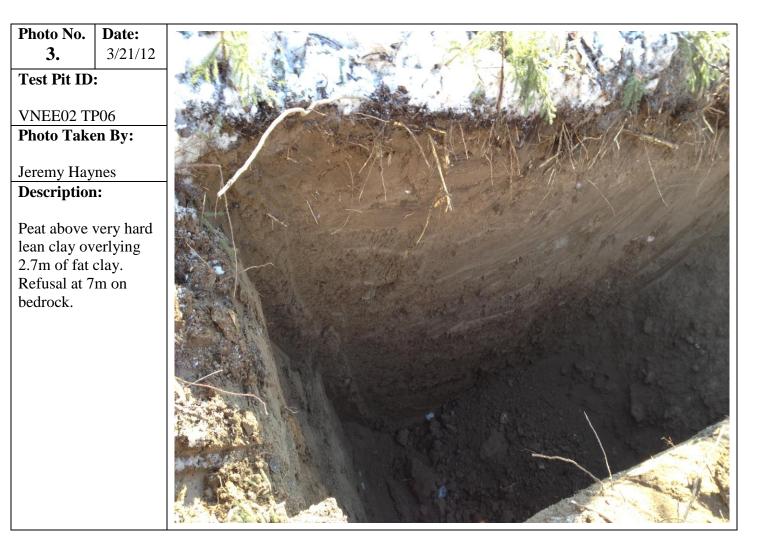
Test Pit ID:
VNEE02 TP01
Photo Taken By:
Jeremy Haynes
Description:

Photo No.

1.

Well graded clastsupported gravel and sand with silt and clay above interbedded lenses of sand and cobbles. This is underlain by 1.8m of brown lean clay with some silt and sand. Refusal at 3.9m on bedrock.

Photo No.Date:2.3/21/12Test Pit ID:VNEE02 TP04Photo Taken By:Jeremy Haynes


Description:

Brown peat overlying very hard brown lean clay. Refusal at 1.7m on bedrock.

Client's Name:	Site Location:	Project No.
Victory Nickel-Minago Investigation	Manitoba, Canada	11V777

Client's Name:	
Victory Nickel-Minago Investigation	

Site Location:

Manitoba, Canada

Photographic Log

Project No. 11V777

1.3/22/12Test Pit ID:VNEE03 TP05Photo Taken By:Jeremy HaynesDescription:This have found to the foundation of the

Photo No.

Thin layer of peat overlying very hard brown clay and silt. Refusal at 1.1m on bedrock.

Photo No. Date: 2. 3/22/12

Test Pit ID:

VNEE03 TP08 Photo Taken By:

Jeremy Haynes **Description:**

Thin layer of peat above brown silt with clay and trace cobbles and gravel. Underlain by hard brown fat clay with trace silt.

Client's Name:	
Victory Nickel-Minago Investigatio	m

Site Location: Manitoba, Canada

Photographic Log

Project No. 11V777

Photo No.	Date:	
1.	3/22/12	
Test Pit ID	:	
VNEE04 TI	P01	
Photo Take	en By:	A STATE AND A STAT
Jeremy Hay	mes	A CONTRACTOR OF THE OWNER OF THE
Description		
Dark brown peat		and the set of the set
overlying th	inly	
bedded repe		
fining upwa		
sequences o		
and gravel.		
underlain by		
very hard si		1 - The Added to
1.8m of brown-gray		
fat clay. Refusal at 4.2m on bedrock.		
4.2111 OII DEGIOCK.		
Photo No.	Date:	
2.	3/22/12	
Test Pit ID	•	and the second sec

Test Pit ID:

VNEE04 TP03 Photo Taken By:

Jeremy Haynes

Description:

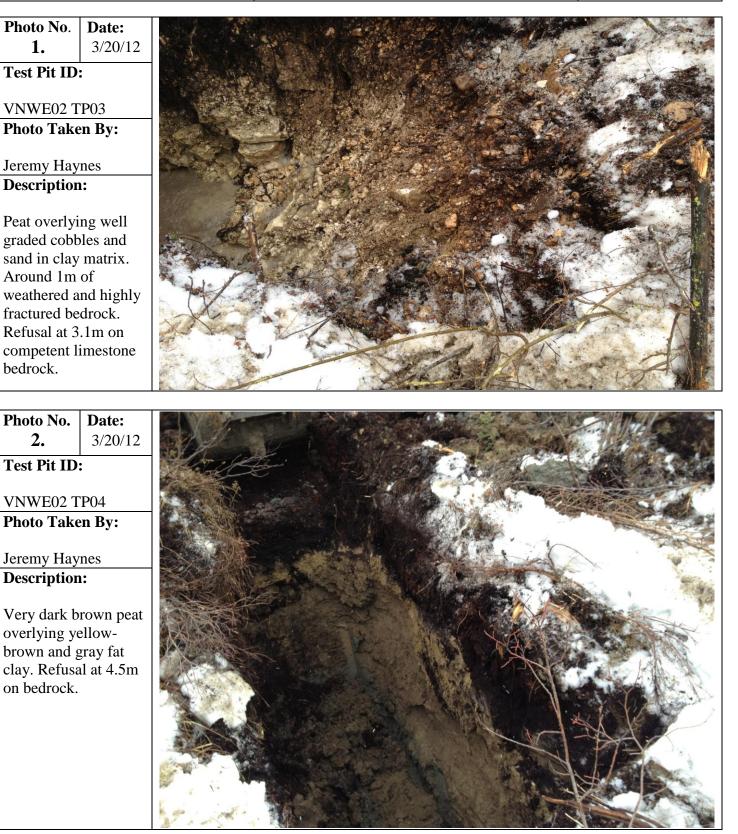
Thin layer of peat overlying very hard brown fat clay with trace cobbles. End Test Pit at 2.6m in clay.

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Project No. 11V777

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Project No. 11V777


Client's Name:	
Victory Nickel-Minago Investigation	

Site Location: Manitoba, Canada

Project No.

Photographic Log

11**V**777

Client's Name:	
Victory Nickel-Minago Investigation	

Site Location: Manitoba, Canada

P	roje	ct	No.
1	$1V^{2}$	77	7

Photo No.	Date:	
3.	3/20/12	_
Test Pit ID:		
	D 00	
VNWE02 T		_
Photo Take	en By:	
Jeremy Hay	nes	
Description		
-		
Dark brown	peat	
overlying fi	ning	
upward sequ		
cobble, grav		
sand units a		
weathered p	•	
limestone. F 2.4m on we		
intact limes		
bedrock.		
bedroek.		

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Project No. 11V777

Photo No.	Date:	
1.	3/19/12	
Test Pit ID	•	
VNWE03 L	.og 1	
Photo Take	en By:	
Jeremy Hay	vnes	
Description	1:	
Brown peat	overlying	
well graded	sand with	A SALE AND A
gravel. Refu	usal at	
1.2m on limestone		
bedrock.		
		The second

Photo No.Date:2.3/19/12Test Pit ID:

VNWE03 Log 2 Photo Taken By:

Jeremy Haynes

Description:

Dark brown peat above clast-supported well graded gravel and cobbles overlying gray fat clay. Refusal at 4.3m on limestone bedrock.

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Photographic Log

Project No. 11V777

1.3/19/12Trench ID:VNWE04 Log 1Photo Taken By:Jeremy HaynesDescription:

Photo No.

Limestone gravel with silt and fine sand overlying fine to medium poorly graded sand. Refusal at 1.2m on limestone bedrock.

Photo No. Date: 2. 3/19/12 Test Pit ID:

VNWE04 Log 2 Photo Taken By:

Jeremy Haynes Description:

Frozen peat above gravel with fine sand overlying gray fat clay. Refusal at 3.5m on limestone bedrock.

Appendix F

Core Photo Logs

Client's Name:	Site Location:
Victory Nickel-Minago Investigation	Manitoba, Canada

Photographic Log

Project No.
11V777

1.1/25/12Borehole ID:FTWR-16BRPhoto Taken By:Jeff LynottDescription:Diamond drilling for

Photo No.

core samples and packer testing.

Photo No. Date: 2. 1/26/12 Borehole ID: FTWR-16BR

Photo Taken By: Jeff Lynott

Description:

The bedrock surface is in the upper left corner. Fine grained limestone with fossil fragments is weathered and fractured at the surface and both decrease rapidly with depth.

Client's Name:	Site
Victory Nickel-Minago Investigation	Ma

<mark>ite Location:</mark> Ianitoba, Canada

Project No.
11V777

Photo No. 3	Date: 1/26/12	
Borehole II):	
FTWR-11B	R	
Photo Take Jeff Lynott	en By:	
Description	1:	1
Description Packer testin		- AL
-	ng	No.
Packer testin following di drilling for c	ng iamond	A LUMB
Packer testin following di	ng iamond	
Packer testin following di drilling for c	ng iamond	

Photo No. Date: 4 1/26/12 Borehole ID: FTWR-11BR

Photo Taken By: Jeff Lynott

Description:

The bedrock surface is in the upper left corner. Fine grained limestone with fossil fragments is weathered and fractured at the surface and both decrease less rapidly with depth than FTWR-16BR. Bedrock at this location shows an increased frequency of subhorizontal open joints.

Client's Name:	
Victory Nickel-Minago Investigation	

1/26/12

Site Location:

Manitoba, Canada

Project No. 11V777

Photographic Log

FTWR-16BR
Photo Taken By:
Jeff Lynott
Description:
Detailed view of

Photo No.

5

Borehole ID:

limestone

Client's Name:	
Victory Nickel-Minago Investigation	

Site Location: Manitoba, Canada

Photographic Log

Project No.	
11V777	

7 1/26/12 Borehole ID: FTWR-11BR Photo Taken By: Jeff Lynott Description: Detailed view of dolomite.

Photo No.

dolomite. Sedimentary structures appear to be less distinct than bedrock in FTWR-16BR.

Photo No.Date:81/26/12Borehole ID:FTWR-11BR

Photo Taken By: Jeff Lynott

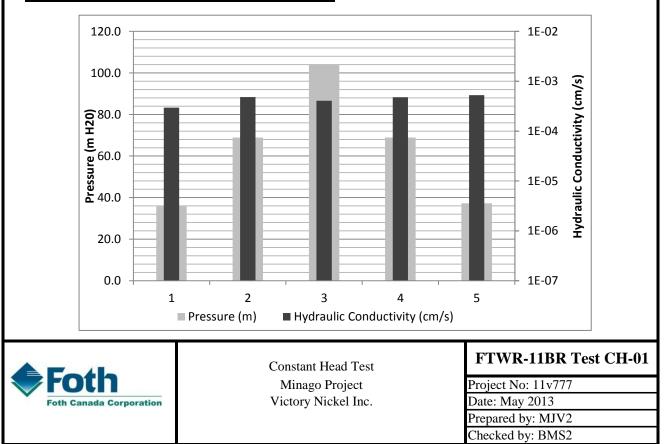
Description:

Detailed view of dolomite. Closely spaced subhorizontal partings with clay gradually decrease with depth.

Appendix G

Packer Test Analyses

FTWR-11BR Test CH-01


Interval Information

Boring Radius [R]	Top	Bottom	Length [L]
(m)	(m)	(m)	(m)
0.048	8.53	12.50	3.97

Test Information

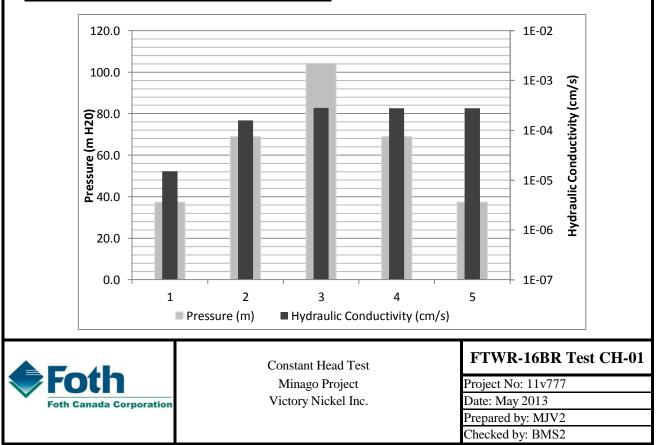
Step	Data		
1	Flow Rate [Q] =	6.0E-04	m ³ /s
	Pressure [P] =	35.8	mH_20
2	Flow Rate [Q] =	1.9E-03	m ³ /s
	Pressure [P] =	68.9	mH_20
3	Flow Rate [Q] =	2.4E-03	m ³ /s
	Pressure [P] =	104.1	mH_20
4	Flow Rate [Q] =	1.9E-03	m ³ /s
	Pressure [P] =	68.9	mH_20
5	Flow Rate [Q] =	1.1E-03	m ³ /s
	Pressure [P] =	37.2	mH_20

K =	ate Equation $\frac{Q \ln rac{L}{R}}{2\pi LP}$ (Thiem, 1906)
Step	Hydraulic Conductivity [K]
	(cm/s)
1	3E-04
2	5E-04
3	4E-04
4	5E-04
5	5E-04

FTWR-16BR Test CH-01

Interval Information

Boring Radius [R]	Top	Bottom	Length [L]
(m)	(m)	(m)	(m)
0.048	8.53	12.50	3.97


Test Information

Step	Data		
1	Flow Rate [Q] =	3.2E-05	m ³ /s
	Pressure [P] =	37.4	mH ₂ 0
2	Flow Rate [Q] =	6.2E-04	m ³ /s
	Pressure [P] =	69.0	mH_20
3	Flow Rate [Q] =	1.7E-03	m ³ /s
	Pressure [P] =	104.2	mH ₂ 0
4	Flow Rate [Q] =	1.1E-03	m ³ /s
	Pressure [P] =	69.0	mH_20
5	Flow Rate [Q] =	5.9E-04	m ³ /s
	Pressure [P] =	37.4	mH ₂ 0

Steady State Equation

$$K = \frac{Q \ln \frac{L}{R}}{2\pi L P}$$
 (Thiem, 1906)

Step	Hydraulic Conductivity [K]
	(cm/s)
1	2E-05
2	2E-04
3	3E-04
4	3E-04
5	3E-04

Appendix H

Geotechnical Laboratory Results

- H-1 Geotechnical Laboratory Results Part 1
- H-2 Geotechnical Laboratory Results Part 2

H-1

Geotechnical Laboratory Results – Part 1

April 12, 2012

Project No. 12-1183-0015

Aleksandar Zivkovic

Foth Canada Corporation 401 Bay Street, Suite 1600 Toronto, Ontario, M5H 2Y4

RE: GEOTECHNICAL LABORATORY TESTING

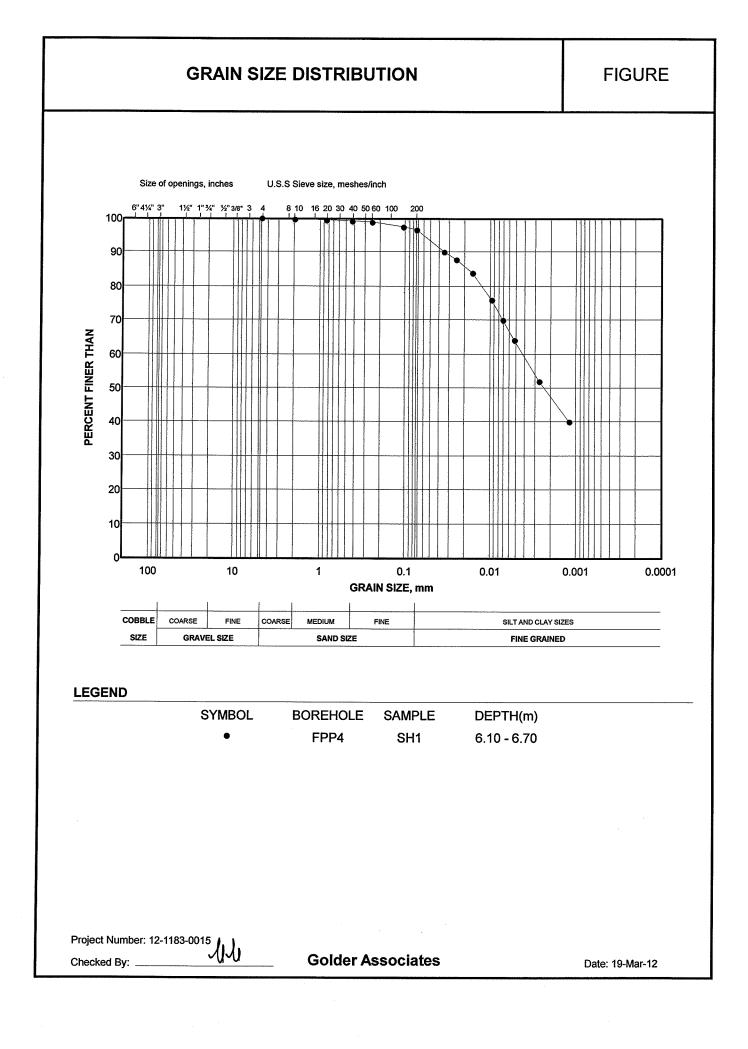
Dear Sir

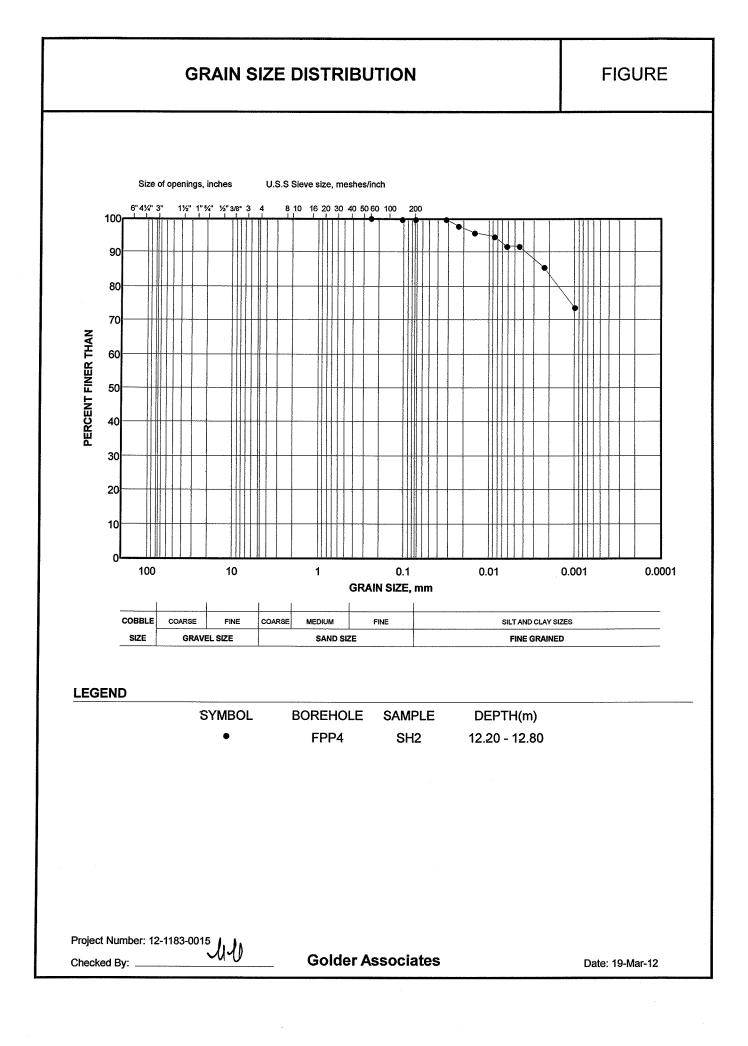
This letter reports the results of laboratory testing carried out on the samples received at our office in Mississauga. The results of the tests are summarized in the attached tables and figures.

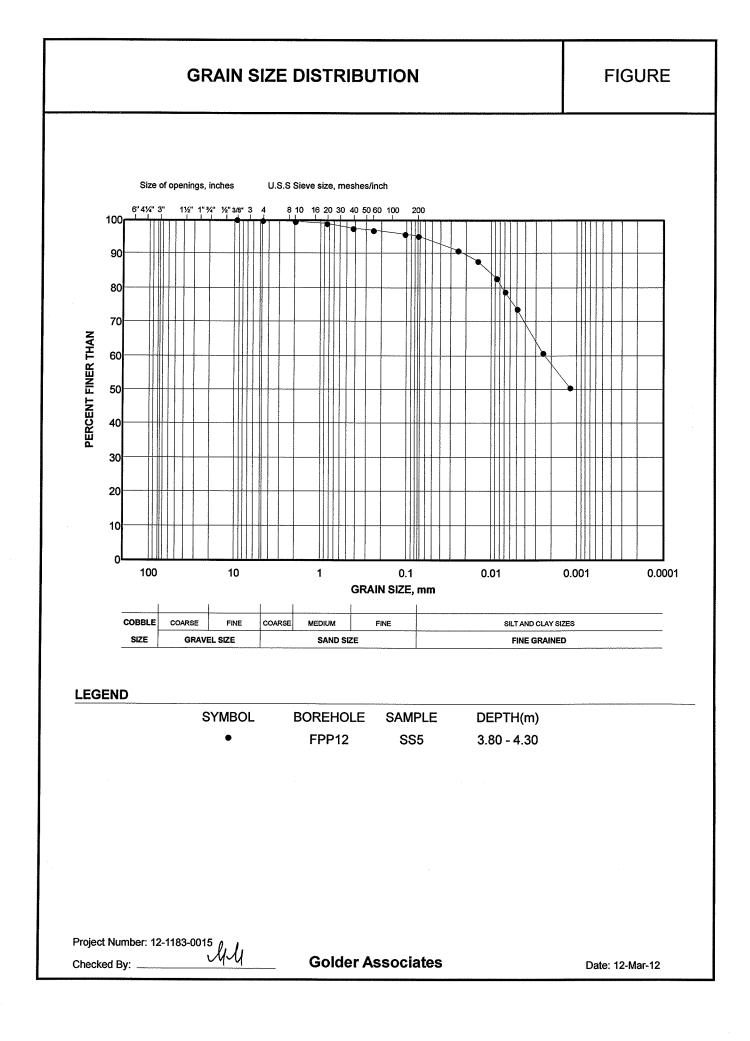
The testing services reported herein have been performed in accordance with the indicated recognized standard, unless noted otherwise. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability.

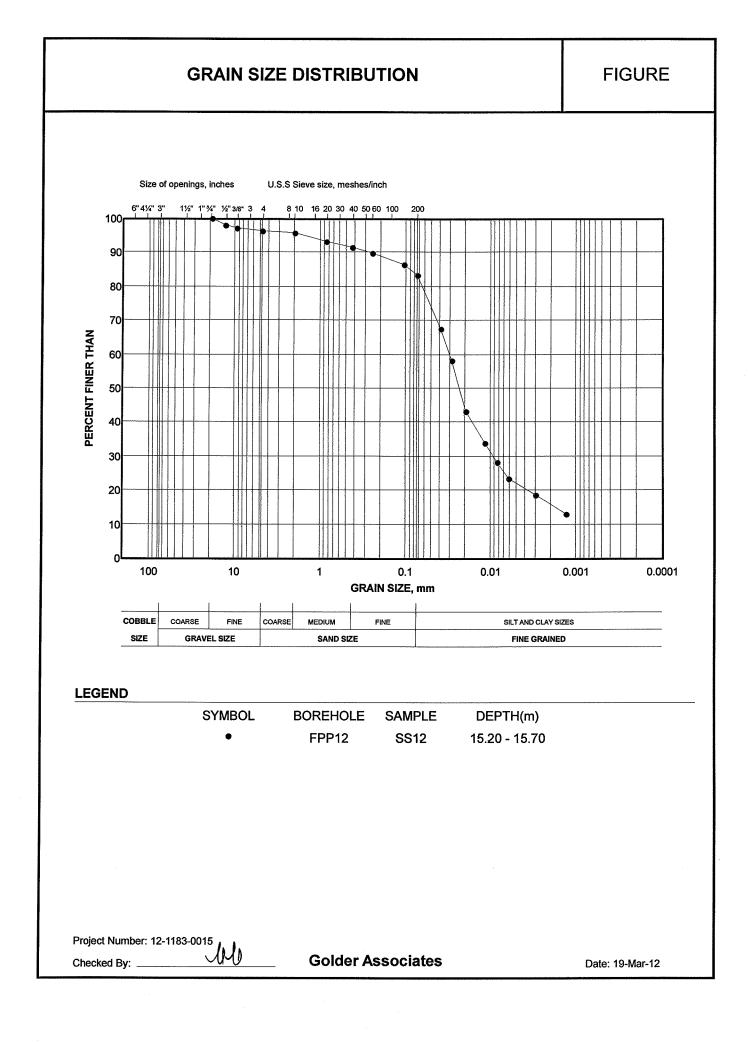
We trust that the results are sufficient for your current requirements. If you have any questions, please do not hesitate to call us.

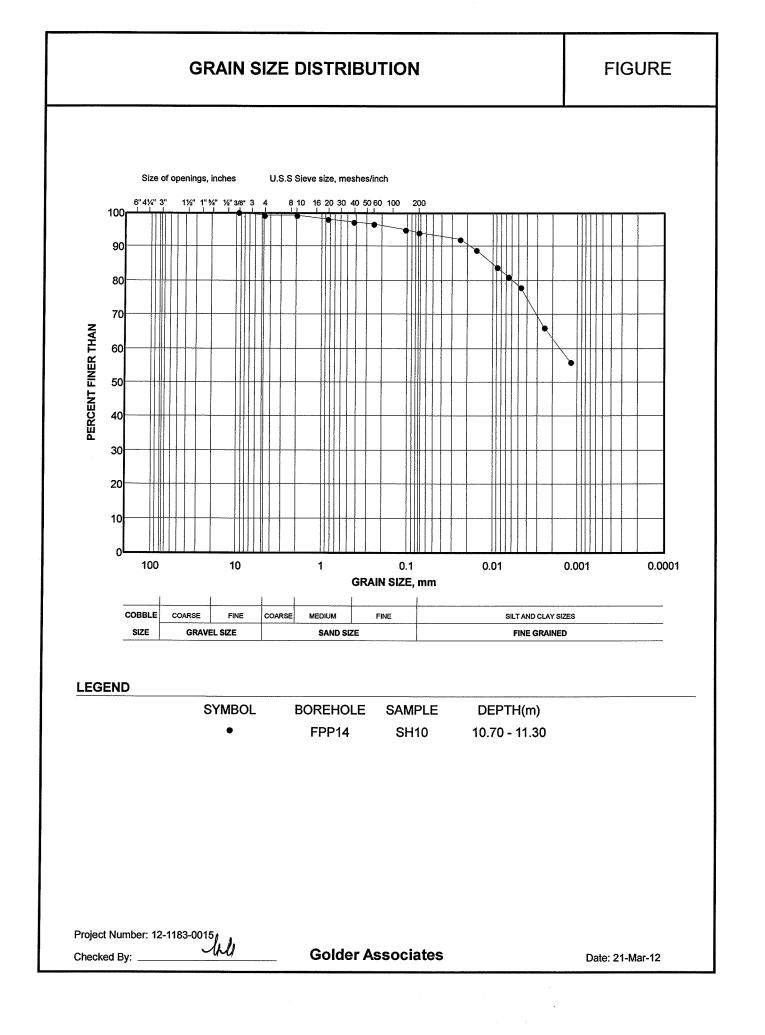
Yours truly

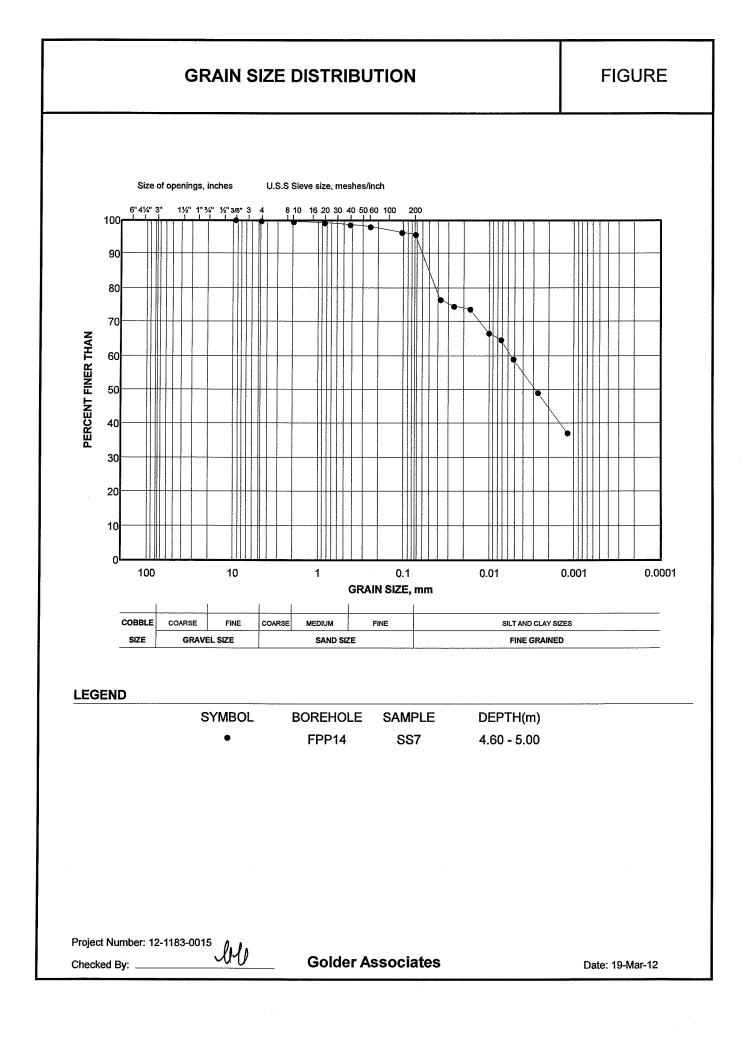

GOLDER ASSOCIATES LTD.

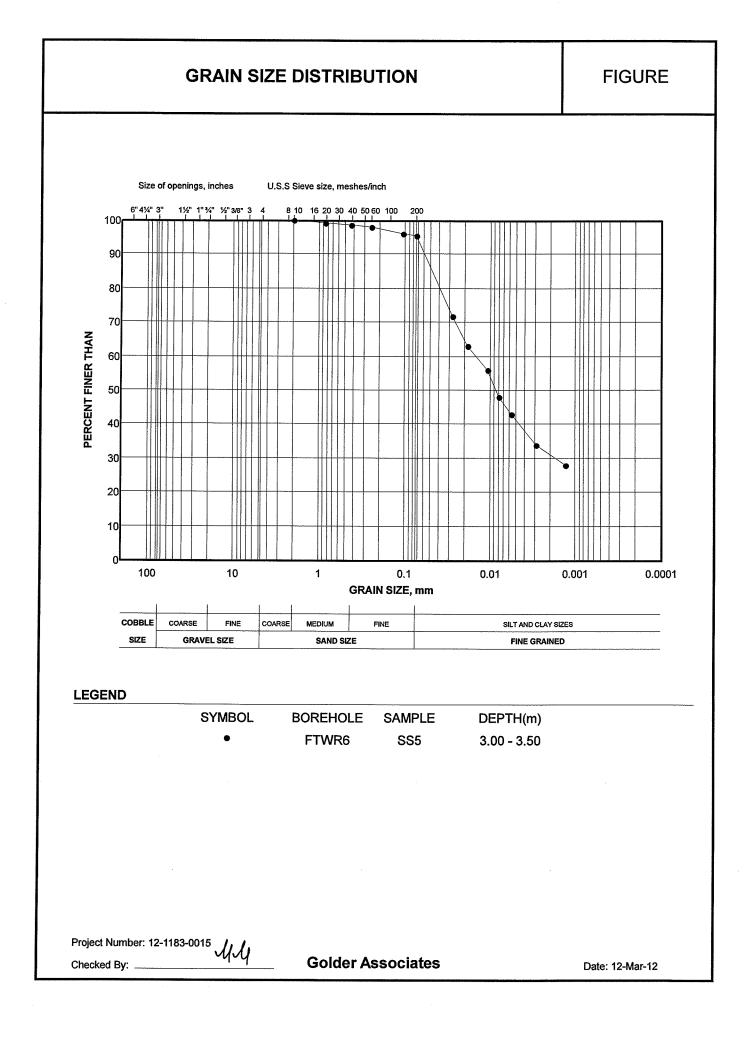

anjane hanfon

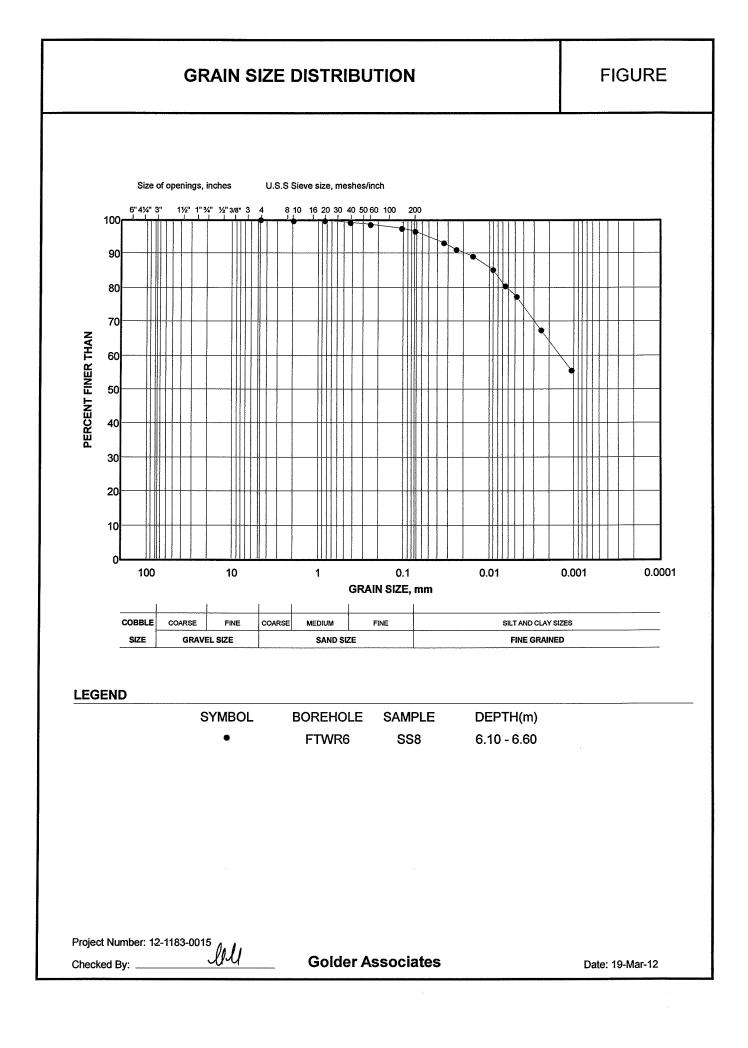

Marijana Manojlovic Laboratory Manager

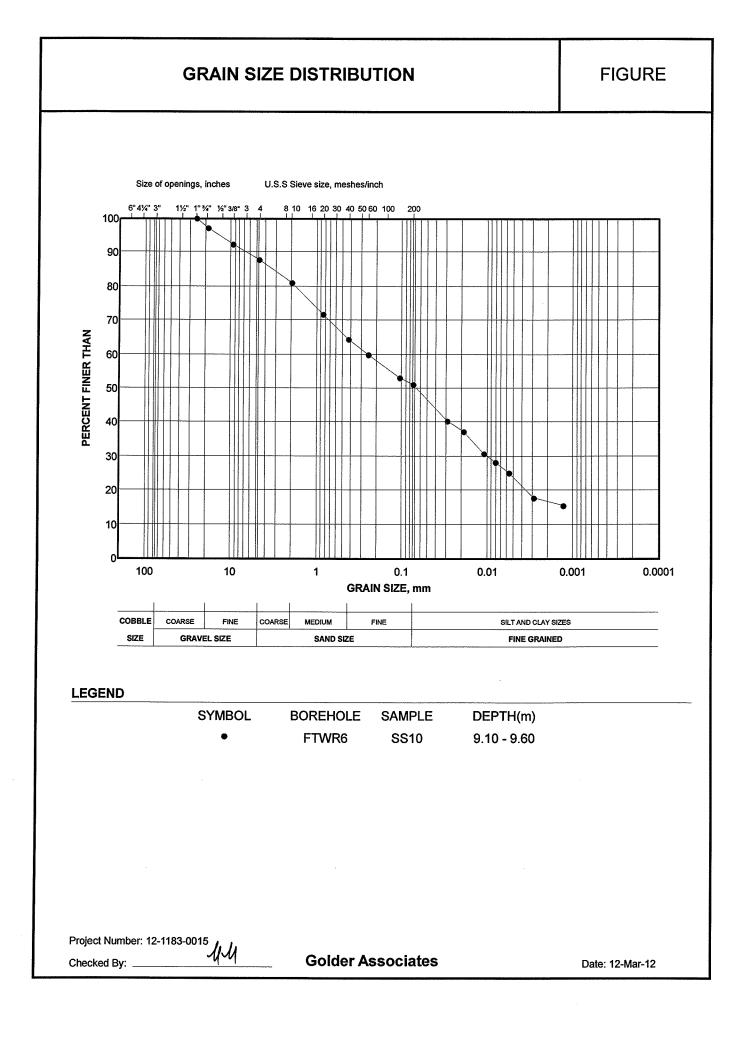

MM/lg

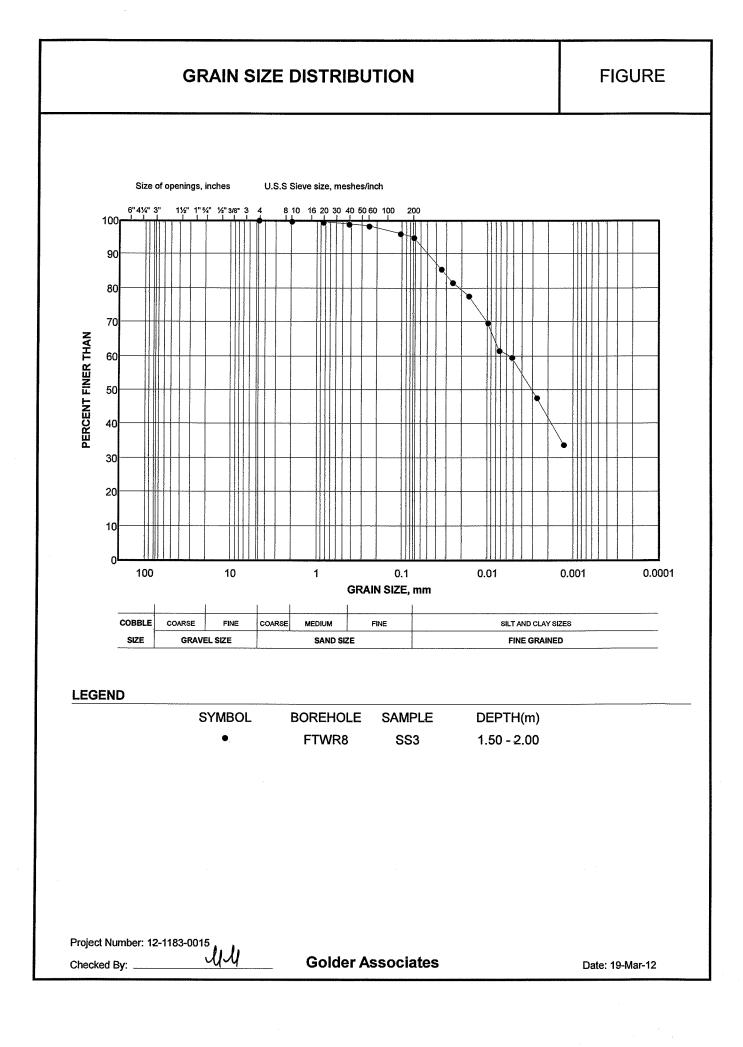


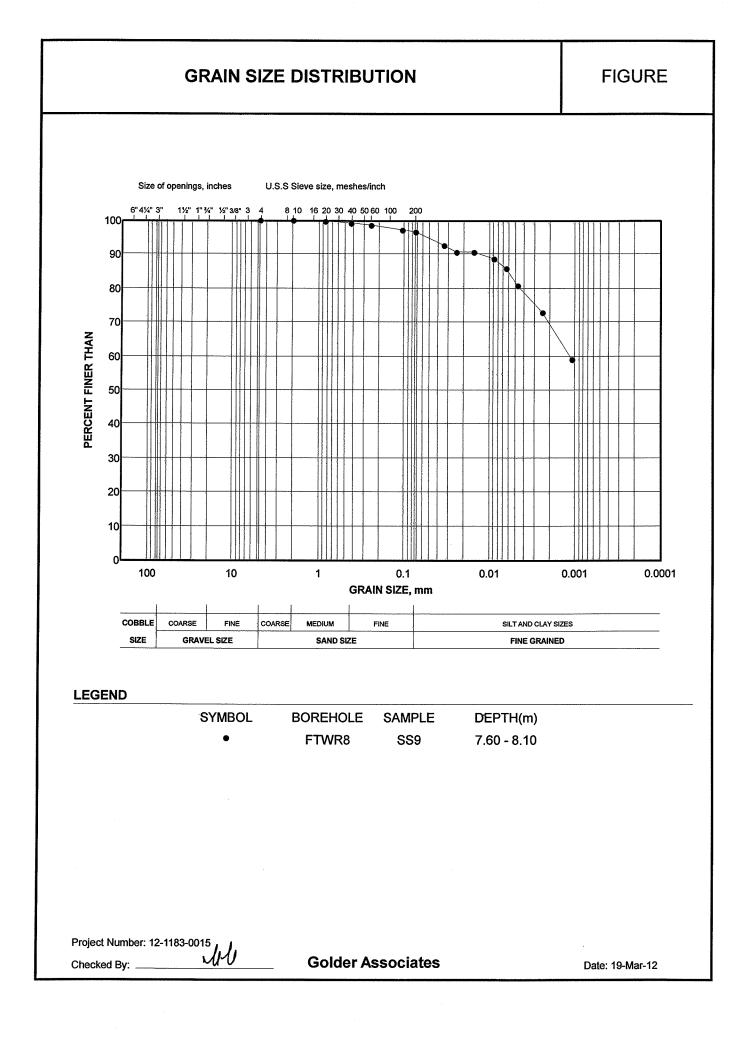


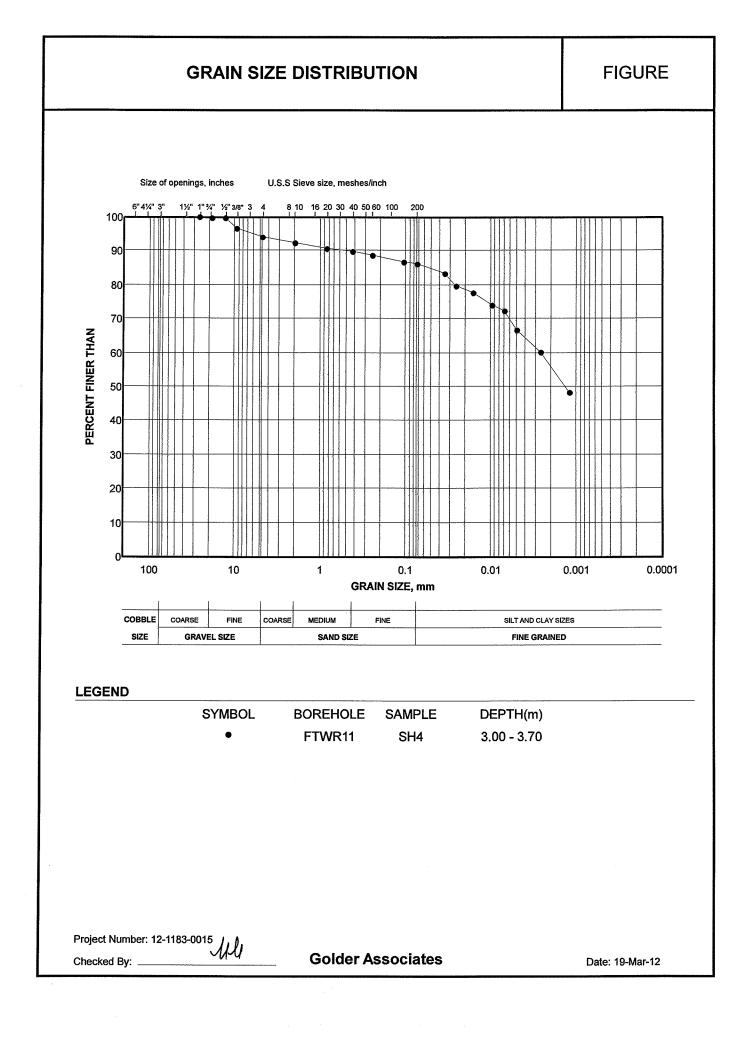


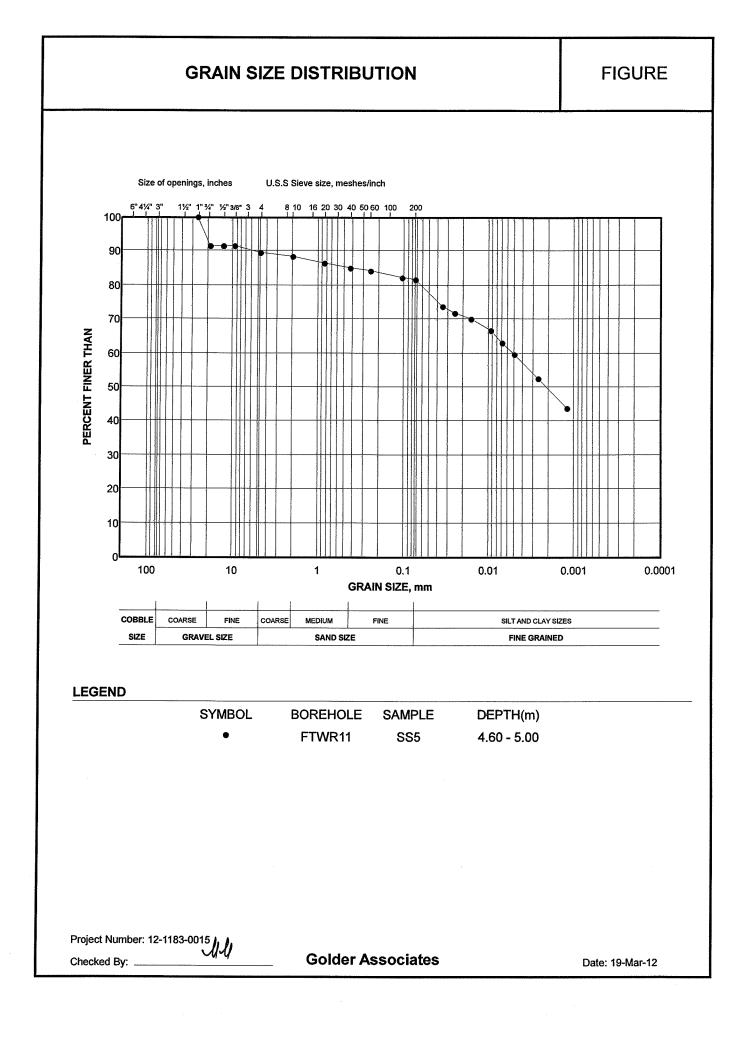


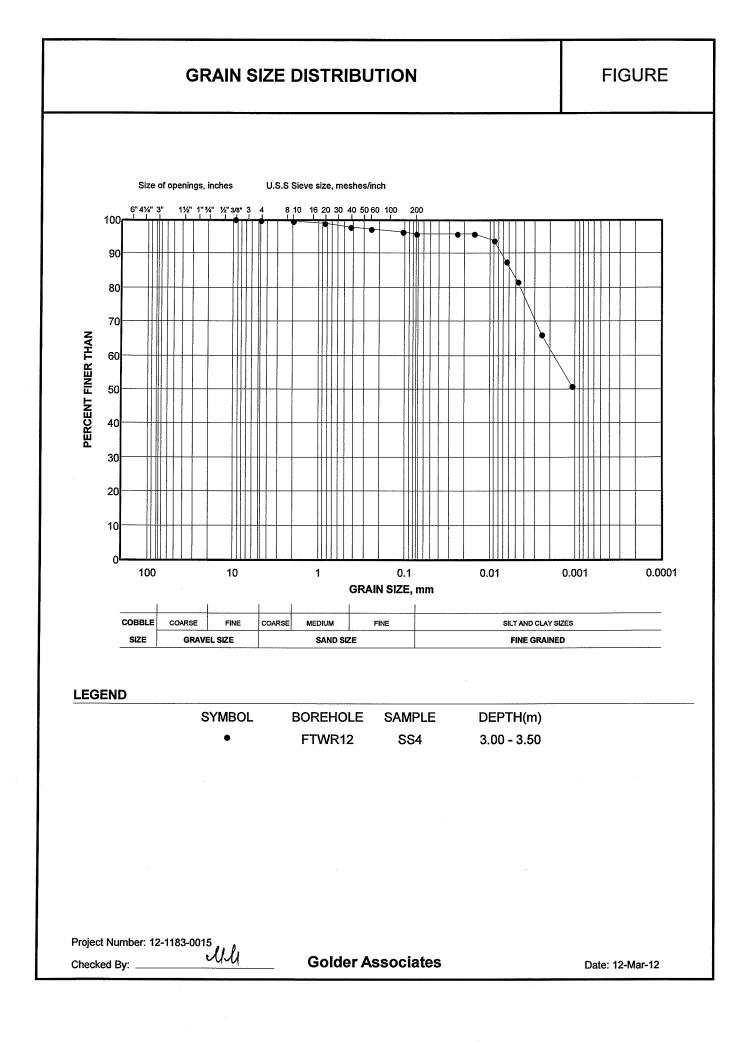


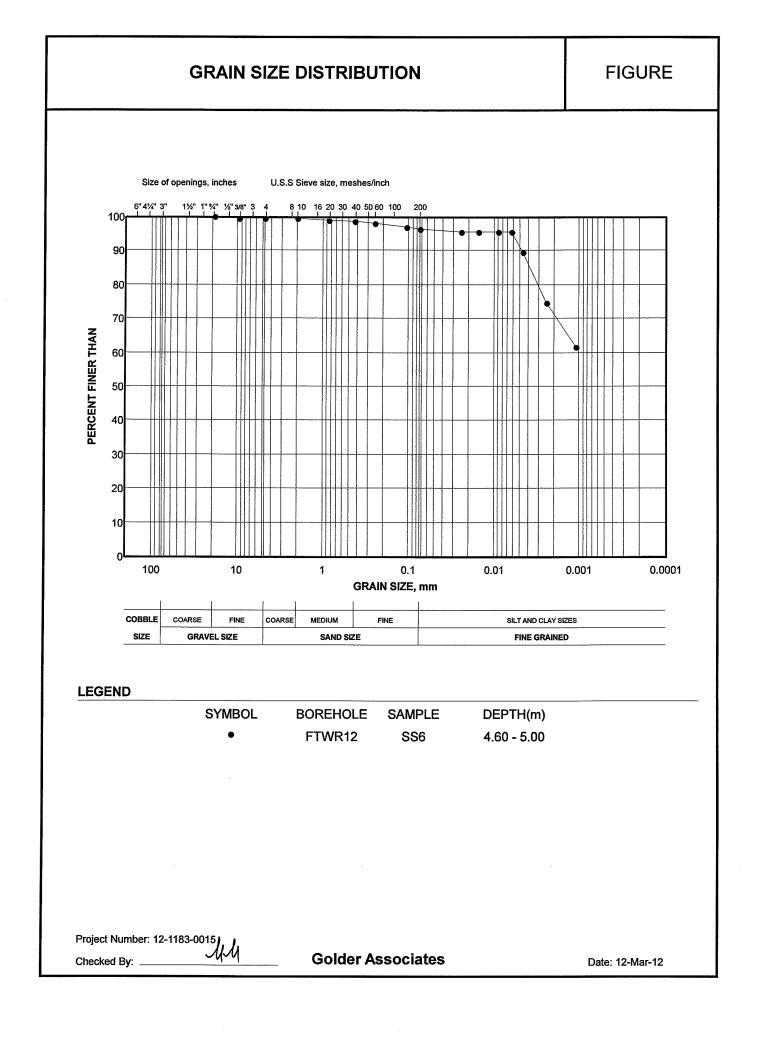


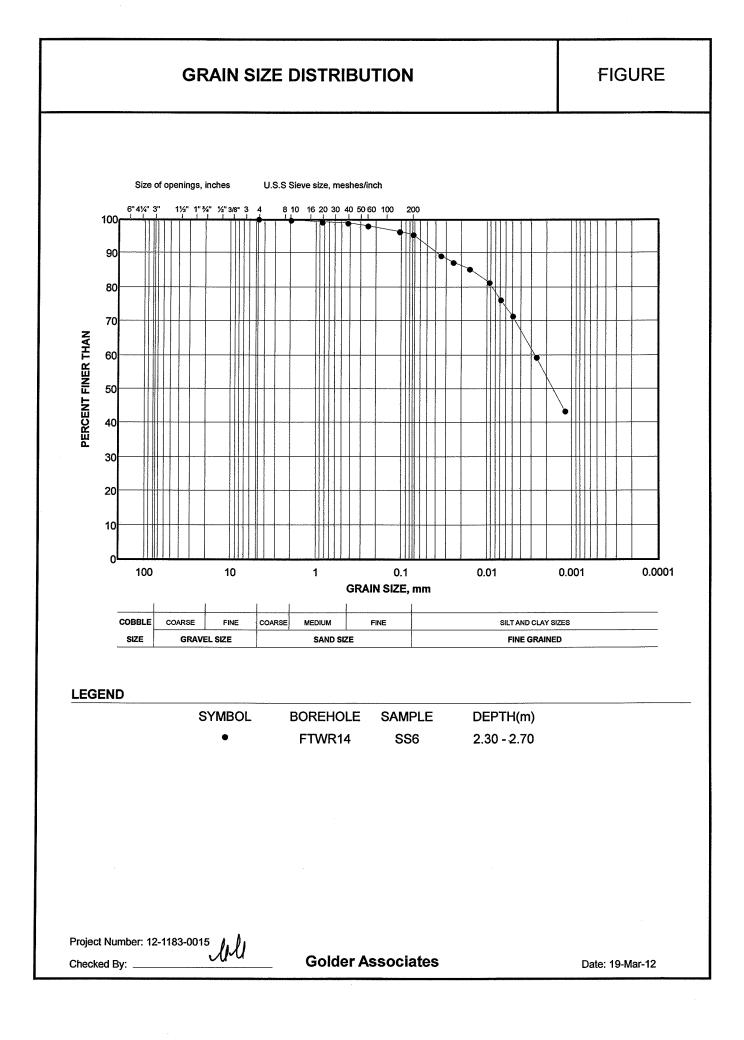


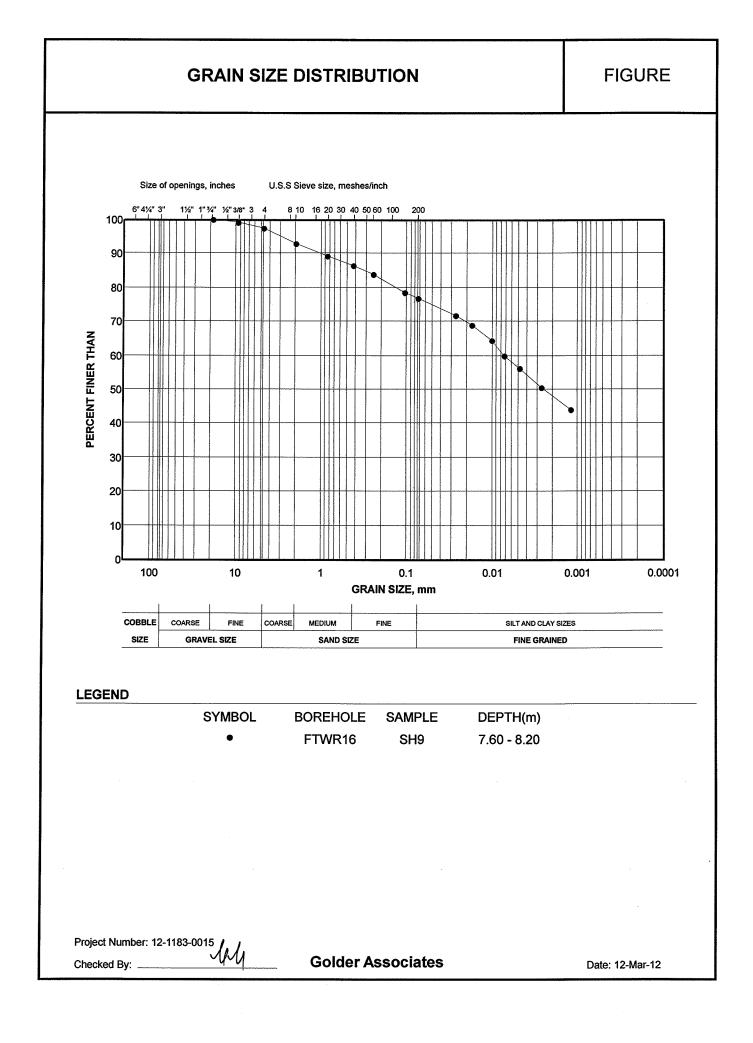


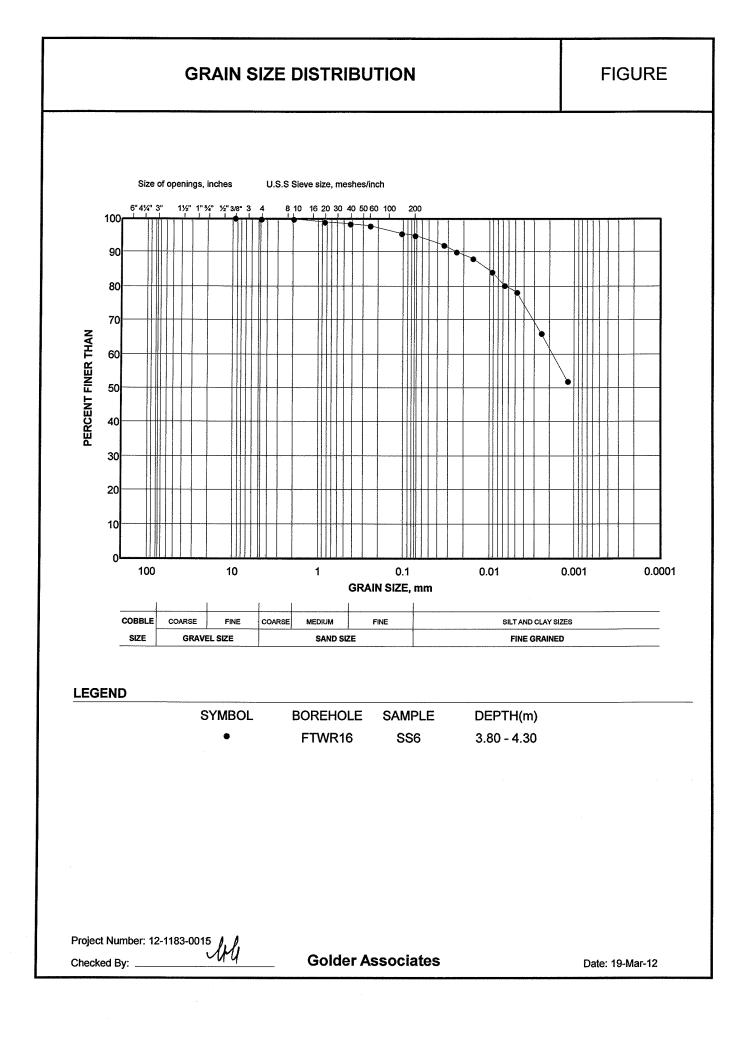


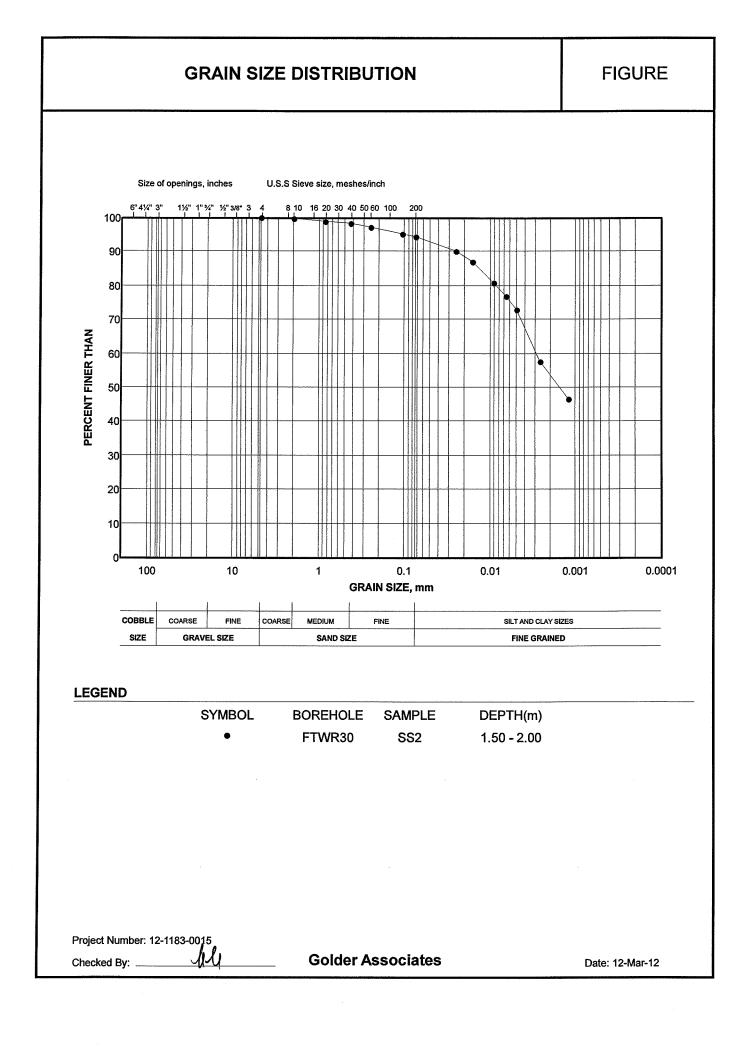


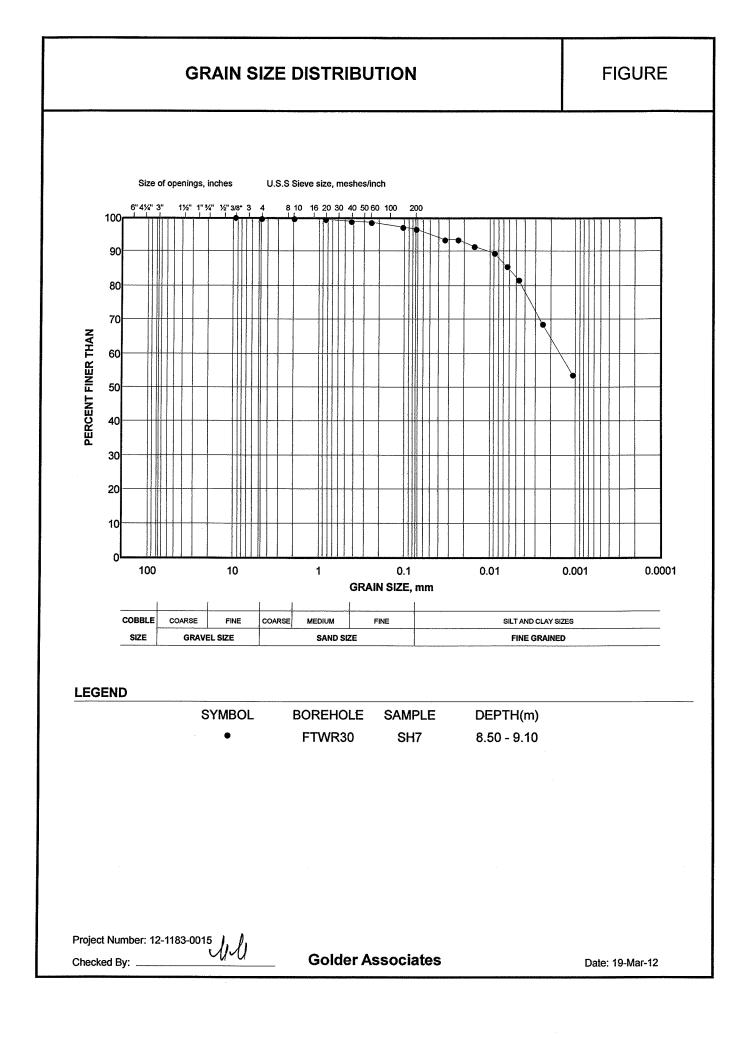


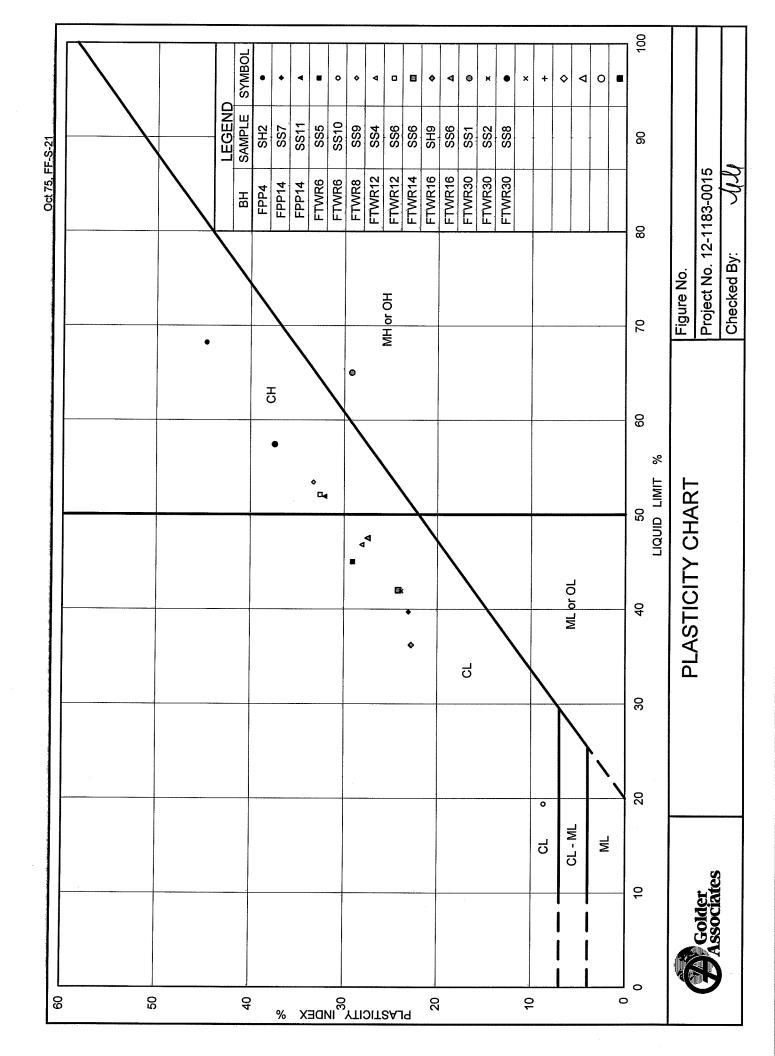












	AS	TM D 7263 M	ethod A			
Borehole Number	FPP14	FTWR6	FTWR6	FTWR12	FTWR12	FTWR14
Sample Number	SS7	SS8	SS10	SS4	SS6	SS4
Depth, m	4.57-5.03	6.10-6.55	9.14-9.60	3.05-3.51	4.57-5.03	7.62-8.08
Wet Mass of Soil in Air, g	54.13	88.52	110.46	79.52	107.04	87.92
Wet Mass of Soil + Wax in Air, g	62.87	94.88	120.40	85.14	110.36	92.11
Wet Mass of Soil + Wax in Water, g	27.87	42.44	62.87	39.28	51.35	44.57
Weight of Wax, g	8.74	6.36	9.94	5.62	3.32	4.19
Displaced Volume, cm ³	35.00	52.44	57.53	45.86	59.01	47.54
Displaced Wax, cm ³	9.63	7.00	10.95	6.19	3.66	4.61
Volume of Soil, cm ³	25.37	45.44	46.58	39.67	55.35	42.93
Specific Gravity, assumed	2.70	2.70	2.70	2.70	2.70	2.70
Volume of Solids, cm ³	16.96	25.24	37.53	23.66	30.33	26.20
Volume of Voids, cm ³	8.41	20.20	9.05	16.01	25.02	16.73
Porosity	0.33	0.44	0.19	0.40	0.45	0.39
Water Content, %	18.20	29.90	9.00	24.50	30.70	24.30
Unit Weight, kN/m ³	20.92	19.11	23.25	19.66	18.96	20.09
Dry Unit Weight, kN/m ³	17.70	14.71	21.33	15.79	14.51	16.16
Borehole Number	FTWR16	FTWR16	FTWR16	FTWR30	FTWR30	
Sample Number	SH9 (A)	SH9 (B)	SS6	SS2	SS8	
Depth, m	7.62-8.23	7.62-8.23	3.81-4.27	1.52-1.98	13.72-14.17	
Wet Mass of Soil in Air, g	274.92	280.00	65.39	80.65	98.90	
Wet Mass of Soil + Wax in Air, g	285.08	291.68	71.17	83.06	103.67	
Wet Mass of Soil + Wax in Water, g	134.78	136.25	32.56	40.22	43.72	
Weight of Wax, g	10.16	11.68	5.78	2.41	4.77	
Displaced Volume, cm ³	150.30	155.43	38.61	42.84	59.95	
Displaced Wax, cm ³	11.19	12.86	6.37	2.65	5.25	
Volume of Soil, cm ³	139.11	142.57	32.24	40.19	54.70	
Specific Gravity, assumed	2.70	2.70	2.70	2.70	2.70	
Volume of Solids, cm ³	78.26	79.71	19.52	23.56	25.62	
Volume of Voids, cm ³	60.85	62.86	12.73	16.63	29.08	
Porosity	0.44	0.44	0.39	0.41	0.53	
Water Content, %	30.10	30.10	24.10	26.80	43.00	
Unit Weight, kN/m ³	19.38	19.26	19.89	19.68	17.73	
Dry Unit Weight, kN/m ³	14.90	14.80	16.03	15.52	12.40	
Project Number 12-1183-00)15			г	Fested By	Shahab / RDA
Date March, 20 ⁻					Checked By	ble

DENSITY AND POROSITY DETERMINATIONS OF IRREGULAR SHAPE SAMPLES ASTM D 7263 Method A

SPECIFIC GRAVITY TEST RESULTS

4 · · · · · · · · · · · · · · · · · · ·	ASTM D 854-98 TES1	METHOD A	
PROJECT NUMBER	12-1183-0015		
PROJECT NAME	Foth / Testing / Victory	Nickel	
DATE TESTED	March, 2012		
		Measured	
Borehole	Sample	Specific	
No.	No.	Gravity	
FTWR12	SH1	1.65	······

Note: Test carried out on soil particles <4.75mm using kerosene.

Checked By: 44

Golder Associates

SPECIFIC GRAVITY TEST RESULTS

ASTM	D	854-06	TEST	METH	IOD A
AOTW	υ	004-00	I LOI		IOD A

PROJECT NUMBER	12-1183-0015	
PROJECT NAME	Foth / Testing / Victory Nickel	
DATE TESTED	March, 2012	
Borehole	Sample	Specific
No.	No.	Gravity
FPP4	SH1	2.65
FTWR11	SH4	2.67
FTWR14	SH6	2.67
FTWR30	SH3	2.68

Note: Test carried out on soil particles <2.00mm using distilled water.

Golder Associates

SUMMARY OF WATER CONTENT DETERMINATIONS

PROJECT	NUMBER	12-1183-0015		· · · · ·	
PROJECT		Foth / Testing /	Victory Nickel		
DATE TES		March, 2012			
				Water	
Borehole	Sample	Depth	Depth	Content	Atterberg Limits
No.	No.	(ft)	(m)	(%)	LL, PL, PI
FPP4	SH2	40.0-42.0	12.19-12.80	()	LL=68.2, PL=23.5, PI=44.7
FPP4	SS3	10.0-11.5	3.05-3.51	23.7%	,,,,,,
FPP4	SS4	15.0-16.5	4.57-5.03	19.5%	
FPP4	SS5	30.0-31.5	9.14-9.60	43.8%	
FPP12	SS2	5.0-6.5	1.52-1.98	614.4%	
FPP12	SS3	7.5-9.0	2.29-2.74	42.6%	
FPP12	SS4	10.0-11.5	3.05-3.51	25.9%	
FPP12	SS5	12.5-14.0	3.81-4.27	21.2%	
FPP12	SS6	15.0-16.5	4.57-5.03	24.3%	
FPP12	SS7	20.0-21.5	6.10-6.55	24.2%	
FPP12	SS8	25.0-26.5	7.62-8.08	40.0%	
FPP12	SS11	45.0-46.5	13.72-14.17	54.4%	
FPP12	SS12	50.0-51.5	15.24-15.70	13.3%	
FPP12	SS13	55.0-56.5	16.76-17.22	11.3%	
FPP14	SH1	0.0-2.5	0.00-0.76	1184.4%	
FPP14	SS3	5.0-6.5	1.52-1.98	461.7%	LL=305.3, PL=269.3, PI=36.0
FPP14	SS4	7.5-9.5	2.29-2.90	26.7%	
FPP14	SS5	10.0-11.5	3.05-3.51	18.6%	
FPP14	SS6	12.5-14.0	3.81-4.27	20.4%	
FPP14	SS7	15.0-16.5	4.57-5.03	19.5%	LL=39.7, PL=16.6, PI=23.1
FPP14	SS8	20.0-21.5	6.10-6.55	25.0%	
FPP14	SS11	40.0-41.5	12.19-12.65	38.9%	LL=51.9, PL=19.8, PI=32.1
FPP14	SS13	50.0-51.5	15.24-15.70	43.6%	
FPP14	SS14	55.0-56.5	16.76-17.22	60.5%	
FTWR6	SS2	2.5-4.0	0.76-1.22	22.5%	
FTWR6	SS3	5.0-6.5	1.52-1.98	21.4%	
FTWR6	SS4	7.5-9.0	2.29-2.74	47.8%	
FTWR6	SS5	10.0-11.5	3.05-3.51	20.1%	LL=45.0, PL=15.9, PI=29.1
FTWR6	SS7	15.0-16.5	4.57-5.03	17.2%	
FTWR6	SS8	20.0-21.5	6.10-6.55	27.6%	
FTWR6	SS9	25.0-26.5	7.62-8.08	28.1%	
FTWR6	SS10	30.0-31.5	9.14-9.60	11.1%	LL=19.4, PL=10.7, PI=8.7
FTWR8	SH8	20.0-22.0	6.10-6.71	35.8%	

ASTM D 2216-05

Checked By: JU

SUMMARY OF WATER CONTENT DETERMINATIONS

PROJECT	NUMBER	12-1183-0015	· · · · · · · · · · · · · · · · · · ·		
PROJECT		Foth / Testing /	Victory Nickel		
DATE TES		March, 2012			
				Water	
Borehole	Sample	Depth	Depth	Content	Atterberg Limits
No.	No.	(ft)	(m)	(%)	LL, PL, PI
FTWR8	SH10	30.0-32.0	9.14-9.75	21.2%	
FTWR8	SS2	2.5-4.0	0.76-1.22	27.6%	
FTWR8	SS3	5.0-6.5	1.52-1.98	18.6%	
FTWR8	SS4	7.5-9.0	2.29-2.74	24.1%	
FTWR8	SS5	10.0-11.5	3.05-3.51	19.5%	
FTWR8	SS6	12.5-14.0	3.81-4.27	27.3%	
FTWR8	SS7	15.0-16.5	4.57-5.03	30.1%	
FTWR8	SS9	25.0-26.5	7.62-8.08	40.5%	LL=53.4, PL=20.1, PI=33.3
FTWR8	SS11	40.0-41.5	12.19-12.65	51.0%	
FTWR8	SS12	50.0-51.5	15.24-15.70	7.4%	
FTWR11	SS1	2.5-4.0	0.76-1.22	626.3%	
FTWR11	SS2	5.0-6.5	1.52-1.98	442.3%	
FTWR11	SS3	7.5-9.0	2.29-2.74	30.2%	
FTWR11	SS5	15.0-16.5	4.57-5.03	25.3%	
FTWR11	SS6	20.0-21.5	6.10-6.55	35.8%	
FTWR12	SS2	5.0-6.5	1.52-1.98	38.3%	
FTWR12	SS3	7.5-9.0	2.29-2.74	25.1%	
FTWR12	SS4	10.0-11.5	3.05-3.51	24.3%	LL=46.8, PL=18.7, PI=28.1
FTWR12	SS5	12.5-14.0	3.81-4.27	21.1%	
FTWR12	SS6	15.0-16.5	4.57-5.03	26.4%	LL=52.1, PL=19.5, PI=32.6
FTWR12	SS7	20.0-21.5	6.10-6.55	39.5%	
FTWR12	SS8	25.0-26.5	7.62-8.08	47.3%	
FTWR12	SS9	30.0-31.5	9.14-9.60	46.6%	
FTWR12	SS10	35.0-36.5	10.67-11.13	10.6%	
FTWR14	SH2	5.0-7.0	1.52-2.13	27.9%	
FTWR14	SH5	30.0-32.0	9.14-9.75	35.9%	
FTWR14	SS1	2.5-4.0	0.76-1.22	493.1%	
FTWR14	SS3	20.0-21.5	6.10-6.55	21.9%	
FTWR14	SS4	25.0-26.5	7.62-8.08	23.9%	
FTWR14	SS6	7.5-9.0	2.29-2.74	26.0%	LL=42.0, PL=17.8, PI=24.2
FTWR14	SS7	10.0-11.5	3.05-3.51	25.5%	
FTWR14 FTWR14	SS8 SS9	12.4-14.0 15.0-16.5	3.78-4.27 4.57 5.03	21.4%	
FTWR14	SS10	45.0-46.5	4.57-5.03 13.72-14.17	24.5% 43.7%	
	0010	-0.010.0	10.72-14.17	43.170	•

ASTM D 2216-05

Checked By:

SUMMARY OF WATER CONTENT DETERMINATIONS

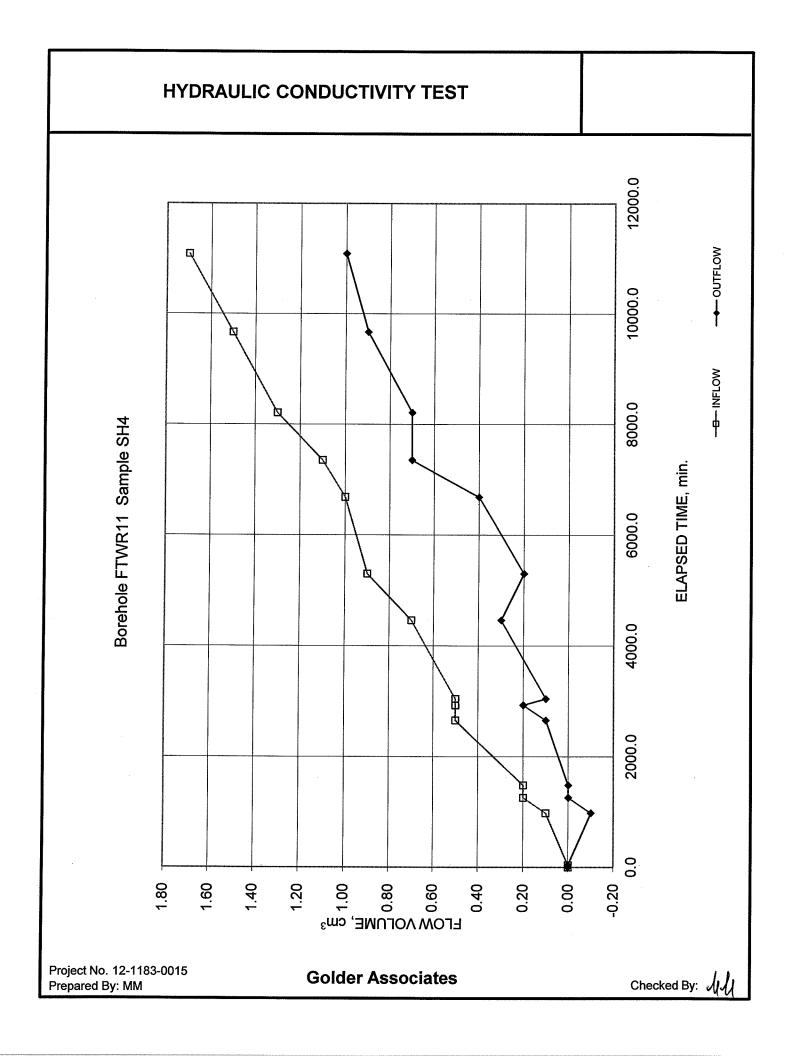
PROJECT	NUMBER	12-1183-0015			
PROJECT	NAME	Foth / Testing /	Victory Nickel		
DATE TES	TED	March, 2012			
				Water	
Borehole	Sample	Depth	Depth	Content	Atterberg Limits
No.	No.	(ft)	(m)	(%)	LL, PL, PI
FTWR14	SS11	55.0-56.5	16.76-17.22	46.7%	
FTWR16	SH9	25.0-27.0	7.62-8.23	30.1%	LL=36.2, PL=13.4, PI=22.8
FTWR16	SS1	0.0-2.0	0.00-0.61	481.0%	
FTWR16	SS2	2.5-4.0	0.76-1.22	22.7%	
FTWR16	SS3	5.0-6.5	1.52-1.98	24.6%	
FTWR16	SS5	10.1-11.5	3.08-3.51	18.6%	
FTWR16	SS6	12.5-14.0	3.81-4.27	17.6%	LL=47.5, PL=20.0, PI=27.5
FTWR16	SS7	15.0-16.5	4.57-5.03	28.1%	
FTWR30	SH9	55.0-57.0	16.76-17.37	57.3%	
FTWR30	SS1	2.5-4.0	0.76-1.22	73.9%	LL=65.0, PL=35.8, PI=29.2
FTWR30	SS2	5.0-6.5	1.52-1.98	29.8%	LL=41.9, PL=18.0, PI=23.9
FTWR30	SS4	15.0-16.5	4.57-5.03	25.9%	
FTWR30	SS6	25.0-26.5	7.62-8.08	27.1%	
FTWR30	SS8	45.0-46.5	13.72-14.17	46.3%	LL=57.4, PL=20.0, PI=37.4
FTWR30	SS10	7.5-9.0	2.29-2.74	27.0%	

ASTM D 2216-05

HYDRAULIC CONDUCTIVITY TEST

ASTM	D 5084	(CONSTANT	HEAD)
	0004		

	SAN	IPLE IDENTIFICATION	***************************************
PROJECT NUMBER	12-1183-0015	SAMPLE	SH4
PROJECT TITLE	Foth / Testing / Victory Nickel	SAMPLE DEPTH, m	3.05-3.66
BOREHOLE NUMBER	FTWR11	DATE	03/02/2012
	SPECIMEN PROP	ERTIES AND DIMENSIONS (INITIAL)	
SAMPLE HEIGHT, cm	6.58	UNIT WEIGHT, kN/m ³	20.32
SAMPLE DIAMETER, cm	5.02	DRY UNIT WEIGHT, kN/m ³	16.63
SAMPLE AREA, cm ²	19.79	SPECIFIC GRAVITY, measured	2.67
SAMPLE VOLUME, cm ³	130.23	VOLUME OF SOLIDS, cm ³	82.73
TOTAL MASS, g	269.90	VOLUME OF VOIDS, cm ³	47.50
DRY MASS, g	220.89	VOID RATIO	0.57
WATER CONTENT, %	22.19		
	SI	ATURATION STAGE	, <u>1</u>
CELL PRESSURE, kPa	210	EFFECTIVE CONFINING STRESS, kPa	5
HEAD PRESSURE, kPa	205	DURATION, min	2,040
BACK PRESSURE, kPa	205	B COEFFICIENT	0.97
	CON	ISOLIDATION STAGE	
CELL PRESSURE, kPa	255	EFFECTIVE CONFINING STRESS, kPa	50
HEAD PRESSURE, kPa	205	DURATION, min	720
BACK PRESSURE, kPa	205	VOLUME CHANGE, cm ³	1.1
		DRAINAGE	Top and Bottom
	HYDRAU	LIC CONDUCTIVITY TEST	
CELL PRESSURE, kPa	268	EFFECTIVE CONFINING STRESS, kPa	50
HEAD PRESSURE, kPa	218	DURATION, min	11086
BACK PRESSURE, kPa	205	HYDRAULIC GRADIENT, $\dot{\imath}$	20
	SPECIMEN PROP	ERTIES AND DIMENSIONS (FINAL)	
SAMPLE HEIGHT, cm	6.56	UNIT WEIGHT, kN/m ³	20.73
SAMPLE DIAMETER, cm	5.01	DRY UNIT WEIGHT, kN/m ³	16.77
SAMPLE AREA, cm ²	19.68	SPECIFIC GRAVITY, measured	2.67
SAMPLE VOLUME, cm ³	129.14	VOLUME OF SOLIDS, cm ³	82.73
TOTAL MASS, g	273.04	VOLUME OF VOIDS, cm ³	46.41
DRY MASS, g	220.89	VOID RATIO	0.56
WATER CONTENT, %	23.61		
		TEST RESULTS	
ELAPSED TIME TO STEADY STATE FLOW (min)			00
DURATION OF STEADY STATE FLOW (min)			11086
INFLOW VOLUME UNDER STEADY STATE FLOW (cm	1 ³)		1.7
OUTFLOW VOLUME UNDER STEADY STATE FLOW	cm ³)		1.0
HYDRAULIC CONDUCTIVITY (INFLOW) (cm/s)			6.43E-09
HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s)			3.78E-09
			5.102.00

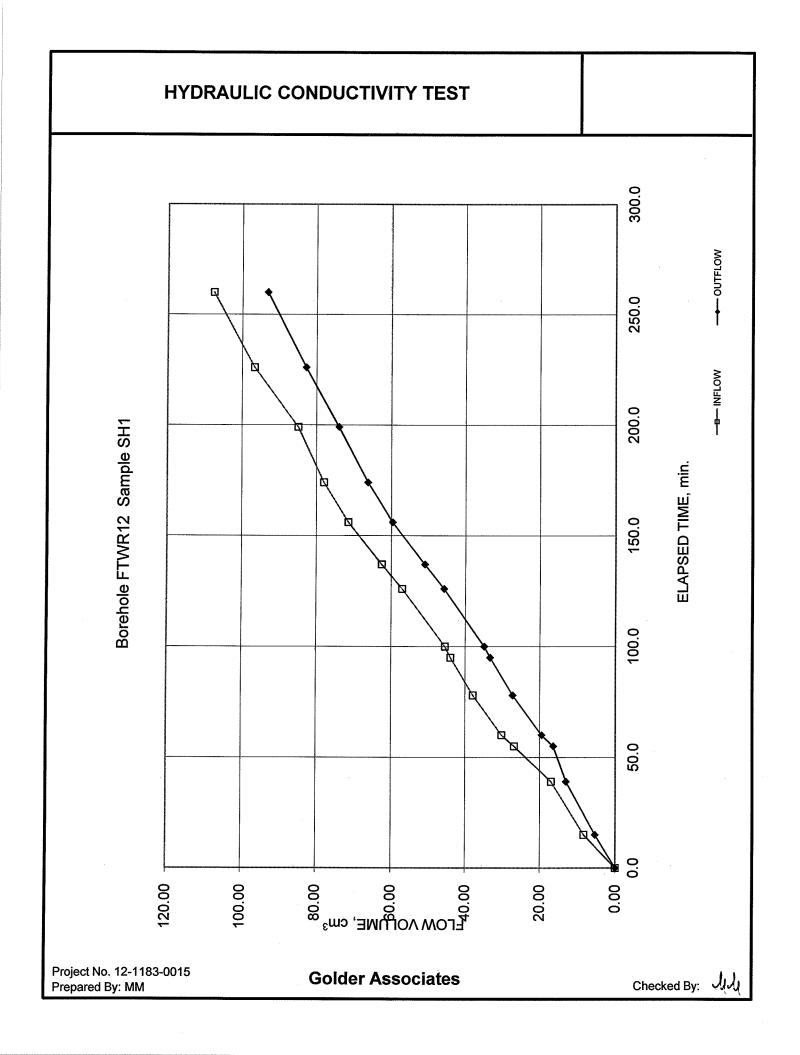

HYDRAULIC CONDUCTIVITY, K, cm/s

NOTES: MIXING FLUID

PERMEANT FLUID

Deaired tap water

5.10E-09


HYDRAULIC CONDUCTIVITY TEST

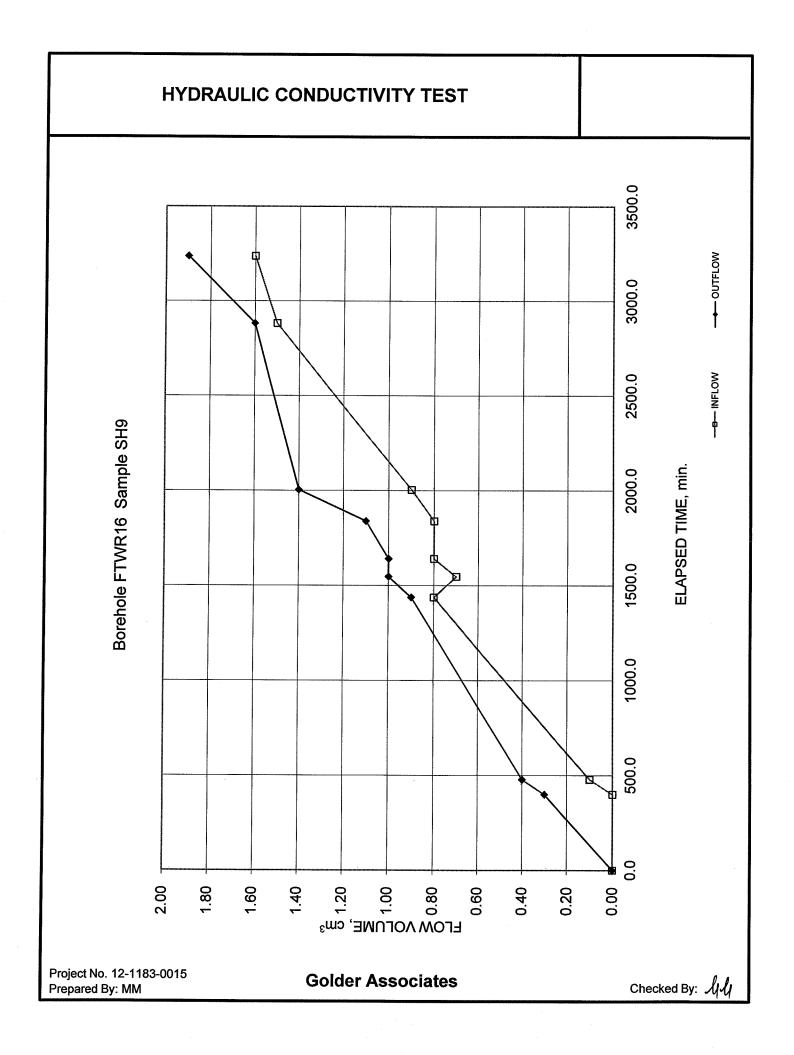
ASTM D 5084 (CONSTANT HEAD)

-	and the second	
SAM	PLE IDENTIFICATION	
12-1183-0015	SAMPLE	SH
ing / Victory Nickel	SAMPLE DEPTH, m	0.76-1.3
FTWR12	DATE	03/09/201
SPECIMEN PROPE	RTIES AND DIMENSIONS (INITIAL)	
8.14	UNIT WEIGHT, kN/m ³	8.1
7.26	DRY UNIT WEIGHT, kN/m ³	1.2
41.40	SPECIFIC GRAVITY, measured	1.6
336.97	VOLUME OF SOLIDS, cm ³	26.2
278.55	VOLUME OF VOIDS, cm ³	310.7
43.30	VOID RATIO	11.8
543.30		
SA	TURATION STAGE	
100	EFFECTIVE CONFINING STRESS, kPa	:
98	DURATION, min	7,20
98	B COEFFICIENT	0.8
CON	SOLIDATION STAGE	
118	EFFECTIVE CONFINING STRESS, kPa	2
98	DURATION, min	48
98	VOLUME CHANGE, cm ³	46.
	DRAINAGE	Top and Botton
HYDRAUL	IC CONDUCTIVITY TEŞT	
122	EFFECTIVE CONFINING STRESS, kPa	20
102	DURATION, min	260
98	HYDRAULIC GRADIENT, \dot{i}	
SPECIMEN PROPE	RTIES AND DIMENSIONS (FINAL)	
7.77	_	8.26
6.92	· •	1.4
37.63	• •	1.65
292.36		26.24
246.26	-	266.12
43.30		10.14
468.73		
Ĩ	'EST RESULTS	
		00
		260
		107.7
)		93.2
,		3.49E-0
		0.456-00
		3.02E-05
	12-1183-0015 ng / Victory Nickel FTWR12 SPECIMEN PROPE 8.14 7.26 41.40 336.97 278.55 43.30 543.30 543.30 543.30 543.30 543.30 88 98 000 98 98 98 CON: 118 98 98 98 CON: 118 98 98 98 543.30 543.55 545.55 55.55 545.	ng / Victory Nickel SAMPLE DEPTH, m FTWR12 DATE PECIMEN PROPERTIES AND DIMENSIONS (INITIAL) 8.14 UNIT WEIGHT, kN/m ³ 7.26 DRY UNIT WEIGHT, kN/m ³ 41.40 SPECIFIC GRAVITY, measured 336.97 VOLUME OF SOLIDS, cm ³ 278.55 VOLUME OF VOIDS, cm ³ 98 DURATION, min 98 B COEFFICIENT CONSOLIDATION STAGE 118 EFFECTIVE CONFINING STRESS, kPa 98 DURATION, min 98 VOLUME CHANGE, cm ³ DRAINAGE HYDRAULIC CONDUCTIVITY TEŞT 122 EFFECTIVE CONFINING STRESS, kPa 102 DURATION, min 98 HYDRAULIC GRADIENT, <i>i</i> FPECIMEN PROPERTIES AND DIMENSIONS (FINAL) 7.77 UNIT WEIGHT, kN/m ³ 3.7.63 SPECIFIC GRAVITY, measured 292.36 VOLUME OF SOLIDS, cm ³ 246.26 VOLUME OF VOIDS, cm ³ 246.26 VOLUME OF VOIDS, cm ³ 43.30 VOID RATIO 468.73 TEST RESULTS

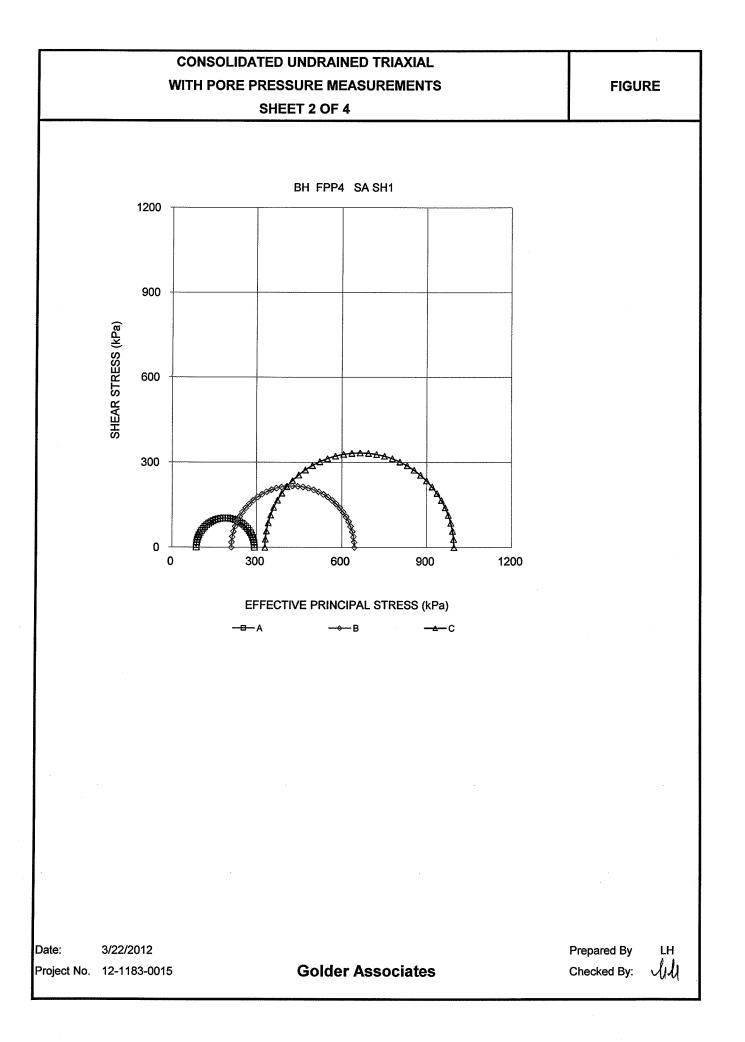
MIXING FLUID PERMEANT FLUID

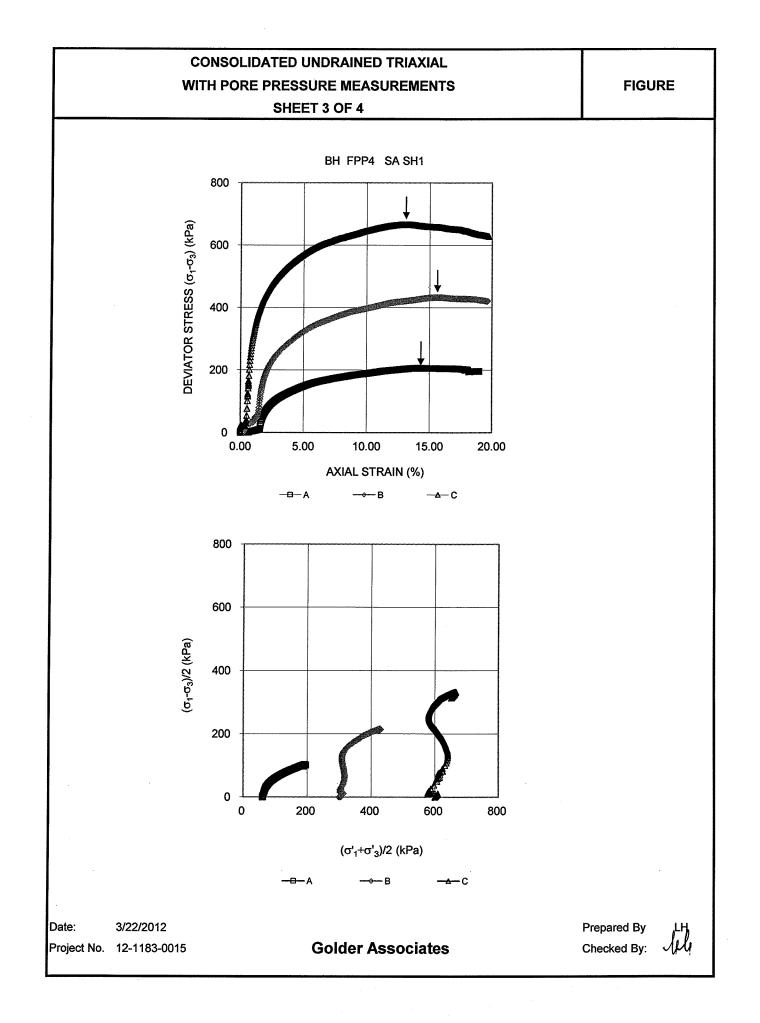
Deaired tap water

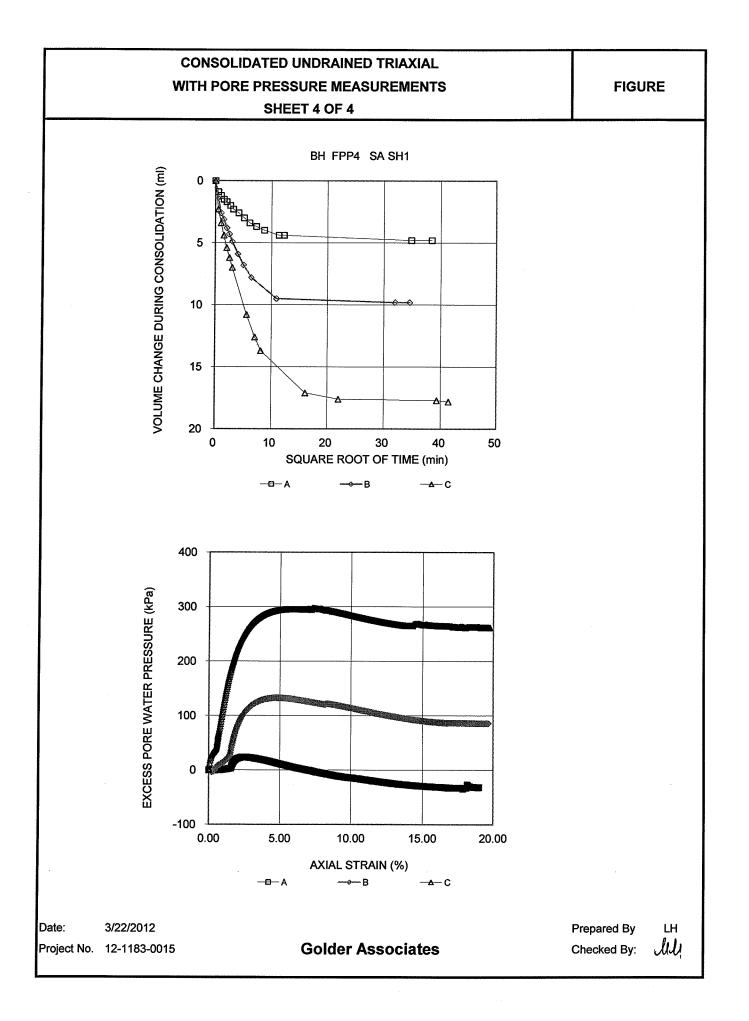
HYDRAULIC CONDUCTIVITY TEST

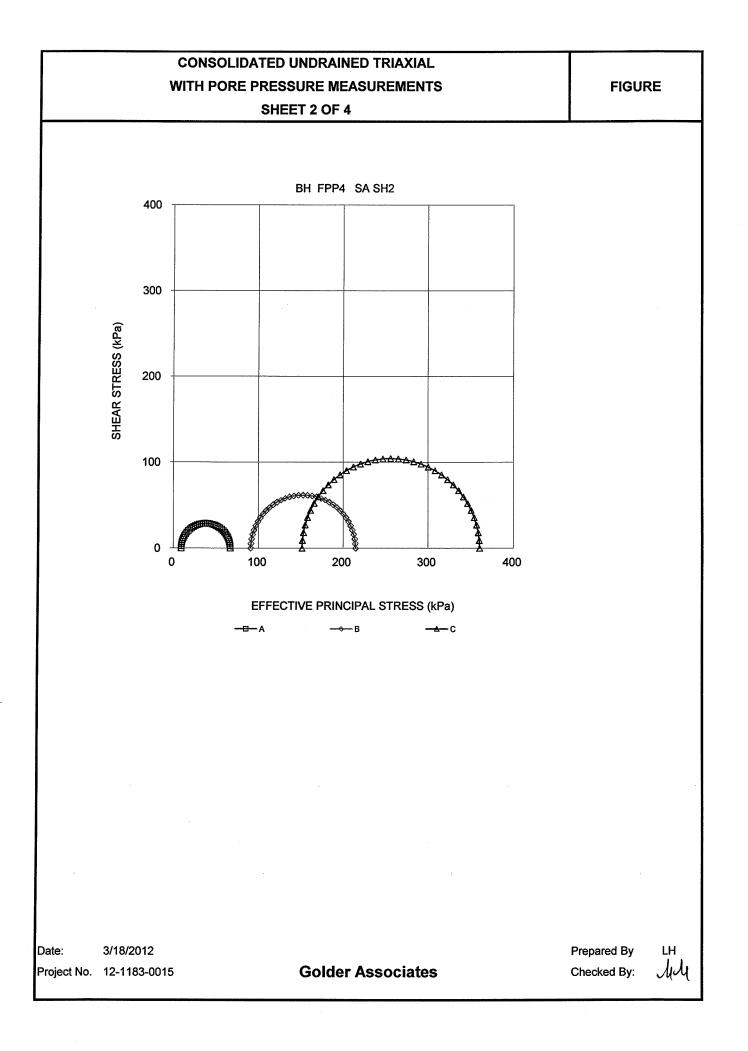

ASTM D	5084	(CONSTANT HEAD)
--------	------	-----------------

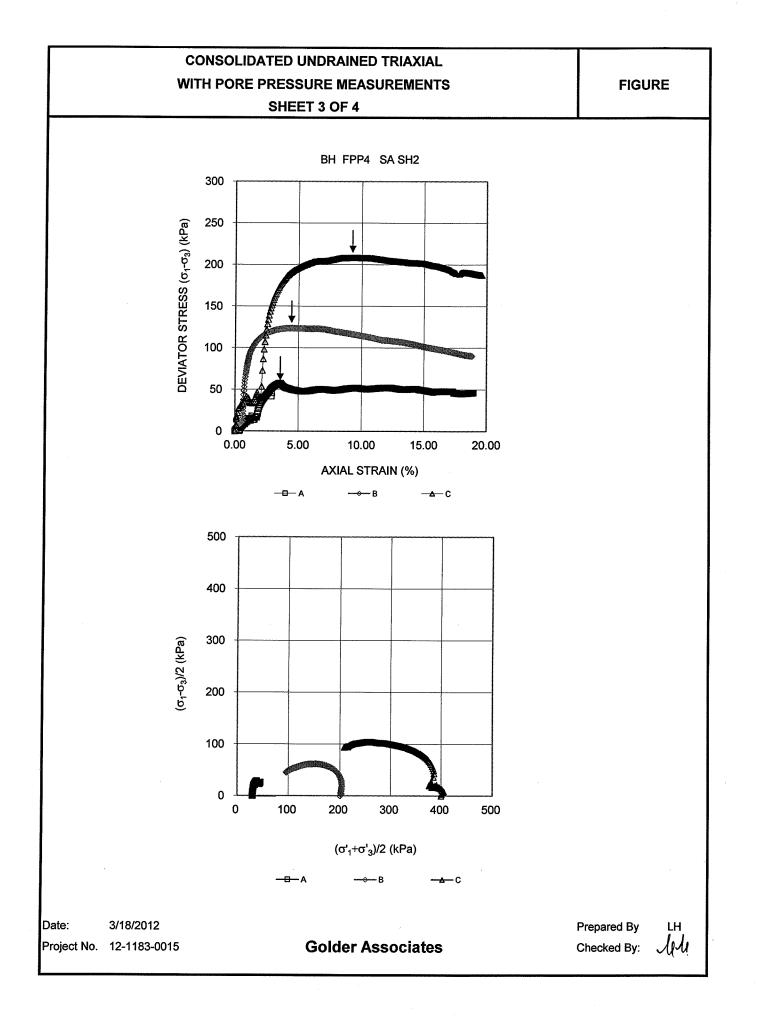
	SAN	IPLE IDENTIFICATION	
PROJECT NUMBER	12-1183-0015	SAMPLE	SH9
PROJECT TITLE	Foth / Testing / Victory Nickel	SAMPLE DEPTH, m	7.62-8.23
BOREHOLE NUMBER	FTWR16	DATE	03/20/2012
	SPECIMEN PROP	ERTIES AND DIMENSIONS (INITIAL)	
SAMPLE HEIGHT, cm	7.19	UNIT WEIGHT, kN/m ³	18.25
SAMPLE DIAMETER, cm	6.95	DRY UNIT WEIGHT, kN/m ³	13.68
SAMPLE AREA, cm ²	37.94	SPECIFIC GRAVITY, assumed	2.70
SAMPLE VOLUME, cm ³	272.76	VOLUME OF SOLIDS, cm ³	140.89
TOTAL MASS, g	507.66	VOLUME OF VOIDS, cm ³	131.87
DRY MASS, g	380.41	VOID RATIO	0.94
WATER CONTENT, %	33.45		
	S	ATURATION STAGE	
CELL PRESSURE, kPa	140	EFFECTIVE CONFINING STRESS, kPa	5
HEAD PRESSURE, kPa	135	DURATION, min	1,440
BACK PRESSURE, kPa	135	B COEFFICIENT	0.99
	CON	SOLIDATION STAGE	
CELL PRESSURE, kPa	265	EFFECTIVE CONFINING STRESS, kPa	130
HEAD PRESSURE, kPa	135	DURATION, min	2,520
BACK PRESSURE, kPa	135	VOLUME CHANGE, cm ³	11.3
		DRAINAGE	Top and Bottom
	HYDRAU	LIC CONDUCTIVITY TEST	
CELL PRESSURE, kPa	279	EFFECTIVE CONFINING STRESS, kPa	130
HEAD PRESSURE, kPa	149	DURATION, min	3236
BACK PRESSURE, kPa	135	HYDRAULIC GRADIENT, i	20
	SPECIMEN PROP	ERTIES AND DIMENSIONS (FINAL)	
SAMPLE HEIGHT, cm	7.09	UNIT WEIGHT, kN/m ³	19.38
SAMPLE DIAMETER, cm	6.85	DRY UNIT WEIGHT, kN/m ³	14.26
SAMPLE AREA, cm ²	36.89	SPECIFIC GRAVITY, measured	2.70
SAMPLE VOLUME, cm ³	261.57	VOLUME OF SOLIDS, cm ³	140.89
TOTAL MASS, g	516.90	VOLUME OF VOIDS, cm ³	120.68
DRY MASS, g	380.41	VOID RATIO	0.86
WATER CONTENT, %	35.88		
		TEST RESULTS	
ELAPSED TIME TO STEADY STATE FLOW (min)			00
DURATION OF STEADY STATE FLOW (min)			3236
INFLOW VOLUME UNDER STEADY STATE FLOW (cm			1.6
OUTFLOW VOLUME UNDER STEADY STATE FLOW (cm ³)		1.9
HYDRAULIC CONDUCTIVITY (INFLOW) (cm/s)			1.11E-08
HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s)			1.32E-08
HYDRAULIC CONDUCTIVITY, K, cm/s			1.21E-08

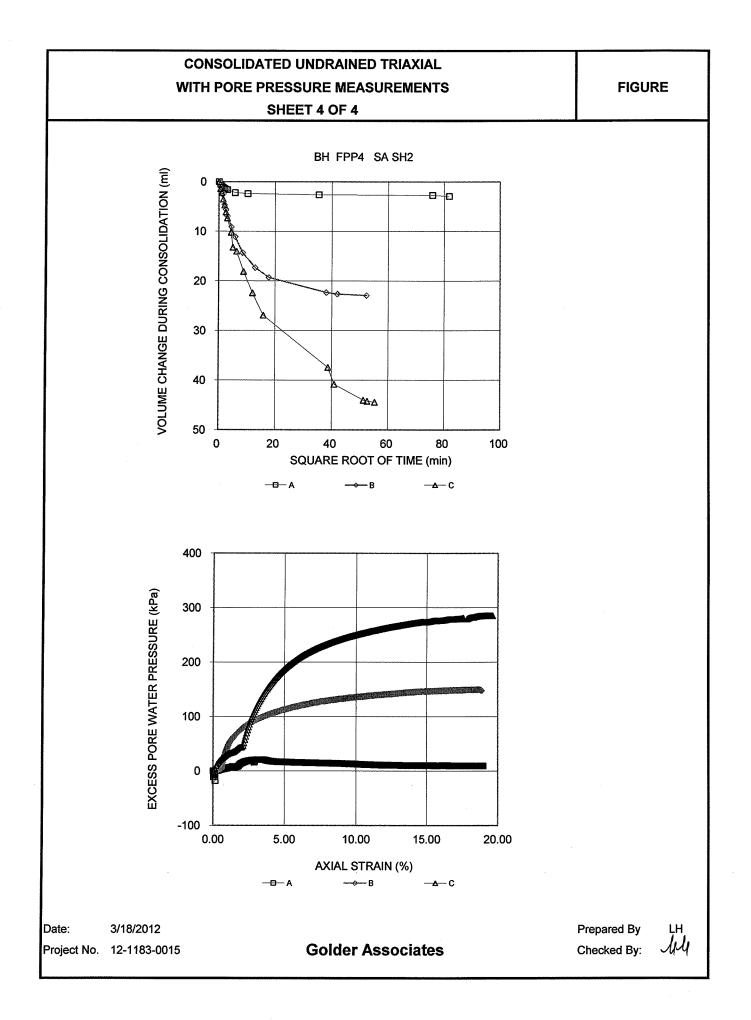

NOTES: MIXING FLUID

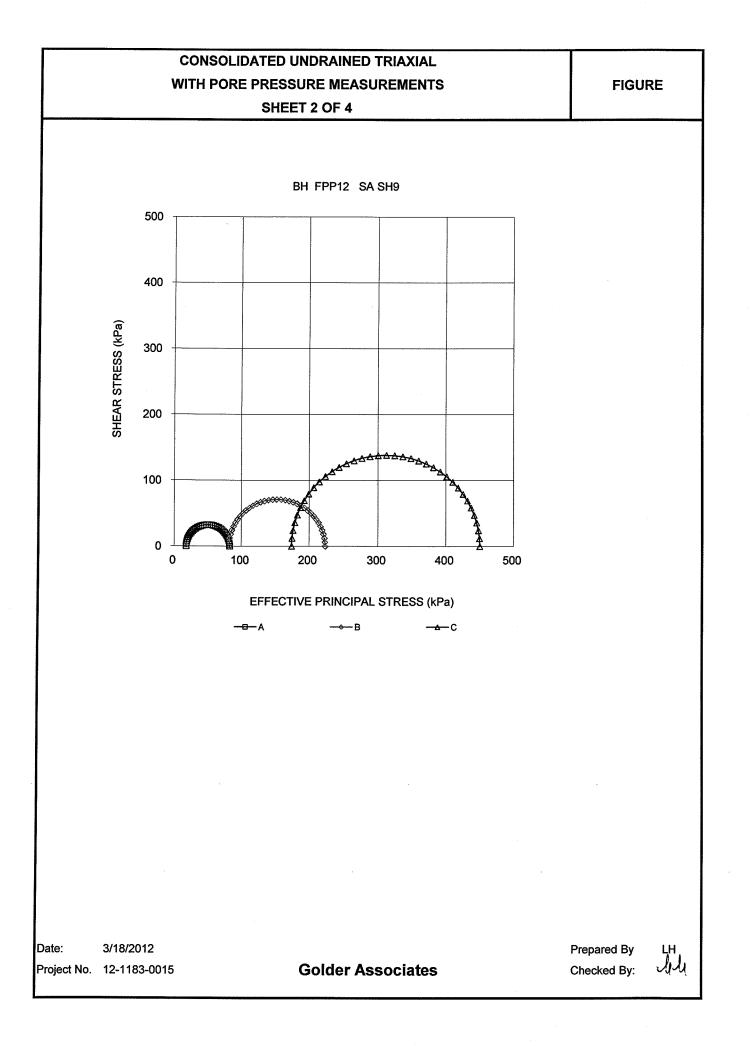

PERMEANT FLUID

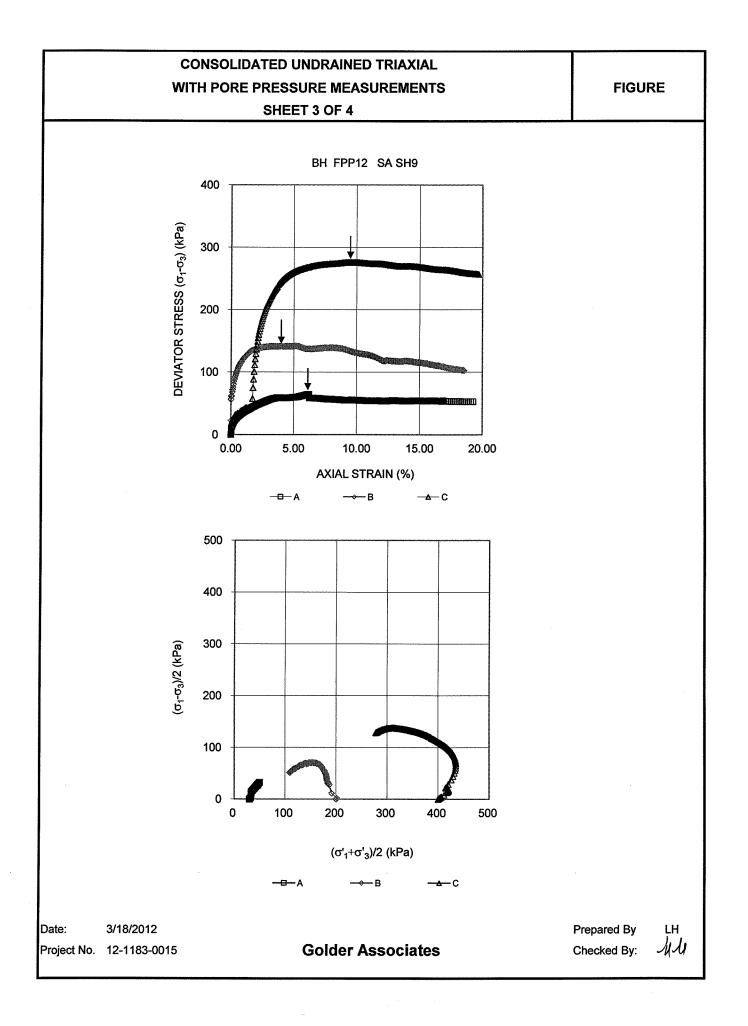

Deaired tap water

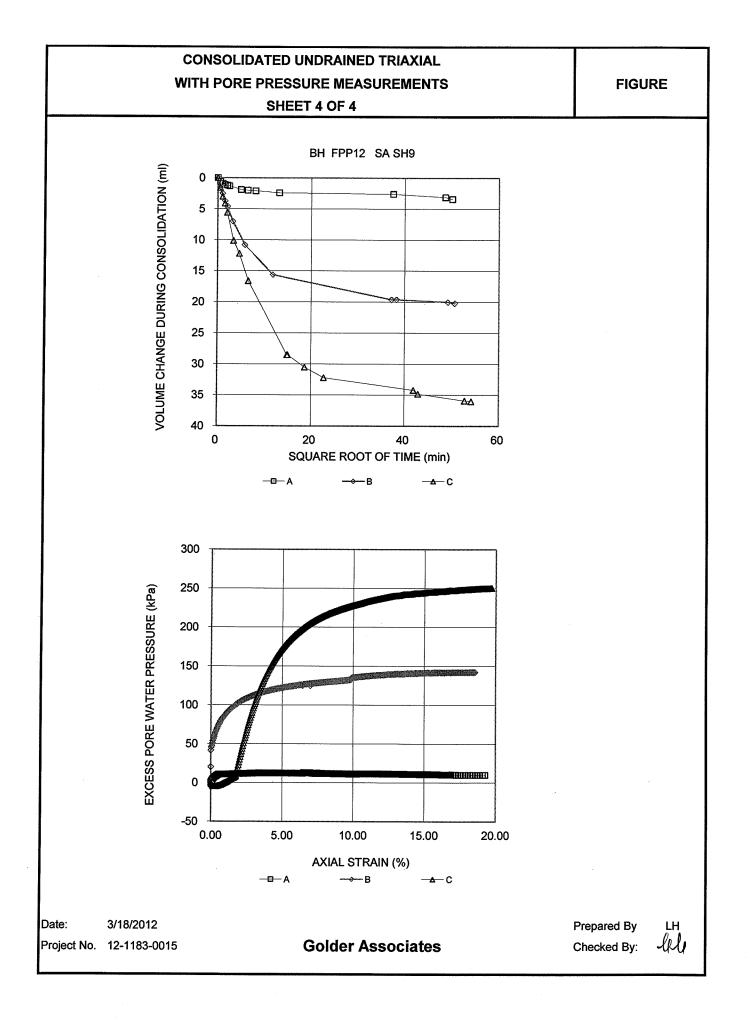

CONSOLIDATED UNDRAINED TRIAXIAL				
WITH PORE PRESSURE MEASUREMENTS			FIGU	RE
SHEET 1 OF 4				
TEST STAGE	A	В	С	
BOREHOLE NUMBER	FPP4	FPP4	FPP4	
SAMPLE	SH1	SH1	SH1	
SPECIMEN DIAMETER, cm	4.97	5.00	5.02	
SPECIMEN HEIGHT, cm	10.10	10.13	10.16	
NATURAL WATER CONTENT, %	20.9	20.2	19.8	
DRY DENSITY, Mg/m ³	1.75	1.75	1.77	
WATER CONTENT AFTER SATURATION, %	23.0	22.9	22.2	
CELL PRESSURE, σ_3 , kPa	265.0	505.0	735.0	
BACK PRESSURE, kPa	205.0	205.0	135.0	
PORE PRESSURE PARAMETER "B"	0.99	0.97	0.96	
CONSOLIDATION PRESSURE, σc, kPa	60.0	300.0	600.0	
VOLUMETRIC STRAIN DURING CONSOLIDATION, %	2.4	4.9	8.9	
WATER CONTENT AFTER CONSOLIDATION, %	21.6	20.1	17.2	
AVERAGE RATE OF STRAIN, %/hr	0.5	0.5	0.5	
TIME TO FAILURE, HOURS	27.4	30.9	25.4	
WATER CONTENT AFTER TEST, %	21.6	19.8	17.8	
MAX. DEVIATOR STRESS, (σ_1 - σ_3), kPa	206.1	432.9	666.5	
AXIAL STRAIN AT (σ_1 - σ_3) maximum, %	13.7	15.5	12.7	
MAX EFFECTIVE PRINCIPAL STRESS RATIO, (σ'_1/σ'_3) maximum	4.1	3.2	3.0	
DEVIATOR STRESS AT (σ'_1/σ'_3) maximum, kPa	133.4	386.2	614.8	
AXIAL STRAIN AT (σ'_1/σ'_3) maximum, %	4.1	8.7	7.3	
PORE PRESSURE PARAMETER, Af, AT (σ_1 - σ_3) maximum	-0.128	0.21	0.40	
PORE PRESSURE PARAMETER, Af, AT (σ'_1/σ'_3) maximum	0.13	0.31	0.48	
FILTER DRAINS USED, y/n	У	у	у	
TEST NOTES:				
CHANGED RATE OF STRAIN, %/hr	-	-	-	
XIAL STRAIN WHERE RATE OF STRAIN WAS CHANGED, %	-	-	-	
AILURE PLANE NUMBER	-	-	-	
ANGLE OF FAILURE, DEGREES	BULGED	BULGED	BULGED	
ate: 3/22/2012		I	Prepared By	LH
Project No. 12-1183-0015 Golder Associates		(Checked By:	lile

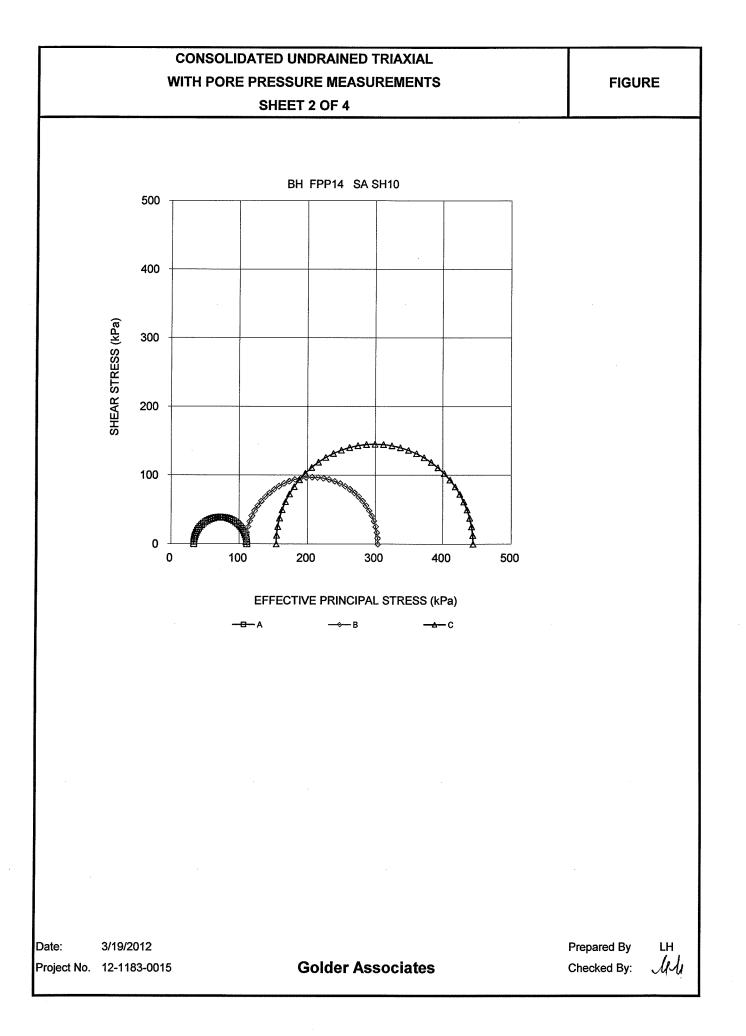


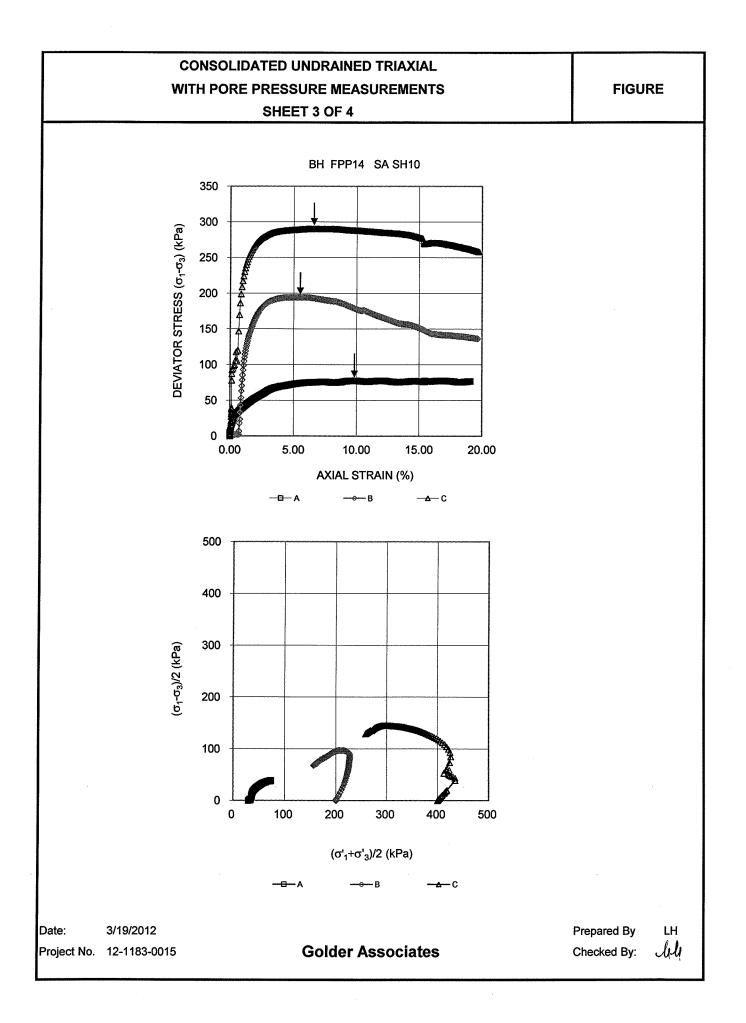


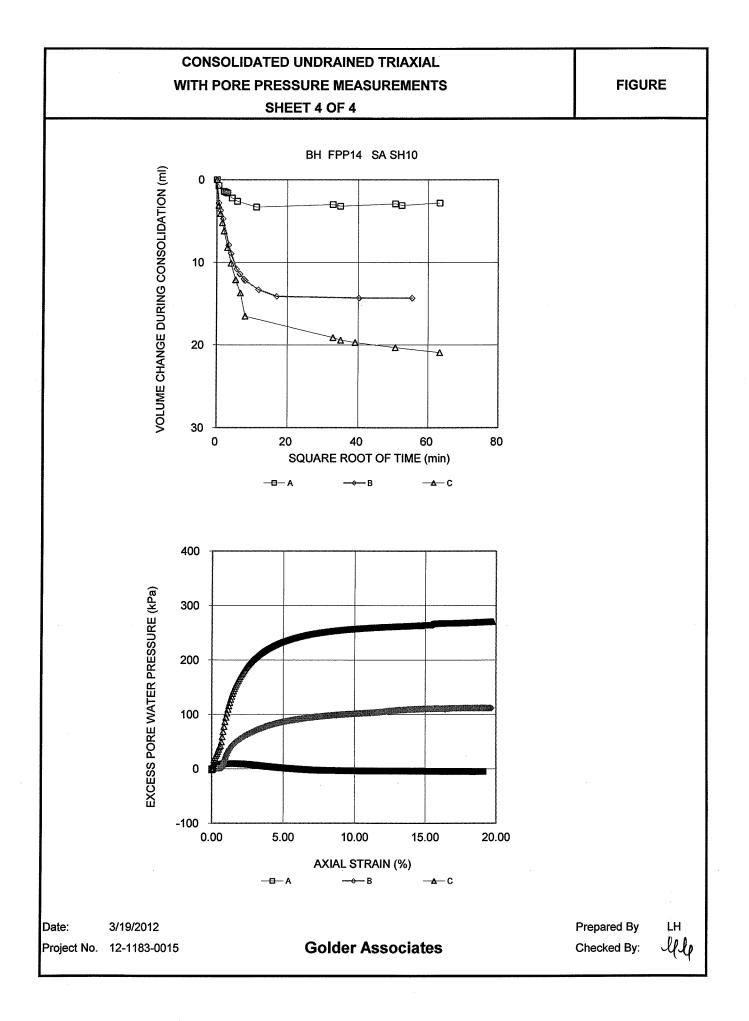

CONSOLIDATED UNDRAINED TRIAXIAL				
WITH PORE PRESSURE MEASUREMENTS			FIGU	RE
SHEET 1 OF 4				
TEST STAGE	A	В	С	
BOREHOLE NUMBER	FPP4	FPP4	FPP4	
SAMPLE	SH2	SH2	SH2	
SPECIMEN DIAMETER, cm	5.01	4.99	5.04	
SPECIMEN HEIGHT, cm	10.14	10.52	10.13	
NATURAL WATER CONTENT, %	62.7	64.2	67.5	
DRY DENSITY, Mg/m ³	1.01	0.99	0.95	
WATER CONTENT AFTER SATURATION, %	65.1	67.5	70.6	
CELL PRESSURE, σ ₃ , kPa	235.0	335.0	535.0	
BACK PRESSURE, kPa	205.0	135.0	135.0	
PORE PRESSURE PARAMETER "B"	0.97	0.98	0.96	
CONSOLIDATION PRESSURE, σc, kPa	30.0	200.0	400.0	
VOLUMETRIC STRAIN DURING CONSOLIDATION, %	1.5	11.1	22.0	
WATER CONTENT AFTER CONSOLIDATION, %	64.2	56.3	47.5	
AVERAGE RATE OF STRAIN, %/hr	0.5	0.5	0.5	
TIME TO FAILURE, HOURS	7.2	8.9	19.3	
WATER CONTENT AFTER TEST, %	63.2	57.1	49.5	
MAX. DEVIATOR STRESS, $(\sigma_1 - \sigma_3)$, kPa	57.6	123.7	208.6	
AXIAL STRAIN AT (σ_1 - σ_3) maximum, %	3.6	4.5	9.6	
MAX EFFECTIVE PRINCIPAL STRESS RATIO, (σ'_1/σ'_3) maximum	7.2	2.9	2.6	
DEVIATOR STRESS AT (σ'_1/σ'_3) maximum, kPa	57.3	105.9	197.3	
AXIAL STRAIN AT (σ'_1/σ'_3) maximum, %	3.5	13.7	16.4	
PORE PRESSURE PARAMETER, Af, AT (σ_1 - σ_3) maximum	0.359	0.88	1.19	
PORE PRESSURE PARAMETER, Af, AT (σ'_1/σ'_3) maximum	0.36	1.37	1.41	
FILTER DRAINS USED, y/n	у	у	у	
TEST NOTES:	-	-		
CHANGED RATE OF STRAIN, %/hr	-	-	-	
XIAL STRAIN WHERE RATE OF STRAIN WAS CHANGED, %	-	-	-	
AILURE PLANE NUMBER	-	1	1	
ANGLE OF FAILURE, DEGREES	BULGED	65	65	
Date: 3/18/2012			epared By	LH /, /
Project No. 12-1183-0015 Golder Associates	5	Ch	necked By:	Ma

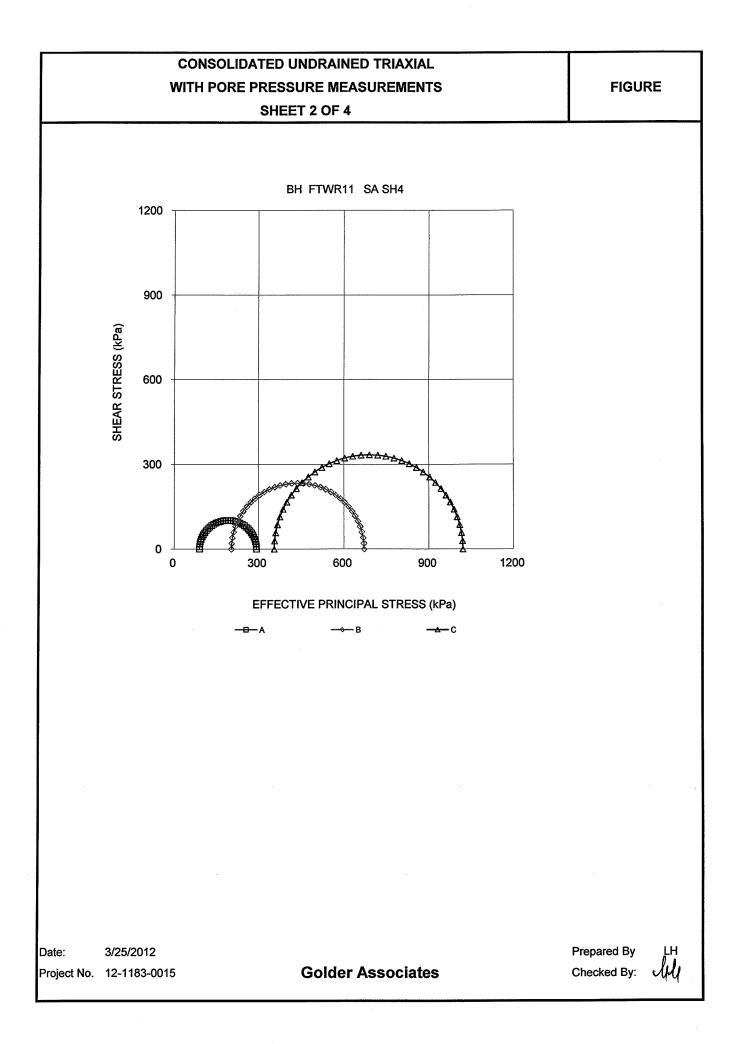


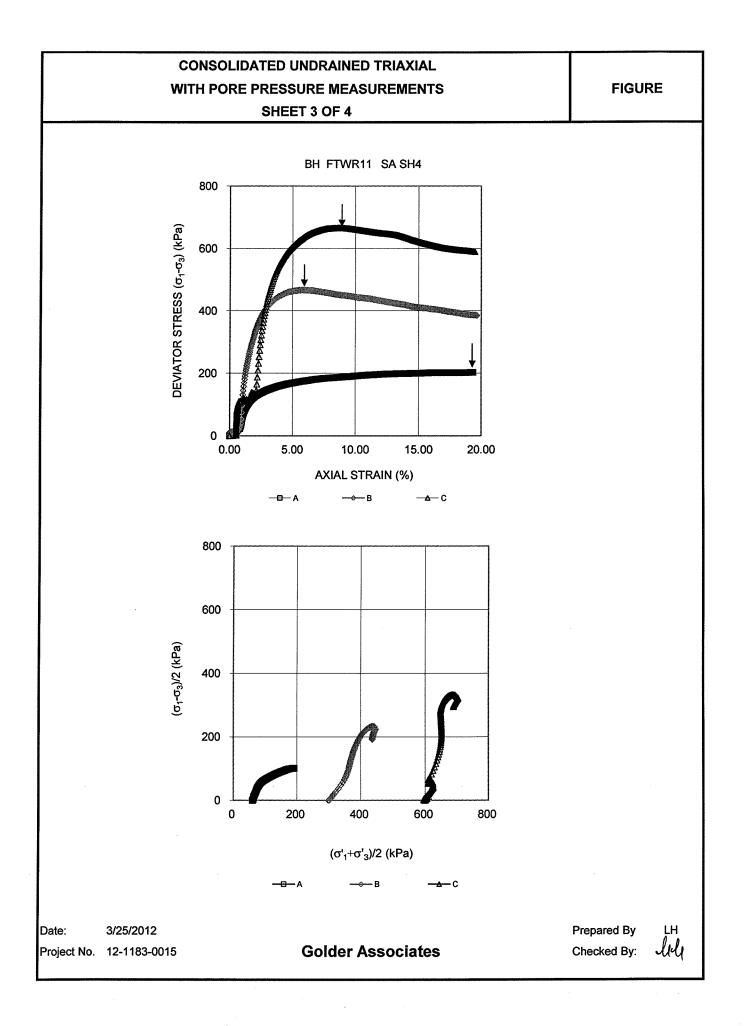


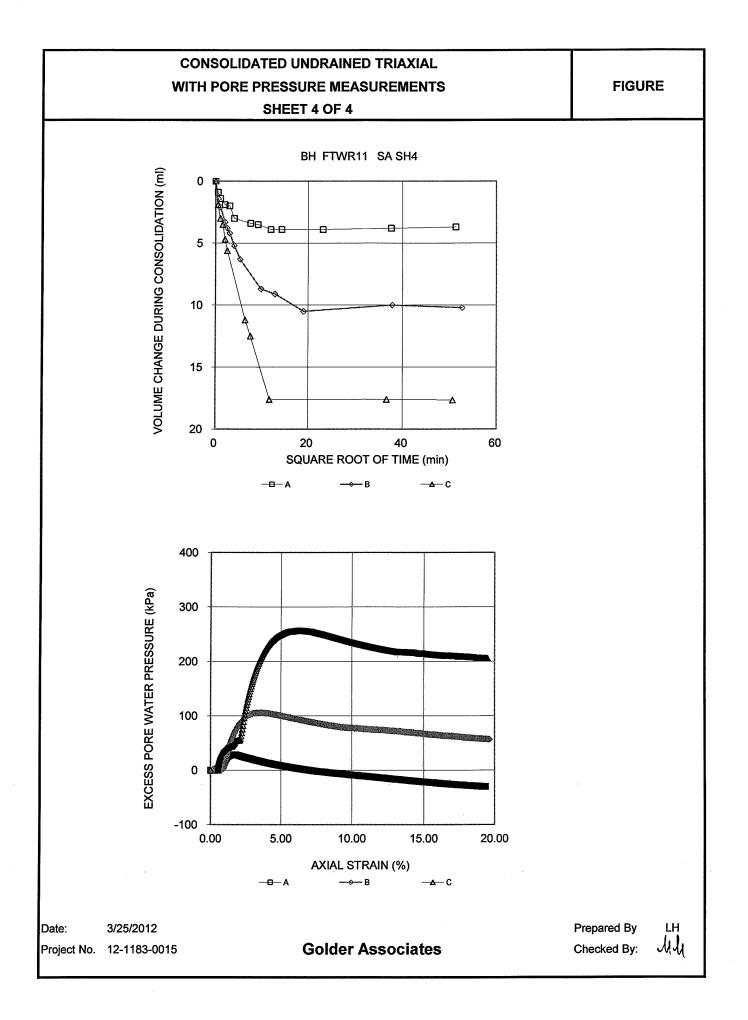

CONSOLIDATED UNDRAINED TRIAXIAL				
WITH PORE PRESSURE MEASUREMENT	s		FIGU	IRE
SHEET 1 OF 4				
TEST STAGE	A	В	С	
BOREHOLE NUMBER	FPP12	FPP12	FPP12	
SAMPLE	SH9	SH9	SH9	
SPECIMEN DIAMETER, cm	5.02	5.03	5.02	
SPECIMEN HEIGHT, cm	10.16	10.18	10.23	
NATURAL WATER CONTENT, %	40.2	40.9	41.3	
DRY DENSITY, Mg/m ³	1.31	1.30	1.28	
WATER CONTENT AFTER SATURATION, %	41.4	41.8	43.0	
CELL PRESSURE, σ_3 , kPa	165.0	405.0	535.0	
BACK PRESSURE, kPa	135.0	205.0	135.0	
PORE PRESSURE PARAMETER "B"	0.97	0.98	0.96	
CONSOLIDATION PRESSURE, σc, kPa	30.0	200.0	400.0	
VOLUMETRIC STRAIN DURING CONSOLIDATION, %	1.7	10.0	17.8	
WATER CONTENT AFTER CONSOLIDATION, %	40.1	34.1	29.1	
AVERAGE RATE OF STRAIN, %/hr	0.5	0.5	0.5	
TIME TO FAILURE, HOURS	12.4	8.0	19.0	
WATER CONTENT AFTER TEST, %	39.6	34.4	29.8	
MAX. DEVIATOR STRESS, $(\sigma_1 - \sigma_3)$, kPa	64.8	141.8	276.2	
AXIAL STRAIN AT (σ_1 - σ_3) maximum, %	6.2	4.0	9.5	
MAX EFFECTIVE PRINCIPAL STRESS RATIO, (σ'_1/σ'_3) maximum	4.3	3.0	2.7	
DEVIATOR STRESS AT (σ'_1/σ'_3) maximum, kPa	58.1	131.8	263.7	
AXIAL STRAIN AT (σ'_1/σ'_3) maximum, %	3.5	9.9	17.2	
PORE PRESSURE PARAMETER, Af, AT (σ_1 - σ_3) maximum	0.190	0.84	0.82	
PORE PRESSURE PARAMETER, Af, AT (σ'1/σ'3) maximum	0.22	1.03	0.94	
FILTER DRAINS USED, y/n	У	У	У	
TEST NOTES:				
CHANGED RATE OF STRAIN, %/hr	-	-	-	
AXIAL STRAIN WHERE RATE OF STRAIN WAS CHANGED, %	-	-	-	
FAILURE PLANE NUMBER	1.0	1.0	-	
ANGLE OF FAILURE, DEGREES	65		BULGED	
Pate: 3/18/2012		F	Prepared By	LH
Project No. 12-1183-0015 Golder Associates	;		hecked By:	Tele

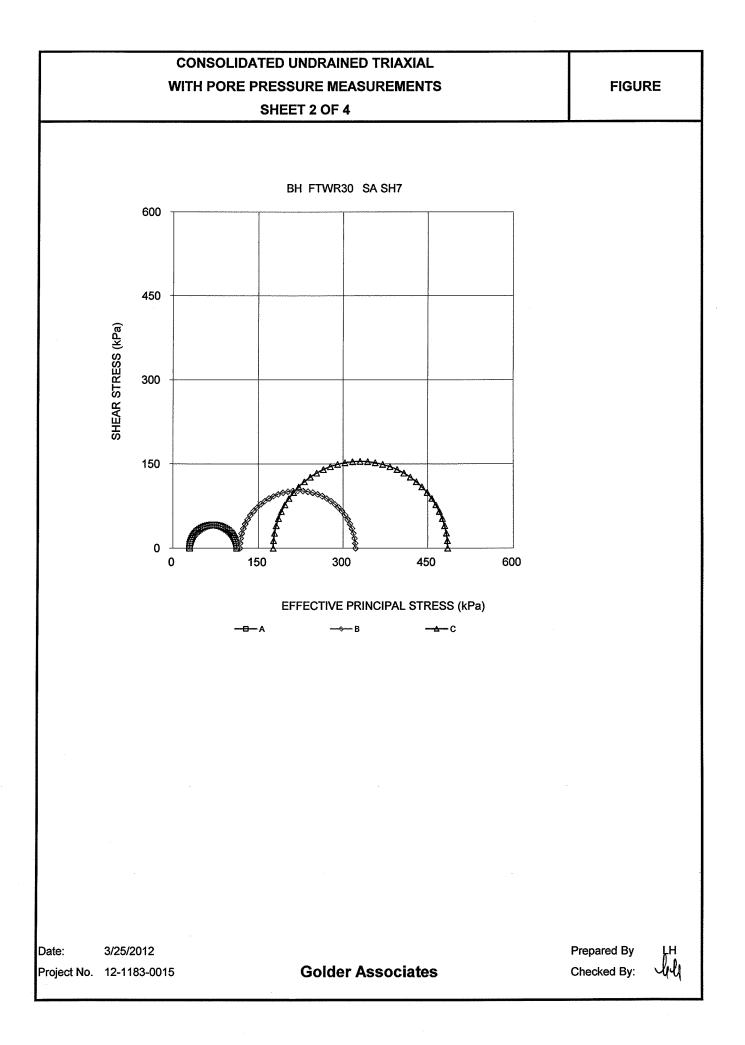


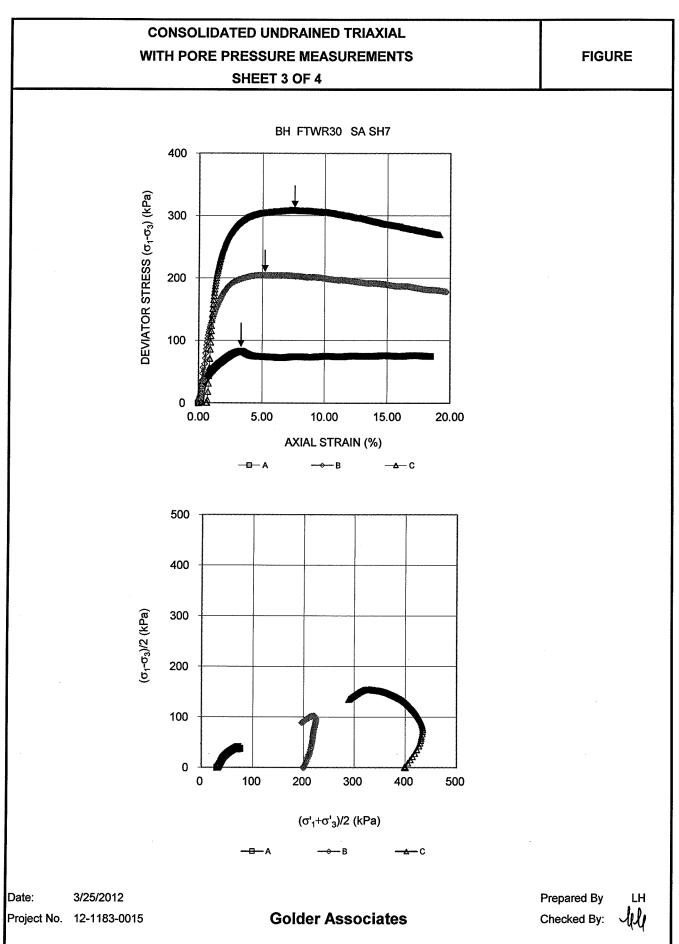


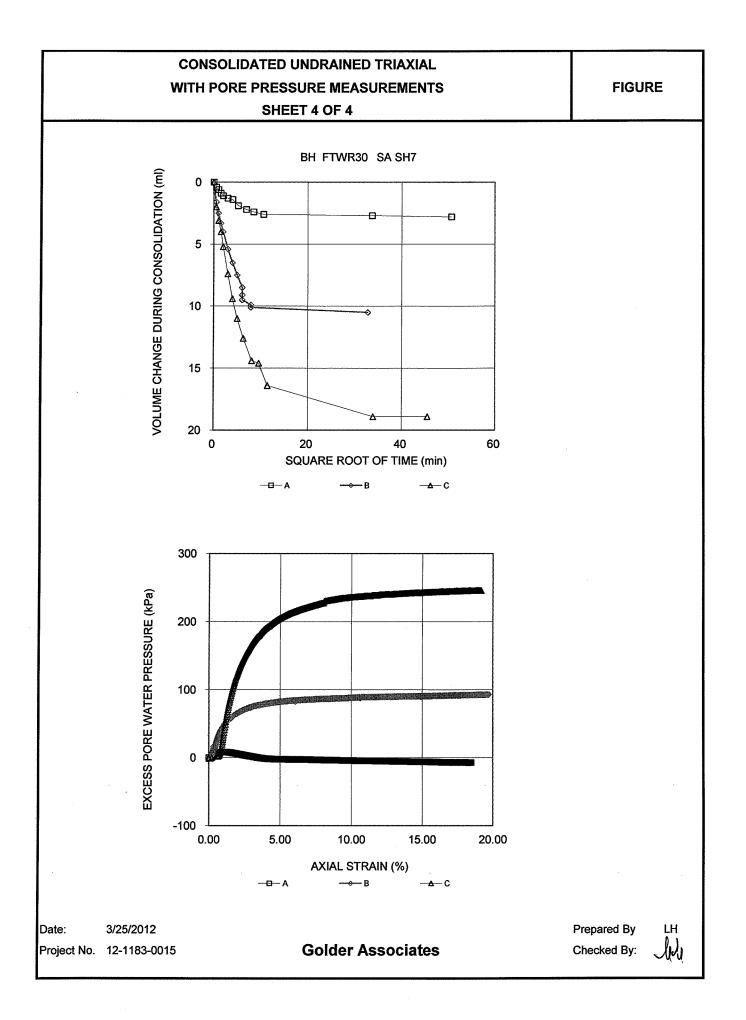

3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	B C 14 FPP14 10 SH10 01 5.00 09 10.07 .2 30.7 40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1	
P14 FPP 110 SH ² .03 5.0 .18 10.0 2.3 35 .46 1.4 4.2 36 5.0 135 .96 0.9 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	14 FPP14 10 SH10 01 5.00 09 10.07 .2 30.7 40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	
P14 FPP 110 SH ² .03 5.0 .18 10.0 2.3 35 .46 1.4 4.2 36 5.0 135 .96 0.9 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	14 FPP14 10 SH10 01 5.00 09 10.07 .2 30.7 40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	
110 SH ² .03 5.0 .18 10.0 2.3 35 .46 1.4 4.2 36 5.0 335 5.0 135 .96 0.2 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	IO SH10 01 5.00 09 10.07 .2 30.7 40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6) , , , , , , , , , , , , ,
.03 5.0 .18 10.0 2.3 35 .46 1.4 4.2 36 5.0 335 5.0 135 .96 0.5 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	D1 5.00 D9 10.07 .2 30.7 40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6) 7) 3)) 3) 3) 3 ; ; ; ; ;
.18 10.0 2.3 35 .46 1.4 4.2 36 5.0 335 5.0 135 .96 0.9 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	D9 10.07 .2 30.7 40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	7 3
2.3 35 .46 1.4 4.2 36 5.0 335 5.0 135 .96 0.9 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.2 30.7 40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	
.46 1.2 4.2 36 5.0 335 5.0 135 .96 0.2 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	40 1.50 .7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 135.0 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6) 3 3 3 3 3 3 3 3 3 3
4.2 36 5.0 335 5.0 135 .96 0.9 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.7 33.3 .0 535.0 .0 135.0 .0 135.0 .0 135.0 .0 0.96 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	
5.0 335 5.0 135 .96 0.8 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.0 535.0 .0 135.0 .0 135.0 .0 0.96 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6))) ; ;
5.0 135 .96 0.9 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.0 135.0 .0 0.96 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6) ; ; ;
.96 0.9 0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	96 0.96 .0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	5 2 5 5
0.0 200 1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.0 400.0 .2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6) ; ;
1.4 7 3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.2 10.6 .8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	; ; ;
3.3 31 0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.8 26.2 .5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	2
0.5 0 9.8 11 2.7 32 7.7 194 9.9 5	.5 0.5 .6 13.1 .4 26.1 .3 290.5 .8 6.6	; ; ;
9.8 11 2.7 32 7.7 194 9.9 5	.6 13.1 .4 26.1 .3 290.5 .8 6.6	j
2.7327.71949.95	.4 26.1 .3 290.5 .8 6.6	; ;
7.7 194 9.9 5	.3 290.5 .8 6.6	5
9.9 5	.8 6.6	5
3.8 2	.8 3.1	
3.2 189	.2 284.0)
2.9 7	.9 13.1	
0.45 0.4	0.85	;
.12 0.5	52 0.92	
У	у у	1
-		
-		
1.0 1.	.0 -	
5.0 7	3 BULGED)
	Prepared Bv	, LH
		0 1
	.12 0.8 y - 1.0 1	<u>12 0.52 0.92</u> y y y 1.0 1.0 -

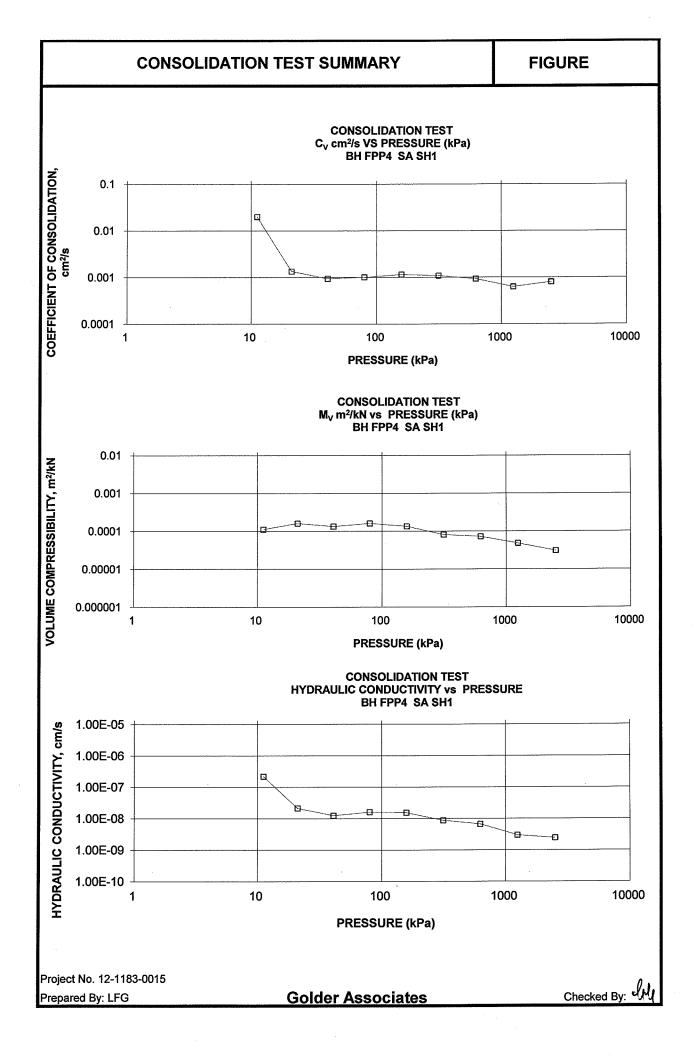


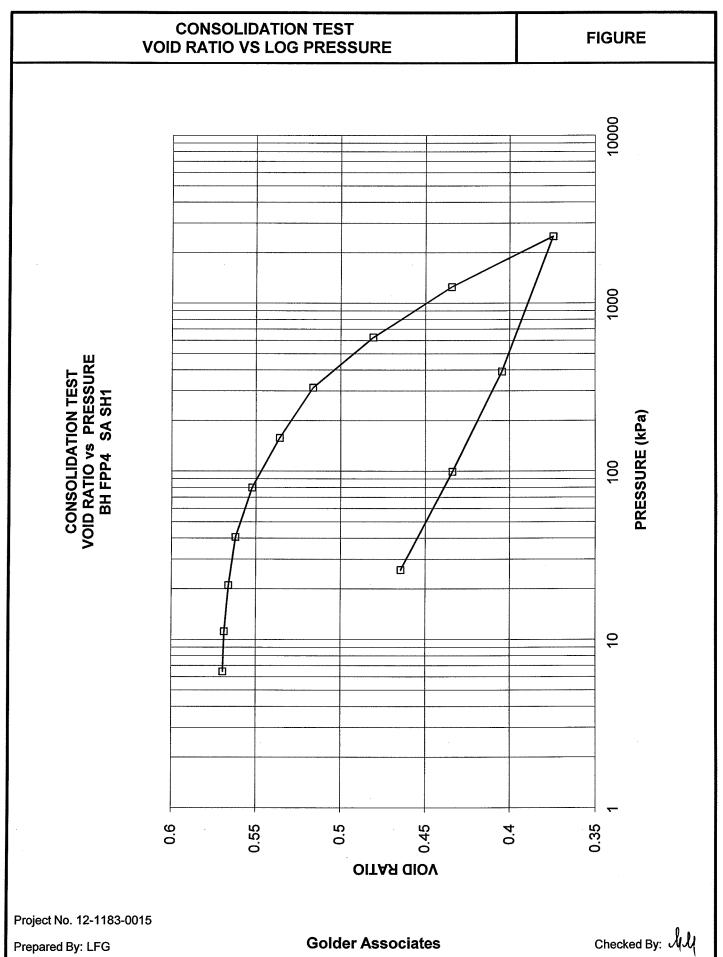



CONSOLIDATED UNDRAINED TRIAXI	AL	ſ		
WITH PORE PRESSURE MEASUREME	NTS		FIGU	RE
SHEET 1 OF 4				
TEST STAGE	A	В	С	
BOREHOLE NUMBER	FTWR11	FTWR11	FTWR11	
SAMPLE	SH4	SH4	SH4	
SPECIMEN DIAMETER, cm	5.02	5.00	4.99	
SPECIMEN HEIGHT, cm	10.15	10.16	10.11	
NATURAL WATER CONTENT, %	22.2	22.3	21.8	
DRY DENSITY, Mg/m ³	1.70	1.73	1.71	
WATER CONTENT AFTER SATURATION, %	25.3	25.5	22.4	
CELL PRESSURE, σ_3 , kPa	195.0	575.0	805.0	
BACK PRESSURE, kPa	135.0	275.0	205.0	
PORE PRESSURE PARAMETER "B"	0.97	0.97	0.97	
CONSOLIDATION PRESSURE, σc, kPa	60.0	300.0	600.0	
VOLUMETRIC STRAIN DURING CONSOLIDATION, %	1.8	5.1	8.9	
WATER CONTENT AFTER CONSOLIDATION, %	24.3	22.6	17.2	
AVERAGE RATE OF STRAIN, %/hr	0.5	0.5	0.5	
TIME TO FAILURE, HOURS	38.5	11.4	17.5	
WATER CONTENT AFTER TEST, %	24.0	21.0	20.8	
MAX. DEVIATOR STRESS, (σ_1 - σ_3), kPa	203.1	467.2	666.2	
AXIAL STRAIN AT (σ_1 - σ_3) maximum, %	19.3	5.7	8.7	
MAX EFFECTIVE PRINCIPAL STRESS RATIO, (σ'_1/σ'_3) maximum	4.9	3.3	2.9	
DEVIATOR STRESS AT (σ'_1/σ'_3) maximum, kPa	125.1	460.0	657.2	
AXIAL STRAIN AT (σ'_1/σ'_3) maximum, %	2.0	4.6	7.1	
PORE PRESSURE PARAMETER, Af, AT (σ_1 - σ_3) maximum	-0.147	0.21	0.37	
PORE PRESSURE PARAMETER, Af, AT (σ'_1/σ'_3) maximum	0.22	0.22	0.39	
FILTER DRAINS USED, y/n	У	У	У	
TEST NOTES:				
CHANGED RATE OF STRAIN, %/hr	-	-	-	
AXIAL STRAIN WHERE RATE OF STRAIN WAS CHANGED, %	-	-	-	
FAILURE PLANE NUMBER	1.0	1.0	1.0	
ANGLE OF FAILURE, DEGREES	65	60	70	
Date: 3/25/2012		F	Prepared By	Ш
Project No. 12-1183-0015 Golder Associa	tes	C	Checked By:	App
				· t

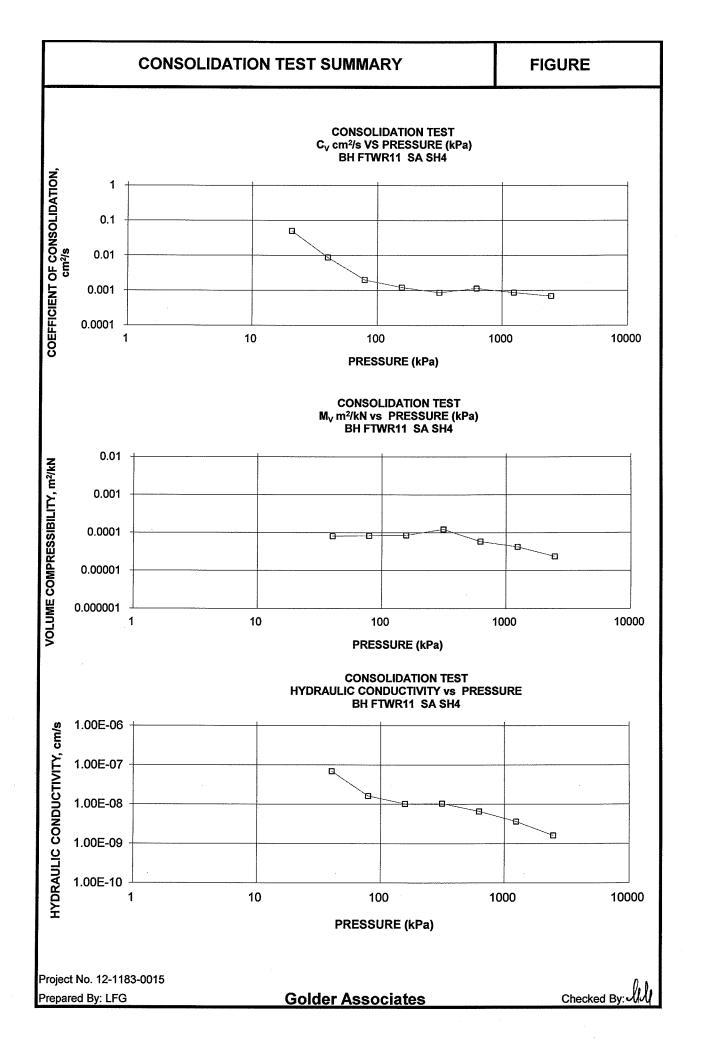


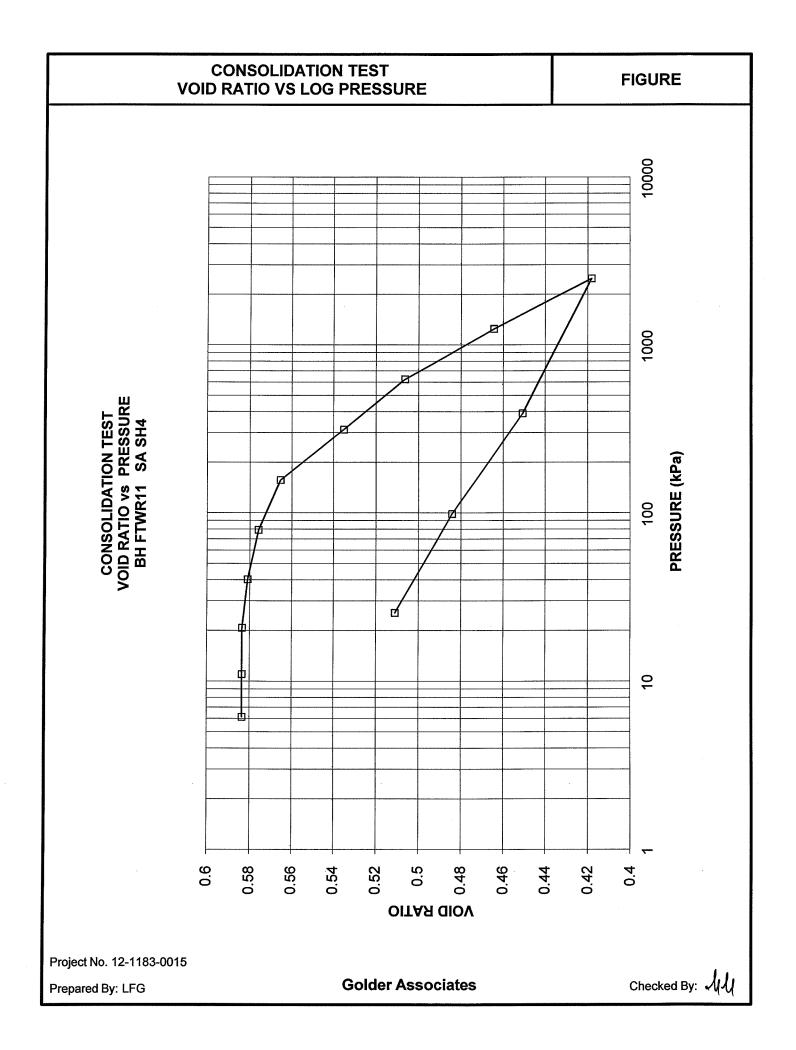



CONSOLIDATED UNDRAINED TRIAXIAL				
WITH PORE PRESSURE MEASUREMENTS			FIGU	RE
SHEET 1 OF 4				
TEST STAGE	A	B	С	
BOREHOLE NUMBER	FTWR30	FTWR30	FTWR30	
SAMPLE	SH7	SH7	SH7	
SPECIMEN DIAMETER, cm	5.01	5.02	5.00	
SPECIMEN HEIGHT, cm	10.61	10.13	10.12	
NATURAL WATER CONTENT, %	32.5	31.6	35.0	
DRY DENSITY, Mg/m ³	1.46	1.46	1.41	
WATER CONTENT AFTER SATURATION, %	34.3	33.6	36.8	
CELL PRESSURE, σ₃, kPa	165.0	335.0	535.0	
BACK PRESSURE, kPa	135.0	135.0	135.0	
PORE PRESSURE PARAMETER "B"	0.96	0.92	0.98	
CONSOLIDATION PRESSURE, σc, kPa	30.0	200.0	400.0	
VOLUMETRIC STRAIN DURING CONSOLIDATION, %	1.3	5.2	9.5	
WATER CONTENT AFTER CONSOLIDATION, %	33.4	30.0	30.1	
AVERAGE RATE OF STRAIN, %/hr	0.5	0.5	0.5	
TIME TO FAILURE, HOURS	6.7	10.1	14.6	
WATER CONTENT AFTER TEST, %	33.5	30.1	30.9	
MAX. DEVIATOR STRESS, (σ_1 - σ_3), kPa	82.9	204.7	309.2	
AXIAL STRAIN AT (σ_1 - σ_3) maximum, %	3.4	5.1	7.3	
MAX EFFECTIVE PRINCIPAL STRESS RATIO, (σ'₁/σ'₃) maximum	3.9	2.8	2.9	
DEVIATOR STRESS AT (♂'₁/♂'₃) maximum, kPa	75.8	204.3	306.7	
AXIAL STRAIN AT (σ'₁/σ'₃) maximum, %	2.4	6.9	9.7	
PORE PRESSURE PARAMETER, Af, AT (σ_1 - σ_3) maximum	0.01	0.40	0.73	
PORE PRESSURE PARAMETER, Af, AT (σ'_1/σ'_3) maximum	0.06	0.42	0.77	
FILTER DRAINS USED, y/n	У	у	У	
TEST NOTES:				
CHANGED RATE OF STRAIN, %/hr	-	-	-	
AXIAL STRAIN WHERE RATE OF STRAIN WAS CHANGED, %	-	-	-	
FAILURE PLANE NUMBER	1.0	2.0	1.0	
ANGLE OF FAILURE, DEGREES	70	70	60	
Date: 3/25/2012		I	Prepared By	LH
Project No. 12-1183-0015 Golder Associates		(Checked By:	lif

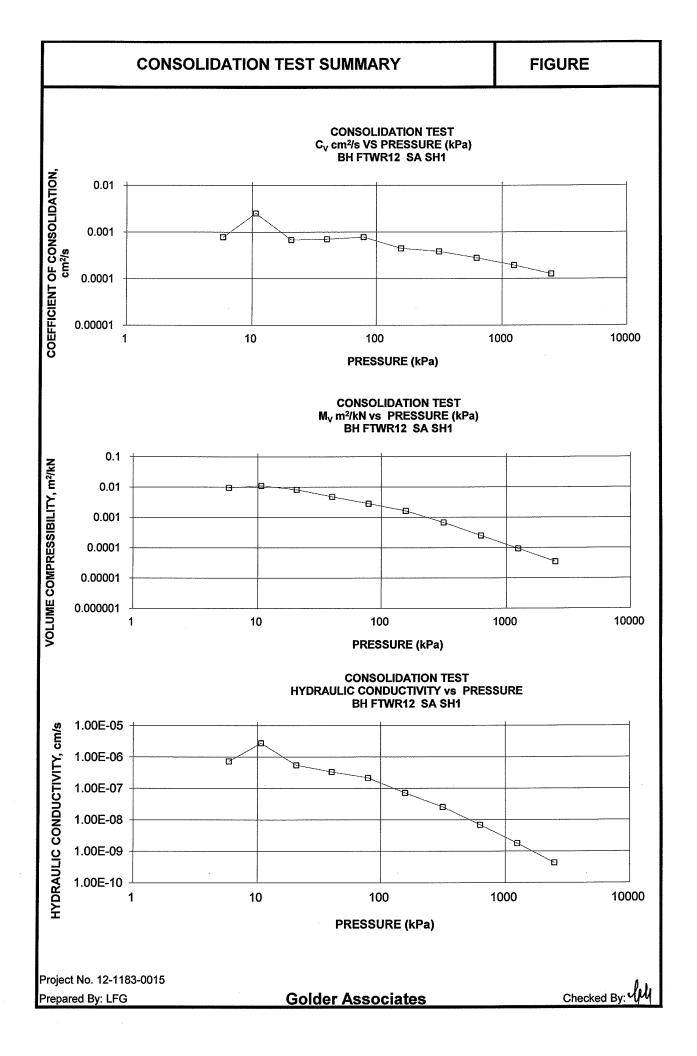


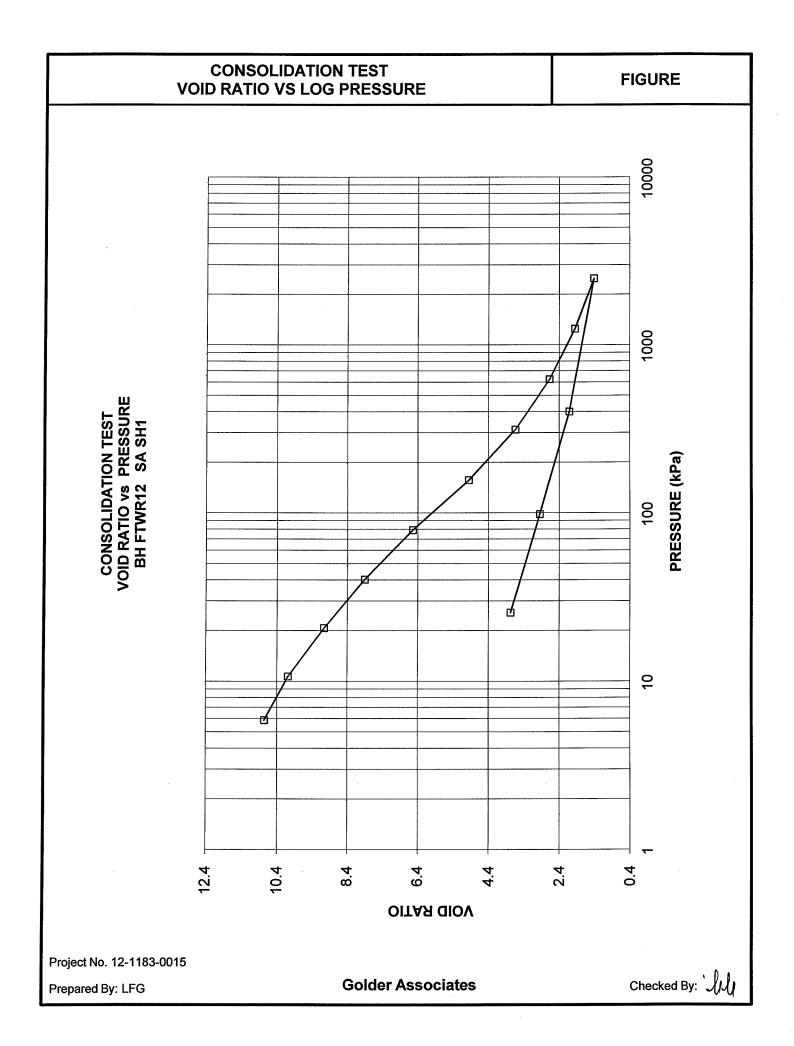
		SA	MPLE IDE	NTIFICA	ΓΙΟΝ		
Project Number	1	12-1183-0015			Sample Numbe	r	SH
Borehole Numb		FPP4			Sample Depth,		6.1-6.7
			TEST CON				
Test Type		Standard			Load Duration,	hr	24
Oedometer Nun	nher	Stanuaru 9			Loau Duration,	•••	27
Date Started		2/20/2012					
Date Completed	1	2/29/2012					
			NSIONS AN	ID PROP	ERTIES - INITIA	L	
Sample Height,		1.90			Unit Weight, kN		20.55
Sample Diamete		6.33			Dry Unit Weight		16.72
Area, cm ²	···, -···	31.43			Specific Gravity		2.65
Volume, cm ³		59.65			Solids Height, c		1.221
Water Content,	%	22.89			Volume of Solid		38.39
Wet Mass, g		125.02			Volume of Void		21.27
Dry Mass, g		101.73			Degree of Satu		109.5
			FEST COMP	OITATU		· · · · ·	
	Corr.		Average				
Pressure	Height	Void	Height	t ₉₀	Cv	m _v	k
kPa	cm	Ratio	cm	sec	cm²/s	m²/kN	cm/s
0.00	1.898	0.554	1.898		01173		
6.45	1.917	0.570	1.908				
11.16	1.916	0.569	1.917	39	2.00E-02	1.12E-04	2.19E-07
20.99	1.913	0.566	1.915	577	1.35E-03	1.61E-04	2.12E-08
40.57	1.908	0.562	1.911	821	9.43E-04	1.35E-04	1.24E-08
79.70	1.896	0.552	1.902	759	1.01E-03	1.62E-04	1.60E-08
157.55 1.896		0.536	1.886	653	1.15E-03	1.35E-04	1.53E-08
312.94	1.852	0.516	1.864	673	1.09E-03	8.17E-05	8.76E-09
623.98	1.809	0.481	1.830	759	9.36E-04	7.27E-05	6.66E-09
1247.09	1.752	0.434	1.781	1070	6.28E-04	4.82E-05	2.97E-09
2497.28	1.679	0.375	1.715	778	8.02E-04	3.08E-05	2.42E-09
391.05	1.715	0.404	1.697				
99.09	1.751	0.434	1.733				
25.85	1.789	0.465	1.770				
Note:							
c calculated usin	ig cv based c	on t ₉₀ values.					
	S	AMPLE DIME	INSIONS AN	ID PROP	ERTIES - FINAI	_	
Sample Height, d	cm	1.79			Unit Weight, kN	l/m ³	21.34
Sample Diamete	r, cm	6.33			Dry Unit Weight	t, kN/m³	17.74
Area, cm ²		31.43			Specific Gravity	, measured	2.65
/olume, cm ³		56.23			Solids Height, c	m	1.221
Vater Content, 9	%	20.30			Volume of Solid		38.39
Vet Mass, g		122.38			Volume of Void	s, cm ³	17.84
Dry Mass, g		101.73					



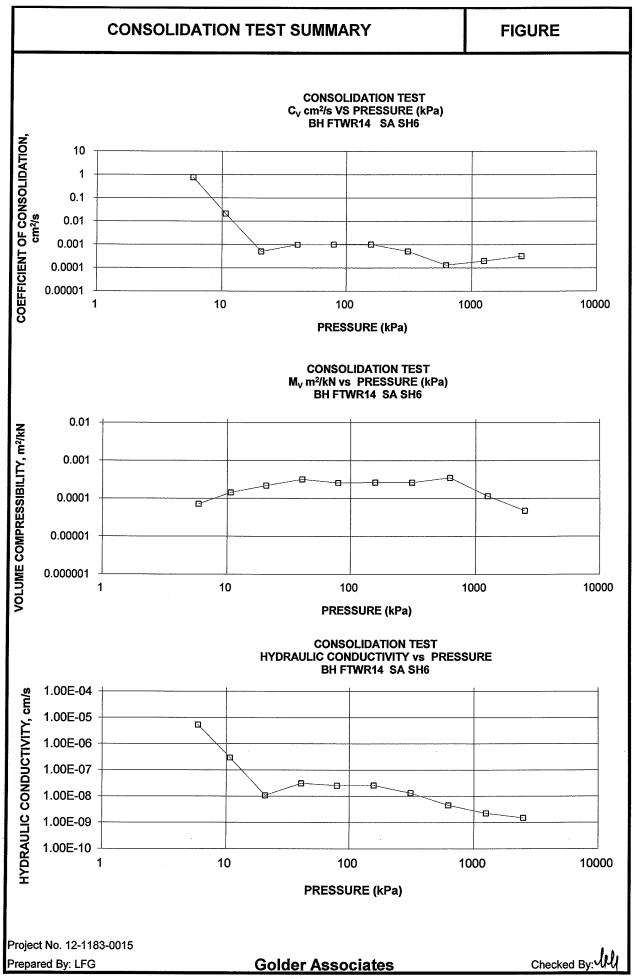

FIGURE

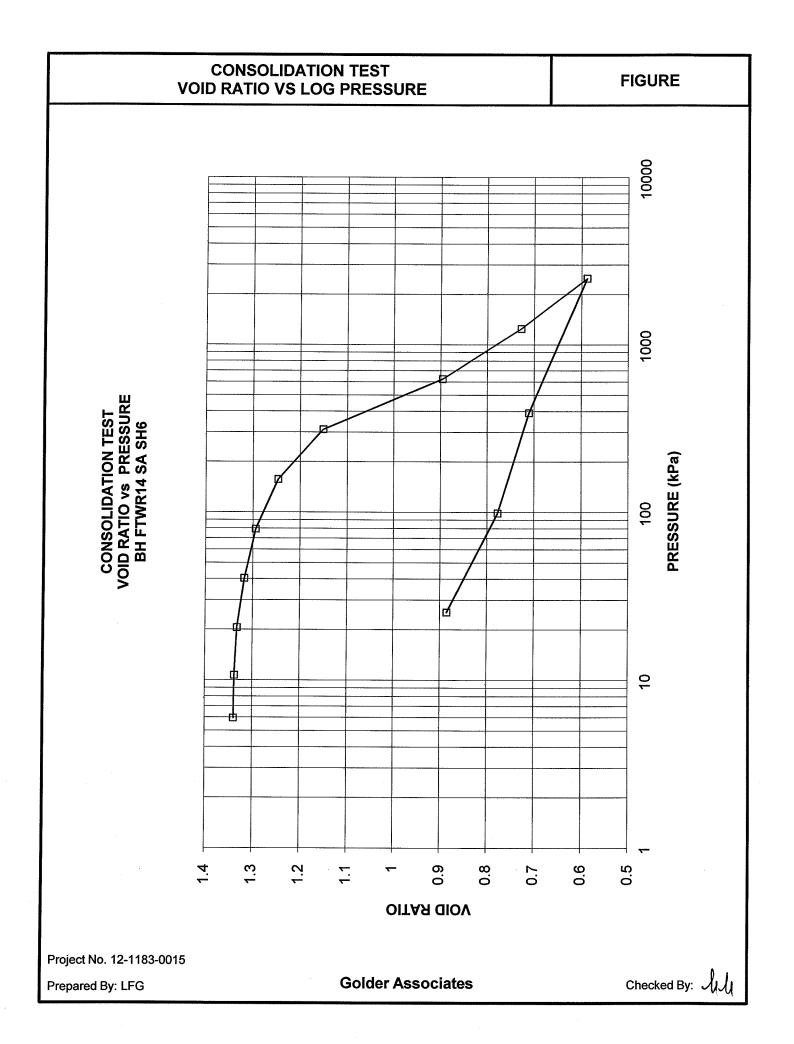
			MPLE IDE				
Project Number 1 Borehole Number		2-1183-0015 FTWR11			Sample Numbe Sample Depth,		SH4 3.0-3.1
			TEST CO	DITION			
Test Type		Standard			Load Duration,	hr	24
Oedometer Num	nber	2					
Date Started		2/19/2012					
Date Completed		3/02/2012					
			NSIONS AN	ID PROP	ERTIES - INITIA	۱L	
Sample Height,		2.54			Unit Weight, kN		20.24
Sample Diamete	er, cm	6.34			Dry Unit Weigh		16.53
Area, cm ²		31.58			Specific Gravity		2.67
Volume, cm ³	.,	80.09		Solids Height, cm		1.601	
Water Content,	%	22.47			Volume of Solid	,	50.55
Wet Mass, g		165.31			Volume of Void	•	29.53
Dry Mass, g		134.98			Degree of Satu	ration, %	102.7
			EST COMF	PUTATIO	NS		
Pressure	Corr. Height	Void	Average Height	+	~	m	k
kPa	-		Height	t ₉₀	C _V	m _v	
0.00	 2.536	Ratio 0.584	 2.536	sec	cm ² /s	m²/kN	cm/s
6.12	2.535	0.584	2.536				
10.98	2.535	0.584	2.535				
20.72	2.535	0.584	2.535	27	5.05E-02		
40.20	2.531	0.581	2.533	156	8.72E-03	8.10E-05	6.92E-08
79.01	2.523	0.576	2.527	673	2.01E-03	8.28E-05	1.63E-08
156.42	2.506	0.565	2.514	1098	1.22E-03	8.58E-05	1.03E-08
312.19	2.458	0.535	2.482	1500	8.70E-04	1.23E-04	1.05E-08
622.22	2.411	0.506	2.434	1098	1.14E-03	5.86E-05	6.58E-09
1242.85	2.345	0.465	2.378	1370	8.75E-04	4.25E-05	3.64E-09
2481.97	2.270	0.418	2.307	1622	6.96E-04	2.36E-05	1.61E-09
389.79	2.322	0.451	2.296				
98.32	2.376	0.484	2.349				
25.42	2.419	0.511	2.398				
Note:							
calculated usin	- •						
Specimen swelle	d under 20.7	kPa					
	SA		NSIONS AN	ND PROP	ERTIES - FINAI		
Sample Height, c	****	2.42			1 In: 1 VA faite 1 4 1	³	21.11
Sample Diamete		2.42 6.34			Unit Weight, kN		17.33
Area, cm ²	, 011	0.34 31.58			Dry Unit Weight Specific Gravity		2.67
√olume, cm ³		76.39			Solids Height, c		1.601
Volume, cm Vater Content, %	6	21.80			Volume of Solid		50.55
Vet Mass, g	-	164.41			Volume of Solid		25.83
Dry Mass, g		134.98				o, oni	20.00


Golder Associates


Checked By: UU

		SA	MPLE IDE		TION			
Project Number		12-1183-0015			Sample Numbe	ar .	SH1	
Borehole Numb		FTWR12			Sample Depth,		3.0-3.7	
			TEST CON		·····		0.0 0.7	
	Fest Type Standard Load Duration, hr							
					Load Duration,	hr	24	
Oedometer Nur	nper	6						
Date Started Date Completed	4	2/20/2012 3/16/2012						
					ERTIES - INITIA			
0				DEKOP				
Sample Height,		1.90			Unit Weight, kN		8.01	
Sample Diamete	er, cm	6.34			Dry Unit Weigh		1.30	
Area, cm ²			31.55 59.88			/, measured	1.65	
Volume, cm ³ Water Content,	0/.		59.88		Solids Height, o		0.152	
Water Content, Wet Mass, g	70	516.71 48.93			Volume of Solid	•	4.81	
Dry Mass, g		48.93 7.934			Volume of Void Degree of Satu		55.07 74.4	
Dry Mass, g						1au011, 70	/4.4	
			EST COMP	UIAIIO	N5			
Pressure	Corr. Height	Void	Average Height	t ₉₀	C _v	m _v	k	
	-		-			-		
kPa 0.00	 1.898	Ratio 11.453	cm 1.898	sec	cm ² /s	m²/kN	cm/s	
0.00 5.86	1.696	10.758	1.845	923	7.82E-04	9.52E-03	7.30E-07	
10.67	1.690	10.758	1.645	923 254	2.53E-03	9.52E-03 1.11E-02	2.76E-07	
20.66	1.535	9.072	1.613	807	6.83E-04	8.19E-02	5.48E-07	
40.12	1.357	7.906	1.446	628	7.06E-04	4.81E-03	3.33E-07	
78.90	1.150	6.543	1.253	427	7.80E-04	2.82E-03	2.16E-07	
156.46	0.908	4.960	1.029	501	4.48E-04	1.64E-03	7.19E-08	
311.99	0.709	3.650	0.809	360	3.85E-04	6.76E-04	2.55E-08	
622.31	0.561	2.678	0.635	305	2.80E-04	2.52E-04	6.90E-09	
1243.22	0.450	1.952	0.505	279	1.94E-04	9.38E-05	1.78E-09	
2482.47	0.368	1.414	0.409	279	1.27E-04	3.49E-05	4.34E-10	
399.38	0.474	2.110	0.421					
98.09	0.604	2.960	0.539					
25.50	0.729	3.784	0.666					
lote:								
calculated usir	ng cv based o	on t ₉₀ values.						
	S	AMPLE DIME	NSIONS AN	ID PROP	ERTIES - FINAI	<u>.</u>		
ample Height, o		0.73			Unit Weight, kN	/m ³	12.28	
ample Diamete	er, cm	6.34			Dry Unit Weight	, kN/m ³	3.38	
rea, cm ²		31.55			Specific Gravity		1.65	
'olume, cm ³		23.01			Solids Height, c		0.152	
Vater Content, 9	6	262.99			Volume of Solid		4.81	
Vet Mass, g ry Mass, g		28.80			Volume of Void	s, cm ³	18.20	
		7.934						

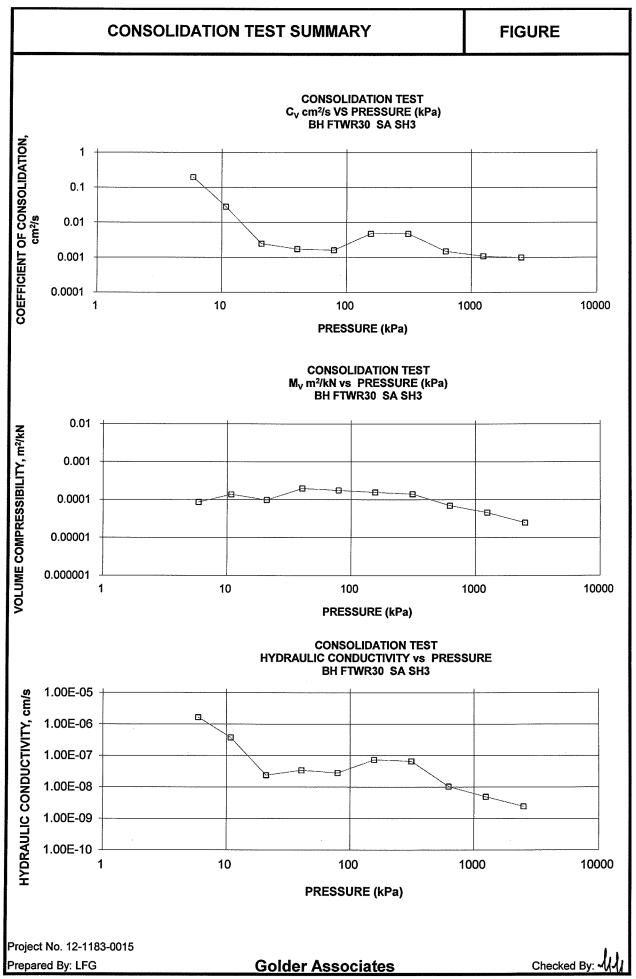


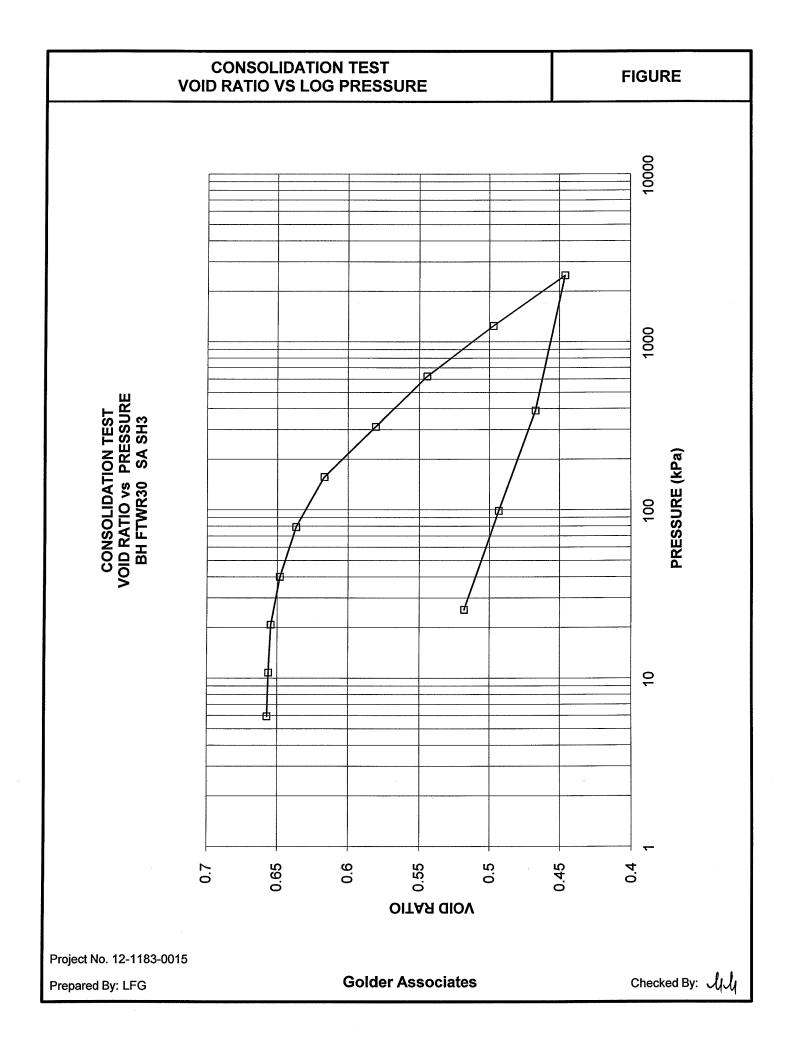


FIGURE

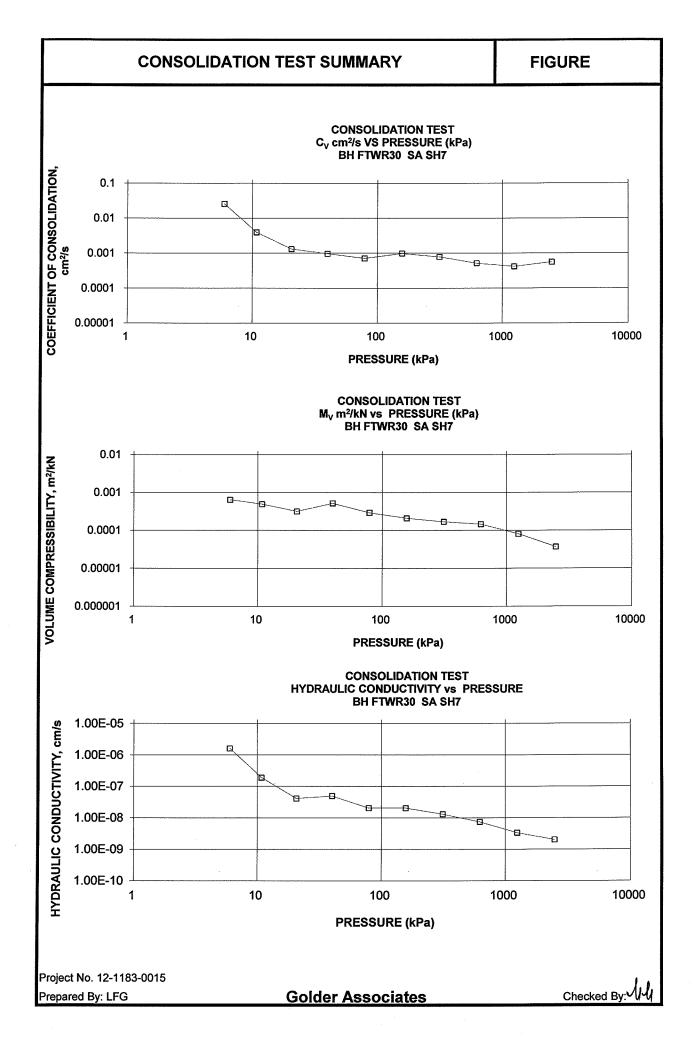
L

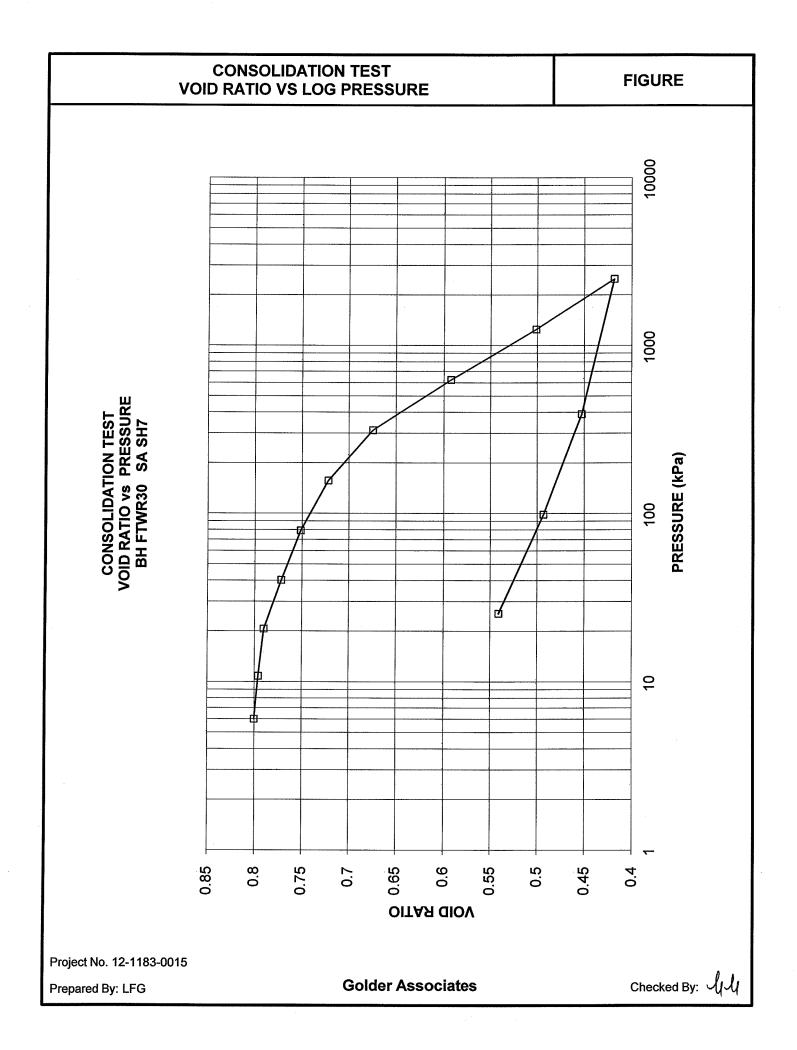
SAMPLE IDENTIFICATION Project Number 12-1183-0015 FTWR14 Sample Number Sample Depth, m 19.8- Borehole Number FTWR14 Sample Depth, m 19.8- Test Type Standard Load Duration, hr 9.8- Oedometer Number 5 5 9.8- Date Started 2/20/2012 9.90 9.01 19.8- Sample Diameter, cm 1.90 Unit Weight, kN/m³ 16 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 22 Area, cm² 31.47 Specific Gravity, measured 22 Volume, cm³ 59.79 Solids Height, cm 0.0 Water Content, % 51.88 Volume of Solids, cm³ 25 Vel Mass, g 103.61 Volume of Solids, cm³ 364 Dry Mass, g 68.22 Degree of Saturation, % 109 Supple 1.330 1.900 7.65E-01 7.18E-05 5.38E- Pressure Height Void Height 1.899 36 2.12E-02 1.44E-04
Borehole Number FTWR14 Sample Depth, m 19.8- TEST CONDITIONS Test Type Standard Load Duration, hr Oedometer Number 5 Date Started 2/20/2012 Date Started 2/20/2012 Date Started 3/6/2012 Sample Height, cm 1.90 Unit Weight, kN/m³ 10 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 2 Volume, cm³ 59.79 Solids Height, cm 0. Vater Content, % 51.88 Volume of Solids, cm³ 22 Volume, cm³ 59.79 Solids Height, cm 0. Wat Mass, g 103.61 Volume of Solids, cm³ 26 Volume, of Voids, cm³ 34 Dry Mass, g 10 Dry Mass, g 68.22 Degree of Saturation, % 10 Sample 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-1 10.67 1.898 1.333 1.899 36 2.12E-02 1.44E-04 2.99E-04 20.53 1.894 1.333
Borehole Number FTWR14 Sample Depth, m 19.8- TEST CONDITIONS Test Type Standard Load Duration, hr Oedometer Number 5 Date Started 2/20/2012 Date Started 2/20/2012 Date Started 2/20/2012 Date Completed 3/6/2012 SAMPLE DIMENSIONS AND PROPERTIES - INITIAL Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 10 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 2 2 Volume, cm³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Solids, cm³ 22 Volume, cm³ 59.79 Solids Height, cm 0. Wat Mass, g 103.61 Volume of Solids, cm³ 22 Velame, cm³ 58.22 Degree of Saturation, % 10 Sample Diameter, cm Ratio cm sec cm²/s m²/kN cm/s Vet Mass, g 103.61 Volume of Voids, cm³ 32 10 10 10 10 10 10
Test Type Standard Load Duration, hr Oedometer Number 5 Date Started 2/20/2012 Date Completed 3/6/2012 SAMPLE DIMENSIONS AND PROPERTIES - INITIAL Sample Height, cm 1.90 Unit Weight, kN/m ³ Sample Diameter, cm 6.33 Dry Unit Weight, kN/m ³ 2 Area, cm ² 31.47 Specific Gravity, measured 2 Volume, cm ³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Voids, cm ³ 24 Dry Mass, g 68.22 Degree of Saturation, % 10 TEST COMPUTATIONS Veid Mass, g 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 Sound 1.999 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 O.0 1.999 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 O.01 1.900 1 7.65E-01 7.18E-05
Oedometer Number Date Started 5 2/20/2012 Date Completed 3/6/2012 SAMPLE DIMENSIONS AND PROPERTIES - INITIAL Sample Height, cm 1.90 Unit Weight, kN/m³ 16 2 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 2 2 Area, cm² 31.47 Specific Gravity, measured 2 2 Volume, cm³ 59.79 Solids Height, cm 0.0 Water Content, % 51.88 Volume of Solids, cm³ 26 Wet Mass, g 103.61 Volume of Solids, cm³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 Fressure Height Void Height tso cm/s Substance Corr. Average 2 2 2 2 2 2 2 34 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-10 6.33 1.09E-20 1.44E-04 2.99E-20 20.53 1.894 1.333 1.896 1500 5.08E-04
Oedometer Number Date Startied 5 Date Startied 2/20/2012 Date Completed 3/6/2012 SAMPLE DIMENSIONS AND PROPERTIES - INITIAL Sample Height, cm 1.90 Unit Weight, kN/m³ 16 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 22 Area, cm² 31.47 Specific Gravity, measured 22 Volume, cm³ 59.79 Solids Height, cm 0.0 Water Content, % 51.88 Volume of Solids, cm³ 226 Wet Mass, g 103.61 Volume of Solids, cm³ 343 Dry Mass, g 68.22 Degree of Saturation, % 100 Fressure Height Void Height tso cm/s No Ateio cm sec cm²/s m²/kN cm/s Substance Corr. Average 2 2 1067 1.898 1.333 1.899 36 2.12E-02 1.44E-04 2.99E-2 Substance Corr. Average 2 2 1.333
Date Completed 3/6/2012 SAMPLE DIMENSIONS AND PROPERTIES - INITIAL Sample Height, cm 1.90 Unit Weight, kN/m³ 16 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 2 Area, cm² 31.47 Specific Gravity, measured 2 Volume, cm³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Solids, cm³ 3/4 Dry Mass, g 103.61 Volume of Voids, cm³ 3/4 Degree of Saturation, % 10 Corr. Average Pressure Height Void Height tso c, m²/kN cm/s 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E- 10.67 1.898 1.338 1.899 3.6 2.12E-02 1.44E-04 2.99E- 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.02E-04 40.29 1.882 1.318
SAMPLE DIMENSIONS AND PROPERTIES - INITIAL Sample Height, cm 1.90 Unit Weight, kN/m³ 16 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 2 Area, cm² 31.47 Specific Gravity, measured 2 Volume, cm³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Solids, cm³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 Corr. Average Pressure Height Void Height t ₆₀ c.v m²/kN cm/s 0.00 1.300 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 1.898 1.333 1.899 36 2.12E-02 1.44E-04 2.99E-20.53 1.894 1.333 1.899 36 2.12E-02 1.44E-04 2.99E-20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-20.53 3.12E-79 1.41E-04 2.99E-20.53 3.12E-79 1.91E-03 2.64E-04
Sample Height, cm 1.90 Unit Weight, kN/m³ 100 Sample Diameter, cm 6.33 Dry Unit Weight, kN/m³ 2 Area, cm² 31.47 Specific Gravity, measured 2 Volume, cm³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Solids, cm³ 25 Wet Mass, g 103.61 Volume of Voids, cm³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 Corr. Average Fressure Height Void Height tego cv mv k 0.00 1.900 1.340 1.900 7.65E-01 7.18E-05 5.38E-10.67 0.67 1.898 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 0.67 1.898 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-140.29 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-140.29 <t< td=""></t<>
Sample Diameter, cm 6.33 Dry Unit Weight, KN/m³ 2 Area, cm² 31.47 Specific Gravity, measured 2 Volume, cm³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Solids, cm³ 26 Wet Mass, g 103.61 Volume of Voids, cm³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 TEST COMPUTATIONS Corr. Average Pressure Height Void Height tson msc 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-1 10.67 1.898 1.338 1.899 36 2.12E-02 1.44E-04 2.99E-2 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-4 40.29 1.882 1.318 1.888 759 9.95E-04 3.20E-04 3.26E-2 156.71 1.824 1.294 1.872 73
Area, cm ² 31.47 Specific Gravity, measured 2 Volume, cm ³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Solids, cm ³ 25 Wet Mass, g 103.61 Volume of Voids, cm ³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 TEST COMPUTATIONS Corr. Average Pressure Height Void Height tspec m²/kN cm/s 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 10.67 1.898 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-20.53 10.67 1.898 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-40 40.29 1.882 1.318 1.888 759 9.95E-04 3.20E-04 3.12E-79.17 1.863 1.294 1.872 735 1.01E-03 2.64E-04 2.62E-310.66 <
Volume, cm ³ 59.79 Solids Height, cm 0. Water Content, % 51.88 Volume of Solids, cm ³ 25 Wet Mass, g 103.61 Volume of Voids, cm ³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 Corr. Average Pressure Height Void Height toid 1.890 cm sec cm²/s m²/kN cm/s 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 1.898 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 1.898 1.333 1.899 36 2.12E-02 1.44E-04 2.99E-20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-40 1.09E-40
Water Content, % 51.88 Volume of Solids, cm ³ 25 Wet Mass, g 103.61 Volume of Voids, cm ³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 TEST COMPUTATIONS TEST COMPUTATIONS Corr. Average mv k Pressure Height Void Height tso cv mv k 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-1 10.67 1.898 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-1 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-1 40.29 1.882 1.318 1.888 759 9.95E-04 3.20E-04 3.12E-1 79.17 1.863 1.294 1.872 7.35 1.01E-03 2.64E-04 2.62E-1 310.66 1.747 1.151 1.785 1307 5.17E-04 2.64E-
Wet Mass, g 103.61 Volume of Voids, cm ³ 34 Dry Mass, g 68.22 Degree of Saturation, % 10 TEST COMPUTATIONS TEST COMPUTATIONS Pressure Height Void Height twide K Ratio cm sec cm ² /s m ² /kN cm/s 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 10.67 1.898 1.339 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 10.67 1.898 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-04 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-04 40.29 1.882 1.318 1.888 759 9.95E-04 3.20E-04 3.12E-04 79.17 1.863 1.294 1.872 735 1.01E-03 2.64E-04 2.62E-310.66 310.66 1.747 1
Dry Mass, g 68.22 Degree of Saturation, % 10 TEST COMPUTATIONS TEST COMPUTATIONS Pressure Height Void Height t ₉₀ c _v m _v k Pressure Height Void Height t ₉₀ c _v m _v k 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-10.67 10.67 1.898 1.338 1.899 36 2.12E-02 1.44E-04 2.99E-20.53 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-40.29 40.29 1.882 1.318 1.888 759 9.95E-04 3.20E-04 3.12E-79.17 1.863 1.294 1.872 735 1.01E-03 2.64E-04 2.62E-310.66 1.747 1.151 1.785 1307 5.17E-04 2.64E-04 2.62E-310.66 1.851 1.539 0.896 1.643 4335 1.32E-04
TEST COMPUTATIONS TEST COMPUTATIONS Pressure Height Void Height t ₉₀ c _v m _v k Ratio cm Ratio cm sec cm²/s m²/kN cm/s 0.00 1.900 1.340 1.900 1 7.65E-01 7.18E-05 5.38E-1 10.67 1.898 1.338 1.899 36 2.12E-02 1.44E-04 2.99E-20.53 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E-4 40.29 1.882 1.318 1.888 759 9.95E-04 3.20E-04 3.12E-7 79.17 1.863 1.294 1.872 735 1.01E-03 2.59E-04 2.62E-3 310.66 1.747 1.151 1.785 1307 5.17E-04 2.64E-04 1.34E-621.85 1244.18 1.403 0.728 1.471 2306 1.99E-04 1.16E-04 2.25E-2487.48 1247.48
Corr.AveragePressureHeightVoidHeight t_{90} c_v m_v kkPacmRatiocmseccm²/sm²/kNcm/s0.001.9001.3401.90017.65E-017.18E-055.38E-10.6710.671.8981.3391.90017.65E-017.18E-055.38E-10.6710.671.8981.3381.899362.12E-021.44E-042.99E-20.5320.531.8941.3331.89615005.08E-042.19E-041.09E-40.2940.291.8821.3181.8887599.95E-043.20E-043.12E-79.171.8631.2941.8727351.01E-032.59E-042.62E-156.711.8241.2461.8437121.01E-032.64E-042.62E-310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.52390.521.3890.7111.33998.541.4430.7771.416
PressureHeightVoidHeight t_{90} c_v m_v kkPacmRatiocmsec cm^2/s m^2/kN cm/s0.001.9001.3401.90017.65E-017.18E-055.38E-110.671.8981.3381.899362.12E-021.44E-042.99E-220.531.8941.3331.89615005.08E-042.19E-041.09E-440.291.8821.3181.8887599.95E-043.20E-043.12E-779.171.8631.2941.8727351.01E-032.64E-042.62E-156.71156.711.8241.2461.8437121.01E-032.64E-042.62E-310.6617471.1511.78513075.17E-042.64E-041.34E-621.851244.181.4030.7281.47123061.99E-041.16E-042.25E-22E-22487.48390.521.3890.7111.33998.541.4430.7771.416
kPacmRatiocmseccm²/sm²/kNcm/s0.001.9001.3401.90017.65E-017.18E-055.38E-10.671.8981.3381.899362.12E-021.44E-042.99E-20.531.8941.3331.89615005.08E-042.19E-041.09E-40.291.8821.3181.8887599.95E-043.20E-043.12E-79.171.8631.2941.8727351.01E-032.59E-042.62E-156.711.8241.2461.8437121.01E-032.64E-042.62E-310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
0.00 1.900 1.340 1.900 5.94 1.899 1.339 1.900 1 7.65E-01 7.18E-05 5.38E- 10.67 1.898 1.338 1.899 36 2.12E-02 1.44E-04 2.99E- 20.53 1.894 1.333 1.896 1500 5.08E-04 2.19E-04 1.09E- 40.29 1.882 1.318 1.888 759 9.95E-04 3.20E-04 3.12E- 79.17 1.863 1.294 1.872 735 1.01E-03 2.64E-04 2.62E- 156.71 1.824 1.246 1.843 712 1.01E-03 2.64E-04 2.62E- 310.66 1.747 1.151 1.785 1307 5.17E-04 2.64E-04 1.34E- 621.85 1.539 0.896 1.643 4335 1.32E-04 3.51E-04 4.54E- 1244.18 1.403 0.728 1.471 2306 1.99E-04 1.16E-04 2.25E- 2487.48 1.290
5.941.8991.3391.90017.65E-017.18E-055.38E-10.671.8981.3381.899362.12E-021.44E-042.99E-20.531.8941.3331.89615005.08E-042.19E-041.09E-40.291.8821.3181.8887599.95E-043.20E-043.12E-79.171.8631.2941.8727351.01E-032.59E-042.62E-156.711.8241.2461.8437121.01E-032.64E-042.62E-310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
10.671.8981.3381.899362.12E-021.44E-042.99E-20.531.8941.3331.89615005.08E-042.19E-041.09E-40.291.8821.3181.8887599.95E-043.20E-043.12E-79.171.8631.2941.8727351.01E-032.59E-042.62E-156.711.8241.2461.8437121.01E-032.64E-042.62E-310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
20.531.8941.3331.89615005.08E-042.19E-041.09E-0440.291.8821.3181.8887599.95E-043.20E-043.12E-79.171.8631.2941.8727351.01E-032.59E-042.56E-156.711.8241.2461.8437121.01E-032.64E-042.62E-310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
40.291.8821.3181.8887599.95E-043.20E-043.12E-79.171.8631.2941.8727351.01E-032.59E-042.56E-156.711.8241.2461.8437121.01E-032.64E-042.62E-310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
156.711.8241.2461.8437121.01E-032.64E-042.62E-310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
310.661.7471.1511.78513075.17E-042.64E-041.34E-621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
621.851.5390.8961.64343351.32E-043.51E-044.54E-1244.181.4030.7281.47123061.99E-041.16E-042.25E-2487.481.2900.5881.34611883.23E-044.78E-051.52E-390.521.3890.7111.33998.541.4430.7771.416
1244.18 1.403 0.728 1.471 2306 1.99E-04 1.16E-04 2.25E- 2487.48 1.290 0.588 1.346 1188 3.23E-04 4.78E-05 1.52E- 390.52 1.389 0.711 1.339 98.54 1.443 0.777 1.416
2487.48 1.290 0.588 1.346 1188 3.23E-04 4.78E-05 1.52E- 390.52 1.389 0.711 1.339 98.54 1.443 0.777 1.416
390.52 1.389 0.711 1.339 98.54 1.443 0.777 1.416
98.54 1.443 0.777 1.416
25.32 1.537 0.886 1.487
Note: < calculated using cv based on t ₉₀ values.
SAMPLE DIMENSIONS AND PROPERTIES - FINAL
Sample Height, cm 1.53 Unit Weight, kN/m ³ 18
Sample Diameter, cm 6.33 Dry Unit Weight, kN/m ³ 13
Area, cm ² 31.47 Specific Gravity, measured 2
/olume, cm ³ 48.18 Solids Height, cm 0.
Vet Mass, g 92.64 Volume of Voids, cm ³ 22
Vet Mass, g 92.64 Volume of Voids, cm ³ 22




FIGURE

		64					
.			MPLE IDE	NHFICA			
Project Number Borehole Numb		12-1183-0015 FTWR30			Sample Number Sample Depth,		SH3 3.5-4.1
Borenole Num		FIVINOU	TEOT OO		· · · · · · · · · · · · · · · · · · ·		3.0-4.
		.	TEST CO	NDITIONS			
Test Type		Standard			Load Duration, I	nr	24
Oedometer Nur	mber	12					
Date Started Date Complete	d	2/19/2012 3/03/2012					
Date Complete					ERTIES - INITIA	ľ	
Sample Height,		2.55					19.73
Sample Diamet		6.34			Unit Weight, kN		15.85
Area, cm ²	, uill	0.34 31.58			Dry Unit Weight Specific Gravity		2.68
Area, cm Volume, cm ³				Solids Height, c		1.537	
Volume, cm Water Content,	%	24.51			Volume of Solid		48.53
Wet Mass, g	10	161.92			Volume of Solid Volume of Voids	•	48.55 31.94
Dry Mass, g		130.05			Degree of Satur		99.8
2.7 mass, y	<u></u>						
	<u> </u>	•			NJ		
Pressure	Corr. Height	Void	Average Height	t ₉₀	Cv	m _v	k
kPa	cm	Ratio	cm	sec	cm ² /s	m²/kN	cm/s
0.00	2.548	0.658	2.548	350	cm /s	III /KIN	011/0
5.93	2.548	0.657	2.547	7	1.97E-01	8.60E-05	1.66E-06
10.79	2.545	0.656	2.546	49	2.80E-02	1.37E-04	3.77E-07
20.77	2.543	0.655	2.544	554	2.48E-03	9.83E-05	2.39E-08
39.96	2.533	0.648	2.538	778	1.75E-03	1.98E-04	3.41E-08
78.83	2.535	0.637	2.524	831	1.63E-03	1.30E-04 1.77E-04	2.81E-08
156.34	2.315	0.617	2.524	277	4.78E-03	1.56E-04	7.31E-08
311.26	2.485	0.581	2.500	267	4.79E-03	1.41E-04	6.63E-08
621.71	2.429	0.544	2.401	807	1.51E-03	7.02E-05	1.04E-08
1241.66	2.373	0.344 0.497	2.401	1058	1.09E-03	4.60E-05	4.94E-09
2484.29	2.301	0.497 0.446	2.337	1058	1.00E-03	4.80E-05 2.48E-05	4.94E-09 2.43E-09
388.87	2.222	0.440	2.238	1004	1.002-03	2.402-03	2.456-03
98.38	2.254	0.467	2.230 2.275				
90.30 25.47	2.295	0.495	2.275 2.314				
Note: < calculated usi	ng cv based o	on t ₉₀ values.					
	S	AMPLE DIME	NSIONS AI	ND PROP	PERTIES - FINAL	-	
Sample Height,	cm	2.33			Unit Weight, kN	/m³	21.26
Sample Diamete		6.34			Dry Unit Weight		17.31
Area, cm ²		31.58			Specific Gravity		2.68
/olume, cm ³		73.66			Solids Height, c		1.537
•	%	22.80			Volume of Solid		48.53
•					Volume of Voids		25.13
Vet Mass, g							


Prepared By: LFG


Checked By: 111

			MPLE IDE	NTFICA			
Project Number Borehole Number		2-1183-0015 FTWR30			Sample Number Sample Depth, r		SH 8.5-9.
			TEST CON	NDITIONS	3		
Test Type Standard					Load Duration, I	۱r	24
Oedometer Num	nber	10					
Date Started		2/19/2012					
Date Completed		3/03/2012					
			NSIONS AN	ID PROP	ERTIES - INITIA	L	
Sample Height,		2.54			Unit Weight, kN		18.88
Sample Diamete	er, cm	6.34			Dry Unit Weight		14.49
Area, cm ²		31.53	Specific Gravity, measure				2.67
		80.02			Solids Height, c		1.404
-		30.31	Volume of Solids				44.28 35.75
Wet Mass, g Dry Mass, g		154.05 118.22			Volume of Voids Degree of Satur		100.2
Dry Wass, g	*					auon, 70	100.2
	Corr	1			NS		
Pressure	Corr. Height	Void	Average Height	t ₉₀	Cv	m _v	k
kPa	cm	Ratio	cm	sec	cm ² /s	m²/kN	cm/s
0.00	2.538	0.807	2.538	300	GII /S	III /KIN	0.180
6.00	2.528	0.800	2.533	53	2.57E-02	6.44E-04	1.62E-06
10.80	2.522	0.796	2.525	343	3.94E-03	4.93E-04	1.90E-07
20.59	2.514	0.790	2.518	1017	1.32E-03	3.18E-04	4.12E-08
40.09	2.489	0.772	2.501	1370	9.68E-04	5.21E-04	4.95E-08
78.95	2.460	0.751	2.474	1815	7.15E-04	2.93E-04	2.05E-08
156.57	2.418	0.722	2.439	1278	9.87E-04	2.10E-04	2.03E-08
311.74	2.352	0.675	2.385	1534	7.86E-04	1.69E-04	1.30E-08
622.27	2.236	0.593	2.294	2146	5.20E-04	1.46E-04	7.44E-09
1245.09	2.108	0.501	2.172	2381	4.20E-04	8.11E-05	3.34E-09
2488.90	1.992	0.418	2.050	1591	5.60E-04	3.68E-05	2.02E-09
389.46	2.040	0.453	2.016				
98.32	2.097	0.493	2.068				
25.37	2.164	0.541	2.131				
Note:							
k calculated usin	g cv based c	n t ₉₀ values.					
	SA	MPLE DIME	NSIONS AN	ID PROP	ERTIES - FINAL		
Sample Height, c		2.16			Unit Weight, kN		21.3
Sample Diamete	r, cm	6.34			Dry Unit Weight		16.9
Area, cm ²		31.53	Specific Gravity, measu				2.6
/olume, cm ³		68.24			Solids Height, ci		1.404
Nater Content, %	6	25.70			Volume of Solid		44.2
Vet Mass, g Dry Mass, g		148.60 118.22			Volume of Voids	s, cm °	23.90
			Golder A	_			Checked E

Geotechnical Laboratory Results – Part 2

X:\GB\IE\2011\11V777\10000 reports\FINAL Conceptual Design\Appendix A - FINAL Factual Report\R-Geotech Inv Factual Rpt Minago.docxFoth Canada Corport

H-2

June 25, 2012

Project No. 12-1183-0015

Jeremy Haynes Foth Infrastructure & Environment, LLC 14 Corporate Woods, Suite 650 8717 West 110th Street Overland Park, Kansas 66210

RE: GEOTECHNICAL LABORATORY TESTING

Dear Sir

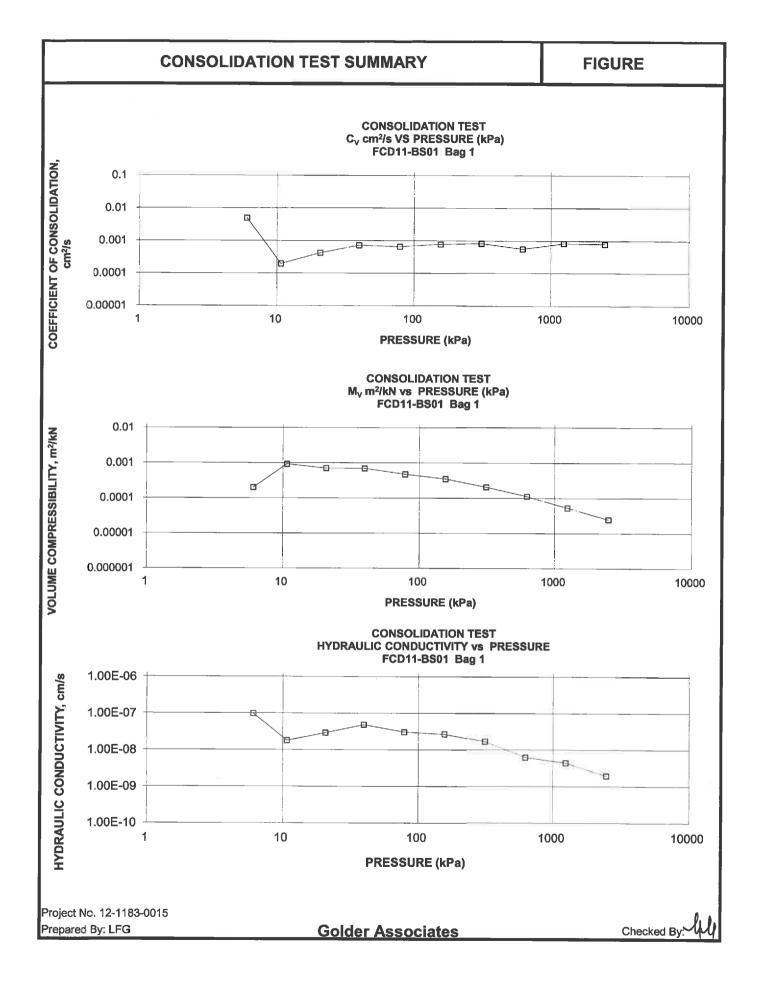
This letter reports the results of laboratory testing carried out on the samples received at our office in Mississauga. The results of the tests are summarized in the attached tables and figures.

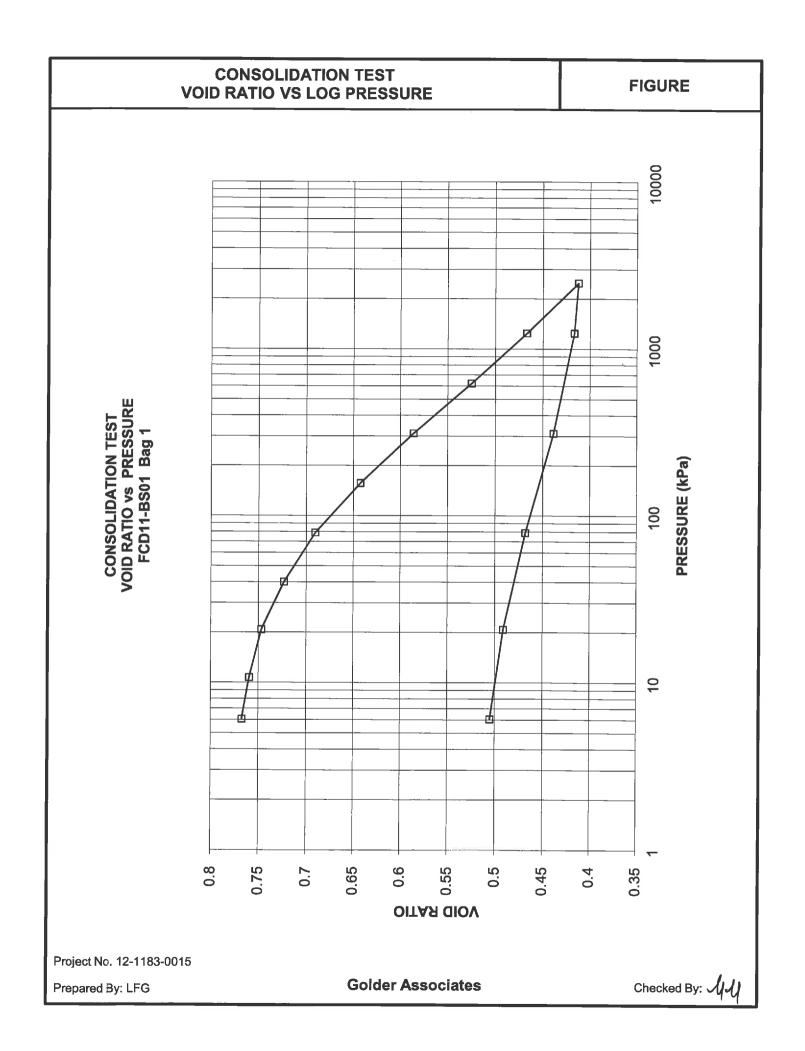
The testing services reported herein have been performed in accordance with the indicated recognized standard, unless noted otherwise. This report is for the sole use of the designated client. This report constitutes a testing service only and does not represent any results interpretation or opinion regarding specification compliance or material suitability.

We trust that the results are sufficient for your current requirements. If you have any questions, please do not hesitate to call us.

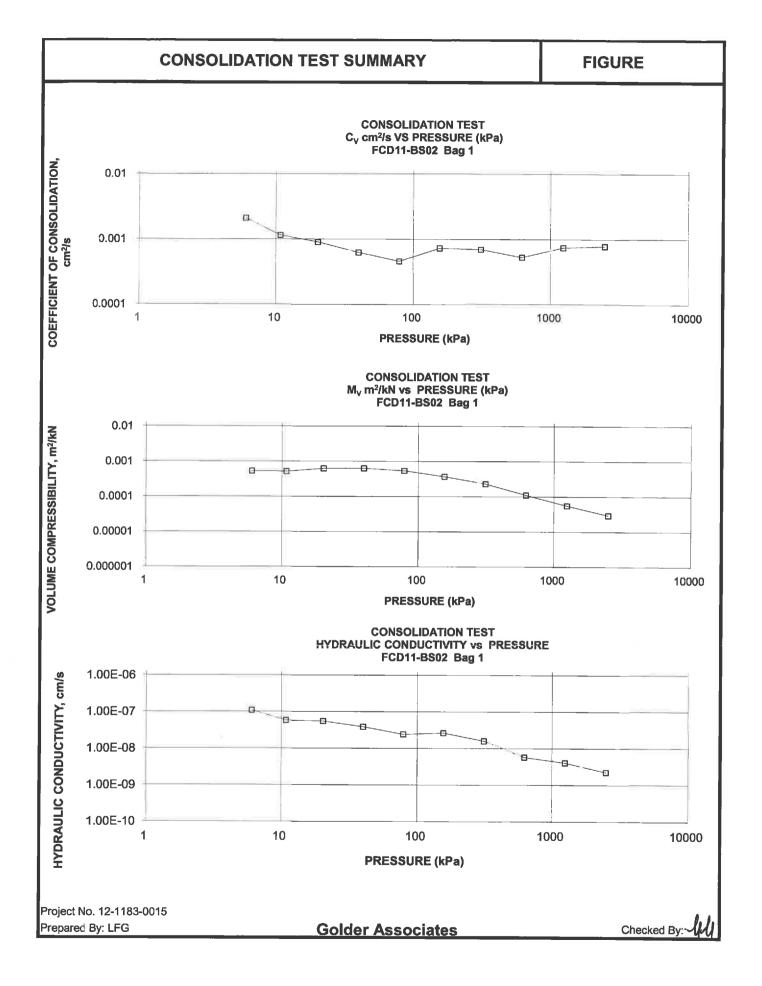
Yours truly

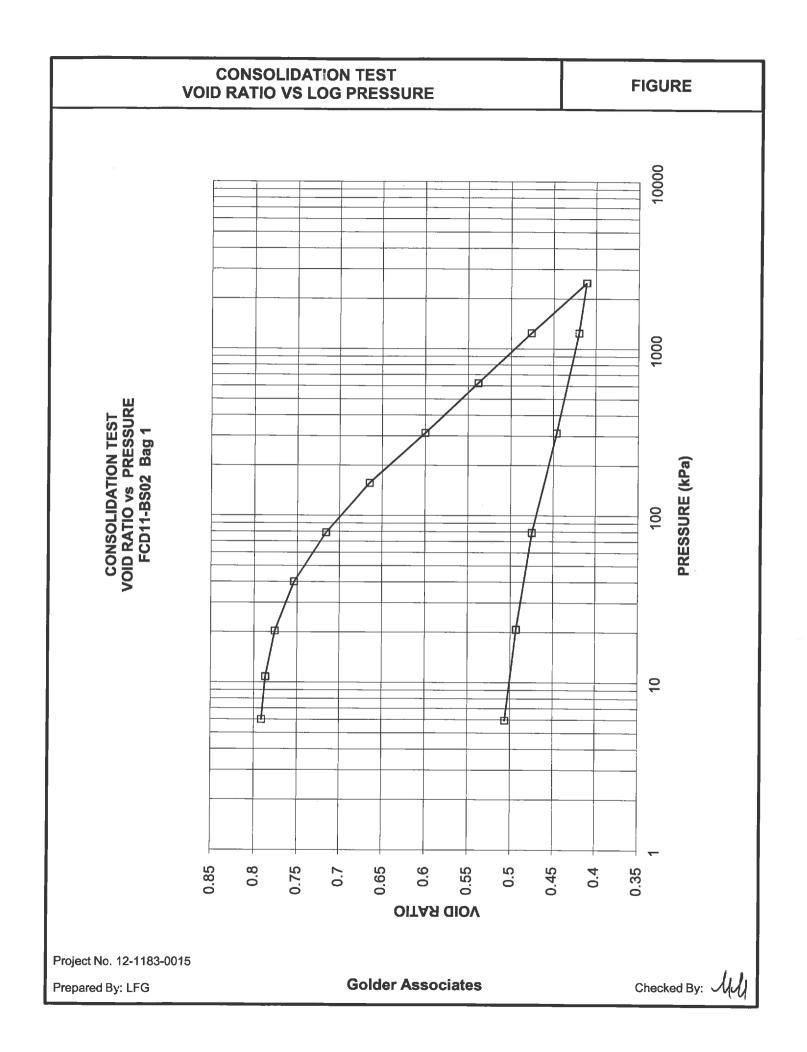
GOLDER ASSOCIATES LTD.


haryane haurton

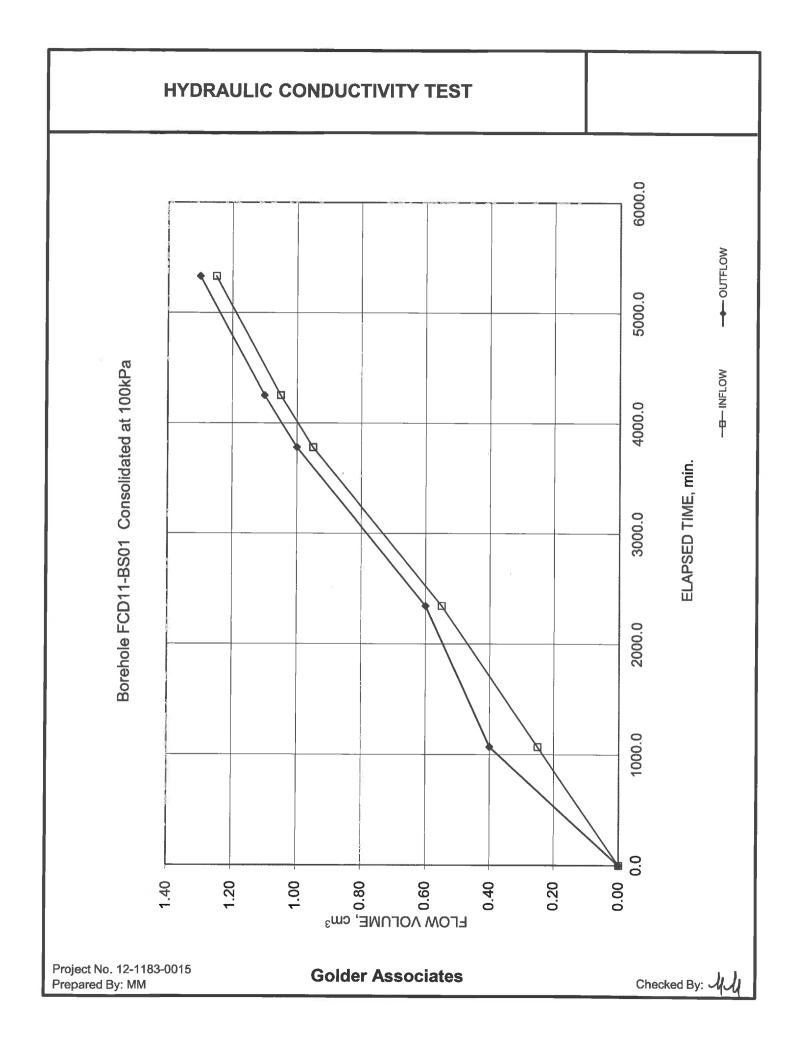

Marijana[®]Manojlovic Laboratory Manager

MM/Ig




		5/	AMPLE IDE				
Project Number Sample Number		12-1183-0015 FCD11-BS01			Bag Number Sample Depth, m		2.0
			TEST CON	DITIONS			2
Test Type		Standard			Load Duration, hr		24
Oedometer Numb	er	11			Loud Duration, In		27
Date Started		5/01/2012					
Date Completed		5/15/2012					
		SAMPLE DIME	INSIONS AN	D PROPE	ERTIES - INITIAL		
Sample Height, cn		2.55			Unit Weight, kN/m	3	19.06
Sample Diameter,	cm	6.34			Dry Unit Weight, k		15.30
Area, cm ²		31.60			Specific Gravity, n	neasured	2.76
Volume, cm ³		80.42			Solids Height, cm		1.438
Water Content, %		24.62			Volume of Solids,		45.45
Wet Mass, g		156.34			Volume of Voids,		34.97
Dry Mass, g		125.45			Degree of Saturat	ion, %	88.3
				UTATION	15		
Pressure	Corr. Height	Void	Average Height	t ₉₀	Cv	m _v	Ŀ
kPa	cm	Ratio				=	k am/a
0.00	2.545	0.769	cm 2.545	sec	cm²/s	m²/kN	cm/s
6.05	2.545	0.767	2.545 2.543	277	4.95E-03	2.015.04	0.775.00
10.70	2.542	0.760	2.543	6970	4.95E-03 1.96E-04	2.01E-04 9.30E-04	9.77E-08
20.75	2.513	0.747	2.530	3197	4.22E-04	9.30E-04 7.04E-04	1.78E-08
39.99	2.479	0.723	2.522	1848			2.91E-08
78.89	2.479	0.691	2.496 2.455	1848	7.15E-04	6.94E-04	4.86E-08
156.31	2.432	0.643	2.455	1949	6.56E-04 7.77E-04	4.76E-04	3.06E-08
310.92	2.303	0.586	2.397	1370	8.35E-04	3.51E-04	2.67E-08
620.15	2.202	0.525	2.322	1882	8.35E-04 5.64E-04	2.06E-04 1.12E-04	1.68E-08
1239.90	2.194	0.525	2.230	1862	5.04E-04 8.45E-04		6.19E-09
2479.93	2.032	0.407	2.152	1162	8.45E-04 8.01E-04	5.30E-05	4.39E-09 1.95E-09
1239.90	2.032	0.413	2.071	1100	0.010-04	2.48E-05	1.905-08
310.92	2.038	0.439	2.035				
78.89	2.070	0.468	2.054				
20.75	2.112	0.491	2.091				
6.05	2.165	0.505	2.155				
lote:			Ξ.				
					.6Mg/m ³ and water co	ontent of 22.89	%.
Consolidation load	•	•	signed by the	client.			
calculated using	cv based on	t ₉₀ values.					
		SAMPLE DIME	ENSIONS AN	ID PROPI	ERTIES - FINAL		
Sample Height, cm	1	2.17			Unit Weight, kN/m	3	21.44
Sample Diameter,		6.34			Drv Unit Weight, KN/m		21.44
ample blameter, i area, cm ²		31.60			Specific Gravity, m		2.76
/olume, cm ³		68.41			Solids Height, cm		2.76
Vater Content, %		19.22			-	3	45.45
Vet Mass, g		149.56			Volume of Solids, of Volume of Voids, of Volume of Volum		45.45 22.96
Pry Mass, g		125.45			VOIUTINE OT VOIOS, C	an)	22.90
By: LFG			Golder A				Checked B

		S	AMPLE IDE	NIFICAT	ION			
Project Number Sample Number		12-1183-0015 FCD11-BS02			Bag Number Sample Depth, m		6.	
			TEST CON	DITIONS				
Test Type		Standard			Load Duration, hr		24	
Oedometer Number	•	12					2-	
Date Started		5/01/2012						
Date Completed		5/15/2012						
		SAMPLE DIME	INSIONS AN	ID PROPE	ERTIES - INITIAL			
Sample Height, cm		2.55			Unit Weight, kN/m	n ³ 18.99		
Sample Diameter, o	m		6.34			:N/m ³	15.17	
Area, cm ²		31.58				neasured	2.78	
Volume, cm ³		80.46			Solids Height, cm	_	1.418	
Water Content, %		25.16			Volume of Solids,		44.78	
Wet Mass, g		155.81			Volume of Voids,		35.68	
Dry Mass, g		124.49			Degree of Saturat	ion, %	87.8	
			TEST COMP	UTATION	IS			
Pressure	Corr. Height	Void	Average Height	t	0		Ŀ	
	-		-	t ₉₀	C _v	m _v	k	
kPa 0.00	2.548	Ratio	CM	sec	cm ² /s	m ² /kN	cm/s	
5.99	2.548	0.797	2.548	050	0.405.00		4 000	
5.99 10.79	2.540	0.791	2.544	653	2.10E-03	5.31E-04	1.09E-07	
20.28	2.534 2.519	0.787	2.537	1185	1.15E-03	5.15E-04	5.81E-08	
40.01	2.519	0.776	2.526	1500	9.02E-04	6.24E-04	5.52E-08	
40.01 78.94	2.487 2.433	0.754 0.716	2.503	2124	6.25E-04	6.31E-04	3.86E-08	
78.94 156.41	2.433 2.361	0.716	2.460	2802	4.58E-04	5.39E-04	2.42E-08	
312.01	2.361	0.600	2.397	1672	7.28E-04	3.69E-04	2.63E-08	
622.28	2.269	0.538	2.315	1622	7.00E-04	2.31E-04	1.59E-08	
1242.45	2.101	0.538	2.225 2.137	1984 1297	5.29E-04 7.47E-04	1.11E-04	5.74E-09	
2483.26	2.094	0.476	2.137	1297	7.83E-04	5.55E-05	4.06E-09	
1242.45	2.001	0.420	2.047	1100	1.03E-04	2.93E-05	2.25E-09	
312.01	2.014	0.446	2.007					
78.94	2.092	0.475	2.032					
20.76	2.117	0.493	2.104					
5.93	2.136	0.506	2.126					
Note:								
					.57Mg/m ³ and water of	content of 24.8	5%.	
Consolidation loadin k calculated using c								
		SAMPLE DIME	ENSIONS AN	ID PROPI	ERTIES - FINAL			
Sample Height, cm		2,14			Unit Weight, kN/m	3	21.53	
Sample Diameter, ci	n	6.34			Drv Unit Weight, kivin		18.10	
Area, cm ²		31.58			Specific Gravity, m		2.78	
/olume, cm ³		67.44			Solids Height, cm		1.418	
Nater Content, %		18.92			Volume of Solids,	cm ³	44.78	
Net Mass, g		148.04			Volume of Volds, o		22.66	
Dry Mass, g		124.49			volume of volus, (MT1	22.00	
			Golder A				Checked B	

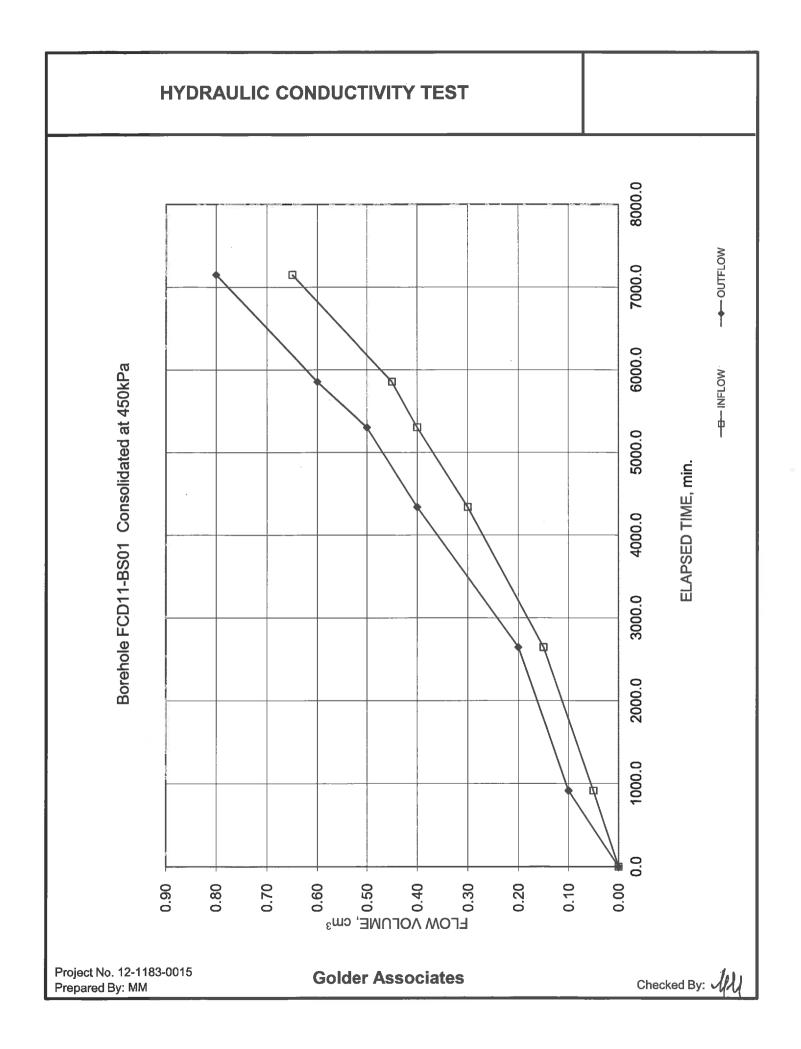

ASTM D 5084	4 (CONSTANT HEAD)

	SAM		
PROJECT NUMBER	12-1183-0015	BAG NUMBER	
PROJECT TITLE Foth	/ Testing / Victory Nickei	SAMPLE DEPTH, m	2.00
BOREHOLE NUMBER	FCD11-BS01	DATE	05/09/2012
	SPECIMEN PROP	ERTIES AND DIMENSIONS (INITIAL)	
SAMPLE HEIGHT, cm	6.07	UNIT WEIGHT, kN/m ³	19.82
SAMPLE DIAMETER, cm	4.87	DRY UNIT WEIGHT, kN/m ³	16.01
SAMPLE AREA, cm ²	18.65	SPECIFIC GRAVITY, measured	2.76
SAMPLE VOLUME, cm ³	113.21	VOLUME OF SOLIDS, cm ³	66.97
TOTAL MASS, g	228.82	VOLUME OF VOIDS, cm ³	46.24
DRY MASS, g	184.83	VOID RATIO	0.69
WATER CONTENT, %	23.80		
	SA	ATURATION STAGE	
CELL PRESSURE, kPa	210	EFFECTIVE CONFINING STRESS, kPa	5
HEAD PRESSURE, kPa	205	DURATION, min	2,880
BACK PRESSURE, kPa	205	B COEFFICIENT	0.97
	CON	NSOLIDATION STAGE	
CELL PRESSURE, kPa	305	EFFECTIVE CONFINING STRESS, kPa	100
HEAD PRESSURE, kPa	205	DURATION, min	1,440
BACK PRESSURE, kPa	205	VOLUME CHANGE, cm ³	4.3
		DRAINAGE	Top and Bottom
	HYDRAU	LIC CONDUCTIVITY TEST	
CELL PRESSURE, kPa	317	EFFECTIVE CONFINING STRESS, kPa	100
HEAD PRESSURE, kPa	217	DURATION, min	5331
BACK PRESSURE, kPa	205	HYDRAULIC GRADIENT, i	20
	SPECIMEN PROP	ERTIES AND DIMENSIONS (FINAL)	
SAMPLE HEIGHT, cm	5.99	UNIT WEIGHT, kN/m ³	20.20
SAMPLE DIAMETER, cm	4.81	DRY UNIT WEIGHT, kN/m ³	16.63
SAMPLE AREA, cm ²	18.18	SPECIFIC GRAVITY, measured	2.76
SAMPLE VOLUME, cm ³	108.99	VOLUME OF SOLIDS, cm ³	66.97
TOTAL MASS, g	224.45	VOLUME OF VOIDS, cm ³	42.02
DRY MASS, g	184.83	VOID RATIO	0.63
WATER CONTENT, %	21.44		
		TEST RESULTS	
ELAPSED TIME TO STEADY STATE FLOW (min)			00
DURATION OF STEADY STATE FLOW (min)			5331
INFLOW VOLUME UNDER STEADY STATE FLOW (cm ³)	a.		1.3
OUTFLOW VOLUME UNDER STEADY STATE FLOW (cm	` }		1.3
			1.05E-08
HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s)			1.09E-08
HYDRAULIC CONDUCTIVITY, K, cm/s NOTES:			1.07E-08

Specimen compacted as per client's instruction; dry density of 1.6Mg/m³ at 22.8% water content.

Consolidation pressure 100kPa.

PERMEANT FLUID

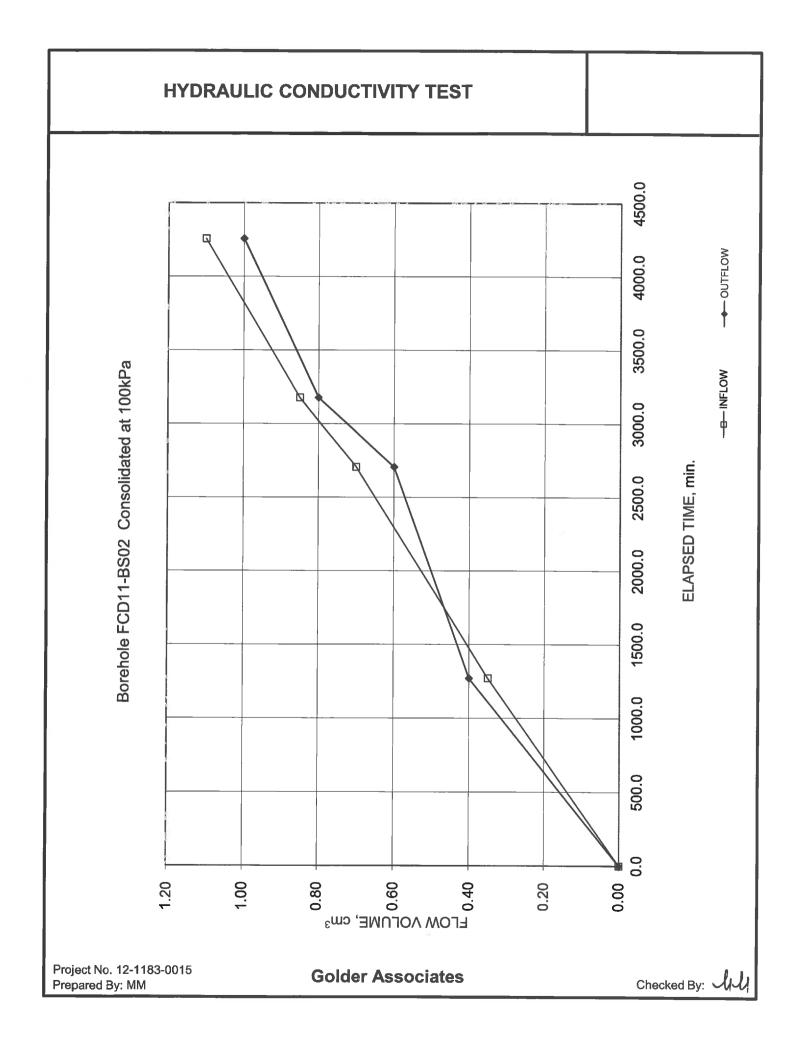

	[11DKAUL	IC CONDUCTIVITY TEST	
	ASTM D	5084 (CONSTANT HEAD)	
	SAN	PLE IDENTIFICATION	
PROJECT NUMBER	1 2-1 183-0015	BAG NUMBER	-
PROJECT TITLE F	Foth / Testing / Victory Nickel	SAMPLE DEPTH, m	2.00
BOREHOLE NUMBER	FCD11-BS01	DATE	05/16/2012
	SPECIMEN PROP	ERTIES AND DIMENSIONS (INITIAL)	
SAMPLE HEIGHT, cm	5.99	UNIT WEIGHT, kN/m ³	20.22
SAMPLE DIAMETER, cm	4.81	DRY UNIT WEIGHT, kN/m ³	16.65
SAMPLE AREA, cm ²	18.17	SPECIFIC GRAVITY, measured	2.76
SAMPLE VOLUME, cm ³	108.84	VOLUME OF SOLIDS, cm ³	66.97
TOTAL MASS, g	224.45	VOLUME OF VOIDS, cm ³	41.88
DRY MASS, g	184.83	VOID RATIO	0.63
WATER CONTENT, %	21.44		
	S/		
CELL PRESSURE, kPa	-	EFFECTIVE CONFINING STRESS, kPa -	
HEAD PRESSURE, kPa		DURATION, min	-
BACK PRESSURE, kPa	-	B COEFFICIENT	
	CON		
CELL PRESSURE, kPa	655	EFFECTIVE CONFINING STRESS, kPa	450
HEAD PRESSURE, kPa	205	DURATION, min	1,440
BACK PRESSURE, kPa	205	VOLUME CHANGE, cm ³	5.8
		DRAINAGE	Top and Bottom
	HYDRAU		
CELL PRESSURE, kPa	667	EFFECTIVE CONFINING STRESS, kPa	450
HEAD PRESSURE, kPa	217	DURATION, min	7150
BACK PRESSURE, kPa	205	HYDRAULIC GRADIENT, $\dot{ u}$	20
	SPECIMEN PROP	ERTIES AND DIMENSIONS (FINAL)	
SAMPLE HEIGHT, cm	5.88	UNIT WEIGHT, kN/m ³	20.98
SAMPLE DIAMETER, cm	4.72	DRY UNIT WEIGHT, kN/m ³	17.58
SAMPLE AREA, cm ²	17.53	SPECIFIC GRAVITY, measured	2.76
SAMPLE VOLUME, cm ³	103.11	VOLUME OF SOLIDS, cm ³	66.97
TOTAL MASS, g	220.60	VOLUME OF VOIDS, cm ³	36.15
DRY MASS, g	184.83	VOID RATIO	0.54
WATER CONTENT, %	19.35		
		TEST RESULTS	
ELAPSED TIME TO STEADY STATE FLOW (min)			2645
DURATION OF STEADY STATE FLOW (min)			4505
INFLOW VOLUME UNDER STEADY STATE FLOW (cn	n ³)		0.5
OUTFLOW VOLUME UNDER STEADY STATE FLOW	(cm ³)		0.6
HYDRAULIC CONDUCTIVITY (INFLOW) (cm/s)			5.30E-09
HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s)			6.35E-09
HYDRAULIC CONDUCTIVITY, K, cm/s			5.83E-09
NOTES:			

NOTES:

Specimen compacted as per client's instruction; dry density of 1.6Mg/m³ at 22.8% water content.

Consolidation pressure 450kPa.

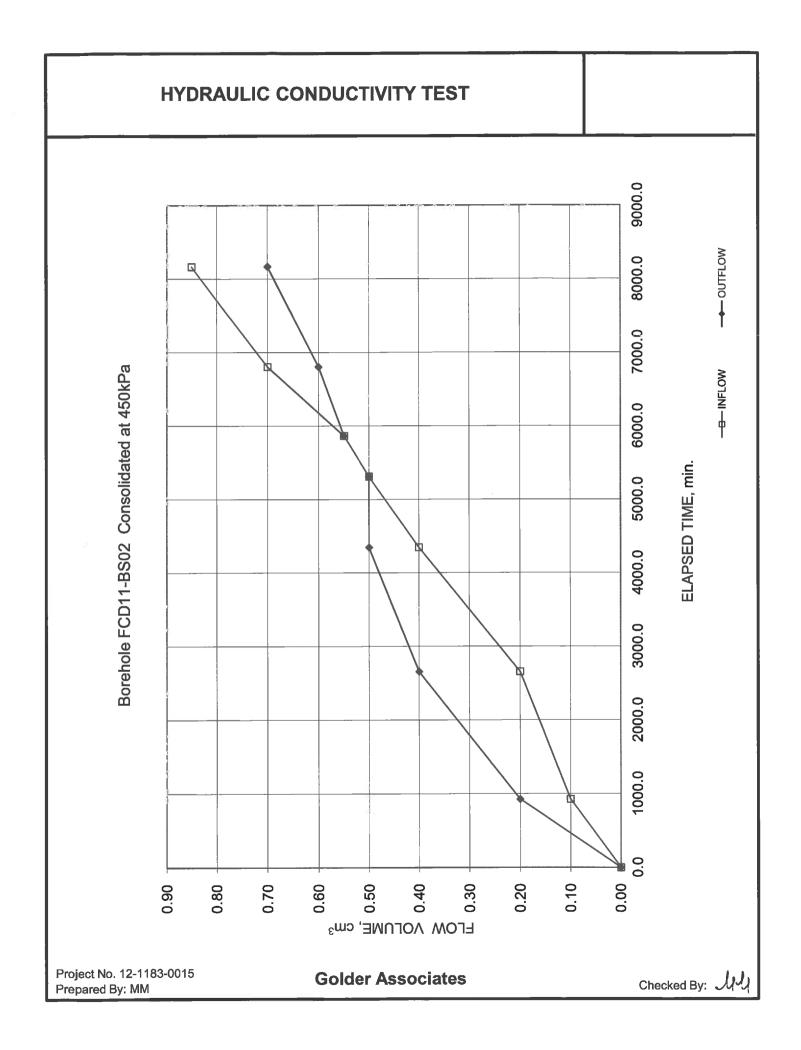
PERMEANT FLUID

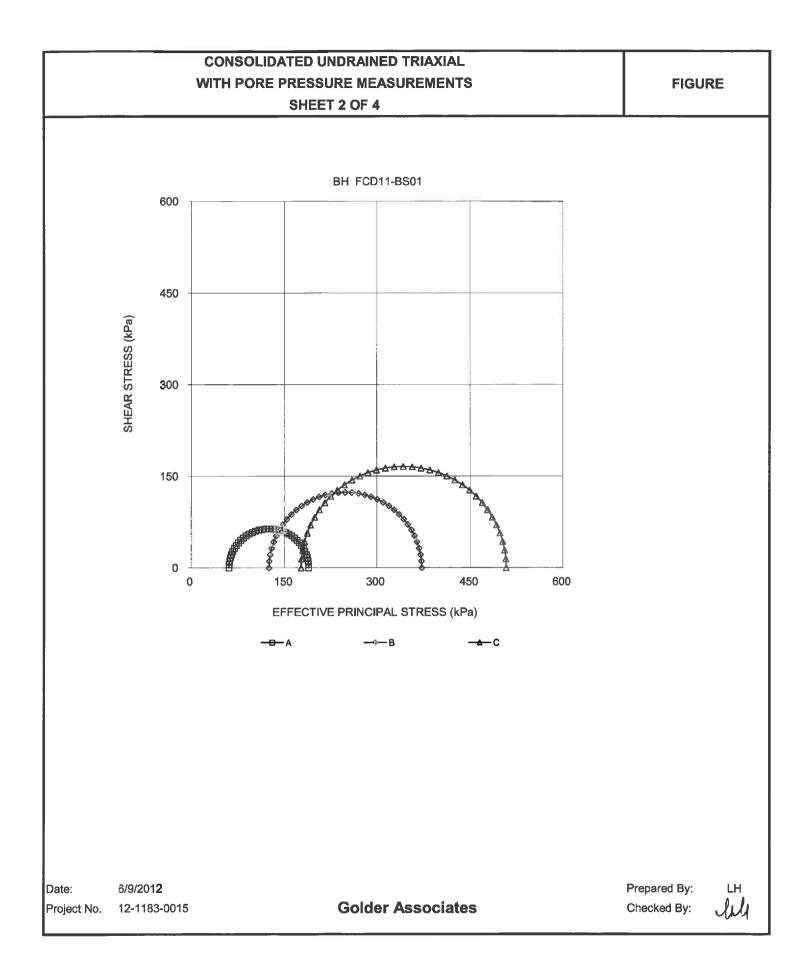

ASTM D 5084 (CONSTANT HEAD)

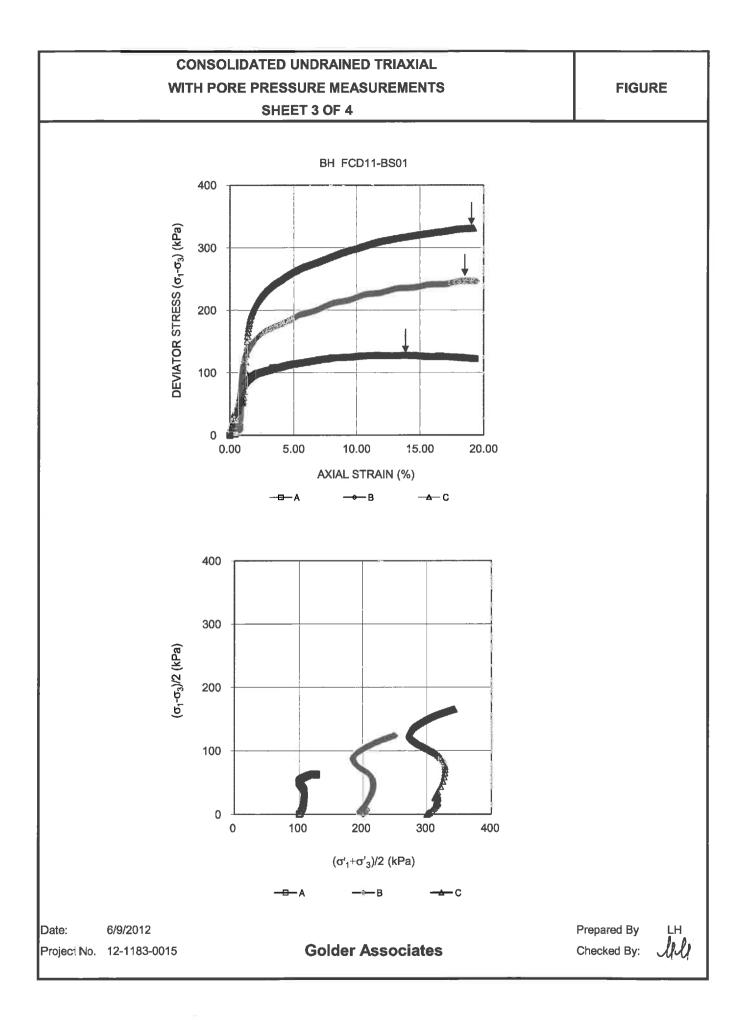
	CAM		
	SAM		
PROJECT NUMBER	12-1183-0015	BAG NUMBER	
	/ Testing / Victory Nickel	SAMPLE DEPTH, m	6.1
BOREHOLE NUMBER	FCD11-BS02	DATE	05/09/2012
	SPECIMEN PROPE	ERTIES AND DIMENSIONS (INITIAL)	
SAMPLE HEIGHT; cm	5.92	UNIT WEIGHT, kN/m ³	19.6
SAMPLE DIAMETER, cm	4.91	DRY UNIT WE!GHT, kN/m ³	15.8
SAMPLE AREA, cm ²	18.93	SPECIFIC GRAVITY, measured	2.7
SAMPLE VOLUME, cm ³	112.09	VOLUME OF SOLIDS, cm ³	65.1
TOTAL MASS, g	224.60	VOLUME OF VOIDS, cm ³	46.98
DRY MASS, g	181.01	VOID RATIO	0.72
WATER CONTENT, %	24.08		
	SA	TURATION STAGE	
CELL PRESSURE, kPa	140	EFFECTIVE CONFINING STRESS, kPa	(
HEAD PRESSURE, kPa	135	DURATION, min	2,880
BACK PRESSURE, kPa	135	B COEFFICIENT	0.97
	CON	SOLIDATION STAGE	
CELL PRESSURE, kPa	235	EFFECTIVE CONFINING STRESS, kPa	100
HEAD PRESSURE, kPa	135	DURATION, min	1,440
BACK PRESSURE, kPa	135	VOLUME CHANGE, cm ³	4.5
		DRAINAGE	Top and Botton
	HYDRAUL	LIC CONDUCTIVITY TEST	
CELL PRESSURE, kPa	247	EFFECTIVE CONFINING STRESS, kPa	100
HEAD PRESSURE, kPa	147	DURATION, min	4257
BACK PRESSURE, kPa	135	HYDRAULIC GRADIENT, $\dot{ u}$	21
	SPECIMEN PROPE	ERTIES AND DIMENSIONS (FINAL)	4
SAMPLE ∺EIGHT, cm	5.84	UNIT WEIGHT, kN/m ³	20.06
SAMPLE DIAMETER, cm	4.84	DRY UNIT WEIGHT, kN/m ³	16.49
SAMPLE AREA, cm ²	18.43	SPECIFIC GRAVITY, measured	2.78
SAMPLE VOLUME, cm ³	107.63	VOLUME OF SOLIDS, cm ³	65.11
TOTAL MASS, g	220.14	VOLUME OF VOIDS, cm ³	42.52
DRY MASS, g	181.01	VOID RATIO	0.65
WATER CONTENT, %	21.62		· · · · · · · · · · · · · · · · · · ·
		TEST RESULTS	
ELAPSED TIME TO STEADY STATE FLOW (min)			00
DURATION OF STEADY STATE FLOW (min)			4257
NFLOW VOLUME UNDER STEADY STATE FLOW	(cm ³)		1.1
			1.0
OUTFLOW VOLUME UNDER STEADY STATE FLOW	/V (cm°)		
	W (cm°)		1.12E-08
OUTFLOW VOLUME UNDER STEADY STATE FLOW	W (cm°)		1.12E-08 1.01E-08

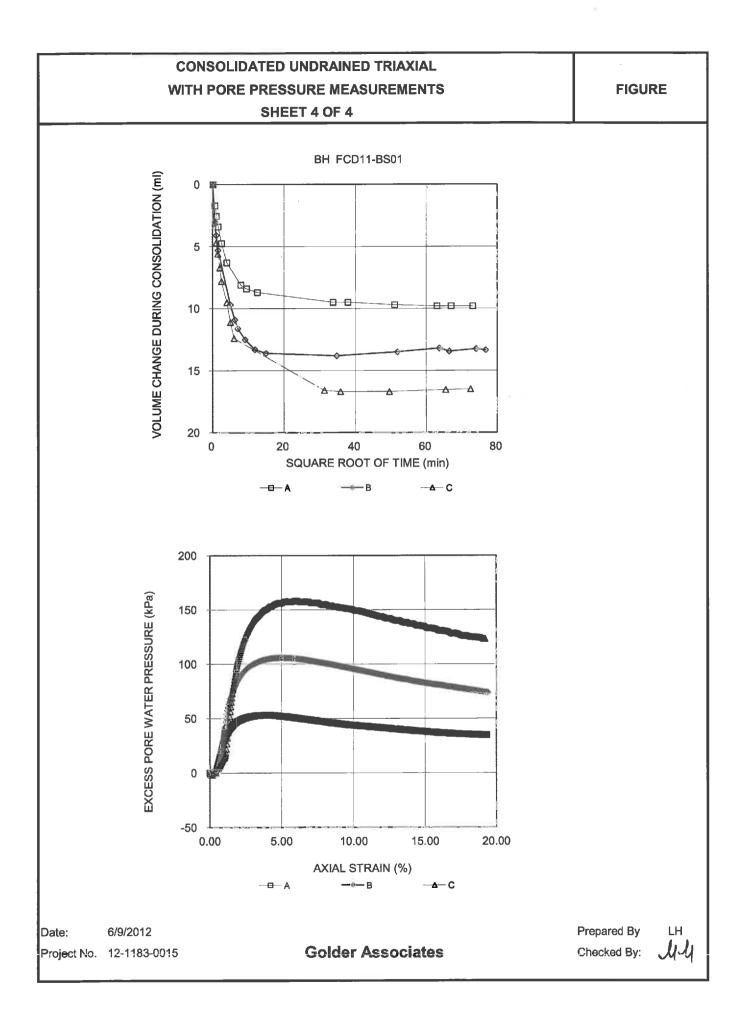
Specimen compacted as per client's instruction; dry density of 1.57Mg/m³ at 24.5% water content.

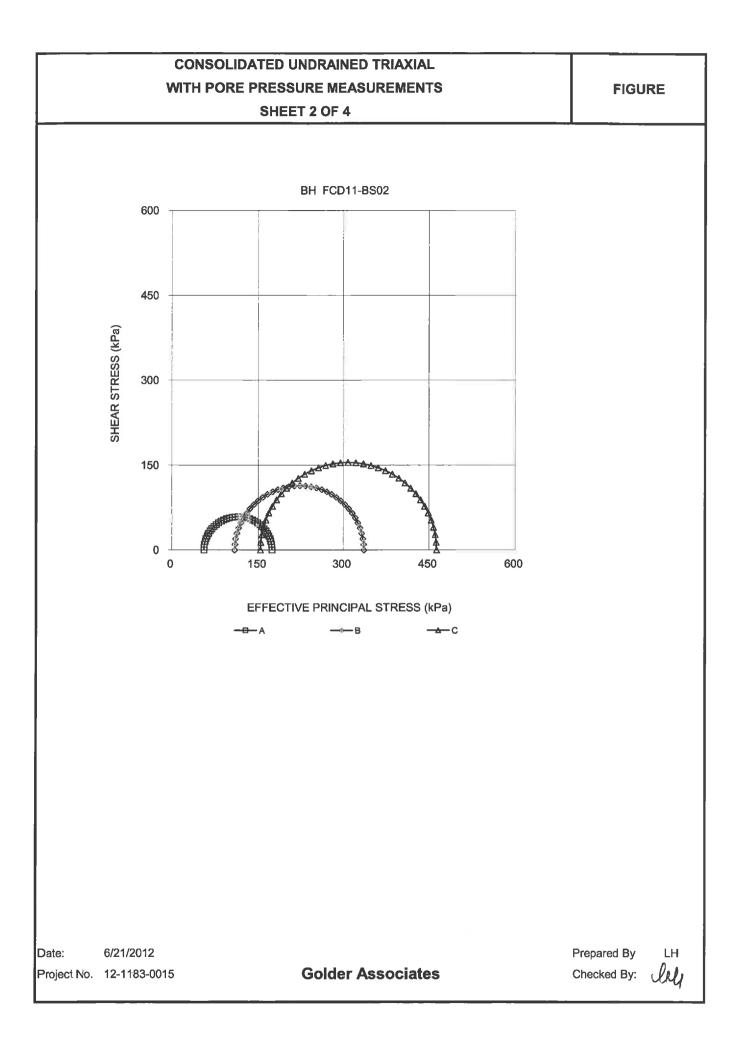
Consolidation pressure 100kPa.

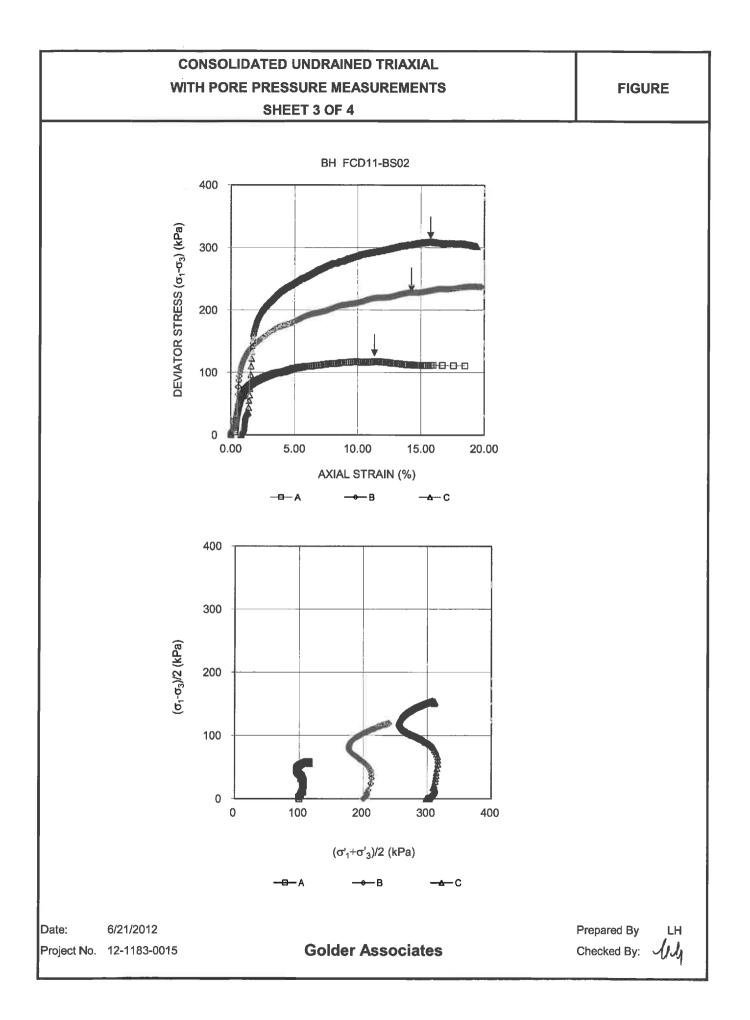

PERMEANT FLUID

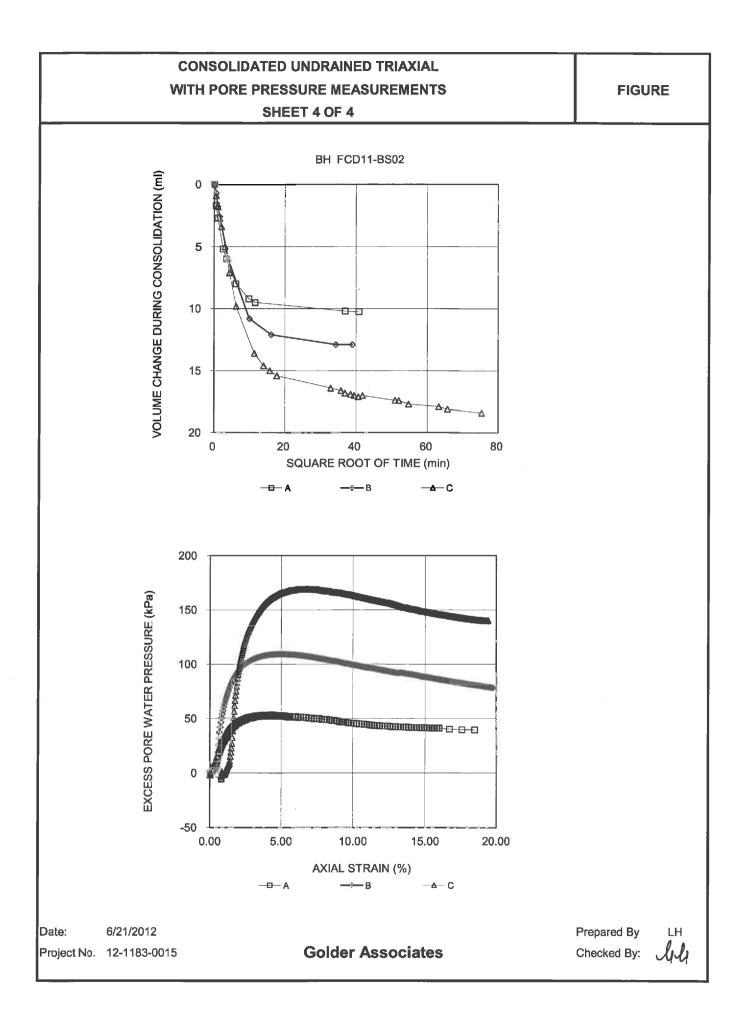

	PLE IDENTIFICATION	SAN
	BAG NUMBER	PROJECT NUMBER 12-1183-0015
6.1	SAMPLE DEPTH, m	PROJECT TITLE Foth / Testing / Victory Nickel
05/16/201	DATE	BOREHOLE NUMBER FCD11-BS02
	RTIES AND DIMENSIONS (INITIAL)	SPECIMEN PROP
20.0	UNIT WEIGHT, kN/m ³	SAMPLE HEIGHT, cm 5.84
16.5	DRY UNIT WEIGHT, kN/m ³	SAMPLE DIAMETER, cm 4.84
2.7	SPECIFIC GRAVITY, measured	SAMPLE AREA, cm ² 18.40
65.1	VOLUME OF SOLIDS, cm ³	SAMPLE VOLUME, cm ³ 107.45
42.3	VOLUME OF VOIDS, cm ³	TOTAL MASS, g 220.14
0.6	VOID RATIO	DRY MASS, g 181.01
		WATER CONTENT, % 21.62
	TURATION STAGE	\$/
	EFFECTIVE CONFINING STRESS, kPa -	CELL PRESSURE, kPa -
	DURATION, min	HEAD PRESSURE, kPa -
	B COEFFICIENT	BACK PRESSURE, kPa -
	SOLIDATION STAGE	COM
45	EFFECTIVE CONFINING STRESS, kPa	CELL PRESSURE, kPa 585
1,56	DURATION, min	HEAD PRESSURE, kPa 135
5.	VOLUME CHANGE, cm ³	BACK PRESSURE, kPa 135
Top and Botton	DRAINAGE	
		HYDRAU
45	EFFECTIVE CONFINING STRESS, kPa	CELL PRESSURE, kPa 596
816	DURATION, min	HEAD PRESSURE, kPa 146
2	HYDRAULIC GRADIENT, 6	BACK PRESSURE, kPa 135
	ERTIES AND DIMENSIONS (FINAL)	SPECIMEN PROP
20.9	UNIT WEIGHT, kN/m ³	SAMPLE HEIGHT, cm 5.73
17.4	DRY UNIT WEIGHT, kN/m ³	SAMPLE DIAMETER, cm 4.75
2.7	SPECIFIC GRAVITY, measured	SAMPLE AREA, cm ² 17.72
65.1	VOLUME OF SOLIDS, cm ³	SAMPLE VOLUME, cm ³ 101.62
36.5	VOLUME OF VOIDS, cm ³	TOTAL MASS, g 216.71
0.5	VOID RATIO	DRY MASS, g 181.01
		WATER CONTENT, % 19.72
	TEST RESULTS	
0		ELAPSED TIME TO STEADY STATE FLOW (min)
816		DURATION OF STEADY STATE FLOW (min)
0.		INFLOW VOLUME UNDER STEADY STATE FLOW (cm ³)
0.		OUTFLOW VOLUME UNDER STEADY STATE FLOW (cm ³)
4.91E-0		HYDRAULIC CONDUCTIVITY (INFLOW) (cm/s)
4.05E-0		HYDRAULIC CONDUCTIVITY (OUTFLOW) (cm/s)
4.48E-0		HYDRAULIC CONDUCTIVITY, K, cm/s

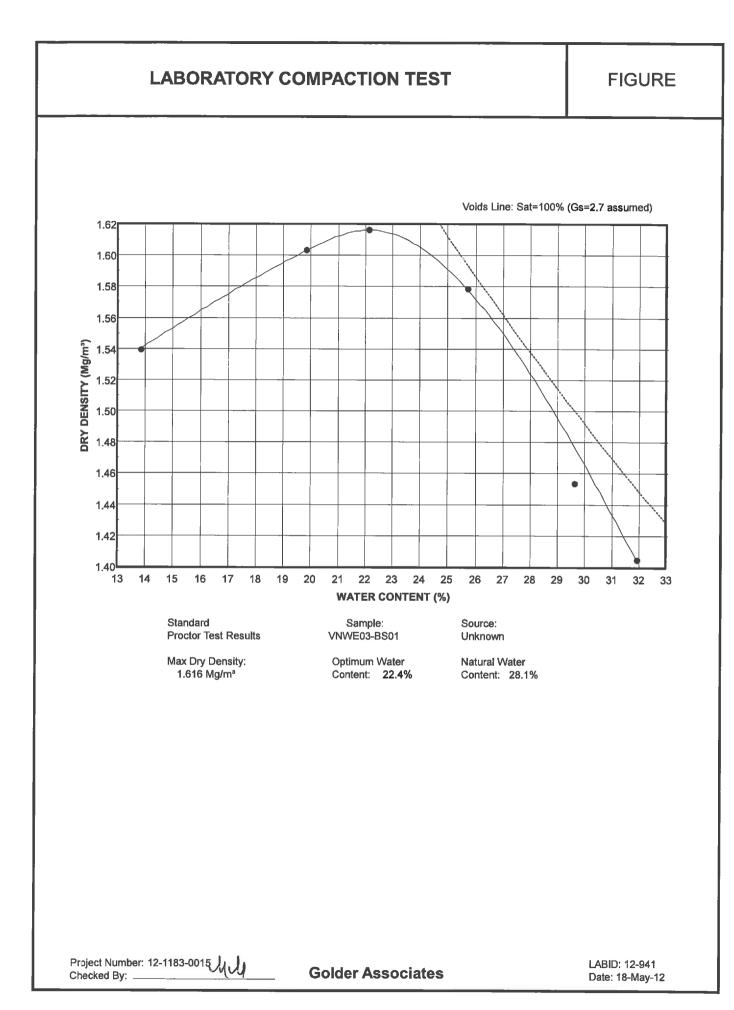

Specimen compacted as per client's instruction; dry density of 1.57Mg/m 3 at 24.5% water content.


Consolidation pressure 450kPa. PERMEANT FLUID

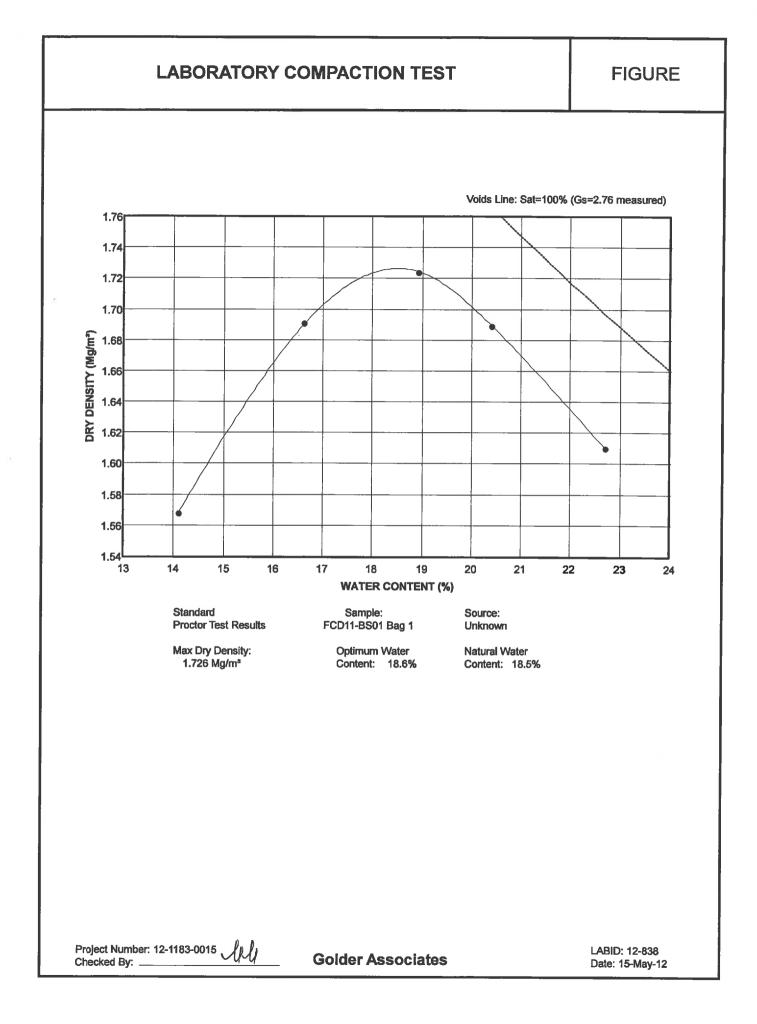

	TRIAXIAL			
WITH PORE PRESSURE MEASU	FIGU	RE		
SHEET 1 OF 4				
TEST STAGE	A	В	С	
BOREHOLE NUMBER	FCD11-BS01	FCD11-BS01	FCD11-BS01	
BAG NUMBER		-		
SPECIMEN DIAMETER, cm	4.97	4.99	5.08	
SPECIMEN HEIGHT, cm	10.17	10.17	10.12	
NATURAL WATER CONTENT, %	23.3	23.6	22.9	
DRY DENSITY, Mg/m ³	1.64	1.61	1.62	
WATER CONTENT AFTER SATURATION, %	25.3	- 27.3	26.6	
CELL PRESSURE, σ ₃ , kPa	305.0	505.0	505.0	
BACK PRESSURE, kPa	205.0	305.0		
PORE PRESSURE PARAMETER "B"	0.99	0.99	0.96	
CONSOLIDATION PRESSURE, σc, kPa	100.0	200.0		
VOLUMETRIC STRAIN DURING CONSOLIDATION, %	5.0	6.7	8.1	
WATER CONTENT AFTER CONSOLIDATION, %	22.3	23.2	21.7	
AVERAGE RATE OF STRAIN, %/hr	0.5	0.5	0.5	
	27.9	37.3		
WATER CONTENT AFTER TEST, %	23.1	21.7	20.5	
MAX. DEVIATOR STRESS, (σ_1 - σ_3), kPa	127.9	247.5	331.6	
AXIAL STRAIN AT (σ_1 - σ_3) maximum, %	14.0	18.6	19.2	
MAX EFFECTIVE PRINCIPAL STRESS RATIO, (σ'_1/σ'_3) maximum		4.1	3.0	
DEVIATOR STRESS AT (σ'_1/σ'_3) maximum, kPa	113.0	195.1	295.3	
AXIAL STRAIN AT (σ'_1/σ'_3) maximum, %	4.7	5.8	9.3	
PORE PRESSURE PARAMETER, Af, AT (σ_1 - σ_3) maximum	0.306	0.30	0.37	
PORE PRESSURE PARAMETER, Af, AT (σ'_1/σ'_3) maximum	0.47	0.54	0.51	
FILTER DRAINS USED, y/n	У	У	У	
TEST NOTES: Specimens compacted as per client's instruction, at tak	rget dry density of 1.6Mg/m	³ and water con	itent of 22.8%.	
FAILURE PLANE NUMBER	1.0	_	_	
ANGLE OF FAILURE, DEGREES	60	BULGED	BULGED	
Date: 6/9/2012 Project No. 12-1183-0015 Golder As	sociates		Prepared By: Checked By:	LH

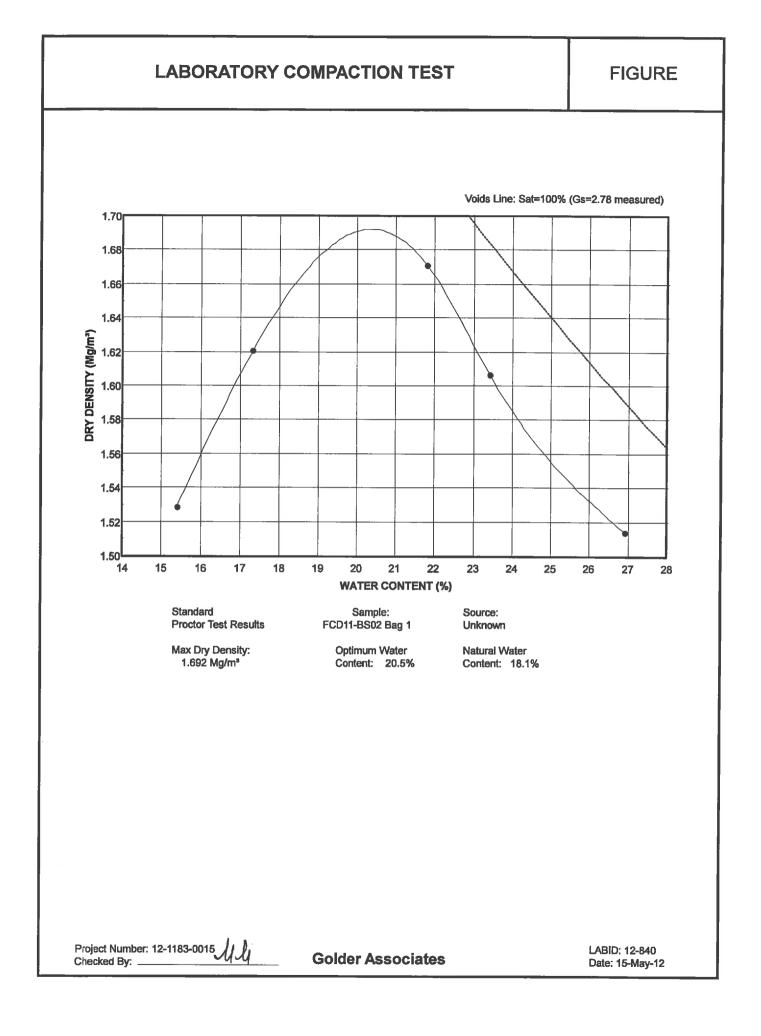


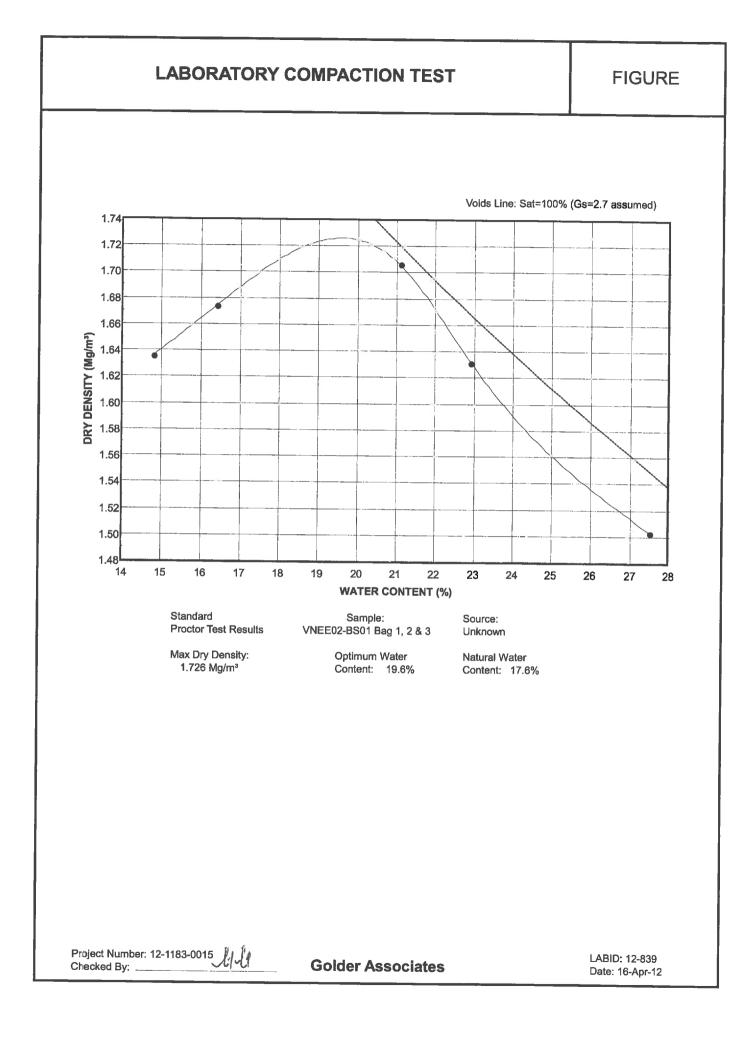


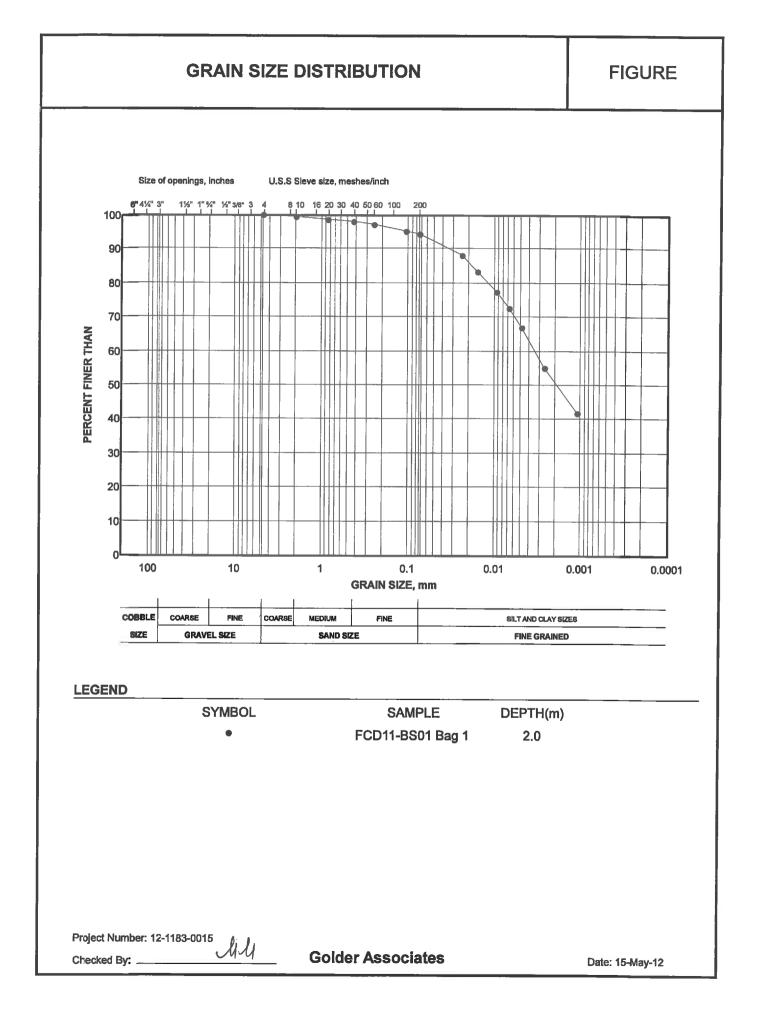


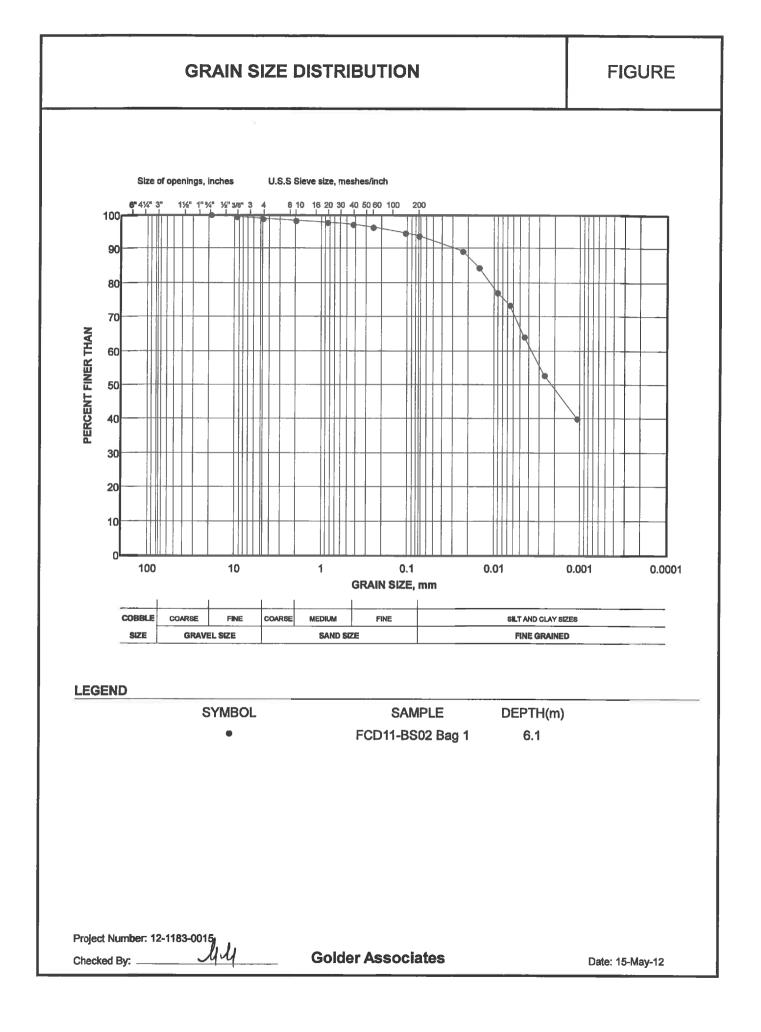
CONSOLIDATED UNDRAINED TRIAX	IAL			
WITH PORE PRESSURE MEASUREME	NTS		FIGUR	RE
SHEET 1 OF 4				
TEST STAGE	А	В	С	
BOREHOLE NUMBER	FCD11-BS02 F	CD11-BS02 FC	D11-BS02	
BAG NUMBER		æ	-	
SPECIMEN DIAMETER, cm	4.96	5.02	5.05	
SPECIMEN HEIGHT, cm	10.15	10.13	10.12	_
NATURAL WATER CONTENT, %	24.2	24.0	24.2	
DRY DENSITY, Mg/m ³	1.60	1.61	1.60	
WATER CONTENT AFTER SATURATION, %	26.3	25.3	26.3	
CELL PRESSURE, σ ₃ , kPa	305.0	475.0	645.0	
BACK PRESSURE, kPa	205.0	275.0	345.0	
PORE PRESSURE PARAMETER "B"	0.96	0.97	0.96	
CONSOLIDATION PRESSURE, oc, kPa	100.0	200.0	300.0	
VOLUMETRIC STRAIN DURING CONSOLIDATION, %	5.2	6.4	9.4	
WATER CONTENT AFTER CONSOLIDATION, %	23.0	21.3	23.0	
AVERAGE RATE OF STRAIN, %/hr	0.5	0.5	0.5	
TIME TO FAILURE, HOURS	23.0	27.6	32.0	
WATER CONTENT AFTER TEST, %	23.1	21.7	23.1	
MAX. DEVIATOR STRESS, (σ_1 - σ_3), kPa	117.5	227.4	309.5	
AXIAL STRAIN AT (σ_1 - σ_3) maximum, %	11.5	13.8	16.0	
MAX EFFECTIVE PRINCIPAL STRESS RATIO, (σ'_1/σ'_3) maximum	3.3	3.1	3.1	
DEVIATOR STRESS AT (σ'_1/σ'_3) maximum, kPa	108.6	206.1	286.1	
AXIAL STRAIN AT (σ'_1/σ'_3) maximum, %	5.4	8.4	9.8	
PORE PRESSURE PARAMETER, Af, AT (σ_1 - σ_3) maximum	0.37	0.40	0.47	
PORE PRESSURE PARAMETER, Af, AT (σ'_1/σ'_3) maximum	0.48	0.50	0.57	
FILTER DRAINS USED, y/n	У	У	У	
TEST NOTES:				
Specimens compacted as per client's instruction, at target	dry density of 1.57	′Mg/m ³ and wate	er content of	24.5%
FAILURE PLANE NUMBER	1.0	_	1.0	
ANGLE OF FAILURE, DEGREES	70	BULGED	70	
		DOLOLD		
Date: 6/21/2012 Project No. 12-1183-0015 Golder Associa	tes		pared By:	ьн ИЧ

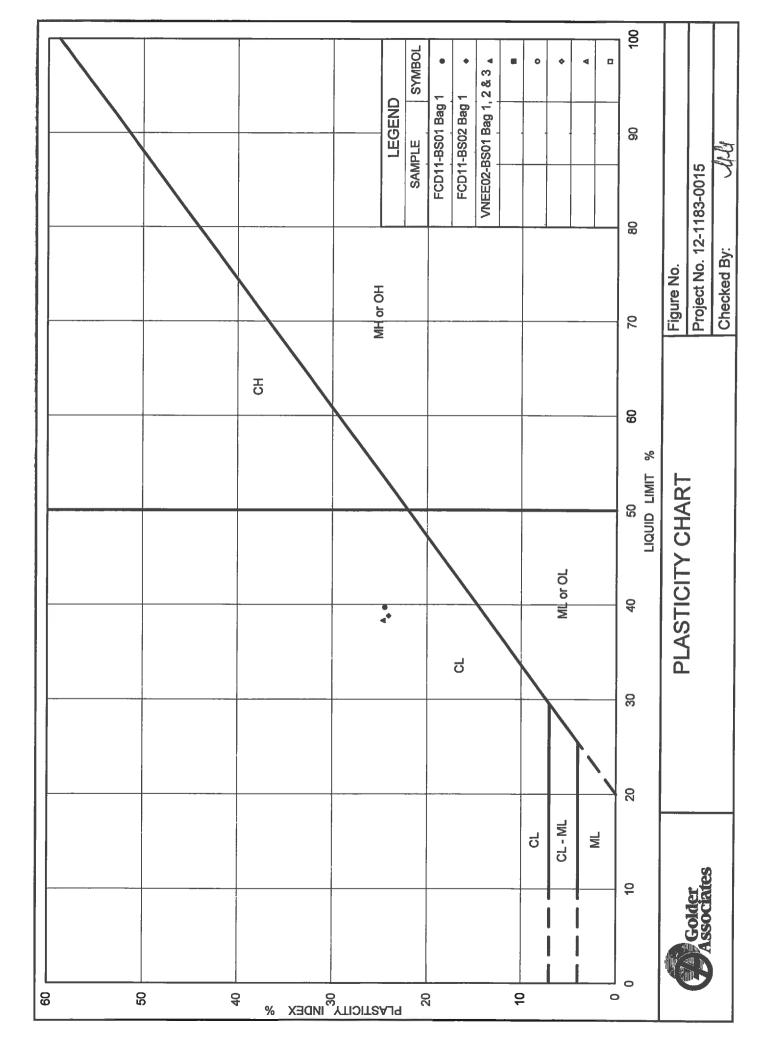





	ASTM D 7263 Method A						
Sample Number	FCD11-BS01	FCD11-BS02	VNEE02-BS01				
Bag Number	1	1	1				
Depth, m	2.0	6.1	3.5				
Wet Mass of Soil in Air, g	278.01	409.89	176.52				
Wet Mass of Soil + Wax in Air, g	289.05	423.99	184.02				
Wet Mass of Soil + Wax in Water, g	139.29	214.13	96.72				
Weight of Wax, g	11.04	14.10	7.50				
Displaced Volume, cm ³	149.76	209.86	87.30				
Displaced Wax, cm ³	12.16	15.53	8.26				
Volume of Soil, cm ³	137.60	194.33	79.04				
Specific Gravity, measured	2.76	2.78	<u>2.70</u>				
Volume of Solids, cm ³	86.39	127.77	60.09				
Volume of Voids, cm ³	51.21	66.56	18.95				
Porosity	0.37	0.34	0.24				
Water Content, %	16.60	15.40	8.80				
Unit Weight, kN/m ³	19.81	20.68	21.90				
Dry Unit Weight, kN/m ³	16.99	17.92	20.13				
ote: 2.70 specific gravity is assumed							
Project Number 12-1183-0015		Tested By		lan			
Date Tested 4/12/2012		С	Checked By	Je ly			


DENSITY AND POROSITY DETERMINATIONS OF IRREGULAR SHAPE SAMPLES


ASTM D 7263 Method A



SUMMARY OF WATER CONTENT DETERMINATIONS

PROJECT NUM	IBER	12-1183-0015		
PROJECT NAM	PROJECT NAME Foth / Testing / Victory Nick		xel	
DATE TESTED		April, 2012		
-			Water	
Sample	Bag	Depth	Content	Atterberg Limits
No.	No.	(m)	(%)	LL, PL, PI
FCD11-BS01	1	2.0	18.5%	LL=39.7, PL=15.2, PI=24.5
FCD11-BS01	2	2.0	19.9%	
FCD11-BS01	3	2.0	18.8%	
FCD11-BS01	4	2.0	16.9%	
FCD11-BS01	5	2.0	19.0%	
FCD11-BS02	1	6.1	18.1%	LL=38.8, PL=14.7, PI=24.1
FCD11-BS02	2	6.1	19.5%	
FCD11-BS02	3	6.1	20.8%	
FCD11-BS02	4	6.1	18.8%	
FCD11-BS02	5	6.1	22.1%	
VNEE02-BS01	1	3.5	14.4%	
VNEE02-BS01	2	3.5	20.0%	
VNEE02-BS01	3	3.5	18.5%	
VNEE02-BS01	4	3.5	20.1%	
VNEE02-BS01	1,2&3			LL=38.3, PL=13.6, PI=24.7
VNWE03-BS01		4.2	28.1%	

ASTM D 2216-05

SUMMARY OF WATER CONTENT DETERMINATIONS

PROJECT NUMBER	12-1183-0015		
PROJECT NAME	Foth / Testing / V	ictory Nickel	
DATE TESTED	April, 2012		
		Water	
Borehole	Sample	Content	Atterberg Limits
No.	No.	(%)	LL, PL, PI
FTWR11	SS1 & SS2		LL=435.8, PL=347.1, PI=88.7

ASTM D 2216-05

SPECIFIC GRAVITY TEST RESULTS

ASTM D	854-06	TEST	METHOD A	
--------	--------	------	-----------------	--

12-1183-0015				
Foth / Testing / Victory Nickel				
May, 2012				
Bag	Specific			
No.	Gravity			
1	2.76			
1	2.78			
	Foth / Testing / Victory Nickel May, 2012 Bag No.			

Note: Test carried out on soil particles <2.00mm using distilled water.

Checked By:

Golder Associates

Appendix B

Stability Analyses

Appendix B

Starter Dam / Pre-load and Ultimate Dam Stability Analysis

Overview of Subsurface Conditions

The stratigraphy below the Minago TWRMF is described in Section 2.0 of the main test of this report. A slight simplification of the soil stratigraphy was required to prepare a simplified geological model suitable for performing the slope stability analydid. The following soil units are the dominant soil types at the TWRMF and are included in the model.

- Peat
- Stiff Intermediate Clay (CL)
- Soft Lower Clay (CH)
- Dolomite Bedrock

The weak Lower Clay (CH) is the soil unit that controls the stability of the dam.

Analysis Methodology

The critical dam section for a downstream failure to occur was assumed to be the North Dam at the base of the valley, where the dam height is greatest and the clay foundation is thickest. Three approaches were adopted to analyse the stability of the critical sections of the Starter Dam / Pre-load, Ultimate Dam, and Ulitmate Dam at Closure:

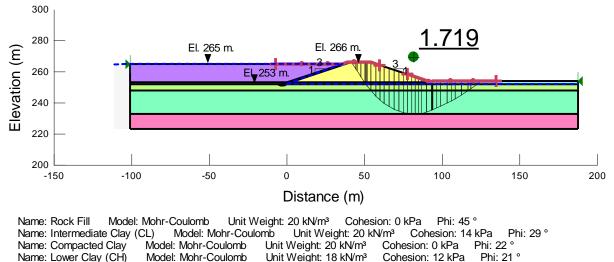
- Starter Dam / Pre-load: A total stress analysis (using undrained shear strength, s_u, for Intermediate and Lower Clay units) was considered to be appropriate for evaluation of the stability of the Starter Dam / Pre-load since it was anticipated that the rate of dyke rise is relatively fast compared to the ability of the foundation soil to dissipate excess porewater pressure (i.e. essentially no dissipation of excess porewater pressure).
- Ulimate Dam: To evaluate the stability of the Ultimate Dam, an effective stress analysis with excess porewater pressure (using effective stress paramters, c' and \u03c6', and coefficient of excess porewater pressure, \u03c8 for the clay units) was considered appropriate given the anticipated rate of construction of the Ultimate Dam and that sterngth gain will be required. An effecteive stress undrained approach provides a rationale mathod for assessing stability when excess porewater pressure exists as a function of loading raite (some dissipation of excess porewater pressure, and hence gain in shear strength takes places during loading/construction. The upstream slope of the Ultimate Side Dam was also analyzed against sliding using this approach.
- Ultimate Dam at Closure: To evaluate the stability of the Ultimate Dam at Closure (while providing containment for tailings, waste rock, and water), an effective stress analysis (using effective stress paramters, c' and \u03c6', for the clay units) was considered appropriate given the amount of time allowed for filling of the TWRMF and for strength gain/powater pressure dissipation in the foundation soils. An effective stress drained approach provides a rationale method for assessing stability when excess porewater pressure has been allowed to dissipate.

A summary of the soil properties used for each analytical approach is provided in Table 1, and were based on field and laboratory data (Foth, 2013). The commercial software Geostdios SLOPE/W (Version 7.21) that employs the Limit Equilibrium Method was used to perform the stability analyses. Piezometric levels were imported from the Geostudios SEEP/W parent analysis.

Table 1 – Soil Parameters Used in Stability Analyses

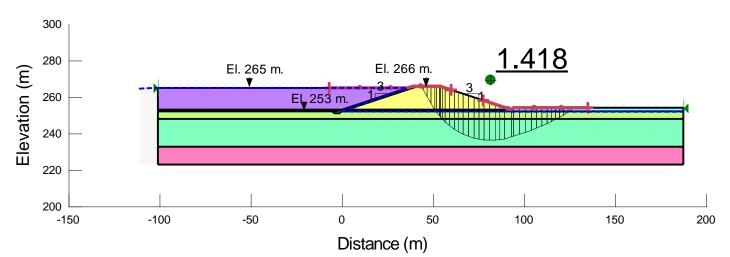
Material Type			Starter Dam		Ultimate Dam		Ultimate Dam at Closure		
		Unit Weight (kN/m ³)	Cohesion, s _u (kPa)	Friction Angle, φ ' (degrees)	Effective Cohesion, c' (kPa)	Effective Friction Angle, φ' (degrees)	Excess Porewater Pressure Coefficient, B	Effective Cohesion, c' (kPa)	Effective Friction Angle, ∳' (degrees)
Rock Fill ¹		20	0	45	0	45	-	0	45
Compacted Clay		20	0	22	0	22	-	0	22
Intermediate Clay (CL)	Total Stress Analysis	20	52	0	-	-	-	-	-
	Effective Stress Analysis		-	-	14	29	0.5	14	29
Lower Clay (CH)	Total Stress Analysis	- 18	12	0	-	-	-	-	-
	Effective Stress Analysis		-	-	12	21	0.7	12	21
Peat		12	12	0	12	0	-	12	0
Partially Compressed	Peat	13	18	0	18	0	-	18	0
Co-mingled Tailings and Waste Rock 17		-	-	-	-	-	0	25	

Notes


1. The coarse and fine filter zones shown in Figure 5 and 6 were assumed to consist of Rock Fill. Stability Results

Different failure modes and mechanisms were considered in the analyses including potential shallow or deep-seated slip surfaces and optimized circular or block type slip surfaces, and the minimum calculated factors of safety for each scenario were reported. The results of the slope stability analyses are summarized in Table 2, and graphical results are provided in Figures 1 to 7.

The stability of the critical sections of the Starter Dam / Pre-load, Ultimate Dam, Ultimate Dam at Closure is controlled by the weak Intermediate Clay layer. Factors of Safety ranging from 1.3 to 1.7 were obtained for the different scenarios and failure modes.


Table 2 - Stability Results

Scenario	Factor of Safety Under Static Conditions / Required	Factor of Safety Under Pseudo-static Conditions / Required		
North Starter Dam / Pre-load – Downstream Failure (Total Stress Analysis)	1.31/1.3	-		
Ultimate North Dam – Downsteam Failure (Effective Stress Analysis with Excess Porewater Pressure)	1.72/1.3	1.55 / 1.05		
Ultimate Side Dam – Upsteam Failure (Effective Stress Analysis with Excess Porewater Pressure)	1.66 / 1.3	1.53 / 1.05		
Ultimate North Dam At Closure - Downsteam Failure (Effective Stress Analysis)	1.72/1.5	1.42 / 1.05		

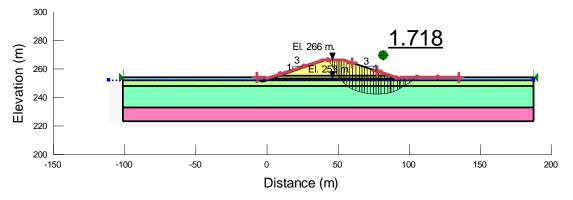

Name: Peat Model: Undrained (Phi=0) Unit Weight: 12 kN/m³ Cohesion: 12 kPa Name: Partially Compressed Peat Model: Mohr-Coulomb Unit Weight: 13 kN/m³ Cohesion: 18 kPa Phi: 0 ° Name: Co-mingled Tailings and Waste Rock Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 25 ° Name: Dolomite Model: Bedrock (Impenetrable)

Figure 1 – Ultimate North Dam at Closure Cross Section Under Effective Static Conditions with an Optimized Circular Failure Surface.

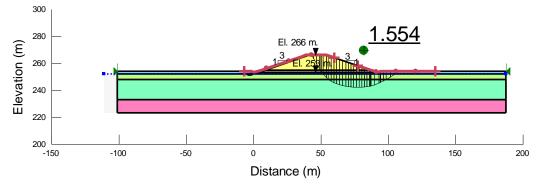

Name: Rock Fill Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 45 ° Name: Intermediate Clay (CL) Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 14 kPa Phi: 29 ° Name: Compacted Clay Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 22 ° Name: Lower Clay (CH) Model: Mohr-Coulomb Unit Weight: 18 kN/m³ Cohesion: 12 kPa Phi: 21 ° Unit Weight: 12 kN/m³ Name: Peat Model: Undrained (Phi=0) Cohesion: 12 kPa Name: Partially Compressed Peat Model: Mohr-Coulomb Unit Weight: 13 kN/m³ Cohesion: 18 kPa Phi: 0 ° Name: Co-mingled Tailings and Waste Rock Model: Mohr-Coulomb Unit Weight: 17 kN/m³ Cohesion: 0 kPa Phi: 25 ' Name: Dolomite Model: Bedrock (Impenetrable)

Figure 2 – Ultimate North Dam at Closure Stability Section Under Effective Pseudo-Static Conditions (PGA = 0.059g) with an Optimized Circular Failure Surface.

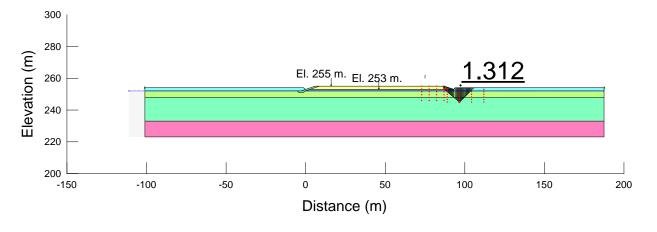

Phi: 45 ° Name: Rock Fill Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Piezometric Line: 1 Add Weight: Yes Unit Weight: 20 kN/m³ Cohesion: 14 kPa Name: Intermediate Clay (CL) Model: Mohr-Coulomb Phi: 29 ° Piezometric Line: 1 B-bar: 0.5 Add Weight: No Name: Compacted Clay Add Weight: No Model: Mohr-Coulomb Unit Weight: 20 kN/m3 Cohesion: 0 kPa Phi: 22 ° Piezometric Line: 1 Phi: 21 ° Name: Lower Clay (CH) Model: Mohr-Coulomb Unit Weight: 18 kN/m³ Cohesion: 12 kPa Piezometric Line: 1 B-bar: 0.7 Add Weight: No Unit Weight: 12 kWm³ Cohesion: 12 kPa Piezometric Line: 1 Name: Peat Model: Undrained (Phi=0) Add Weight: No Model: Mohr-Coulomb Unit Weight: 13 kN/m³ Cohesion: 18 kPa Name: Partially Compressed Peat Phi: 0 ° Piezometric Line: 1 Add Weight: No Model: Bedrock (Impenetrable) Piezometric Line: 1 Add Weight: No Name: Dolomite Name: Rock Fill (Starter Dam) Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 45 ° Piezometric Line: 1 Add Weight: No

Figure 3 – Ultimate North Dam Stability Section Under Effective Undrained Static Conditions with an Optimized Circular Failure Surface.

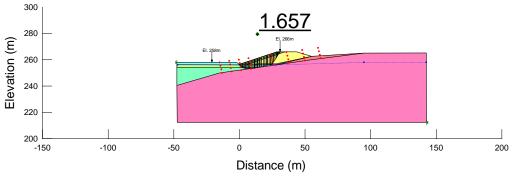
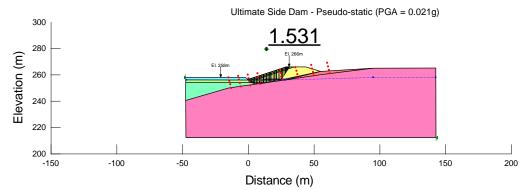

Name: Rock Fill Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 45 ° Piezometric Line: 1 Add Weight: Yes Unit Weight: 20 kN/m³ Cohesion: 14 kPa Phi: 29 ° Piezometric Line: 1 Name: Intermediate Clay (CL) Model: Mohr-Coulomb B-bar: 0.5 Add Weight: No Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 22 ° Add Weight: No Name: Compacted Clay Piezometric Line: 1 Cohesion: 12 kPa Phi: 21 ° Unit Weight: 18 kN/m³ Name: Lower Clay (CH) Model: Mohr-Coulomb Piezometric Line: 1 Add Weight: No B-bar: 0.7 Name: Peat Model: Undrained (Phi=0) Unit Weight: 12 kN/m³ Cohesion: 12 kPa Piezometric Line: 1 Add Weight: No Name: Partially Compressed Peat Model: Mohr-Coulomb Unit Weight: 13 kN/m³ Cohesion: 18 kPa Phi: 0 ° Add Weight: No Piezometric Line: 1 Name: Dolomite Model: Bedrock (Impenetrable) Piezometric Line: 1 Add Weight: No Name: Rock Fill (Starter Dam) Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 45 ° Piezometric Line: 1 Add Weight: No

Figure 4 – Ultimate North Dam Stability Cross Section Under Effective Undrained Pseudo-Static Conditions (PGA=0.029g) with an Optimized Circular Failure Surface.


Name: Rock Fill Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 45 ° Piezometric Line: 1 Name: Intermediate Clay (CL) Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Cohesion: 52 kPa Piezometric Line: 1 Name: Compacted Clay Unit Weight: 20 kN/m³ Phi: 22 ° Model: Mohr-Coulomb Cohesion: 0 kPa Piezometric Line: 1 Name: Lower Clay (CH) Model: Undrained (Phi=0) Unit Weight: 18 kN/m³ Cohesion: 12 kPa Piezometric Line: 1 Unit Weight: 12 kN/m³ Cohesion: 12 kPa Model: Undrained (Phi=0) Name: Peat Piezometric Line: 1 Name: Partially Compressed Peat Model: Mohr-Coulomb Unit Weight: 13 kN/m³ Cohesion: 18 kPa Phi: 0 ° Piezometric Line: ' Model: Bedrock (Impenetrable) Piezometric Line: 1 Name: Dolomite

Name: Rock Fill Model: Mohr-Coulomb Unit Weight: 20 kN/m3 Cohesion: 0 kPa Phi: 45 ° Piezometric Line: 1 Add Weight: Yes Unit Weight: 20 kN/m3 Cohesion: 14 kPa Phi: 29 ° Piezometric Line: 1 Name: Intermediate Clay (CL) Model: Mohr-Coulomb B-bar: 0.5 Add Weight: No Phi: 22 ° Name: Compacted Clay Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Piezometric Line: 1 Add Weight: Yes Phi: 21 ° Name: Lower Clay (CH) Model: Mohr-Coulomb Unit Weight: 18 kN/m³ Cohesion: 12 kPa Piezometric Line: 1 Add Weight: No B-bar: 0.7 Name: Peat Model: Undrained (Phi=0) Unit Weight: 12 kN/m³ Cohesion: 12 kPa Piezometric Line: 1 Add Weight: No Unit Weight: 13 kN/m³ Cohesion: 18 kPa Phi: 0 ° Name: Partially Compressed Peat Model: Mohr-Coulomb Piezometric Line: 1 Add Weight: No Model: Bedrock (Impenetrable) Piezometric Line: 1 Add Weight: No Name: Dolomite Name: Sand and Gravel Model: Nohr-Coulomb Unit Weight: 19 kN/m³ Cohesion: 0 kPa Phi: 35 ° Piezometric Line: 1 Add Weight: No

Figure 6 – Ultimate Side Dam Stability Section Under Effective Undrained Static Conditions with an Optimized Block Failure Surface.

Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 45 ° Piezometric Line: 1 Name: Rock Fill Model: Mohr-Coulomb Add Weight: Yes mb Unit Weight: 20 kN/m³ Cohesion: 0 kPa Phi: 22 ° Piezometric Line: 1 Add Add Weight: No Name: Intermediate Clay (CL) Model: Mohr-Coulomb B-bar: 0.5 Name: Compacted Clay Model: Mohr-Coulomb Add Weight: Yes Unit Weight: 18 kN/m³ Cohesion: 12 kPa Phi: 21 ° Piezometric Line: 1 Add Weight: No Name: Lower Clay (CH) Model: Mohr-Coulomb B-bar: 0.7 hi=0) Unit Weight: 12 kN/m³ Cohesion: 12 kPa Piezometric Line: 1 Add Weight: No Model: Mohr-Coulomb Unit Weight: 13 kN/m³ Cohesion: 18 kPa Phi: 0 ° Piezometr Name: Peat Model: Undrained (Phi=0) Name: Partially Compressed Peat Piezometric Line: 1 Add Weight: No Piezometric Line: 1 Add Weight: No Unit Weight: 19 kN/m³ Cohesion: 0 kPa Phi: 35 ° Piezometric Line: 1 Name: Dolomite Model: Bedrock (Impenetrable) Name: Sand and Gravel Model: Mohr-Coulomb Add Weight: No

Figure 7 – Ultimate Side Dam Stability Section Under Effective Undrained Static Conditions with an Optimized Block Failure Surface.

Appendix C

Seepage Analyses

Appendix C Seepage Analysis

<u>Overview</u>

The main focus of the seepage analysis is to assess the adequacy of the seepage control elements within the dam, and to evaluate the seepage through the structure and the foundation soils.

Seepage Control Elements

The seepage control through the perimeter dam and foundation soils is governed by design elements included in the dam and the tailings pond elevation. The following seepage control elements were included in the design of the perimeter dam:

- **Compacted Clay Liner**: An inclined low permeability liner with a 3H:1V slope is to be constructed along the upstream slope of the perimeter dam and tied into a key trench in native clay soils to minimize seepage.
- Chimney Filter: An inclined Chimney Filter with a 3H:1V slope is to be constructed along the upstream slope of the perimeter dam, beneath the Compacted Clay Liner to reduce the potential for internal erosion (piping) of the fine grained soil particles in the liner.

Seepage Analysis Methodology

Steady-state seepage analysis was performed along selected sections through North and Side Dams to assess the seepage through the structure and foundation soils and to assess the suitability of various Compacted Clay Liner thicknesses. The analysis was based on the geotechnical conditions of the dam section and foundation soils. The commercial software Geostudios SEEP/W (Version 7.21) that employs the Finite Elemen Method was used to perform the seepage analysis.

Boundary Conditions

For the North Dam analysis the boundary conditions are as follows:

- A constant head boundary (El. 263 m) within the tailings pond in the TWRMF.
- A constant head boundary (El. 252 m) on the downstream side of the dam, to model the water level in the seepage collection ditch.
- Zero flux boundaries along the crest and downstream slope of the dam.
- Zero flux boundaries along the upstream, downstream, and bottom sides of the seepage model.
- Infinite regions along the upstream side of the model, to effectively model the true length of the upsteram side of the TWRMF and maxmize the calculated seepage flux.

For the Side Dam analysis the boundary conditions are as follows:

- A constant head boundary (El. 263 m) within the tailings pond in the TWRMF.
- A constant head boundary (El. 258) along the downstream side of the model, to effectively model the hydraulic head on the downstream side of the Side Dam in the dolomite ridges.
- Zero flux boundaries along the crest and downstream slope of the dam.
- Zero flux boundaries along the upstream, and bottom side of the seepage model.
- Infinite regions along the upstream side of the model, to effectively model the true length of the TWRMF and maxmize the calculated seepage flux.

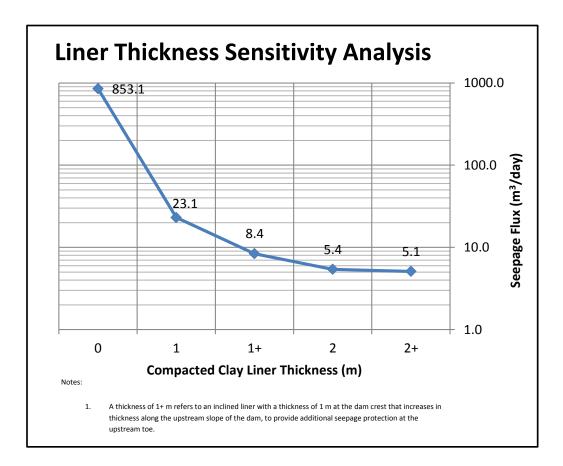
Hydraulic Conductivity

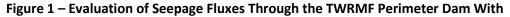
The saturated hydraulic conductivities that were used in the seepage analysis are summarized in Table 1, and were based on field and laboratory data (Foth, 2013) and on values used in Wardrop, 2010.

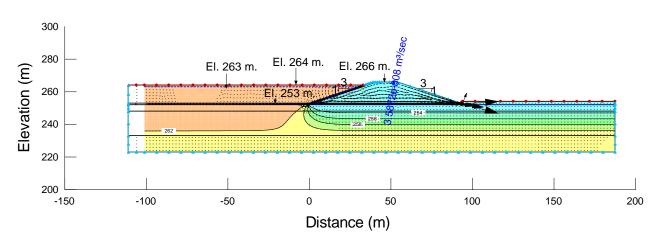
In the steady-state seepage analysis, it was assumed that the foundation soils are saturated while dam construction materials and tailings are initially unsaturated. For unsaturated conditions, the water content vs. suction and hydraulic conductivity vs. suction curves were estimated using information provided by the SEEP/W program. Further analysis on these soil water characteristic curves will be required during detailed design.

Material Type	K _{sat} (m/s)
Rock Fill	1 x 10 ⁻⁵
Compacted Clay	1×10^{-10}
Intermediate Clay (CL)	7.5 x 10 ⁻¹¹
Lower Clay (CH)	5 x 10 ⁻¹¹
Peat	1 x 10 ⁻⁵
Partially Compressed Peat	1 x 10 ⁻⁵
Dolomite	3.5 x 10 ⁻⁶
Co-mingled Tailings and Waste Rock ¹	1 x 10 ⁻⁷

Table 1 - Saturated Hydraulic Conductivities Used in Seepage Analyses


Notes:


1. The effective hydraulic condictvity of the co-mingled tailings and waste rock was assumed to be equal to the hydraulic conductivity of the tailings, since there is typically minimum barrier of 200 m of tailing against the upstream slope of the perimeter dam.


Seepage Results

Different Upstream Compacted Clay Liner thicknesses and configurations were considered in the analyses. Liner thicknesses ranging from 0 m (no liner) to more than 2 m were considered. The effects of varying compacted clay liner thicknesses on the seepage through the TWRMF perimeter dam are shown in Figure 1. Based on the results of the sensitivity seepage analysis, a Compacted Clay Liner thickness of 1 m was selected for TWRMF perimeter dam. The results of the seepage through the North Dam and Side Dam are shown in Figures 2 and 3, respectively, and the calculation of the approximate seepage flux through the entire TWRMF perimeter dam is provided in the following equation:

$$Q = 3.59 \times 10^{-8} \frac{m^3}{s} \times \frac{3600s}{hr} \times \frac{24hr}{d} \times 6100m + 1.16 \times 10^{-8} \frac{m^3}{s} \times \frac{3600s}{hr} \times \frac{24hr}{d} \times 4179m = 18.92 + 4.19 = 23.1 \frac{m^3}{d} \times 10^{-8} \frac{m^3}{d} \times 10$$

Varying Compacted Clay Liner Thicknesses

Name: Rock Fill Model: Saturated / Unsaturated K-Function: Fill Vol. WC. Function: fill Name: Intermediate Clay (CL) K-Sat: 7.5e-011 m/sec Volumetric Water Content: 0.35 m³/m³ Model: Saturated Only Name: Compacted Clay K-Function: Core 100x (2) Model: Saturated / Unsaturated Vol. WC. Function: core Name: Lower Clay (CH) Model: Saturated Only K-Sat: 5e-011 m/sec Volumetric Water Content: 0.35 m³/m³ Name: Peat Model: Saturated / Unsaturated K-Function: Fill Vol. WC. Function: fill Name: Partially Compressed Peat Model: Saturated / Unsaturated Vol. WC. Function: fill K-Function: Fill Name: Co-mingled Tailings and Waste Rock Model: Saturated Only K-Sat: 1e-007 m/sec Volumetric Water Content: 0.35 m³/m³ Volumetric Water Content: 0.3 m³/m³ Name: Dolomite Model: Saturated Only K-Sat: 3.5e-006 m/sec

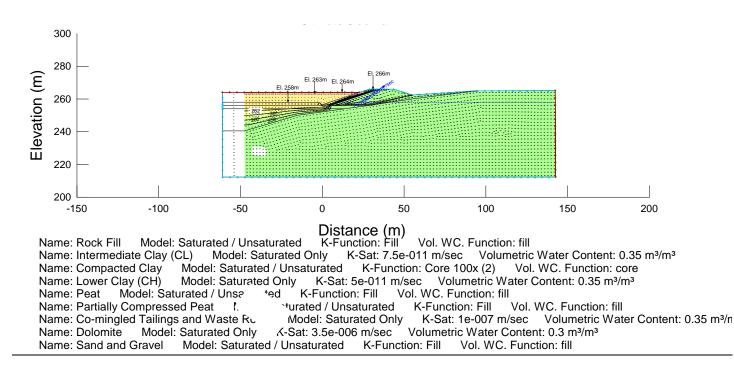


Figure 3 – Ultimate Side Dam at Closure Seepage Analysis