

Environmental Standards Division

BRADY ROAD RESOURCE MANAGEMENT FACILITY ANNUAL REPORT - 2019

ASHLEY GORDON B.Sc. COMPLIANCE REPORTING TECHNICIAN

NANCY CRAWFORD B.Sc. COMPLIANCE REPORTING BRANCH HEAD

RENÉE GROSSELLE B.SC. MANAGER OF ENVIRONMENTAL STANDARDS

EXECUTIVE SUMMARY

The Brady Road Resource Management Facility (BRRMF) is the City of Winnipeg's only active landfill. The site is bordered by the Perimeter Highway on the North, Waverley Street on the East, Brady Road and the R.M. of Macdonald on the West, and Rue des Trappistes on the South. The landfill has been in operation since 1973 and is estimated to have sufficient capacity for approximately 100 years, assuming current waste diversion practices are continued.

Environment Act Licence No. 3081 R, issued on April 23, 2014, requires the City of Winnipeg to submit an annual report on or before April 15th, detailing activities conducted at BRRMF in the previous year. This report provides a summary of major expenditures and construction, major incidents, waste diversion operations, ground water management, surface water management, leachate management, landfill gas management, and nuisance management for 2019.

Major construction in 2019 included: completion of the centralized leachate collection system, completion of the lime mud berm, and construction of a new waste cell.

One incident occurred at the site in 2019; the event was reported to an Environment Officer as required. In 2019, the BRRMF received 38 odour complaints; in all cases the customer was contacted for follow-up and corrective actions were taken as necessary.

In 2019, approximately 50% of the 637,422 metric tonnes of material received at the BRRMF were beneficially re-used, composted, or removed from the site for further processing or beneficial re-use. In addition, 36,763 kL of leachate was hauled to the North End Sewage Treatment Plant for treatment.

Monitoring programs for leachate, ground water, surface water, and subsurface gas migration followed the sampling and analysis plans in 2019 and contingency plans were not activated. Following a malfunction in the centralized leachate collection system, the leachate in Cell 31 exceeded the maximum head level for about 30 days until we were able to implement a contingency mitigation plan, which was not part of our original licence submittal.

Statistical analyses of analytical results obtained for leachate, ground water, and surface water indicate that the BRRMF has not had a negative impact on the ground water and surface water downstream of the site.

CONTENTS

1.0	INTRO	DUCTION	1
2.0	CONST	RUCTION	2
3.0	MAJOR	RINCIDENTS	2
4.0	WASTE	DIVERSION OPERATIONS	3
5.0	GROUN	ND WATER, SURFACE WATER, LEACHATE, AND LANDFILL GAS MONI	TORING5
	5.1	GROUND WATER	5
	5.2	SURFACE WATER	15
	5.3	LEACHATE	21
	5.4	LANDFILL GAS	27
		5.4.1 COLLECTION AND FLARING SYSTEM	27
		5.4.2 SUBSURFACE LANDFILL GAS MONITORING PROGRAM	27
6.0	NUISAN	NCE MANAGEMENT	35
7.0	CONCL	USION	40
8.0	REFERI	ENCES	40
TABLES			
TABLE 1. 20) 19 BRR	MF WASTE DIVERSION SUMMARY	4
TABLE 2. 20	019 GRO	UND WATER DATA	7
	2.1	CLAY	7
	2.2	TILL	8
	2.3	Bedrock	10
TABLE 3. 20	019 GRO	UND WATER QUALITY COMPARISON	
	3.1	CLAY	
	3.2	TILL	
	3.3	Bedrock	14
TABLE 4. 20	019 WEE	KLY WEIR DATA	17
TABLE 5. 20) 19 SUR	FACE WATER DATA	
	5.1	Ponds	
	5.2	Perimeter Ditch	19
TABLE 6. 20	019 SUR	FACE WATER PERIMETER DITCH COMPARISON	20
TABLE 7. 20	019 LEAC	CHATE LEVELS	22
TABLE 8. 20	019 LEAG	CHATE DATA	23
TABLE 9. 20	019 LEA0	CHATE QUALITY COMPARISON	25
TABLE 10. 2	2019 EXT	FERNAL GAS PROBE MONITORING	28
TABLE 11. 2	2019 NU	ISANCE COMPLAINT MONITORING	

FIGURES

FIGURE 1. BRRMF LAYOUT & LEACHATE COLLECTION SYSTEM FIGURE 2. GROUND WATER SAMPLING LOCATIONS FIGURE 3. SURFACE WATER SAMPLING LOCATIONS

APPENDICES

APPENDIX A. 2019 INCIDENT REPORT APPENDIX B. 2019 BRRMF TONNAGE SPREADSHEET APPENDIX C. PIPER DIAGRAMS APPENDIX D. TIME VS CONCENTRATION GRAPHS APPENDIX E. 2019 LANDFILL GAS COLLECTION AND FLARING REPORT

1.0 INTRODUCTION

The Brady Road Resource Management Facility (BRRMF) site is located south of the Perimeter Highway, between Brady Road and Waverley Street. Residential land use is present within 500 m of the site to the east and within 120 m north of the site (Waverly West development), other surrounding land use is agricultural. Opened in 1973, the 790-hectare, Class 1 Solid Waste Disposal facility currently holds approximately 10 million metric tonnes of waste, with over 300,000 metric tonnes of waste materials landfilled on an annual basis. The site has capacity for approximately 100 additional years of waste disposal.

The BRRMF operates in accordance with Environment Act Licence No. 3081 R, which was issued on April 23, 2014. Clause 127 of the license requires the City of Winnipeg to prepare and submit an Annual Report on the activities undertaken at the site during the previous year on or before April 15th of each year. This report contains results and/or comments for each of the clauses of Licence No. 3081 R under which the BRRMF has generated pertinent information during 2019. The report also provides information on the BRRMF proposed activities for 2020.

The layouts of the primary components of the BRRMF are shown on Figure 1. Surface water flows are managed by perimeter ditching and retention ponds. The ground water monitoring well network includes 13 bedrock wells, 13 till wells, and 8 clay wells. The leachate collection system is a network of manholes/risers, drains, and sumps around the perimeter of the landfill cells, which feed into a centralized collection tank/truck fill station. The landfill gas (LFG) management system includes extraction wells, LFG collection piping, and a blower/enclosed flare station.

2.0 MAJOR ACTIVITIES AND CONSTRUCTION

Major activities and construction undertaken in 2019 included:

- Construction of a new waste cell (Cell 32)
- Completion of the centralized leachate collection system: incorporated pumping manholes into the centralized above ground leachate tank
- Completion of the lime mud berm

Major activities and construction planned for 2020 include:

- Expanding the landfill gas collection system for Cell 30
- Accepting organic waste from a curb side collection pilot program from approximately 4000 homes across five collection routes

3.0 MAJOR INCIDENTS

In 2019, there were no disruptions or failures of waste management practices due to equipment breakdown, no major spills occurred, and no alarms were activated.

In April 2019, the main pump in the centralized leachate collection system failed, causing the main discharge line into the collection tank to be severed. While the centralized system was shut down for repairs, leachate was manually pumped out of the eight pumping manholes. Cell 31 is not connected to a pumping manhole, as a result, leachate rose above the crown of the collection system piping for approximately 30 days until a new pump and an interim pipe made of composite steel could be installed. Once stainless steel pipe can be procured and installed, the composite steel pipe will be kept on hand as a backup should a failure occur again in the future. Going forward, the leachate collection system for new waste cells will be built to accommodate a large hydraulic pump to be used for emergency pumping directly into a tanker truck if needed.

The incident was reported to Manitoba Sustainable Development; the Incident report is provided in Appendix A.

4.0 WASTE DIVERSION OPERATIONS

In 2019, 637,422 metric tonnes of material were received at the BRRMF: 308,999 metric tonnes were composted or re-used on-site, 8,181 metric tonnes were removed from the BRRMF for further processing or beneficial re-use, and 320,242 metric tonnes were landfilled. This translates to a diversion rate of 50%, which is a decrease from the 2018 diversion rate of 52%.

The amount of material landfilled decreased in 2019 because biosolids continued to be diverted from the landfill to a soil fabrication pilot project and a land application pilot project. There was a decrease in the amount of clean fill received in 2019, and there was a decrease in the amount of City compost removed from the site. In 2020, the BRRMF will compost organic materials as part of the curbside collection pilot program.

A summary of the BRRMF Waste Diversion Operations is provided in Table 1, the 2019 BRRMF Tonnage Spreadsheet is provided in Appendix B.

Winnipeg Water and Waste Eaux et déchets	Table 1. 2019 BRRMF Waste Diversion Summary					
	2015	2016	2017	2018	2019	
Total Materials Received (a) = (b) + (c) + (d)	460,506	434,403	658,871	682,779	637,422	
Materials Landfilled						
Biosolids	44,717	44,652	42,397	33,030	20,365	
Residential Waste Collection	177,846	174,280	172,209	172,041	174,050	
Miscellaneous Wastes (dead animals, asbestos, hospital waste, costruction/demolition waste, etc)	144,205	96,834	93,851	88,813	93,621	
Wastes from 4R Depots	n/a	15,872	12,806	12,175	12,883	
Wastes from City Operations (street cleaning refuse, grit, non-recyclables from recycling facility, etc)	19,611	20,878	23,595	20,864	19,323	
Wastes from Other Municipalities	3,594	4,729	3,505	20	0	
Total Landfilled (b)	389,974	357,246	348,364	326,942	320,242	
Materials Composted or Reused On Site						
Biosolids	3,939	1,899	4,942	1,541	1,916	
Ceramic	n/a	164	245	296	331	
Clean Fill	4,957	6,198	247,852	281,546	252,113	
Compostable Materials (retention pond dredgings, street leaves, leaf and yard waste)	33,475	34,726	28,532	33,041	31,525	
Concrete	362	1,338	2,801	5,187	6,565	
Glass	9,339	11,534	11,181	12,338	10,965	
Lumber	n/a	187	185	202	192	
Sweepings (sand)	10,814	11,620	398	259	223	
Trees and Wood Chips	6,442	7,521	8,860	7,080	5,168	
Total Composted or Reused (c)	69,328	75,187	304,998	341,489	308,999	
Materials Removed from Site*						
Batteries	0	24	33	49	74	
Bicycles	n/a	13	11	6	9	
City Compost	343	403	3,287	11,483	5,166	
Dutch Elm	19	3	102	111	0	
Electronics	n/a	375	530	570	665	
Household Hazardous Waste	n/a	303	341	594	686	
Mattresses	n/a	n/a	n/a	n/a	233	
Oil	n/a	22	32	60	90	
Oversized Plastics	n/a	15	22	52	43	
Ozone-Containing Appliances	78	66	111	180	166	
Recyclables	n/a	156	274	471	278	
Scrap Metal	543	532	619	607	635	
Tires	222	57	146	165	134	
Total Removed from Site (d)	1,205	1,970	5,510	14,348	8,181	
Diversion Rate = (c) + (d) / (a)	15%	18%	47%	52%	50%	

t qu .крі

5.0 GROUND WATER, SURFACE WATER, LEACHATE, AND LANDFILL GAS MONITORING

5.1 GROUND WATER

The land beneath the BRRMF consists of three layers: the uppermost layer is clay (averaging 12 m in thickness), the second layer is till (averaging 6 m in thickness), and the lowest layer is bedrock. Ground water flows downwards through the clay and till layers into the bedrock aquifer, which flows in a north-east direction. The ground water in all three layers is saline and non-potable. The ground water monitoring system includes 34 nested wells: 13 bedrock wells, 13 till wells, and 8 clay wells. The locations of the ground water monitoring wells are shown on Figure 2.

As per the BRRMF Operating Plan, ground water is monitored in accordance with the Ground Water Sampling and Analysis Plan (SAP), as specified under Clause 123. Sampling frequency is twice per year for bedrock wells and downgradient till wells, and once per year for clay wells and other till wells distant from the waste areas. As neither Federal nor Manitoba Provincial Governments regulate non-potable ground water quality, the Ontario Ministry of Environment (MOE) guidelines for non-potable groundwater quality are used as the regulatory guideline (MOE, 2011).

In 2019, a total of 49 ground water samples were analyzed – 5 samples from wells upgradient of the site (background water quality), and 44 samples from wells crossgradient and downgradient of the site. There were no deviations from the Ground Water SAP or from normal sample collection and preservation practices. The majority of results met the guidelines with the exception of chloride in some till and bedrock wells, and hydrocarbons in two of the bedrock wells. The 2019 ground water results are provided in Tables 2.1-2.3.

The 2015-2019 average values are provided in Tables 3.1-3.3. Some variability from historical data was observed in some of the samples, this may be a statistical anomaly; we will continue to monitor these parameters to better evaluate trends.

Based on the Piper diagrams provided in Appendix C, the major ions in the ground water from the clay layer are calcium, magnesium, sulfate and bicarbonate. Sodium and chloride are the major ions in the bedrock aquifer. Ground water in the till layer is generally intermediate in brackishness and shows a gradual change with depth. The Piper diagrams display tight groupings of ground water sampling data, which is indicative of no significant ground water chemical changes.

Time versus concentration graphs provided in Appendix D show the historical relationship of the analytical parameters at each monitoring location. In general, the analytical results for ground water obtained in 2019 were found to be similar to those obtained in 2015-2018, and are consistent with background levels.

The Contingency Action Plan identified under Clause 125 was not implemented in 2019.

At this time we have no recommendations for changes in the ground water monitoring program.

Winnipeg	Water and Waste Eaux et déchets
----------	------------------------------------

Т

Table 2.1 2019 Ground Water Monitoring - Clay Wells

			Upgradient			Downgr	adient and Crossg	gradient		
			GWO25-6N60DR	GWO25-5N62D	GWO25-6N63E	GWO25-6N57DR	GWO25-6N67E	GW025-4N34B	GW025-4N34C	GWO25-6N59DR
	Units	Criteria	Spring	Spring	Spring	Spring	Spring	Spring	Spring	Spring
Inorganic Parameters							101			110
Alkalinity - Bicarbonate	mg/L		530	464	493	481	464	566	808	NS
Alkalinity - Carbonate Alkalinity - Hydroxide	mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	NS NS
Alkalinity - Total	mg/L		530	464	493	481	464	566	808	NS
Dissolved Hardness (CaCO3)	mg/L		1,720	2,720	2,620	2,170	1,810	1,840	2,050	NS
рН	units		6.89	6.74	6.77	7.42	6.86	7.19	6.89	NS
Specific Conductivity	(µS/cm)		4,800	8,750	7,200	6,230	4,880	7,140	5,530	NS
Turbidity	(ntu)		24.3	8.1	25.6	17.6	14.3	24	164	NS
Total Dissolved Solids	mg/L		3,880	6,610	5,620	5,050	3,750	6,270	13,400	NS
Total Suspended Solids	mg/L		268	7 3 2 0	6 260	5 308	409	553	3,400	NS
Dissolved Chloride (Cl)	mg/L	2.300 *	570	1,550	1.120	780	620	1.280	1.050	NS
Dissolved Sulphate (SO4)	mg/L	_,	1,730	3,030	1,920	2,080	1,380	2,790	1,760	NS
Nutrients				•						
Ammonia - Dissolved	mg/L N		0.005	0.397	0.388	0.050	0.617	<0.003	0.685	NS
Nitrate - Dissolved	mg/L N		0.855	0.855	0.288	0.870	0.037	0.055	0.032	NS
Total Kjeldahl Nitrogen	mg/L N		0.2	1.0	0.8	0.5	0.9	0.8	1.5	NS
Phosphorus - Dissolved	mg/L P		<0.013	<0.013	<0.013	0.025	0.025	0.018	0.020	NS
Cyanide - Total (CN)	ug/L	66	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NS
Organic Indicators			1.0		1.0			2.0	1.0	
Chemical Oxygen Demand	mg/L		32	101	66	50	33	54	630	NS
Total Organic Carbon	mg/L		10.0	19.8	14.8	16.4	10.9	18.5	57.3	NS
Metals	4	1 0 0 0 1							1.00	
Arsenic (As)- Dissolved	ug/L	1,900 *	0.48	0.87	0.66	0.52	0.44	0.76	1.30	NS
Barlum (Ba)- Dissolved	ug/L	29,000	8.10 <0.10	14.3 <0.10	12.8 <0.10	9.29 <0.10	9.36	8.91 <0.10	10.3 <0.10	NS
Cadmium (Cd)- Dissolved	ug/L	27*	0.10	0.118	0.10	0.116	0.328	<0.10 0.110	0.158	NS
Calcium (Ca)- Dissolved	mg/L	2	579	914	757	676	521	774	542	NS
Chromium (Cr)- Dissolved	ug/L	810 *	<0.10	0.11	<0.10	<0.10	0.14	0.21	0.10	NS
Copper (Cu)- Dissolved	ug/L	87 *	1.40	2.04	1.51	2.18	2.19	3.34	1.12	NS
Iron (Fe)- Dissolved	ug/L		<10	<10	<10	<10	<10	13	317	NS
Lead (Pb)- Dissolved	ug/L	25 *	< 0.050	<0.050	< 0.050	0.059	0.060	0.051	< 0.050	NS
Magnesium (Mg)- Dissolved	mg/L		212	341	309	253	711	629	249	NS
Manganese (Mn)- Dissorted	ug/L	2.8*	<0.0050	<0.0050	0.0060	< 0.0050	<0.50	0.0070	0.38	NS
Nickel (Ni)- Dissolved	ug/L	490 *	6.67	10.8	11.5	9.98	6.83	11.3	7.91	NS
Potassium (K)- Dissolved	mg/L		10.2	14.7	12.1	11.5	9.65	10.7	9.93	NS
Selenium (Se)- Dissolved	ug/L	63 *	0.135	0.155	0.188	0.305	0.188	66.9	3.58	NS
Silver (Ag)- Dissolved	ug/L	1.5 *	0.010	0.017	0.015	0.019	0.022	0.035	0.011	NS
Sodium (na)- Dissolved	mg/L	2,300 *	332	831	654	593	323	461	435	NS
Eield Parameters	ug/L	1,100	4.5	1.3	5.7	6.1	6.1	2.5	5.1	NS
pH	units		7.44	7.55	7.04	7.85	8.05	7.65	7.86	NS
Specific Conductivity	(µS/cm)		4,050	7,410	6,300	5,140	4,330	4,860	3,730	NS
Polycyclic Aromatic Hydrocarbons										
Naphthalene	ug/L	6,400	<0.050							
Benzo(a)pyrene	ug/L	0.81	< 0.0050							
Anthracene Potroloum Hydrocarbons	ug/L	2.4	< 0.010							
F1 (C6-C10 Hydrocarbons)	uø/L	750	<100							
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100							
F3 (C16-C34 Hydrocarbons)	ug/L	500	<250							
F4 (C34-C50 Hydrocarbons)	ug/L	500	<250							
Benzene	µg/L	430	<0.50							
Etny(Benzene	µg/L	2,300	<0.50							
Toluene Xvlene (Total)	µg/L	18,000	<0.50 <0.50							
Volatile Organic Carbons	P8/L	7,200	-0.50							
Vinyl chloride	µg/L	1.7	<0.50							
Pesticides										
Diazinon	µg/L		<0.10							
Herbicides										
2,4-D	ug/L		<0.10							
			Note: Criteria from Environmental Pro * Criteria for total o NS - Sampled ever	i Ontario Ministry o <i>tection Act</i> Table 3 chloride, total meta y other year	f the Environment : Full Depth Generi als and xylene mixt	. (2011, July 1). Soil, c Site Condition Sta .ure	Ground Water and ndards in a Non-Po	l Sediment Standa otable Ground Wat	rds for Use Under F er Condition	art XV.I of the

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

Winnipeg	Water Eaux (^r and W et déch	/aste nets	te s Table 2.2 2019 Ground Water Monitoring - Till Wells											ill
				Upgra	adient				Downg	gradient a	nd Crossgi	radient			
		Units	Criteria	GWQ25 Spring	-6N60ER Autumn	GWQ25 Spring	5-5N62E Autumn	GWQ2	5-W13A Autumn	GWQ2 Spring	5-W14A Autumn	GWQ2 Spring	5-W15A Autumn	GWQ25 Spring	5-W16A Autumn
Inorganic Parameters					(D)1	257	505		1 700	501	500	2.670	2.500	2000	400
Alkalinity - Bicarbonate Alkalinity - Carbonate		mg/L mg/l	-	576 <3.0	631 <3.0	357	525 <3.0	627 <3.0	1,790	594 <3.0	568 <3.0	2,670	3,580	399 <3.0	422 <3.0
Alkalinity - Hydroxide		mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Alkalinity - Total		mg/L		576	631	357	525	627	1,790	594	568	2,670	3,580	399	422
Dissolved Hardness (CaC	03)	mg/L		1,440	1,580	1,910	2,460	3,080	4,590	4,170	2,360	5,160	12,200	1,510	1,800
pH Specific Conductivity		units (uS/cm)		6.93	6.92	7.37	7.40	7.15	7.25	7.45	7.41	6.78	6.84	7.03	6.92 5.270
Turbidity		(ntu)		219	275	1410	3,025	1290	7,500	96.9	1,330	7600	335	178.4	21,950
Total Dissolved Solids		mg/L		3,360	3,240	5,560	5,180	8,060	5,070	3,540	5,100	2,160	370	4,270	3,700
Total Suspended Solids		mg/L		760	999	2,410	3,770	5,500	10,200	9,480	8,460	35,350	36,550	513	1,080
Total Solids		mg/L	2 200 *	4,120	4,240	7,970	8,950	13,600	15,300	13,000	3,360	37,500	36,900	4,790	4,780
Dissolved Chloride (Cl) Dissolved Sulphate (SO4)	1	mg/L mg/l	2,300 "	520	351	1,720	2,430	3,060 650	2,220	3,010	2,370	1,360	1,890	990	1,080
Nutrients		ing/ E		1,500	1,150	1,550	010	030	015	030	015	1,000	1,110	1,010	1,000
Ammonia - Dissolved		mg/L N		0.348	0.424	1.01	0.970	0.922	0.951	1.05	1.06	0.845	0.945	0.737	0.759
Nitrate - Dissolved		mg/L N	<u> </u>	0.222	0.189	0.003	0.061	0.122	0.035	< 0.003	0.004	0.024	< 0.003	0.067	0.105
Phosphorus - Dissolved		mg/LN		<0.013	<0.9	<0.013	<0,013	<0.013	<0.013	<0,013	<0.013	2.5 0.053	<0,013	<0.013	0.013
Other															
Cyanide - Total (CN)		ug/L	66	<1.0		<1.0	1.2	<1.0		<1.0		<1.0		1.1	
Organic Indicators				20	46	100	140	200	200	245	100	1 200	1 700	50	70
Chemical Oxygen Deman	a	mg/L mg/l		39	46 9.2	100	140 4 7	300	380	345	136	1,290	1,700	52	78 97
Metals		ing/ E		5.0	5.2	5.5	1.7	21.5	1.0	52.1	5.0	01.5	10.1	1.2	5.1
Arsenic (As)- Dissolved		ug/L	1,900 *	0.98	1.24	2.54	4.63	3.27	1.18	4.51	6.58	0.89	1.12	1.43	0.96
Barium (Ba)- Dissolved		ug/L	29,000 *	7.69	8.38	11.2	12.0	13.2	11.2	13.1	10.9	12.6	13.3	11.4	13.0
Beryllium (Be)- Dissolved	1	ug/L	6/^ 27*	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Calcium (Ca)- Dissolved		mg/L	2.1	430	434	338	319	442	532	337	388	782	843	530	536
Chromium (Cr)- Dissolved	1	ug/L	810 *	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Copper (Cu)- Dissolved		ug/L	87 *	1.42	1.29	<0.20	<0.20	<0.20	0.35	<0.20	0.21	0.28	<0.20	0.43	0.22
Iron (Fe)- Dissolved		ug/L	25 *	<10	38	445	502	387	169	<10	615	396	1,310	18.0	35
Magnesium (Mg)- Dissolv	ed	mg/L	25	184	206	173	182	206	202	175	153	270	241	209	190
Manganese (Mn)- Dissolv	ed	ug/L		1,240	1,090	71.8	58.1	245	322	122	219	1,650	2,240	850	914
Mercury (Hg)- Total		ug/L	2.8 *	0.0230	0.0150	<0.025	<0.0050	0.130	<0.0050	0.130	0.140	0.36	<0.0050	<0.050	0.0050
Nickel (Ni)- Dissolved		ug/L	490 *	7.93	7.88	1.17	1.23	2.39	3.12	1.54	1.89	7.43	9.61	5.61	6.61
Selenium (Se)- Dissolved		ug/L	63 *	0.104	0.053	<0.050	<0.050	<0.050	2.70	<0.050	< 0.050	0.104	0.174	0.064	0.130
Silver (Ag)- Dissolved		ug/L	1.5 *	< 0.010	0.025	0.011	0.032	0.013	< 0.010	0.038	< 0.010	0.020	< 0.010	0.012	< 0.010
Sodium (na)- Dissolved		mg/L	2,300 *	370	372	1,310	1,380	1,110	1,040	1,320	1,250	606	616	474	469
Zinc (Zn)- Dissolved		ug/L	1,100 *	3.4	3.8	2.3	1.8	2.0	1.9	<1.0	1.3	3.7	4.8	4.0	5.0
pH		units		7.65	7.52	7.92	8.18	7.76	7.88	8.03	8.23	7.22	7.78	7.70	7.78
Specific Conductivity		(µS/cm)		3,800	5,500	7,660	6,980	5,530	6,460	5,850	4,900	6,080	5,710	4,760	4,430
Polycyclic Aromatic Hyd	lrocarbons														
Naphthalene		ug/L	6,400	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	
Anthracene		ug/L ug/L	2.4	< 0.0050		< 0.0050		<0.0050		<0.0050		<0.0050		<0.0050	
Petroleum Hydrocarbo	ıs	46/2		0.010		0.010		0.010		0.010		0.010		01010	
F1 (C6-C10 Hydrocarbons	5)	ug/L	750	<100		<100		<100		<100		<100		<100	
F2 (C10-C16 Hydrocarbor	ns)	ug/L	150	<100		<100		<100		<100		<100		<100	
F4 (C34-C50 Hydrocarbor	15/ 15)	ug/L ug/l	500	<250 <250		<250		<250		~250 <250		<250		~250 <250	
Benzene	-,	μg/L	430	<0.50		<0.50		<0.50		<0.50		<0.50		< 0.50	
EthylBenzene		μg/L	2,300	<0.50		<0.50		<0.50		<0.50		<0.50		<0.50	
Toluene		µg/L	18,000	< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50	
Aylene (Total)	s	µg/L	4,200 *	<0.50		<0.50		<0.50		<0.50		<0.50		<0.50	
Vinyl chloride	-	μg/L	1.7	<0.50		< 0.50		< 0.50		< 0.50		<0.50		< 0.50	
Pesticides															
Diazinon		µg/L		<0.10		<0.10		<0.10		<0.10		<0.10		<0.10	
Herbicides		110/1		<0.10		<0.10		<0.10		<0.10		<0.10		<0.10	
2, 4 -U		ug/L	I	Note: Crit	eria from C	ntario Mir	histry of the	e Environm	nent, (2011	. July 1) S	oil. Ground	Vater and	Sedimen	t Standard	s for Use
				Under Par Ground W * Criteria	rt XV.I of th later Condi for total ch	ition loride, tot	al metals a	tection Act	mixture	ull Depth G	Generic Site	e Condition	n Standard	is in a Non-	Potable

Winnipeg	Water Eaux e	and W et déch	laste nets	te Table 2.2 2019 Ground Water Monitoring - Till Wells										
					·	Downg	radient and Crossg	radient	·					
		Units	Criteria	GWQ25-6N63F Spring	GWQ25-6N57F Spring	GWQ25-6N67F Spring	GWQ25-4N34DR Spring	GWQ25-6N58DR Spring	GWQ25-6N58F Spring	GWQ25-6N59F Spring				
Inorganic Parameters				•	· · ·	, i i								
Alkalinity - Bicarbonate		mg/L		899	748	397	524	NS	NS	NS				
Alkalinity - Hydroxide		mg/L		<3.0	<3.0	<3.0	<3.0	NS	NS	NS				
Alkalinity - Total		mg/L		899	748	397	524	NS	NS	NS				
Dissolved Hardness (CaCC)3)	mg/L		3,440	2,530	1,270	1,620	NS	NS	NS				
pH Specific Conductivity		units		6.91	7.12	6.98	7.04	NS	NS	NS				
Turbidity		(µs/cm) (ntu)		1570	6,130	4,540	6,290	NS	NS	NS				
Total Dissolved Solids		mg/L		4,480	3,820	3,320	5,530	NS	NS	NS				
Total Suspended Solids		mg/L		5,940	6,040	548	2,940	NS	NS	NS				
Total Solids		mg/L		10,400	9,860	3,870	8,470	NS	NS	NS				
Dissolved Chloride (Cl) Dissolved Sulphate (SOA)		mg/L mg/l	2,300 ^	340	1,040	730	760	NS	NS	NS NS				
Nutrients				1,030	1,730		100	115	113	115				
Ammonia - Dissolved		mg/L N		0.809	0.899	0.629	0.443	NS	NS	NS				
Nitrate - Dissolved		mg/L N		<0.003	<0.003	0.054	0.192	NS	NS	NS				
Total Kjeldahl Nitrogen		mg/L N		1.0	1.3	0.7	0.9	NS	NS	NS				
Other		IIIg/L P		~0.015	0.023	0.022	~0.013	113	113	115				
Cyanide - Total (CN) Organic Indicators		ug/L	66	<1.0	1.0	<1.0	<1.0			NS				
Chemical Oxygen Demand		mg/L		185	180	27	39	NS	NS	NS				
Total Organic Carbon		mg/L		12.5	19.0	6.4	10.5	NS	NS	NS				
Metals Arsenic (As)- Dissolved		μ <u>σ</u> /Ι	1 900 *	2.12	9.87	1 29	2.09	NS	NS	NIS				
Barium (Ba)- Dissolved		ug/L	29,000 *	10.3	9.50	10.2	10.7	NS	NS	NS				
Beryllium (Be)- Dissolved		ug/L	67 *	<0.10	<0.10	<0.10	<0.10	NS	NS	NS				
Cadmium (Cd)- Dissolved		ug/L	2.7 *	0.0062	0.0086	0.0155	0.0182	NS	NS	NS				
Calcium (Ca)- Dissolved		mg/L	910 *	527	485	407	457	NS	NS	NS				
Copper (Cu)- Dissolved		ug/L ug/L	87 *	0.23	<0.10	0.29	0.59	NS	NS	NS				
Iron (Fe)- Dissolved		ug/L		1,450	1,430	12	125	NS	NS	NS				
Lead (Pb)- Dissolved		ug/L	25 *	<0.050	<0.050	<0.050	<0.050	NS	NS	NS				
Magnesium (Mg)- Dissolve	d d	mg/L		314	219	231	468	NS	NS	NS				
Mariganese (Mil)- Dissolve Mercury (Hg)- Total	u	ug/L ug/L	2.8 *	0.0050	0.070	<0.0050	0.0250	NS	NS	NS				
Nickel (Ni)- Dissolved		ug/L	490 *	3.75	5.22	3.85	5.08	NS	NS	NS				
Potassium (K)- Dissolved		mg/L		11.1	13.5	9.18	16.2	NS	NS	NS				
Selenium (Se)- Dissolved		ug/L	63*	< 0.050	< 0.050	< 0.050	0.115	NS	NS	NS				
Silver (Ag)- Dissolved		ug/L mg/l	2 300 *	570	0.024	305	0.013	NS	NS	NS				
Zinc (Zn)- Dissolved		ug/L	1,100 *	1.3	2.2	2.2	2.6	NS	NS	NS				
Field Parameters														
pH		units		7.80	7.65	7.50	7.74	NS	NS	NS				
Polycyclic Aromatic Hydr	rocarbons	(µS/cm)		5,710	5,140	4,330	4,600	NS	NS	NS				
Naphthalene		ug/L	6,400				<0.050							
Benzo(a)pyrene		ug/L	0.81				<0.0050							
Anthracene Botraloure Hudrocorthor	-	ug/L	2.4				<0.010							
F1 (C6-C10 Hydrocarbons)	5	μ <u>σ</u> /Ι	750				<100							
F2 (C10-C16 Hydrocarbons)	5)	ug/L	150				<100							
F3 (C16-C34 Hydrocarbons	5)	ug/L	500				<250							
F4 (C34-C50 Hydrocarbons	5)	ug/L	500				<250							
Benzene EthylBenzene		μg/L	430				<0.50							
Toluene		µg/L	18.000				<0.50							
Xylene (Total)		μg/L	4,200 *				<0.50							
Volatile Organic Carbons	;													
Vinyl chloride		µg/L	1.7				<0.50							
Diazinon		ц <u>я</u> /I					<0.10							
Herbicides		P6/5					0.10							
2,4-D		ug/L					<0.10							
				Note: Criteria fron Part XV.I of the En Condition * Criteria for total NS - Sampled even	n Ontario Ministry o vironmental Protec chloride, total met ry other year	f the Environment tion Act Table 3: F als and xylene mix	. (2011, July <u>1). Soil,</u> ull Depth Generic Si ture	Ground Water an te Condition Stan	d Sediment Standa dards in a Non-Pota	rds for Use Under ble Ground Water				

	later and	Wast					_				•.		_			
Winnipeg E	aux et dé	chets		ble 2	.3 2()19 (Grou	nd V	Vate	r Mo	nito	ring	- Be	droc	: k W (ells
			Upgr	adient					Downg	gradient a	nd Crossg	radient				
			GWQ	25-W6	GWQ	25-W8	GWQ2	25-W11	GWQ2	25-W13	GWQ2	25-W14	GWQ2	25-W15	GWQ2	25-W16
· · •	Units	Criteri	a Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn
Inorganic Parameters	mg/l		161	138	144	137	137	131	376	205	144	126	146	145	154	156
Alkalinity - Carbonate	mg/L	_	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Alkalinity - Hydroxide	mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Alkalinity - Total	mg/L		161	138	144	137	137	131	376	205	144	126	146	145	154	156
Dissolved Hardness (CaCO3)	mg/L	·	936	1,060	830	925	757	843	1,060	1,290	797	849	788	1,090	905	1,190
pH	units (us/cn	-1	7.51	7.64	7.39	7.59	7.54	7.58	7.22	7.25	7.38	7.55	7.48	7.48	7.51	7.49
Specific Conductivity	(µs/cii (ntu)	1)	5.97	7 58	8,920 1 40	1 59	8,140 14.6	8,590	8,500 1 01	8,420 1 12	8,830 1 15	δ,10U // 38	δ,∠1∪ 2.41	1,900	37.6	1,910
Total Dissolved Solids	mg/L	_	6,190	6.250	5.230	5.220	5.120	5.140	5.000	5.110	5.110	4.760	4.920	4.720	4.900	4.730
Total Suspended Solids	mg/L	. – † – – – – – – – – – – – – – – – – –	529	272	544	244	329	348	656	663	445	219	350	570	563	822
Total Solids	mg/L		6,720	6,530	5,780	5,460	5,450	5,490	5,650	5,780	5,550	4,980	5,270	5,290	5,460	5,550
Dissolved Chloride (Cl)	mg/L	2,300	* 3,280	430	2,300	2,440	2,740	2,400	2,500	2,250	3,000	2,280	2,370	2,550	2,480	2,520
Dissolved Sulphate (SO4)	mg/L	_	770	895	688	634	788	865	673	835	651	703	570	790	590	791
Nutrients			1.40	1.45					1.00					1.00	- 200	
Ammonia - Dissolved	mg/Li		1.42	1.45	1.11	1.140	1.06	1.11	1.09	1.13	1.04	0.034	0.974	1.08	0.980	1.09
Nitrate - Dissolveu Total Kieldahl Nitrogen	mg/L		1.8	2 1	1.4	17	1 3	13	1 5	15	1.4	0.005	1 2	1.5	1 2	1.000
Phosphorus - Dissolved	mg/L	p	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	< 0.003	<0.013	< 0.013	<0.013	<0.013	<0.013	<0.013
Other																
Cyanide - Total (CN)	ug/L	66	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1	<1.0
Organic Indicators																
Chemical Oxygen Demand	mg/L	<u> </u>	113	122	77	88	72	89	74	85	70	87	75	82	75	92
Total Organic Carbon	mg/L	_	1.7	2.1	3.2	1.7	2.2	0.5	4.9	1.8	2.9	1.1	4.5	1.6	3.5	1.9
Metals	ug/l	1 900	* 0.82	0.01	2.61	0.45	E /3	E 00	2.54	0.72	2.88	0.75	1.87	1.04	1 20	1.42
Arsenic (As)- Dissolved Rarium (Ra)- Dissolved	ug/L	29.000	* 14.6	15.2	5.01	61,7	3.43	14.8	3.J4 24.4	25.1	2.00	19.0	30.2	28.9	1.25	17.6
Bervllium (Be)- Dissolved	ug/L	67 *	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)- Dissolved	ug/L	2.7 *	0.119	0.160	0.0051	0.0168	<0.0050	<0.0050	0.197	2.270	0.0183	0.0373	0.0342	0.0472	0.0704	0.107
Calcium (Ca)- Dissolved	mg/L	<u> </u>	364	341	776	817	315	284	351	309	255	251	102	118.0	312	279
Chromium (Cr)- Dissolved	ug/L	810 *	0.52	0.51	50.4	54.9	<0.10	<0.10	1.32	0.85	0.13	<0.10	0.21	0.18	0.35	0.21
Copper (Cu)- Dissolved	ug/L	87 *	5.23	2.00	3.27	3.39	<0.20	<0.20	0.74	6.62	2.89	2.19	11.9	8.56	6.76	2.95
Iron (Fe)- Dissolved	ug/L		<10	<10	<10	<10	914	501	191	23.0	<10	<10	<10	11.0	<10	<10
Lead (Pb)- Dissolved	ug/L	25 *	0.163	< 0.050	0.215	0.491	0.051	< 0.50	< 0.050	< 0.50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Magnesium (Mg)- Dissolved	mg/L		27.0	182	0.888	0.446	152	120	148	125	108	140	169	236	1/4 50.1	1/3
Manganese (MII)- Dissolved Mercury (Hø)- Total	ug/ c ug/ l	2.8*	<0.0050	<0 0050	<0.20	<0.10	<0.0020	<0.0050	δ1.1 <0.0050	<0.0020	14.J <0.0050	<0.0050	<0.0050	9.00 <0.0050	<0.0050	<0.0050
Nickel (Ni)- Dissolved	ug/L	490 *	2.97	2,80	0.65	<0.50	1,37	0.60	1,98	3.97	0.83	0.55	7,18	8,22	2,77	2,75
Potassium (K)- Dissolved	mg/L	_	47.4	50.6	20.1	22.7	40.2	37.7	24.5	20.1	35.5	40.8	10.7	10.3	32.0	32.8
Selenium (Se)- Dissolved	ug/L	63 *	0.053	< 0.050	0.747	0.657	<0.050	< 0.050	0.568	<0.050	0.052	< 0.050	1.10	1.71	0.174	0.505
Silver (Ag)- Dissolved	ug/L	1.5 *	0.016	0.012	0.016	0.011	0.011	<0.010	< 0.010	<0.010	0.028	0.011	< 0.010	<0.010	0.043	0.020
Sodium (na)- Dissolved	mg/L	2,300	* 1,740	1,760	596	663	1,520	1,440	989	864	1,270	1,410	131	196	1,190	1,220
Zinc (Zn)- Dissolved	ug/L	1,100	* 38.3	65.3	1.5	4.1	<1.0	<1.0	1.6	161	9.6	20.7	14.6	21.2	28.9	35.0
Bacteria	MPN/100	2 mail	-1	1	-1	-1	-1	-1	25	~1	~1	-1		-1	~1	-1
Focal Coliforms (MTF)	MPN/100	/mL	<1		<1	<1	<1	<1	1	<1	<1	<1	4	<1	2	<1
F coli (MTF)	MPN/100)mL	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Field Parameters			_				-	-		_	_				-	
pH	units		7.78	7.76	7.78	7.04	8.30	7.98	7.96	7.71	7.84	7.79	7.20	6.86	6.70	6.86
Specific Conductivity	(µS/cm	1)	8,690	7,740	7,730	6,810	7,530	7,370	7,180	7,050	7,460	6,740	5,480	6,440	5,850	6,510
Polycyclic Aromatic Hydrocar	rbons															
Naphthalene	ug/L	6,400	< 0.050	< 0.050	0.161	< 0.050	< 0.050	< 0.050	0.062	< 0.050	< 0.050	< 0.050	< 0.050	0.07	< 0.050	< 0.050
Benzo(a)pyrene	ug/L	0.81	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	ug/ L	2.4	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
F1 (C6-C10 Hydrocarbons)	ug/L	750	<1.00	<100	<100	<100	<100	<100	<100	120	<100	<100	<100	<100	<100	<100
F2 (C10-C16 Hydrocarbons)	ug/L	150	<100	<100	110	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34 Hydrocarbons)	ug/L	500	<250	<250	<250	260	<250	<250	<250	<120	<250	<250	310	380	<250	<250
F4 (C34-C50 Hydrocarbons)	ug/L	500	<250	<250	<250	<250	<250	<250	<250	<120	<250	<250	280	620	<250	<250
Benzene	μg/L	430	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EthylBenzene	µg/L	2,300	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	μg/L	18,000	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
Xylene (Total)	µg/∟	4,200	<0.50	<0.64	<0.50	<0.64	<0.50	<0.64	<0.50	<0.64	<0.50	<0.64	<0.50	<0.64	<0.50	<0.64
Volatile Organic Carbons	ug/l	17	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Posticides	<u>нк/ с</u>	1.1	~U.JU	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Diazinon	µg/L		< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
Herbicides	For			0	0.22		0.22	0	0.11	0	0.20	0	0.11	0	0.22	0
2,4-D	ug/L		< 0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
			Note: Crit the Envir * Criteria	teria from (onmental F for total cl	Ontario Min Protection hloride, tot	nistry of the Act Table∶ tal metals	e Environn 3: Full Dep and xylene	nent. (2011 th Generic mixture	L, July 1). S Site Condi	oil, Ground ition Stand	d Water an lards in a N	d Sedimen Non-Potab	nt Standard le Ground '	ds for Use I Water Con	Under Part dition	: XV.I of

	Water	and W	laste								••	•	-	1.1	
Winnipeg	Eauxe	et déch	iets	Tabi	le 2.3	2019) Gro	und	Nate	r Mor	nitor	ing -	Bedr	OCK V	Vells
			ł					Dowr	ngradient a	nd Crossgra	adient				
				GWQ	25-W9	GWQ2	25-W10	GWQ	25-W7	GWQ2	5-W12	GWQ2	25-W4	GWQ	25-W5
		Units	Criteria	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn
Inorganic Parameters															
Alkalinity - Bicarbonate		mg/L	└─── ′	144	138	140	133	334	126	147	139	74.5	63.5	128	133
Alkalinity - Carbonate		mg/L	───′	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Alkalinity - Hydroxide		mg/L	───′	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.U	<3.0	<3.0	<3.0
Alkalinity - Total	121	mg/∟	───	077	916	14U 045	133	334 664	730	14 <i>1</i> 966	041	(4.5 535	63.5 E53	128 942	133
nH	(3)	units	───′	7 41	7 42	7 50	7 43	7 69	7 82	7 47	7 52	7 62	7 88	04∠ 7.56	7 44
Specific Conductivity		(uS/cm)	├ ──┦	9.790	9.680	9.210	9.040	6.980	6.970	9.020	8.970	7.430	7.300	8.380	8.290
Turbidity		(ntu)		2.76	9.91	2.22	2.93	13.4	7.94	4.76	3.39	3.73	33.3	10.8	13.0
Total Dissolved Solids		mg/L		5,920	5,880	5,480	5,460	4,010	3,980	5,380	5,430	4,110	4,160	4,880	5,080
Total Suspended Solids		mg/L		364	416	396	396	512	282	349	300	1,400	271	522	439
Total Solids		mg/L	<u> </u>	6,280	6,300	5,880	5,850	4,520	4,260	5,730	5,730	5,510	4,430	5,400	5,510
Dissolved Chloride (Cl)		mg/L	2,300 *	25.3	2,540	3,350	1,330	2,130	316	2,780	2,490	2,460	2,000	3,580	1,910
Dissolved Sulphate (SO4)		mg/L		790	68	750	833	649	634	710	873	546	901	990	6.6
Nutrients															
Ammonia - Dissolved		mg/L N	Ļ'	1.3	1.39	1.24	1.24	1.88	1.89	1.14	1.12	0.761	0.821	0.976	1.04
Nitrate - Dissolved		mg/L N	└─── ′	<0.003	<0.003	<0.003	< 0.003	0.003	<0.003	< 0.003	< 0.003	<0.003	<0.003	<0.003	< 0.003
Total Kjeldahl Nitrogen		mg/L N	└───'	1.5	1.8	1.5	1.7	2.4	2.7	1.2	1.7	0.9	0.9	1.2	1.3
Phosphorus - Dissolved		mg/L P	L	< 0.013	<0.013	<0.013	< 0.013	< 0.013	<0.013	<0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013
Other		-/1		10	1.0	1.0		1.0		1.0		1.0	1.0	1.0	
Cyanide - Total (CN)		ug/L	66	<1.0	<1.0	<1.0		<1.U		<1.0		<1.0	<1.U	<1.0	
Chamical Oxygen Demand	4	mg/l		105	104	90	96	56	64	86	94	63	70	70	76
Chemical Oxygen Demanu		mg/L	───′	202	104	24	90	3.2	1 1	00	94 1 7	1.6	1.4	27	10
Motals		IIIg/ L		2.3	1.3	2.4	1.1	3.4	1.1	4.0	1.1	1.0	1.4	2.1	1.0
Arconic (As)- Dissolved		110/	1 900 *	7 14	7 11	5 77	5.60	0.33	0.48	4 68	12	0.72	0.44	4 56	5 74
Barium (Ba)- Dissolved		ug/L	29.000 *	11.5	12.2	14.4	13.2	48.0	46.8	12.3	18	10.5	10.6	13.5	14.3
Bervillium (Be)- Dissolved		ug/L	67 *	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<10	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)- Dissolved		ug/L	2.7 *	< 0.0050	<0.0050	0.0051	< 0.0050	0.0167	0.0157	<0.0050	< 0.50	<0.0050	< 0.0050	<0.0050	<0.0050
Calcium (Ca)- Dissolved		mg/L	· · · · · ·	325	329	281	338	384	348	322	325	187	181	317	311
Chromium (Cr)- Dissolved		ug/L	810 *	<0.10	<0.10	<0.10	<0.10	20.9	19.70	<0.10	<10	< 0.10	<0.10	<0.10	<0.10
Copper (Cu)- Dissolved		ug/L	87 *	<0.20	<0.20	<0.20	<0.20	2.14	1.16	<0.20	46	<0.20	<0.20	<0.20	0.21
Iron (Fe)- Dissolved		ug/L		884	899	484	904	<10	30	577	<1000	2,930	2,170	559	770
Lead (Pb)- Dissolved		ug/L	25 *	<0.050	<0.50	<0.050	<0.050	<0.050	<0.050	<0.050	<5.0	0.063	<0.050	<0.050	<0.050
Magnesium (Mg)- Dissolver	d	mg/L		170	152	138	161	23.4	34.9	163	168	102	101	171	171
Manganese (Mn)- Dissolver	d	ug/L	<u>[</u>	21.7	22.0	29.9	14.7	0.43	0.85	32.0	63	34.2	26.3	22.4	35.6
Mercury (Hg)- Total	_	ug/L	2.8 *	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Nickel (Ni)- Dissolved		ug/L	490 *	1.41	1.62	0.56	1.37	0.63	< 0.50	1.34	<0.50	<0.50	<0.50	1.08	1.50
Potassium (K)- Dissolved		mg/L	<u> </u>	39.9	39.2	37.0	41.1	23.8	25.8	37.4	36.9	30.2	28.8	35.8	34.7
Selenium (Se)- Dissolved		ug/L	63*	< 0.050	< 0.050	< 0.050	< 0.050	0.092	0.061	< 0.050	<5.0	< 0.050	0.096	0.055	< 0.050
Silver (Ag)- Dissolved		ug/L	1.5	0.012	< 0.010	0.011	0.045	< 0.010	<0.010	0.011	<1.0	0.075	0.011	<0.010	0.019
Sodium (na)- Dissolved		mg/L	2,300 "	1,590	1,570	1,320	1,500	/50	/86	1,400	1,390	1,250	1,320	1,330	1,390
Zinc (Zn)- Dissolved		ug/∟	1,100	1.2	<1.U	<1.u	<1.U	4.1	3.20	1.0	<100	1.8	<1.0	3.1	41.1
Bacteria		MDNI/100ml		<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Total Colliforms (MTE)		MPN/100mL	───′	<1	<1		<1	<1	<1	~1	<1	<1	<1	<1	<1
Fecal Collionitis (MTE)		MPN/100mL	───′	<1	<1	< <u>1</u>	< <u>1</u>	<1 <1	<1	< <u>1</u>	<1 <1	<1 <1	<1 <1	< <u>-</u>	< <u>1</u>
E. COU (MITE)		MEN/100IL		<u>``</u>	<u>``</u>	<u> </u>	~1	~1	<u>``</u>	~1	~1	~1	~1	<u>``</u>	~1
nH		units		8.40	8.01	8.00	8.25	NR	8.05	8.20	6.82	8.61	8.43	8.15	8.01
Specific Conductivity		(uS/cm)	·	8,590	8,140	8,070	7,610	5,870	5,430	7,880	6,880	5,890	6,390	7,110	7,060
Polycyclic Aromatic Hydr	rocarbons														<u>í</u>
Naphthalene		ug/L	6,400	< 0.050	< 0.050	< 0.050		0.135		<0.050		0.068	<0.050	< 0.050	
Benzo(a)pyrene		ug/L	0.81	< 0.0050	< 0.0050	< 0.0050		<0.0050		<0.0050		< 0.0050	< 0.0050	< 0.0050	
Anthracene		ug/L	2.4	< 0.010	<0.010	< 0.010		<0.010		<0.010		<0.010	< 0.010	< 0.010	
Petroleum Hydrocarbons	s														
F1 (C6-C10 Hydrocarbons)		ug/L	750	<100	<100	<100		<100		<100		<100	<100	290	
F2 (C10-C16 Hydrocarbons	s)	ug/L	150	<100	<100	<100		190		<100		<100	<100	<100	
F3 (C16-C34 Hydrocarbons	s)	ug/L	500	<250	<250	<250		<250		<250		<250	<250	<250	
F4 (C34-C50 Hydrocarbons	š)	ug/L	500	<250	<250	<250		<250		<250		<250	<250	<250	
Benzene		µg/L	430	< 0.50	< 0.50	< 0.50		<0.50		< 0.50		< 0.50	< 0.50	< 0.50	
EthylBenzene		µg/L	2,300	< 0.50	< 0.50	< 0.50		< 0.50		< 0.50		< 0.50	< 0.50	< 0.50	
Toluene		µg/L	18,000	< 0.50	< 0.50	< 0.50		<0.50		<0.50		< 0.50	< 0.50	< 0.50	
Xylene (Total)		µg/L	4,200 *	< 0.50	<0.64	<0.50		1.63		<0.50		<0.50	<1.1	<0.50	
Volatile Organic Carbons	j														
Vinyl chloride		µg/L	1.7	< 0.50	< 0.50	< 0.50		<0.50		< 0.50		< 0.50	< 0.50	< 0.50	
Pesticides		-//		-2.10	-2.10	10		- 10		0.10		2.10	2.10	- 2.10	
Diazinon		µg/L	L/	<0.10	<0.10	<0.10		<0.10		<0.10		<0.10	<0.10	<0.10	
Herbicides		-//		2.10	-2.10	2.10		- 10		0.10		10	2.10	- 2.10	
2,4-0		ug/∟	<u> </u>	<0.10	<0.10	<0.10		<0.10		<0.10		<0.10	<0.10	<0.10	
				Note: Criter the Enviror * Criteria fo	ria from Onta nmental Prof or total chlor	ario Ministry tection Act T ride, total m	of the Envir able 3: Full etals and xy	ronment. (20 Depth Gene Ilene mixture	011, July 1). 9 ric Site Conc e	Soil, Ground Jition Stand	l Water and ards in a No	Sediment St n-Potable G	tandards for round Wate	Use Under F r Condition	Part XV.I of

R - No result due to equipment malfunction

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

er and V x et décl	Vaste nets	Table 3	8.1 2019	Ground	Water Q	uality C	omparis	son - Cla	ay Wells
x et décl	nets	Tables	5.1 2019	Ground	water	uality	ompans	5011 - Cla	ay wells
		2	016	2	017	20	018	2	019
Units	Criteria	Ave	erage	Ave	erage	Ave	rage	Ave	erage
		Upgradient	Downgradient	Upgradient	Downgradient	Upgradient	Downgradient	Upgradient	Downgradient
mg/L		625	642	621	603	539	585	530	546
mg/L		<0.50	<0.50	<0.50	<0.50	<3.0	<3.0	<3.0	<3.0
mg/L		512	526	509	495	539	585	530	546
mg/L		2,260	2,666	2,120	2,558	2,325	3,065	1,720	2,202
units		6.96	6.97	7.04	6.97	6.81	6.80	6.89	6.98
(µS/cm)		4,560	5,996	4,780	6,386	4,820	6,463	4,800	6,622
(ntu)		40.4	504	91.8	6,463	116	535	24.3	42.2
mg/L		3,960	4,967	3,840	4,720	3,890	5,076	3,880	6,783
mg/L		310	1,247	500	8,842	280	1,357	268	970
mg/L	2 200 *	4,270	6,214	4,340	13,562	4,170	6,433	4,150	1,753
mg/L	2,300	450	1 959	1.670	1 738	1 750	1 911	1 730	2,160
1116/12		2,000	1,555	1,010	1,130	1,750	1,511	1,150	2,100
mg/L N		< 0.003	0.156	0.175	0.584	0.129	0.646	0.005	0.356
mg/L N		13.0	0.680	0.630	0.426	0.635	0.337	0.855	0.356
mg/L N		2.0	1.6	0.7	1.2	0.4	0.9	0.2	0.9
mg/L P		0.180	0.012	<0.010	0.020	<0.010	<0.010	<0.013	0.017
ug/L	66	NR	NR	NR	NR	NR	NR	<1.0	<1.0
mg/l		44	100	EQ	700	40	60	22	150
mg/L		10.6	22.0	10.8	19.6	29.1	17.7	10.0	23.0
		10:0	22.0	10:0	1010	2012	1	1010	2010
ug/L	1,900 *	0.39	0.73	0.36	0.72	0.53	0.80	0.48	0.76
ug/L	29,000 *	9.1	12.5	8.7	11.8	8.7	13.3	8.1	10.8
ug/L	67 *	0.015	0.008	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
ug/L	2.7 *	0.068	0.181	0.052	0.216	0.215	0.211	0.047	0.155
mg/L	010 *	572	646	540	637	575	713	579	697
ug/L	810 "	<0.10	0.08	<1.0	<1.0	0.13	0.43	<0.10	0.11
ug/L	01	1.90	2.74	1.05	2.20	2.07	0.00	<10	2.06
ug/L	25 *	0.037	0.053	0.103	0.098	<0.050	0.343	<0.050	<0.050
mg/L	20	201	256	187	235	216	312	212	334
ug/L		1,720	1412	1,590	1,866	1,860	2,027	860	1,544
ug/L	2.8 *	<0.010	<0.010	<0.002	<0.002	<0.005	0.061	< 0.0050	0.071
ug/L	490 *	7.0	9.5	6.4	9.9	7.2	12.8	6.7	9.7
mg/L		9.7	10.9	9.2	10.1	10.9	14.0	10.2	11.4
ug/L	63 *	0.18	0.27	<0.40	<0.40	0.13	0.23	0.14	11.89
ug/L	1.5 "	<0.005	<0.005	<0.050	<0.050	<0.010	<0.010	0.010	0.020
Ing/L	2,300	330	400	525	77	545 6.2	15.5	332	55
ug/L	1,100	3.0	5.1	5.5	1.1	0.2	13.5	4.5	5.5
units		7.36	7.38	7.84	7.78	7.02	7.19	7.44	7.67
(µS/cm)		2,330	3,271	4,010	5,248	4,330	5,986	4,050	5,295
µg/L	6,400	< 0.050	NR	NR	NR	< 0.050	< 0.050	< 0.050	
µg/L	0.81	< 0.010	NR	NR	NR	<0.0050	<0.0050	<0.0050	
µg/L	2.4	<0.050	INK	INK	INK	<0.010	<0.010	<0.010	
ug/l	750	<25	NR	<25	NR	<100	<100	<100	
μg/L	150	<100	NR	<100	NR	<100	<100	<100	
µg/L	500	<200	NR	<200	NR	<250	<250	<250	
µg/L	500	<200	NR	<200	NR	<250	<250	<250	
µg/L	430	<0.10	NR	<0.10	NR	<0.50	<0.50	<0.50	
µg/L	2,300	<0.10	NR	<0.10	NR	<0.50	<0.50	<0.50	
µg/L	18,000	<0.20	NR	<0.20	NR	<0.50	<0.50	< 0.50	
µg/L	4,200 -	<0.10	NR	<0.10	NR	<0.50	<0.50	<0.50	
σ/Ι	17	<0.2	NP	<0.2	NR	<0.50	<0.50	<0.50	
P6/-	1.1	-0.2		-0.2		-0.50	-0.50	-0.50	
µg/L		<2.0	NR	<2.0	NR	<0.10	<0.10	<0.10	
µg/L		<1.0	NR	<1.0	NR	<0.10	<0.10	<0.10	
		Note: Criteria fron Environmental Pr Note: Where value calculations. * Criteria for total NR - No result due	n Ontario Ministry of f otection Act Table 3: e is expressed as less f chloride, total metal to lab error.	the Environment. Full Depth Generic than (<), the value s and xylene mixtu	(2011, July 1). Soil, Gi : Site Condition Stand is halved and used ir ıre	ound Water and S dards in a Non-Pot the calculations,	ediment Standards f able Ground Water (where value is expre	or Use Under Part Condition Sssed as (>), the va	XV.I of the lue is used in the
	Units mg/L mg/L mg/L mg/L (its) (its) (its) mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Units Criteria mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 2,300 * mg/L 2,000 * ug/L 2,000 * ug/L 1,900 * ug/L 20,000 * ug/L 20,00 * ug/L 2.8 * ug/L 2.8 * ug/L 1.5 * ug/L 1.5 *	Units Criteria Mugradient mg/L 625 Upgradient mg/L 625 0.50 mg/L 512 mg/L units 6.96 (u/s)/(s) (u/s)/(mg/L) 310 4,560 (mg/L) 330 7.560 mg/L 3,960 mg/L 310 mg/L 4,270 mg/L 2,200* mg/L 2,200* 450 mg/L 2,200 450 mg/L 2,000 9.1 mg/L 2,000 9.1 mg/L 2,000 9.1 mg/L 4.4 10.6 mg/L 2.0 9.1 ug/L 20.00 9.1 ug/L 20.00 9.1 ug/L 20.01 9.1 ug/L 2.0 9.1 ug/L 2.0 9.1 ug/L 2.7* 0.068 mg/L 2.0 1.8 <	Units Criteria Vegradient Downgradient mg/L 625 642 mg/L <0.50	Units Criteria Opgradient (Pgradient) Owngradient (Pgradient) Owngradient (Pgradient) Owngradient (Pgradient) mg/L -0.50 -0.50 -0.50 mg/L -2.50 -0.50 -0.50 mg/L 2.260 2.666 2.120 units 6.596 6.97 7.04 (JS)(m) 4.560 5.996 4.780 (ntu) 4.40.4 504 91.8 mg/L 3.360 4.967 3.840 mg/L 2.200 1.599 1.670 mg/L 2.300* 4.590 92.1 4.70 mg/L 2.300* 4.590 92.1 4.70 mg/L 2.300* 4.590 9.16 7.0 mg/L 13.0 0.680 0.630 0.630 mg/L 2.000 1.599 1.670 1.0 mg/L 0.180 0.12 <0.10	Units Criteria Noverage Average Average mg/L 4057 642 621 60000 mg/L 4050 40.50 40.50 40.50 mg/L 40.50 40.50 40.50 40.50 mg/L 512 526 509 495.51 units 6.56 6.97 7.04 6.977 (µS/Cm) 4.550 5.996 4.780 6.386 (mg/L) 3.960 4.967 3.840 4.720 mg/L 3.960 4.967 3.840 4.720 mg/L 4.270 6.6,214 4.340 13.562 mg/L 4.200 1.15 0.175 0.584 mg/L 1.30 0.660 0.633 0.426 mg/L 1.20 1.6 0.77 1.2 mg/L 40 0.012 0.010 0.020 mg/L 0.180 0.012 0.010 0.20 mg/L 6	Units Criteria Nercage Nercage <t< td=""><td>Units Criteria Description Point of the second second</td><td>Units Christi Description Operation Op</td></t<>	Units Criteria Description Point of the second	Units Christi Description Operation Op

Winnipeg Water Eaux	r and W et décl	/aste nets	Table	3.2 2019	Ground	d Water (Quality	Compari	ison - Ti	ll Wells
			2	016	2	017	2	018	20	019
	Units	Criteria	Ave	erage	Ave	erage	Ave	erage	Ave	rage
Inorganic Parameters	mg/l		Upgradient	Downgradient	Upgradient	Downgradient	Upgradient	Downgradient	Upgradient	Downgradient
Alkalinity - Dicarbonate	mg/L		<0.50	599 <0.50	<0.50	<0.50	-2 0	536	<2.0	1,007
Alkalinity - Carbonate	mg/L		<0.50	<0.50	<0.50	<0.50	<3.0	<3.0	<3.0	<3.0
Alkalinity - Total	mg/L		~0.J0 547	327	~0.30 544	~0.50	-5.0	-3.0	~3.0 604	-5.0
Dissolved Hardness (CaCO3)	mg/L		1.580	1.977	1.550	2.001	1.853	2.415	1.510	3.436
pH	units		6.97	7.21	6.92	7.11	6.96	7.11	6.93	7.12
Specific Conductivity	(uS/cm)		4.380	6.814	4.300	7.027	4,280	6.888	4.270	7.049
Turbidity	(ntu)		209	3,110	183	4,259	215	5,126	247	3,338
Total Dissolved Solids	mg/L		3,470	4,703	3,260	4,774	3,345	4,715	3,300	4,297
Total Suspended Solids	mg/L		610	11,186	640	9,840	616	7,528	880	9,199
Total Solids	mg/L		4,080	15,889	3,900	14,614	3,958	12,245	4,180	12,768
Dissolved Chloride (Cl)	mg/L	2,300 *	380	1,465	390	1,562	398	1,518	436	1,643
Dissolved Sulphate (SO4)	mg/L		1,450	1,343	1,430	1,258	1,465	1,308	1,375	1,101
Nutrients										
Ammonia - Dissolved	mg/L N		0.161	0.709	0.304	0.845	0.496	0.892	0.386	0.859
Nitrate - Dissolved	mg/L N		0.445	0.257	0.371	0.086	0.231	0.086	0.206	0.048
I otal Kjeldahl Nitrogen	mg/LN		1.0	3.0	0.8	1.6	0.9	1.4	0.7	1.5
Phosphorus - Dissolved	mg/L P		0.030	0.036	<0.010	0.022	0.012	0.018	<0.013	0.013
Cyanida Total (CN)	u#/I	66	<0.50	<0.50	<0.50	<0.50	<1.0	<10	<10	<10
Organic Indicators	ug/L	00	~0.50	~0.50	~v.5V	~0.50	~1.0	~1.0	~1.0	~1.0
Chemical Oxygen Demand	mg/l		45	259	40	286	25	504	43	354
Total Organic Carbon	mg/L		9.2	39.6	10.0	31.1	19.9	32.3	9.4	18.1
Metals										
Arsenic (As)- Dissolved	ug/L	1,900 *	2.48	1.98	1.21	2.62	1.19	2.58	1.11	3.03
Barium (Ba)- Dissolved	ug/L	29,000 *	9.2	11.5	8.1	15.0	8.3	13.8	8.0	11.6
Beryllium (Be)- Dissolved	ug/L	67 *	0.01	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)- Dissolved	ug/L	2.7 *	0.058	0.076	< 0.050	0.070	0.037	0.076	0.057	0.033
Calcium (Ca)- Dissolved	mg/L		376	475	367	457	461	544	432	495
Chromium (Cr)- Dissolved	ug/L	810 *	0.30	<1.0	<1.0	1.3	<0.10	0.51	<0.10	<0.10
Copper (Cu)- Dissolved	ug/L	87 *	2.82	1.89	1.85	3.69	1.91	2.27	1.36	0.23
Iron (Fe)- Dissolved	ug/L		6.3	166	194	884	<10.0	662	22	530
Lead (Pb)- Dissolved	ug/L	25 *	0.059	< 0.050	0.067	0.530	< 0.050	0.650	<0.050	<0.050
Magnesium (Mg)- Dissolved	mg/L		155	201	154	210	1/1	257	195	231
Manganese (Mn)- Dissolved	ug/L	2.0.*	774	549	868	486	1090	882	1,165	548
Nickel (Ni)- Dissolved	ug/L	2.0	~0.010	4.0	~0.002	4.6	~0.005	0.200	7.9	4.2
Potassium (K)- Dissolved	mg/L	450	8.2	14.8	7.5	17.6	9.0	19.6	8.6	19.6
Selenium (Se)- Dissolved	ug/l	63 *	0.12	<0.40	<0.40	<0.40	0.10	0.07	0.08	0.25
Silver (Ag)- Dissolved	ug/L	1.5 *	< 0.005	< 0.050	< 0.050	< 0.050	< 0.010	<0.010	0.015	0.021
Sodium (na)- Dissolved	mg/L	2,300 *	521	651	422	772	396	784	371	835
Zinc (Zn)- Dissolved	ug/L	1,100 *	3.9	7.2	5.5	6.0	6.3	7.9	3.6	2.5
Field Parameters										
pH	units		7.35	7.50	7.85	7.93	7.26	7.37	7.59	7.80
Specific Conductivity	(µS/cm)		3,190	3,147	3,790	6,481	3,630	6,295	4,650	5,581
Polycyclic Aromatic Hydrocarbons	=/1	C 400	-0.050	10.050	ND	ND	10.050	-0.050	-0.050	-0.050
Ronzo(a)pyrono	µg/L	6,400	<0.050	<0.050		NR	<0.050	<0.050	<0.050	<0.050
Anthracene	μg/L μσ/l	2.4	<0.010	<0.010	NR	NR	<0.0030	<0.0030	<0.0050	<0.0050
Petroleum Hydrocarbons	P6/-	2.7	-0.050	-0.030	NK	NIX	-0.010	-0.010	-0.010	-0.010
F1 (C6-C10 Hydrocarbons)	ug/L	750	<25	<25	<25	<25	<100	<100	<100	<100
F2 (C10-C16 Hydrocarbons)	µg/L	150	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34 Hydrocarbons)	μg/L	500	<200	<200	<200	<200	<250	277	<250	<250
F4 (C34-C50 Hydrocarbons)	µg/L	500	<200	<200	<200	<200	<250	<250	<250	<250
Benzene	µg/L	430	<0.10	<0.10	<0.10	<0.10	<0.50	<0.50	<0.50	<0.50
EthylBenzene	µg/L	2,300	<0.10	<0.10	<0.10	<0.10	< 0.50	<0.50	<0.50	<0.50
Toluene	µg/L	18,000	<0.20	<0.20	<0.20	0.41	<0.50	<0.50	<0.50	<0.50
Xylene (Total)	µg/L	4,200 *	<0.10	<0.10	<0.10	0.37	<0.50	<0.50	< 0.50	<0.50
Volatile Organic Carbons		17	<0.2	<0.2	<0.2	<0.2	<0.50	<0.50	<0.50	<0.50
Pesticides	pg/c	1.1	~0.2	~0.2	~0.2	~0.2	~0.50	~0.50	~0.50	~0.50
Diazinon	µg/L		<2.0	<2.0	<2.0	<2.0	<0.10	<0.10	<0.10	<0.10
Herbicides										
2,4-D	1	<1.0								

Winnipeg Wa	ater and W ux et déch	aste iets	Table	3.3 2019	3 2019 Ground Water Quality Comparison - Bedrock Wells								
			2	016	2	017	2	018	2	019			
· · · · · · · · · · · · · · · · · · ·	Units	Criteria	Ave	erage	Ave	rage	Ave	rage	Ave	erage			
Alkalinity - Bicarbonate	mg/l		164	166	164	162	1 454	136	150	154			
Alkalinity - Carbonate	mg/L		<0.50	<0.50	<0.50	< 0.50	<3.0	5.0	<3.0	<3.0			
Alkalinity - Hydroxide	mg/L		< 0.50	< 0.50	< 0.50	< 0.50	<3.0	17.0	<3.0	<3.0			
Alkalinity - Total	mg/L		134	136	134	133	1,454	155	150	154			
Dissolved Hardness (CaCO3)	mg/L		1,065	1,237	1,390	1,200	1,544	1,523	998	872			
pH	units		7.56	7.67	7.42	7.49	7.54	7.67	7.58	7.51			
Specific Conductivity	(µS/cm)		10,350	8,484	9,965	8,373	10,035	8,255	10,100	8,433			
Total Dissolved Solids	(iitu)		6 265	5.033	6 145	5.020	6 320	5.043	6.220	4 989			
Total Suspended Solids	mg/L		320	426	640	590	383	416	401	475			
Total Solids	mg/L		6,585	5,458	6,785	5,611	6,703	5,459	6,625	5,463			
Dissolved Chloride (Cl)	mg/L	2,300 *	3,000	2,413	2,850	2,208	2,785	2,131	1,855	2,281			
Dissolved Sulphate (SO4)	mg/L		974	759	943	765	941	747	833	680			
Nutrients													
Ammonia - Dissolved	mg/L N		1.31	1.06	1.36	1.10	0.686	1.09	1.44	1.11			
Nitrate - Dissolved	mg/L N		0.012	0.025	<0.003	0.011	0.631	0.046	<0.003	0.035			
Phosphorus - Dissolved	mg/LN		2.0	1.6 <0.010	1.b <0.010	1.3	1.1	1.2	2.0	1.5			
Other	IIIg/L P		0.010	~0.010	~0.010	~0.010	0.013	~0.010	~0.015	~0.015			
Cyanide - Total (CN)	ug/L	66	< 0.50	<0.50	<0.50	<0.50	<1.0	<5.0	<1.0	<1.0			
Organic Indicators													
Chemical Oxygen Demand	mg/L		111	102	90	75	80	59	118	81			
Total Organic Carbon	mg/L		3.5	2.1	3.7	3.2	3.4	2.6	1.9	2.3			
Metals				0.77		0			0.77	0.77			
Arsenic (As)- Dissolved	ug/L	1,900 *	1.51	2.83	2.92	3.75	3.14	4.05	0.87	3.52			
Banum (Ba)- Dissolved	ug/L	29,000	<0.050	17.3 <0.10	<0.10	18.7	<0.10	19.0	<0.10	<10			
Cadmium (Cd)- Dissolved	ug/L	2.7.*	0.050	0.014	0.214	0.058	0.090	0.052	0.140	0.130			
Calcium (Ca)- Dissolved	mg/L	2.1	245	303	312	282	340	313	353	326			
Chromium (Cr)- Dissolved	ug/L	810 *	0.21	4.54	<1.0	3.60	0.64	3.75	0.52	6.45			
Copper (Cu)- Dissolved	ug/L	87 *	0.38	2.93	3.17	1.34	1.66	1.72	3.62	4.16			
Iron (Fe)- Dissolved	ug/L		84.1	338	633	648	673	786	<10	516			
Lead (Pb)- Dissolved	ug/L	25 *	0.016	0.034	0.161	0.079	0.106	0.163	0.094	0.186			
Magnesium (Mg)- Dissolved	mg/L		110	128	149	120	169	180	166	129			
Manganese (Mn)- Dissolved	ug/L	2.0.*	20.1	27.2	24.1	29.3	34.8	33.7	37.6	26.8			
Mercury (Hg)- Total	ug/L	2.8 -	<0.010	<0.010	<0.002	<0.002	<0.005	<0.005	<0.0050	<0.0050			
Potassium (K)- Dissolved	ug/L mg/l	490	30.1	28.7	41.0	29.6	45.4	34.1	49.0	2.0			
Selenium (Se)- Dissolved	111g/L	63 *	<0.20	<0.40	<0.40	<0.40	<0.05	0.11	<0.050	0.36			
Silver (Ag)- Dissolved	ug/L	1.5 *	<0.025	<0.050	<0.050	<0.050	0.0195	<0.010	0.014	0.036			
Sodium (na)- Dissolved	mg/L	2,300 *	1,140	1,074	1,590	1,126	1,750	1,238	1,750	1,129			
Zinc (Zn)- Dissolved	ug/L	1,100 *	13.1	9.1	39.8	9.8	14.5	11.0	51.8	17.2			
Bacteria													
Total Coliforms (MTF)	MPN/100mL		12	23	<3	<3	<1	21	<1	2			
Fecal Coliforms (MTF)	MPN/100mL		<3	<3	<3	<3	<1	1	<1	1			
E. coll (MTF)	MPN/100IIL		~5	` 3	~3	~3	~1	1	~1	~1			
pH	units		7.87	7.73	8.34	8.31	7.30	7.96	7.77	7.78			
Specific Conductivity	(µS/cm)		5,017	5,073	8,015	7,812	9,140	6,836	8,215	6,961			
Polycyclic Aromatic Hydrocarb	ons												
Naphthalene	µg/L	6,400	<0.050	0.083	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050			
Benzo(a)pyrene	µg/L	0.81	<0.010	<0.010	<0.010	<0.010	<0.0050	<0.0050	<0.0050	< 0.0050			
Anthracene	µg/L	2.4	<0.050	<0.050	< 0.050	< 0.050	< 0.010	<0.010	<0.010	<0.010			
Fetroleum Hydrocarbons	110/1	750	<25	107	<75	<75	<100	<100	<100	<100			
F2 (C10-C16 Hydrocarbons)	μg/L 11σ/I	150	<100	<100	<100	<100	<100	<100	<100	<100			
F3 (C16-C34 Hydrocarbons)	ня/I	500	<200	<200	<200	<200	<250	<250	<250	<250			
F4 (C34-C50 Hydrocarbons)	μg/L	500	<200	<200	<200	<200	<250	<250	<250	<250			
Benzene	μg/L	430	<0.10	<5.0	< 0.10	<0.10	<0.50	<0.50	< 0.50	< 0.50			
EthylBenzene	μg/L	2,300	<0.10	<5.0	<0.10	0.17	<0.50	<0.50	<0.50	<0.50			
Toluene	µg/L	18,000	<0.20	0.46	<0.20	0.48	<0.50	<0.50	<0.50	<0.50			
Xylene (Total)	µg/L	4,200 *	<0.10	0.29	<0.10	0.95	<0.50	<0.50	<0.50	<0.50			
Votatile Organic Carbons		17	<0.20	~10	<0.20	<0.20	<0.50	<0.50	-0.50	<0.50			
Posticidos	µg/L	1.7	<0.20	<10	<0.20	<0.20	<0.50	<0.50	<0.50	<0.50			
Diazinon	ug/l		<2.0	<2.0	<2.0	<2.0	<0.10	<0.10	<0.10	<0.10			
Herbicides													
2,4-D	µg/L		<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	< 0.10	<0.10			
			Note: Criteria fron Environmental Pr Note: Where value calculations. * Criteria for total	n Ontario Ministry of otection Act Table 3: : is expressed as less chloride, total metal	the Environment. I Full Depth Generic than (<), the value s and xylene mixtu	2011, July 1). Soil, G Site Condition Stan is halved and used in re	round Water and S dards in a Non-Poi 1 the calculations,	ediment Standards able Ground Water (where value is expre	for Use Under Part Condition sssed as (>), the va	XV.I of the lue is used in the			

5.2 SURFACE WATER

Surface water flows at the BRRMF are managed by perimeter ditching and the central access road, which creates a barrier between the impacted water ditches on the North and the clean water ditches on the South; there are also 8 surface water retention ponds. The system is designed to run dry for most of the year, as such, grab sampling is performed three times per year: spring run-off, summer run-off, and fall run-off. The surface water sampling points are shown in Figure 3.

As per the BRRMF Operating Plan, surface water is managed in accordance with the Surface Water Sampling and Analysis Plan (SAP), as specified under Clause 115. Compliance parameters are applied to the upstream and downstream sampling points, with modifications at other locations interior to the site. Sampling for the clean water ponds (SWQ-25-9a and b) is similar to sampling for perimeter ditching. Sampling for impacted water ponds Active Area Collection Pond (SWQ-25-6), Biosolids Storm Water Pond (SWQ-25-7), Leaf and Yard Waste Storm Water Pond (SWQ-25-8) and dry ponds (SWQ-25-11 a, b, and c) is performed only prior to discharge events. The Canadian Council of Ministers of the Environment (CCME) Water Quality Guidelines for the Protection of Freshwater Aquatic Life are used as the regulatory guideline (CCME, 2003). Weekly field monitoring is performed at the weir from spring thaw to freeze-up.

In 2019, a total of 35 surface water samples were analyzed – 6 upstream samples, 5 downstream samples, 8 samples intermediate to the site, and 16 pond samples. There were no deviations from the Surface Water SAP or from normal sample collection and preservation practices. Weekly weir data is provided in Table 4 and the 2019 surface water results are provided in Tables 5.1 and 5.2.

The analytical results for some of the pond samples exceeded the guidelines for pH, chloride, arsenic, copper, iron, nickel, and selenium; the water was retained in the ponds or hauled for treatment as required. Many of the analytical results for perimeter ditching were highly variable between sampling events and between sample points. Dissolved chloride and pH sometimes exceeded the guidelines at the intermediate and downstream locations, and iron concentration sometimes exceeded the guideline at the upstream and downstream locations. Samples collected from the ponds and the perimeter ditching frequently contain elevated levels of arsenic, which is due to its natural occurrence in Manitoba soils.

The 2015-2019 averages for upstream and downstream locations are provided in Table 6 and time versus concentration graphs showing the historical relationship of the analytical parameters at each monitoring location are provided in Appendix D. In general, the analytical results for surface water obtained in 2019 were found to be similar to those obtained in 2015-2018, with similar results for upstream and downstream locations.

The Contingency Action Plan identified under Clause 125 was not implemented in 2019.

At this time we have no recommendations for changes in the surface water monitoring program.

Winnipeg Water and Waste Eaux et déchets											
	Table 4	4. 2019 V	Veekly We	ir Data							
Date	Flow (m/s)	pH (units)	Conductivity (m/s)	DO (mg/L)	Temp (°C)						
18-Apr-19	0.2	7.50	0.64	6.0	10.8						
26-Apr-19	0.0	9.33	4.20	16.5	8.5						
3-May-19	0.2	9.12	0.93	11.9	13.5						
10-May-19	0.2	8.91	1.14	11.6	10.8						
17-May-19	0.0	8.52	1.33	11.6	12.5						
24-May-19	0.0	8.44	1.46	10.7	14.3						
31-May-19	0.0	8.39	1.55	11.1	16.6						
7-Jun-19	0.0	8.91	1.60	10.9	22.7						
14-Jun-19	0.0	9.22	1.61	11.8	20.4						
21-Jun-19	0.0	9.42	1.65	12.1	21.2						
28-Jun-19	0.0	9.96	1.62	14.3	23.1						
5-Jul-19	0.0	10.32	1.68	13.8	28.3						
13-Jul-19	0.0	9.84	1.70	18.0	26.4						
19-Jul-19	0.0	8.40	3.20	7.4	24.1						
25-Jul-19	0.0	8.81	3.57	9.0	28.7						
2-Aug-19	0.0	8.50	3.62	5.2	27.6						
9-Aug-19	0.0	8.81	3.78	10.3	24.7						
16-Aug-19	0.0	8.62	3.33	9.0	23.3						
23-Aug-19	0.0	8.66	3.71	6.7	19.4						
30-Aug-19	0.0	8.36	2.35	7.9	21.5						
6-Sep-19	0.0	8.42	2.20	6.9	18.8						
13-Sep-19	0.0	8.83	1.97	9.3	18.5						
27-Sep-19	0.3	8.43	0.78	4.9	13.0						
4-Oct-19	0.1	8.21	0.87	5.2	8.3						
11-Oct-19			*ns								
18-Oct-19			*ns								
25-Oct-19	0.1	8.40	0.61	7.3	10.4						
1-Nov-19 **ns											
15-Nov-19			**ns								
*ns - no samp	le, staff reas	signed to st	orm clean-up								
**ns - no sam	ple because	weir was co	mpletely dry a	nd/or frozen							

Table 5.1 2019 Surface Water Monitoring - Ponds

				Ponds SW25-6 SW25-7 SW25-8 SW25-9A SW25-9B SW25-11A SW25-11B SW25-11C														
			SW	/25-6	SW	25-7	SW	25-8	SW:	25-9A	SW2	5-9B	SW2	5-11A	SW2	5-11B	SW2	5-11C
Sampling date	Units	Criteria	30-Apr-19	31-Jul-19	30-Apr-19	31-Jul-19	30-Apr-19	31-Jul-19	Spring	31-Jul-19	30-Apr-19	Summer	30-Apr-19	31-Jul-19	30-Apr-19	31-Jul-19	30-Apr-19	31-Jul-19
Inorganic Parameters																		
Alkalinity - Bicarbonate	mg/L		3,220	2,910	136	266	662	660	239	205	253	207	522	677	525	585	407	622
Alkalinity - Carbonate	mg/L		<3.0	<3.0	69.3	46	<3.0	41.7	<3.0	30.0	6.2	35.1	114	108	89.0	178	123	276
Alkalinity - Hydroxide	mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Alkalinity - Total	mg/L		3,220	2,910	205	312	662	701	239	235	260	242	635	784	614	763	530	898
Dissolved Hardness (CaCO3)	mg/L		1,130	553	189	299	401	360	152	162	142	115	147	286	158	242	127	240
рн	units	6.5-9.0	7.82	7.87	9.48	8.77	8.13	8.43	8.23	8.96	8.34	8.93	9.03	8.63	8.95	8.96	9.11	9.02
Specific Conductivity	(µS/cm)		1,550	8,940	3,410	2,470	834	3,300	940	926	772	761	2,950	4,020	2,650	3,950	2,350	4,140
Turbidity	(ntu)		286.4	820	27.1	6.79	39.68	14.6	22.84	63.8	134	89.6	45.3	63.5	45.7	12.5	43.9	8.35
Total Dissolved Solids	mg/L		6,660	6,180	1,070	1,830	2,330	2,420	504	578	431	497	1,800	2,720	1,720	2,600	1,550	2,890
Total Suspended Solids	mg/L		485	3,280	1/6	410	196	204	148	228	435	297	201	366	163	292	202	269
	mg/L	C 10 \$	7,150	9,450	1,250	2,240	2,530	2,630	652	806	800	/94	2,000	3,090	1,880	2,890	1,750	3,160
Dissolved Chloride (Cl)	mg/L	640 "	730	1,490	148	298	438	500	79	100	14.4	82	246	680	510	660	489	970
Nutrients	mg/L		16.0	<0.4	382	582	342	412	94.9	73.0	42.9	42.2	254	443	256.0	423.0	220	349
Ammonia - Dissolved	mg/L N		264	NA	0.009	0.292	3.66	0.885	2.98	< 0.003	4.34	0.028	9.67	1.10	7.65	0.208	2.13	0.090
Nitrate - Dissolved	mg/L N	13	0.081	NA	0.003	0.399	0.039	0.231	0.340	<0.003	0.541	<0.003	0.381	0.758	1.42	0.469	0.657	0.003
Total Kjeldahl Nitrogen	mg/L N		330	NA	3.9	56	17	16	4.4	1.7	6.7	1.8	22	12	20	10	14	11
Phosphorus - Dissolved	mg/L P		11.8	NA	0.066	0.507	2.72	2.75	0.076	0.986	0.275	0.181	0.030	1.41	0.020	1.16	< 0.013	1.82
Other																		
Cyanide - Total (CN)	ug/L	5000	9.6	7.9	1.3	2.0	7.4	6.3	1.3	<1.0	1.2	<1.0	4.5	4.4	4.4	3.9	4.1	3.6
Organic Indicators																		
Chemical Oxygen Demand	mg/L		>5000	4790	206	179	402	428	62	82	95	103	384	359	372	311	347	337
Biochemical Oxygen Demand	mg/L		4390	2140	19	<4	8	9	<4	10	9	14	54	18	54	2	64	103.8
Metals																		
Arsenic (As)- Dissolved	ug/L	5*	14.3	28.4	7.40	13.6	15.6	23.2	3.92	15.5	5.74	15.2	11.7	38.3	10.4	34.0	11.6	38.5
Barium (Ba)- Dissolved	ug/L		187	155	34.5	55.4	87.9	85.9	56.3	66.6	57.6	70.1	60.6	188	65.8	163	46.3	160
Beryllium (Be)- Dissolved	ug/L		0.15	0.51	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)- Dissolved	ug/L	0.09 *	0.0094	0.0190	0.0086	<0.0050	0.0175	0.0224	0.0055	0.0053	0.0088	< 0.0050	0.0146	0.0152	0.0170	0.0130	0.0109	0.0153
Calcium (Ca)- Dissolved	mg/L		422	117	70.8	103	142	133	55.1	53.5	45.2	38.5	53.3	90.0	54.0	82.2	42.5	82.6
Chromium (Cr)- Dissolved	ug/L		97.9	75.9	0.19	0.20	1.01	0.97	0.11	<0.10	<0.10	0.12	4.32	1.23	3.80	1.28	2.68	1.36
Copper (Cu)- Dissolved	ug/L	4	0.58	0.71	1.15	1.60	0.07	7.16	1.83	1.87	1.14	0.14	5.82	0.37	5.57	4.21	5.38	0.80
Iron (Fe)- Dissolved	ug/L	300 "	192	448	-0.050	3/	267	157	24	<10	17	28	47	20	48	28	33	13
Lead (PD)- Dissolved	ug/L	1	0.106	0.496	-0.050	100	0.183	165	47.0	0.063	~0.050	0.063	0.090	0.130	0.065	0.089	0.082	0.156
Magnesium (Mg)- Dissolved	mg/L		321	392	104	166	103	105	41.0	1.47	41.8	44.1	16.2	235	159	228	149	258
Mariganese (MII)- Dissolved	ug/L	0.026 *	<0.025	<0.025	<0.0050	<0.0050	0.0060	<0.025	0.0070	<0.0050	0.0050	<0.0050	0.0060	<0.0050	0.050	<0.0050	0.0050	<0.0050
Nickel (Ni)- Dissolved	ug/L	150 *	101	225	7.43	10.2	42.7	38.8	5.74	-0.0050	5.45	4 30	61.9	-0.0050	55.2	52.0	46.4	57.4
Potassium (K)- Dissolved	mg/L	130	228	324	35.1	61.7	400	430	16.5	17.1	16.6	17.3	95.5	228	93.8	208	94.4	184
Selenium (Se)- Dissolved	up/l	1*	2.47	2.04	0,305	0,361	1.04	1.13	0,210	0.304	0.234	0,202	0,647	0,776	0,562	0,746	0,635	0,675
Sodium (Na)- Dissolved	mg/L	-	886	1260	103	169	116	111	38.4	45.9	35.4	39.5	269	322	251	318	227	391
Zinc (Zn)- Dissolved	ug/L	30 *	6.2	2.6	<1.0	1.3	5.5	5.30	3.8	<1.0	1.8	1.1	4.8	2.3	4.7	1.7	3.1	1.8
Bacteria	-8/-																	
Total Coliforms (MTF)	MPN/100mL		3870	>24.200	890	>2.420	250	>24.200	60	>2.420	210	>2.420	1.550	>2.420	200	>2.420	480	>2.420
Fecal Coliforms (MTF)	MPN/100mL		1,790	6130	10	397	180	1,870	<10	225	10	816	550	240	100	613	170	308
E. coli (MTF)	MPN/100mL		650	5480	<10	488	80	1,470	<10	365	30	921	500	326	10	345	160	228
Field Parameters																		
pH	units	6.5-9.0	7.99	8.08	9.63	9.33	8.55	8.58	8.55	9.57	8.76	9.50	9.65	8.87	9.28	9.08	9.81	9.23
Specific Conductivity	(µS/cm)		7,270	7,270	14,790	2,320	3,040	2,940	8,310	867	7,400	755	2,590	3,410	2,490	3,170	2,230	3,520
Temperature	°C	1	8.8	24.5	5.8	22.5	7.1	24.6	8.0	23.7	8.5	25.0	6.2	22.2	6.8	23.5	6.6	22.4
			Note: Criteria * Criteria for to NA - Not analy	from Canadian otal chloride an sed due to labo	Council of Minis d total metals ratory error	ters of the Envir	onment. Canad	ian Environmen	tal Quality Guid	elines Summary	' Table. Water Q	uality Guideline	s for the Protect	ion of Freshwat	er Aquatic Life. (CCME, 2003)		

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

Winnipeg Ba	ter and ux et dé	Waste chets						Table	9 5.2 20)19 Sui	rface W	later N	Ionito	ring - P	erimet	ter Ditc	h				
					Upst	ream				Do	ownstrea	m					Interm	ediate			
				SW25-1			SW25-12			SW25-2		SW2	25-16	SW25-13A	SW25-13B	SW25-14A	SW25-14B	SW2	5-15A	SW2	.5-15B
Sampling date	Units	Criteria	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Spring	Spring	Spring	Spring	Spring	Summer	Spring	Summer
Alkalinity, Bicarbonate	mg/l		200	336	193	206	515	194	206	865	271	271	743	214	229	213	206	159	837	209	788
Alkalinity - Carbonate	mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	45.3	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	148	77.3	70.5	56.5	90.0
Alkalinity - Hydroxide	mg/l		<3.0	<3.0	<30	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Alkalinity - Total	mg/l		200	336	193	206	515	194	251	865	271	271	743	214	229	213	221	237	907	265	878
Dissolved Hardness (CaCO3)	mg/L		105	179	242	112	297	137	117	269	178	154	291	155	296	358	139	109	221	119	236
nH	units	6.5-9.0	7.56	7.31	7.65	7.57	7.33	7.65	9.13	8.11	7.81	7.59	7.33	7.65	7.65	8.36	8.74	9.15	8.34	9.10	8.51
Specific Conductivity	(uS/cm)		461	765	492	495	1 920	456	8.710	4.160	1.040	868	1.850	515	731	715	751	721	4 410	924	4.390
Turbidity	(ntu)		19.6	29.6	790	6.52	148	59.5	8.07	2.78	55.4	6.26	74.7	104.8	172	343	62.5	52.0	55.3	36.1	214
Total Dissolved Solids	mg/L		304	491	323	316	532	295	579	2,780	675	501	1,290	318	430	295	431	426	2,920	540	1,870
Total Suspended Solids	mg/L		64	353	1,080	24	5,000	125	77	267	103	65	481	340	660	1,490	265	128	781	256	11,900
Total Solids	mg/L		368	844	1,400	340	5,530	420	656	3,050	778	566	1,770	658	1,090	1,780	696	554	3,700	796	13,800
Dissolved Chloride (Cl)	mg/L	640 *	29.7	45.0	15.8	38.7	222	23.6	111	900	117	49.2	249	35.3	89.6	79.2	81.8	76.6	880	117.0	960
Dissolved Sulphate (SO4)	mg/L		13.4	32.0	3.0	25.9	317	< 0.4	75.0	313	<0.4	274	380	24.6	74.8	59.4	40.3	44.9	425.0	78.1	402.0
Nutrients	-																				
Ammonia - Dissolved	mg/L N		0.005	0.114	0.011	0.065	0.241	0.004	0.028	0.037	>2	0.006	< 0.003	0.009	0.007	0.013	3.72	0.011	0.312	0.017	0.749
Nitrate - Dissolved	mg/L N	13	< 0.003	< 0.003	0.022	0.007	< 0.003	0.035	0.016	< 0.003	0.829	< 0.003	< 0.003	< 0.003	< 0.003	0.009	0.528	0.173	0.082	0.302	0.045
Total Kjeldahl Nitrogen	mg/L N		0.9	1.8	2.2	0.6	3.9	1.2	2.1	10	5.3	1.3	3.8	0.8	1.3	1.1	6.7	4.2	12	4.8	13
Phosphorus - Dissolved	mg/L P		0.064	0.220	0.098	0.104	0.456	0.166	< 0.013	1.35	0.344	0.020	0.243	0.100	0.079	0.024	0.255	< 0.013	1.74	< 0.013	1.66
Other																					
Cyanide - Total (CN)	mg/L	5000	<1.0	<1.0	1.1	<1.0	<1.0	1.2	1.5	3.0	1.2	1.3	1.1	<1.0	<1.0	<1.0	1.1	1.1	2.8	1.4	2.3
Organic Indicators																					
Chemical Oxygen Demand	mg/L		77	156	195	59	176	80	88	320	99	76	193	134	149	220	118	139	442	141	458
Biochemical Oxygen Demand	mg/L		4	7	7	<4	61	<4	8	<4	8	13	15	6	6	9	15	33	29	14	19
Metals																					
Arsenic (As)- Dissolved	ug/L	5*	3.08	6.69	2.18	3.08	3.83	2.84	5.01	29.2	5.85	3.95	5.86	3.14	2.88	2.63	5.90	4.13	36.3	4.77	35.1
Barium (Ba)- Dissolved	ug/L		32.7	61.5	56.1	36.0	95.4	34.3	50.2	168	65.6	61.0	141	36.7	48.6	56.7	56.0	42.3	155	44.1	151
Beryllium (Be)- Dissolved	ug/L		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)- Dissolved	ug/L	0.09 *	0.0157	<0.0050	0.0178	0.0114	<0.0050	0.0057	0.0116	0.0104	0.0163	0.0060	0.0247	0.0080	0.0054	<0.0050	0.0068	0.0122	0.0056	0.0098	0.0091
Calcium (Ca)- Dissolved	mg/L		41.6	63.3	46.3	44.5	83.5	41.5	46.5	89.5	56.2	61.9	103	45.6	59.3	56.4	46.4	41.0	77.1	42.1	73.5
Chromium (Cr)- Dissolved	ug/L		0.15	0.18	0.20	0.18	0.28	0.22	0.34	1.31	1.14	0.46	0.61	0.14	0.21	0.13	0.11	0.16	1.38	0.37	1.41
Copper (Cu)- Dissolved	ug/L	4*	1.40	0.20	2.43	1.37	<0.20	2.30	2.57	1.06	2.68	1.79	1.06	1.40	1.46	1.99	1.51	1.99	1.61	2.11	1.40
Iron (Fe)- Dissolved	ug/L	300 *	93	353	44	132	303	207	19	89	77	113	327	124	185	53	30	20	34	16	44
Lead (Pb)- Dissolved	ug/L	7*	0.097	0.051	0.083	0.064	<0.050	0.067	0.052	<0.050	0.060	1.10	0.126	0.054	0.111	0.107	0.085	<0.050	<0.050	<0.050	0.069
Magnesium (Mg)- Dissolved	mg/L		27.5	45.9	23.9	27.7	99.4	27.2	56.0	251	55.7	39.9	100	27.7	39.3	39.7	41.2	46.1	269.0	55.3	260.0
Manganese (Mn)- Dissolved	ug/L		6.81	197	63.9	9.85	585	57.0	13.7	135	49.4	32.9	592	8.20	53.6	21.4	230	38.3	93.8	8.75	111
Mercury (Hg)- Dissolved	ug/L	0.026 *	0.0070	<0.0050	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0060	<0.0050	0.0050	<0.0050	<0.0050	0.0110	0.0050	<0.0050	0.0050	<0.0050
Nickel (Ni)- Dissolved	ug/L	150 *	2.47	2.76	4.98	2.70	1.80	2.83	9.48	56.2	12.8	4.72	10.8	2.76	3.23	4.05	5.35	5.09	57.6	8.73	54.2
Potassium (K)- Dissolved	mg/L		13.9	12.6	9.51	12.2	12.6	10.3	27.6	153	38.4	17.4	22.5	11.6	11.5	11.6	16.7	17.0	187	24.0	179
Selenium (Se)- Dissolved	ug/L	1*	0.260	0.171	0.255	0.189	0.202	0.156	0.287	0.541	0.382	0.242	0.403	0.144	0.170	0.163	0.178	0.219	0.618	0.266	0.621
Sodium (Na) - Dissolved	mg/L		16.4	32.5	12.5	17.9	116	24.9	60.3	389	64.0	55.2	148	18.1	32.6	28.0	35.3	40.1	415	56.9	400
∠inc (∠n)- Dissolved	ug/L	30 *	1.7	<1.0	1.9	4.3	1.2	4.5	1.9	2.0	3.8	4.6	2.8	3.4	92.4	7.1	2.5	1.7	1.9	1.6	5.6
Dacteria	MDN/1000		1.000	-0.400	>2.400	100	-24.000	-0.400	1.010	-2 -00	-2.400	00	-24.000	100	1/00	1.000	100		-0.000	210	-24.000
Total Coliforms (MTF)	MPN/100mL		1,920	>2,420	>2,420	190	>24,200	>2,420	1,010	>2,420	>2,420	90	>24,200	160	1400	1,660	120	20	>2,420	240	>24,200
recal collforms (MTF)	MPN/100mL		40	88	1225	<10	260	1,730	1,090	1,410	121	<10	3,260	10	10	5/0	40	<10	>2,420	10	2,760
E. COII (MIF)	MPN/100mL		80	46	133	30	1/0	1,050	/50	1,300	866	<10	3,650	<10	10	/20	<10	<10	>2,420	10	1,840
netu r'arameters	unitr	6590	7.09	7.95	0.71	0.10	8.00	9.77	0.11	8 20	9.64	8.40	7.01	0.12	0.21	9.46	0.04	0.41	0.00	0.46	0.60
P ¹¹ Specific Conductivity	(us/cm)	0.5-9.0	4 760	1.00	6./1	0.10	1.640	6.11	9.11	0.20	0.04	0.40	1.91	6.13	6.31	6.40	0.0%	715	0.09	792	2,610
Temperature	(µ5/cm)		4,700	17.7	12.1	4,950	1,049	10.9	542	3,550	11.0	4.4	1,705	3.0	3.0	0,900 E 0	0.2	5.2	2,040	6.2	10 0
		1	7.4		1	1	1.10	10.0		10.0	11.0		10.0	5.2	5.5			J.2	20.5	0.5	1 10:0
			Note: Criteria fr * Criteria for tot	om Canadian Co tal chloride and t	ouncil of Minister total metals	s of the Environ	ment. Canadian B	nvironmental Q	uality Guideline:	s Summary Table.	Water Quality G	uidelines for the	Protection of Fi	eshwater Aquatic	Life. (CCME, 2003	3)					

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

Winnipeg	Wate Eaux	er and V « et déc	Waste hets	Table	6. 2019) Surfa Di	ice Wat tch Cor	er Moı nparis	nitoring on	g - Peri	imeter
				20	016	2	017	2	018	20	019
		Units	Criteria	Ave	rage	Ave	erage	Ave	erage	Ave	rage
Inorganic Parameters				Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream
Alkalinity - Bicarbonate	5	mg/L		254	349	359	433	174	300	243	447
Alkalinity - Carbonate		mg/L		<0.50	<0.50	<0.50	<0.50	<3.0	18	<3.0	16
Alkalinity - Hydroxide		mg/L		<0.50	<0.50	<0.50	<0.50	<3.0	<3.0	<3.0	<3.0
Alkalinity - Total	(02)	mg/L		208	287	294	355	174	319	243	462
Dissolved Hardness (Ca	(03)	mg/L	6500	515	523	316	448	248	499	1/5	188
Pn Specific Conductivity		(uS/cm)	0.5-9.0	1.40	0.15	774	0.00	615	0.04	573	0.35 4.637
Turbidity		(ntu)		151	135	114	87.2	37.2	32.8	279.7	22.1
Total Dissolved Solids		mg/L		721	1.025	496	810	370	996	373	1.345
Total Suspended Solids	s	mg/L		483	531	379	169	116	167	499	149
Total Solids		mg/L		1,204	1,557	875	978	486	1,164	871	1,495
Dissolved Chloride (Cl)		mg/L	640 *	61.3	209	62.0	151	60.0	220	30	376
Dissolved Sulphate (SO	4)	mg/L		205	227	32.5	33.2	57.6	170	16	129
Nutrients											
Ammonia - Dissolved		mg/L N	10	0.295	0.730	0.009	0.560	0.041	0.426	0.043	0.688
Nitrate - Dissolved		mg/L N	13	3.96	2.98	<0.003	0.184	0.234	0.500	0.008	0.282
Phoenhorus Discolved		mg/L N		5.40	15.1	202	3.35	2.55	0.05	0.127	0.60
Other		116/51		0.000	0.000	302	155	0.005	0.232	0.121	0.501
Cvanide - Total (CN)		ug/l	5.000	1.55	2.69	1.96	2.29	0.70	2.50	<1.0	1.90
Organic Indicators		-8-	.,								
Chemical Oxygen Dema	and	mg/L		131	249	255	135	50	530	143	169
Biochemical Oxygen De	emand	mg/L		12	51	<3	23	7	13	6	8
Metals											
Arsenic (As)- Dissolved		ug/L	5*	2.92	5.91	5.25	8.64	2.80	8.85	3.98	13.35
Barium (Ba)- Dissolved		ug/L		47.9	87.2	54.0	68.9	53.7	70.2	50.1	94.6
Gedmium (Gd) Dissolve	De	ug/L	0.00 *	<0.010	<0.010	<0.010	<0.010	<0.10	<0.10	<0.10	<0.10
Calcium (Ca)- Dissolved	eu	ug/L mg/l	0.09	126.2	60.4	<0.0050 55.0	42.9	47.7	50.0	50.4	64.1
Chromium (Cr)- Dissolv	ed	ug/L		0.20	0.49	0.23	0.26	0.18	0.42	0.18	0.93
Copper (Cu)- Dissolved		ug/L	4 *	3.48	5.02	2.20	2.67	2.29	5.27	1.34	2.10
Iron (Fe)- Dissolved		ug/L	300 *	172	32	156	34	59	20	163	62
Lead (Pb)- Dissolved		ug/L	7*	0.041	0.105	0.157	0.150	0.285	0.060	0.077	<0.050
Magnesium (Mg)- Disso	lved	mg/L		48.7	90.7	43.5	55.4	31.3	91.0	32.4	120.9
Manganese (Mn)- Disso	lved	ug/L		161.4	172.5	301	37.8	10.1	32.2	89.2	66.0
Mercury (Hg)- Dissolved	1	ug/L	0.026*	0.003	0.003	0.002	< 0.002	< 0.005	< 0.005	<0.0050	<0.0050
NICKEL (NI)- Dissolved	al .	ug/L	150 *	2.77	18.9	2.45	10.9	2.62	20.1	3.4	26.2
Colonium (Co) Dissolve	u vd	IIIg/L	1 *	12.3	31.9	9.0	21.0	10.2	0.420	0.220	0.402
Sodium (Na)- Dissolved	u	ug/L mg/l	1	31.3	0.475	36.4	89.2	29.4	124	20	0.405
Zinc (Zn)- Dissolved		ug/L	30 *	4.3	5.3	2.9	3.3	2.6	4.7	1.4	2.6
Bacteria		-8-									
Total Coliforms (MTF)		MPN/100mL		11,000	>11,000	5,965	5,715	6,710	3,510	2,253	1,950
Fecal Coliforms (MTF)		MPN/100mL		336	4,008	2,301	33	23	530	118	1,076
E. coli (MTF)		MPN/100mL		336	3,979	2,301	19	6	765	86	972
Field Parameters											
pH Counting Country 1		units	6.5-9.0	7.40	8.15	7.68	8.80	7.56	8.84	8.18	8.65
Specific Conductivity		(µS/cm)		947	1,380	720	450	660	1,619	2,029	1,850
remperature		·ر		Note: Criteria fi Table. Water Qu * Criteria for to NA - not analyz	rom Canadian Co uality Guidelines tal chloride and to ed	uncil of Ministe for the Protecti otal metals	rs of the Environn on of Freshwater	nent. Canadian Aquatic Life. (C	Environmental Q CME, 2003)	uality Guideline	s Summary

5.3 LEACHATE

The leachate management system is a network of manholes/risers, drains, and sumps around the perimeter of the landfill cells, which feed into a header pipe. The leachate flows via gravity and lift stations into a 300,000L storage tank located at the intersection of Charette Road and the access road, which acts as a truck fill station for hauling to the North End Sewage Treatment Plant for treatment. Leachate can also be pumped from eight collection manholes and one riser if needed; these sites also serve as sampling points. The locations of the manholes and riser are shown on Figure 3.

As per the BRRMF Operating Plan, leachate is managed in accordance with the Leachate Sampling and Analysis Plan (SAP), as specified under Clause 100. The MOE guidelines for non-potable groundwater quality are used as the regulatory guideline (MOE, 2011).

The total volume of leachate removed from the BRRMF in 2019 was 36,763 kL. There were no occurrences of leachate breakout from the development in 2019, however, the leachate head in Cell 31 exceeded the crown of the collection system piping for approximately 30 days due to a malfunction in the centralized leachate collection system. The Contingency Action Plan identified under Clause 125 was not implemented in 2019, however an interim mitigation plan was used to operate the centralized leachate collection system until stainless steel replacement components could be installed.

In 2019, 10 leachate samples were analyzed; there were no deviations from the Leachate SAP or from normal sample collection and preservation practices. Monthly leachate elevations are provided in Table 7, and the 2019 leachate results are provided in Table 8. The majority of parameters were found to be highly variable between manholes; several of the samples exceeded the guidelines for chloride and hydrocarbons. Leachate is highly variable due to waste composition, amount of precipitation, site hydrology, waste compaction, cover, and interaction of leachate with the environment.

The 2015-2019 average results are provided in Table 9, and Piper diagrams showing the historical relationship of cations and anions at each monitoring location are provided in Appendix C. Many of the other parameters measured vary significantly from year to year. The average alkalinity, hardness, and conductivity have been increasing yearly since 2015 because improved landfill cover allows less water infiltration, which aids the biological breakdown of inorganic compounds.

We have no recommendations for changes in the leachate monitoring program at this time.

Table 7. 2019 Leachate Levels

	Data	lan 10	Fab 10	Max 10	Amr 10	May 10	lum 10	Jul 10	Aug 10	Com 10	0 + 10	Neu 10	Dec 10
	Date	Jan-19	F6D-19	Mar-19	Apr-19	мау-19	Jun-19	JUI-19.	Aug-19	Seb-19	000-19	NOA-18	D6C-13
	Top of Manhole Elevation (m)	233.66	233.66	233.66	233.66	233.66	233.66	233.66	233.66	233.66	233.66	233.66	233.66
Manhole 3	Depth to Leachate (m)	1.69	1.62	1.68	3.64	1.69	3.84	1.60	5.33	2.16	0.94	1.29	2.84
	Manhole Leachate Elevation (m)	231.97	232.04	231.98	230.02	231.97	229.82	232.06	228.33	231.50	232.72	232.37	230.82
	Top of Manhole Elevation (m)	236.61	236.61	236.61	236.61	236.61	236.61	236.61	236.61	236.61	236.61	236.61	236.61
Manhole 8	Depth to Leachate (m)	3.38	3.00	3.04	1.94	3.02	4.68	5.49	4.31	1.94	4.52	6.73	7.92
	Manhole Leachate Elevation (m)	233.23	233.61	233.57	234.67	233.59	231.93	231.12	232.30	234.67	232.09	229.88	228.69
	Top of Manhole Elevation (m)	234.89	234.89	234.89	234.89	234.89	234.89	234.89	234.89	234.89	234.89	234.89	234.89
Manhole 13	Depth to Leachate (m)	7.90	8.89	10.05	8.31	5.26	4.58	8.49	9.69	9.61	3.44	5.21	5.58
	Manhole Leachate Elevation (m)	226.99	226.00	224.84	226.58	229.63	230.31	226.40	225.20	225.28	231.45	229.68	229.31
	Top of Manhole Elevation (m)	235.00	235.00	235.00	235.00	235.00	235.00	235.00	235.00	235.00	235.00	235.00	235.00
Manhole 24	Depth to Leachate (m)	6.47	5.38	7.67	7.97	1.89	1.27	7.77	7.67	7.97	1.20	5.80	7.90
	Manhole Leachate Elevation (m)	228.53	229.62	227.33	227.03	233.11	233.73	227.23	227.33	227.03	233.80	229.20	227.10
	Top of Manhole Elevation (m)	235.71	235.71	235.71	235.71	235.71	235.71	235.71	235.71	235.71	235.71	235.71	235.71
Manhole 27	Depth to Leachate (m)	2.02	1.95	1.97	1.94	2.30	2.42	2.48	2.08	2.33	2.10	2.38	1.86
	Manhole Leachate Elevation (m)	233.69	233.76	233.74	233.77	233.41	233.29	233.23	233.63	233.38	233.61	233.33	233.85
	Top of Manhole Elevation (m)	234.74	234.74	234.74	234.74	234.74	234.74	234.74	234.74	234.74	234.74	234.74	234.74
Manhole 31	Depth to Leachate (m)	2.55	1.90	1.74	3.31	1.54	2.21	1.77	3.07	3.52	0.60	7.90	2.44
	Manhole Leachate Elevation (m)	232.19	232.84	233.00	231.43	233.20	232.53	232.97	231.67	231.22	234.14	226.84	232.30
	Top of Manhole Elevation (m)	235.42	235.42	235.42	235.42	235.42	235.42	235.42	235.42	235.42	235.42	235.42	235.42
Manhole 34	Depth to Leachate (m)	2.64	3.31	3.42	2.76	2.97	2.80	2.70	2.61	2.70	2.17	2.41	2.40
	Manhole Leachate Elevation (m)	232.78	232.11	232.00	232.66	232.45	232.62	232.72	232.81	232.72	233.25	233.01	233.02
	Top of Manhole Elevation (m)	235.04	235.04	235.04	235.04	235.04	235.04	235.04	235.04	235.04	235.04	235.04	235.04
Manhole 46	Depth to Leachate (m)	4.20	4.10	3.05	3.77	3.76	4.00	4.83	4.62	5.16	4.51	4.86	4.95
	Manhole Leachate Elevation (m)	230.84	230.94	231.99	231.27	231.28	231.04	230.21	230.42	229.88	230.53	230.18	230.09
	Top of Riser Elevation (m)	234.97	234.97	234.97	234.97	234.97	234.97	234.97	234.97	234.97	234.97	234.97	234.97
Riser 1	Depth to Leachate (m)	7.21	7.26	7.22	7.25	7.13	7.19	7.06	7.04	7.18	7.36	7.41	7.35
	Riser Leachate Elevation (m)	227.76	227.71	227.75	227.72	227.84	227.78	227.91	227.93	227.79	227.61	227.56	227.62

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

Winnipeg	Water an Eaux et d	d Was léchet	ste s			Table	e 8. 20	19 Lea	chate	Monito	oring		
				LQ25-MH3	LQ25-MH8	LQ25-MH13	LQ25-MH24	LQ25-MH27	LQ25-MH31	LQ25-MH34	RISER 1	LQ25-MH46	Composite
Sampling Date		Units	Criteria	11-Sep	11-Sep	11-Sep	11-Sep	11-Sep	11-Sep	11-Sep	10-Sep	10-Sep	13-Sep
Field Parameters													
pH Turkiditu		units		7.65	1.71	1.11	8.26	8.64	1.72	8.02	NR 1.000	6.52	
Specific Conductivity		uS/cm		12 680	11 650	9 450	4 840	1.01	9 550	1 550	15 780	11 410	
Temperature		°C	1	12,000	14.8	9.9	13.3	13.2	14.1	12.1	18	17.8	
Inorganic Parameters													
Alkalinity - Bicarbonate		mg/L		3,640	5,510	5,150	2,950	442	3,390	419	9,420	5,610	
Alkalinity - Carbonate		mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	
Alkalinity - Hydroxide		mg/L		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	
Aikalinity - Total Hardness (as CaCO3)		mg/L		3,640	5,510	5,150	2,950	44Z 261	3,390	419	9,420	5,610	
nH		units		7 24	7 23	7.08	743	7 45	7 54	7 39	7 48	6 32	
Specific Conductivity		uS/cm	1	15,900	14,900	12,400	8,650	1,150	11,300	1,730	20,600	13,900	
Turbidity		ntu		43.4	197.5	196.5	31.5	7.54	14.96	11.3	127	272	
Total Dissolved Solids		mg/L		7,990	6,920	7,030	4,550	812	5,550	1,180	10,300	12,800	
Total Suspended Solids		mg/L		691	737	569	403	12	362	209	862	1,870	1
Total Solids		mg/L		8,680	7,660	7,600	4,960	824	5,910	1,390	11,100	14,700	l
Chloride (dissolved)		mg/L	2300 ^	3,960	2,470	2,850	1,960	120.0	1,740	190	4,560	1,800	
Other		ilig/L		201	515	43.0	40.0	~0.4	208	505	~0.4	521	
Cyanide (CN)		ug/L	66	13.6	14.5	7.9	16.4	2.2	44.2	3.5	16.3	9.0	
Nutrients													[
Dissolved Ammonia		mg/L		793	725	422	364	1.18	464	4.30	1,450	679	
Nitrate Nitrogen		mg/L		2.70	1.15	0.009	< 0.003	0.476	NA	3.71	0.024	0.019	
Total Kjeldhal Nitrogen		mg/L		1,100	1,200	600	430	1.8	NA	3.6	1,500	760	l
Phosphorus (Total)		mg/L		4.0623	7.0160	3.8014	2.9273	<0.0012	0.8859	<0.0012	10.410	40.853	
Biological Oxygen Demand		mg/l		125	752	88	69	<4	38	8	651	11 700	
Chemical Oxygen Demand		mg/L		1.890	>5.000	1.360	670	45	880	49	3.510	>5.000	
Metals													
Total Arsenic (As)		mg/L	1.9	0.009381	0.021305	0.002630	<0.000017	< 0.000017	< 0.000017	<0.000017	0.14818	0.016237	
Total Barium (Ba)		mg/L	29	0.79467	0.69706	0.83064	0.22505	0.10242	0.27728	0.13741	0.22320	0.22856	
Total Beryllium (Be)		mg/L	0.067	< 0.00003	< 0.00003	< 0.00003	< 0.00003	< 0.00003	< 0.00003	< 0.00003	< 0.00003	< 0.00003	
Total Calcium (Ca)		mg/L	0.0027	206.48	206.52	286.81	285.62	104 35	143 31	147 47	149 19	1 255 70	
Total Chromium (Cr)		mg/L	0.81	0.22424	0.18580	0.05984	0.02000	0.00332	0.02885	< 0.00004	0.36729	0.19416	
Total Chromium (Hexavalent)		ug/L	140	<10	<10	<10	<10	<0.50	<10	<0.50	<10	<10	
Total Copper (Cu)		mg/L	0.087	0.017658	0.012241	0.059827	0.007284	0.003025	0.037759	0.013629	0.035131	0.009577	
Total Iron (Fe)		mg/L		12.761	6.2439	18.107	6.8711	0.33866	2.3165	0.57026	3.7702	20.568	1
Total Lead (Pb)		mg/L	0.025	0.006801	0.002310	0.017148	< 0.000065	< 0.000065	0.005987	< 0.000065	0.011731	< 0.000065	
Total Magnesium (Mg)		mg/L		626.66	441.11	0 78001	410.36	0.20266	382.63	105.86	900.25	483.22	
Total Mercury (Hg)		ing/L	2.8	0.25812	0.12943	<0.78991	0.0060	<0.0050	0.24019	<0.0050	0.0370	0.0180	
Total Nickel (Ni)		mg/L	0.49	0.44968	0.35750	0.29358	0.11698	0.015250	0.25372	0.038765	0.81611	0.32406	
Total Potassium (K)		mg/L		785.97	603.91	554.62	286.26	19.491	386.69	63.757	961.08	550.01	
Dissolved Selenium (Se)		ug/L	63 *	1.91	1.69	1.01	1.07	<0.50	1.22	<0.50	<5.0	2.46	
Total Silver (Ag)		ug/L	1.5	0.218	0.122	<0.10	<0.10	<0.010	0.134	< 0.010	0.22	<0.10	
Total Sodium (Na)		mg/L	2,300	1,979.8	1,832.5	1,678.6	880.4	76.460	1,165.2	113.76	3,163.9	1,390.3	
Fytractables		mg/L	1.1	0.18285	1.7656	0.38008	0.27311	0.29343	0.24964	0.04582	0.47464	1.0797	
Benzo (a) Pyrene (PAH)		ug/L	0.81	0.0196	0.640	9.76	0.0331	0.0519	0.0259	0.0160	0.0174	<0.0050	
Anthracene		ug/L	2.4	0.223	3.78	13.4	0.388	0.043	0.125	0.020	0.032	0.048	
4'4' Methylenebis 2 Chloroanil	ine	ug/L		<5.0	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Benzo (a) anthracene (PAH)		ug/L	4.7	0.095	2.04	20.2	0.112	0.053	0.072	0.010	0.035	0.027	1
Benzo (b/j) fluoroanthene (PAI	H)	ug/L		0.031	1.16	13.5	0.042	0.155	0.042	0.033	0.016	<0.010	
Benzo (g,n,i) Perylene (PAH)		ug/L	0.2	0.034	1.03	5.10	<0.020	0.032	0.035	<0.020	<0.020	<0.020	
Phenanthrene		ug/L	3.1 580	<1.0 1 41	14 7	48.2	1.0 1.55	≦1.0 0.194	~1.0 0.874	<0.050	0 172	~U.4U 0.235	
Phenols		ug/L	12.000	92	51	95	31.2	3.6	30	2.6	680	3,020	
		3	. ,	Note: Criteria fr Environmental *Criteria for tot NR - no result d NA - not analyze	om Ontario Min Protection Act al chloride and ue to equipme ed as sample m	nistry of the Em Table 3: Full De total selenium nt malfunction natrix was incor	vironment. (20 epth Generic Si mpatible with i	11, July 1). Soil, ite Condition St nstrumentatior	, Ground Water andards in a N	and Sediment	Standards for und Water Cor	Use Under Part ndition	XV.I of the

Т

Г

Winnipeg Water a Eaux et	nd Was déchet	ste s			Table	e 8. 20	19 Lea	chate	Monito	oring		
			LQ25-MH3	LQ25-MH8	LQ25-MH13	LQ25-MH24	LQ25-MH27	LQ25-MH31	LQ25-MH34	RISER 1	LQ25-MH46	Composite
Sampling Date	Units	Criteria	11-Sep	11-Sep	11-Sep	11-Sep	11-Sep	11-Sep	11-Sep	10-Sep	10-Sep	13-Sep
Petroleum Hydrocarbons												
CCME Petroleum Hydrocarbon Fraction F1	ug/L	750	730	<100	740	<100	<100	<100	<100	290	780	
CCME Petroleum Hydrocarbon Fraction F2	ug/L	150	1,830	3,940	2,470	720	<100	460	<100	1,870	6,740	
CCME Petroleum Hydrocarbon Fraction F3	ug/L	500	8,450	78,500	13,000	1,880	<250	4,500	<250	1,220	2,450	
CCME Petroleum Hydrocarbon Fraction F4	ug/L	500	1,540	13,900	1,480	<250	<250	790	<250	<250	<250	
Volatile Organic Carbons												
Vinyl Chloride	ug/L	1.7	0.94	0.84	2.02	<0.50	<0.50	<0.50	<0.50	0.95	0.62	
1,4 Dichlorobenzene	ug/L	67	8.7	4.0	9.2	<1.0	<1.0	1.3	<1.0	1.6	1.3	
Chloroform	ug/L	22	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	
Irichloroethene	ug/L	17	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	2.74	
Tetrachloroethene	ug/L	17	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.59	
Dioxins and Furans		22,000										-2.0
2,3,7,8-TCDD	pg/L	23,000										<2.0
1,2,3,7,8-PeCDD	pg/L	23,000										<0.80
1,2,3,4,7,8-HXCDD	pg/L	23,000										~0.83
1,2,3,0,7,8-0,00	pg/L	23,000			1							1.06
1,2,3,7,0,5-HXCDD	pg/L	23,000										1.00
0000	ng/L	23,000										1 340
Total TCDD	ng/L	23,000			1							<2.0
Total PeCDD	pg/L	23,000			1							38.6
Total HxCDD	pg/L	23.000										324
Total HpCDD	pg/L	23,000										569
2,3,7,8-TCDF	pg/L	23,000										<0.89
1,2,3,7,8-PeCDF	pg/L	23,000										< 0.56
2,3,4,7,8-PeCDF	pg/L	23,000										0.66
1,2,3,4,7,8-HxCDF	pg/L	23,000										1.06
1,2,3,6,7,8-HxCDF	pg/L	23,000										1.32
1,2,3,7,8,9-HxCDF	pg/L	23,000										1.10
2,3,4,6,7,8-HxCDF	pg/L	23,000										0.97
1,2,3,4,6,7,8-HpCDF	pg/L	23,000										9.46
1,2,3,4,7,8,9-HpCDF	pg/L	23,000										1.00
OCDF	pg/L	23,000										20.0
Total TCDF	pg/L	23,000										4.11
Total PeCDF	pg/L	23,000										< 0.56
Total HxCDF	pg/L	23,000										11.4
Total HpCDF	pg/L	23,000										9.46
Polychiorinated Bipnenyls			<0.040	<0.0	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Aroclor 1018	ug/L		<0.040	<8.0	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Aroclor 1221	ug/L		<0.040	<8.0	<0.20	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Aroclor 1232	μσ/I		<0.15	<46	<3.0	<0.40	<0.040	<0.16	<0.040	<0.15	<0.42	
Aroclor 1248	ug/L		<0.10	<8.0	<0.20	<0.40	<0.040	<0.10	<0.040	<0.15	<0.42	
Aroclor 1254	ug/L		< 0.065	<8.0	<0.25	< 0.060	< 0.040	< 0.040	<0.040	<0.040	< 0.040	
Aroclor 1260	ug/L		< 0.040	<8.0	<0.20	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	
Total PCBs	ug/L	15	<0.20	<52	3.1	<0.45	< 0.12	<0.20	< 0.12	<0.20	<0.44	
Pesticides and Herbicides												
Diazinon	ug/L		< 0.10	<19	<3.5	<0.25	<0.10	<0.55	<0.25	0.21	0.30	
2, 4-D	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6	
Aldrin	ug/L	8.5	<1.0	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.080	<0.40	
gamma-Hexachlorocyclohexane (Lindane)	ug/L	1.2	<1.0	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.080	<0.40	
МСРА	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Mirex	ug/L		<1.0	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.080	<0.40	
Methoxychlor	ug/L	6.5	<1.0	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.080	<0.40	
Bacteria	MBNUS				40.000		0.175					
Total Collforms	MPN/100mL		>24,200	>24,200	15,500	>24,200	>2,420	>24,200	/70	>24,200	>24,200	
Fecal Coliforms	MPN/100mL		620	/80	50	17,300	3	2,140	2	200	24,200	
E. COII	MPN/100mL	I	520	1,090	100	15,500	<1	1,900	5	110	6,130	
			Note: Criteria fr Environmental	om Ontario Miı Protection Act	nistry of the En Table 3: Full De	vironment. (20 epth Generic Si	11, July 1). Soil te Condition St	, Ground Water andards in a N	and Sediment on-Potable Gro	Standards for und Water Cor	Use Under Part Idition	XV.I of the

Г

Winnipeg	Water a Eaux et	nd Was déchet	ste s	Tab	le 9. 2019 Le	eachate Qua	lity Compar	ison
'			F	2015	2016	2017	2018	2019
				Average	Average	Average	Average	Average
ampling Date		Units	Criteria	Avenuge	Average	Average	Average	Avenuge
ield Parameters								
DH		units		6.98	7.41	7.63	7.28	7.79
urbidity - NTU		ntu		21.4	37.9	119	298	166
specific Conductivity		uS/cm		6,493	4,278	9,046	10,580	8,663
emperature		-0		NA	NA	NA	13.8	13.9
Norganic Parameters		m g /l		2.027	4.076	4.470	4.270	4.050
Alkalinity - Dicarbonate		mg/L		2,937	4,270	4,479	4,270	4,059
Ikalinity - Carbonate		mg/L		<5.0	150	<5.0	<3.0	<3.0
ikalinity - Tyuroxide		mg/L		2.406	3 720	-5.0	~3.0 4 270	4 059
lardness (as CaCO3)		mg/L		1 575	1 708	1 966	2,106	773
H - units		units		7 57	7 24	7 35	7.06	7 24
Specific Conductivity		uS/cm		6 776	10.604	10 494	11 131	11 170
urbidity - NTU		ntu		108	193	128	136	100
otal Dissolved Solids		mg/L		4.584	6.057	5.864	6.140	6.348
otal Suspended Solids		mg/L		245	13.543	579	789	635
otal Solids		mg/L		NA	NA	NA	6,924	6,980
hloride (dissolved)		mg/L	2300 *	744	1.060	1.222	1.163	2.183
ulphate (dissolved)		mg/L		128	115	273	164	205
Other								
Cyanide (CN)		ug/L	66	10.3	10.4	8.0	21.4	14.2
lutrients								
Dissolved Ammonia		mg/L		250	570	504	243	545
litrate Nitrogen		mg/L		0.159	0.310	1.35	8.48	1.01
otal Kjeldhal Nitrogen		mg/L		304	276	621	342	699
Phosphorus (Total)		mg/L		1.87	3.32	3.29	2.12	7.77
Organic Indicators								
Biological Oxygen Demar	nd	mg/L		64	583	726	1,347	1,493
Chemical Oxygen Deman	d	mg/L		902	1,140	2,540	2,367	2,045
Aetals								
otal Arsenic (As)		mg/L	1.9	0.0115	0.0139	0.0248	0.0321	0.0220
otal Barium (Ba)		mg/L	29	0.401	0.372	0.376	0.382	0.391
otal Beryllium (Be)		mg/L	0.067	0.03126	0.00014	0.00012	0.00113	< 0.00003
otal Cadmium (Cd)		mg/L	0.0027	0.000195	0.000307	0.000308	0.000452	<0.000007
otal Calcium (Ca)		mg/L	0.01	129	147	212	236	309
otal Chromium (Cr)	1	mg/L	0.81	0.0315	0.0635	0.0125	0.0756	0.1354
otal Chronnulli (Hexava	lent)	mg/L	0.097	<0.0010	0.0030	0.0135	<0.010	< <u>10</u>
otal copper (cu)		mg/L	0.087	10.7	0.0084	0.0128	0.0291	0.0218
otal Iron (Fe)		mg/L	0.025	10.7	0.0	10.0	20.1	0.00490
otal Leau (FD)		mg/L	0.025	240	270	0.01008	0.01057	0.00450
otal Magnesium (Mg)		mg/L		1 018	0.437	0.832	1 129	1 246
otal Mercury (Hg)		111g/L	2.8	0.004	0.437	0.032	0.273	0.016
otal Nickel (Ni)		mg/L	0.49	0.004	0.1546	0.1541	0.213	0.010
otal Potassium (K)		mg/L	0.45	254	314	292	364	468
issolved Selenium (Se)		110/1	63 *	173.3	0.90	1 20	1.86	1 37
otal Silver (Ag)		ug/L	1.5	0.095	0.150	0.090	0.336	0.095
otal Sodium (Na)		mg/L	2,300	598	824	835	1.115	1.365
otal Zinc (Zn)		mg/L	1.1	0.0545	1.18	0.453	0.206	0.530
			N c *	Note: Criteria from Ontario I of the Environmental Protec Criteria for total chloride a	Ministry of the Environment ction Act Table 3: Full Depth nd total selenium	. (2011, July 1). Soil, Ground \ Generic Site Condition Stand	Vater and Sediment Standa ards in a Non-Potable Grou	rds for Use Under Part XV.I nd Water Condition

Τ

Winnipeg Water Eaux e	and Was et déchet	te s	Tab	le 9. 2019 Le	eachate Qua	lity Compar	ison
I		Ľ	2015	2016	2017	2018	2019
Sampling Date	Units	Criteria	Average	Average	Average	Average	Average
Extractables	onits	criteriu			-		
Benzo (a) Pyrene (PAH)	11g/l	0.81	13 75	0.79	0.26	0.75	1 17
Anthracene	ug/L	2.4	13.75	1.05	0.89	1.33	2.01
4'4' Methylenebis 2 Chloroaniline	ug/L		NA	NA	<50	<50	<5.0
Benzo (a) anthracene (PAH)	ug/L	4.7	13.75	1.23	0.89	1.13	2.52
Benzo (b/i) fluoroanthene (PAH)	ug/L		<50	1.4	0.49	1.17	1.66
Senzo (g.h.i) Pervlene (PAH)	ug/L	0.2	13.75	0.725	0.33	1.03	0.697
Hexachlorobenzene	ug/L	3.1	<0.050	<0.050	<0.30	<5.0	<50
Phenanthrene	ug/L	580	0.621	3.74	2.05	5.13	7.48
Phenol	ug/L	12.000	221	391	677	276	445
Petroleum Hydrocarbons	- 8/ -						
CCME Petroleum Hydrocarbon Fraction F1	ug/L	750	186	111	450*	114	310
CCME Petroleum Hydrocarbon Fraction F2	ug/L	150	<100	171	230*	20.150	2.014
CME Petroleum Hydrocarbon Fraction F3	ug/L	500	<200	<200	410*	371,200	12.250
CME Petroleum Hydrocarbon Fraction F4	ug/L	500	<200	<200	<200*	56.300	2.037
/olatile Organic Carbons	08/2	000	200	200	200		2,001
/invl Chloride	11g/l	17	1 84	<40	<40	0.50	0.71
4 Dichlorobenzene	ug/l	67	2.4	51	5.8	22	31
hloroform	ug/L	22	<5.0	<20	<20	<0.50	<0.50
Trichloroethene	ug/L	17	<5.0	<20	<20	0.29	0.53
Tetrachloroethene	ug/L	17	<5.0	<20	<20	0.39	<0.50
Polychlorinated Biphenyls	- 8/ -			-			
Aroclor 1016	ug/L		<0.50	<0.50	<0.50	<2.0	<8.0
Aroclor 1221	ug/L		<0.50	<0.50	<0.50	<2.0	<8.0
Aroclor 1232	ug/L		<0.50	<0.50	<0.50	<2.0	<8.0
Aroclor 1242	ug/L		<0.50	0.11	<0.50	<8.0	<3.0
Aroclor 1248	ug/L		<0.50	<0.50	<0.50	<2.0	<8.0
Aroclor 1254	ug/L		<0.50	0.09	<0.50	<7.0	<8.0
Aroclor 1260	ug/L		<0.50	0.10	<0.50	<4.0	<8.0
Total PCBs	ug/L	15	<0.50	0.10	<3.0	<13.0	3.3
Pesticides and Herbicides	0,						
Diazinon	ug/L		<40	<10	<320	<172	<3.5
2, 4-D	mg/L		<0.020	<2.0	<1.0	0.0024	1.1
ldrin	ug/L	8.5	<0.05	<0.05	<0.30	<5.0	<50
amma-Hexachlorocyclohexane (Lindane) ug/L	1.2	<0.03	<0.03	<0.20	<91.0	<50
ICPA	mg/L		<0.040	<4.0	<2.0	<0.0050	<1.0
lirex	ug/L		<0.20	<0.05	<0.30	<5.0	<50
/lethoxyclor	ug/L	6.5	<0.10	<0.10	<0.70	<5.0	<50
Bacteria	<u>,</u>						
otal Coliforms	MPN/100mL		141,751	4,859	6,158	15,448	18,210
ecal Coliforms	MPN/100mL		144,943	323	243	3,211	5,033
. coli	MPN/100mL		139,665	322	193	4,453	2,817
		N c	Note: Criteria from Ontario I of the Environmental Protect Manhole 31 results not inc	Ministry of the Environment tion Act Table 3: Full Depth luded in average due to pun	. (2011, July 1). Soil, Ground Generic Site Condition Stand	Nater and Sediment Standar ards in a Non-Potable Grour	ds for Use Under Part XV. Ind Water Condition

5.4 LANDFILL GAS

5.4.1 COLLECTION AND FLARING SYSTEM

Landfill gas (LFG) produced at the BRRMF is comprised primarily of methane (CH₄) and carbon dioxide (CO₂) in approximately equal amounts. These greenhouse gases contribute to global warming, but CH₄ has a global warming potential 25 times that of CO₂. To reduce emissions, the LFG is collected via a series of pipes beneath the BRRMF, and sent to a flare where the CH₄ is reduced to CO₂ and water vapour. The landfill gas collection and flaring system (LFGCFS) is run by Integrated Gas Recovery Systems Inc. on behalf of the City of Winnipeg.

As per the BRRMF Operating Plan, LFG operations and monitoring are managed through the Landfill Gas Operating Plan, submitted October 23, 2014, as per Clause 110.

In 2019, the BRRMF LFGCFS operated as intended, although surface emission monitoring identified some areas where gas was escaping due to weak surface cap and/or manholes with improper seals. Blockages in two sections of underground pipe identified in 2018 were repaired in 2019.

The 2019 Landfill Gas Collection and Flaring Report, prepared by Integrated Gas Recovery Services Inc., is attached in Appendix E.

5.4.2 SUBSURFACE LANDFILL GAS MONITORING PROGRAM

LFG that is not collected or that cannot escape into the atmosphere may migrate into neighbouring land below the ground surface. The purpose of LFG migration monitoring is to detect gas migration before it becomes a safety hazard to neighbouring properties.

As per the BRRMF Operating Plan, subsurface LFG migration is managed in accordance with the Subsurface Landfill Gas Monitoring Program, submitted on October 23, 2014, as specified under Clause 111. Probes are monitored monthly for methane (CH₄), oxygen (O₂), carbon monoxide (CO), and hydrogen sulphide (H₂S).

In 2019, the maximum level of CH₄ measured was 0.1%. The Subsurface Landfill Gas Contingency Plan was not activated, indicating that the LFGCFS is operating effectively.

The 2019 subsurface gas migration probe data is provided in Table 10.

Table 10. 2019 External Gas Probe Monitoring

	Data	CH4	02	CO	H2S
well NO.	Date	% LEL	(%)	PPM	PPM
	10-Jan-19	0.0	22.5	0.0	0.0
	11-Feb-19	0.0	20.0	0.0	0.0
	15-Mar-19	0.0	16.7	0.0	0.0
	18-Apr-19	0.0	16.8	0.0	0.0
	27-May-19	0.1	17.9	0.0	0.0
1	6-Jun-19	0.0	16.7	1.0	0.0
I	10-Jul-19	0.0	18.5	1.0	0.0
	8-Aug-19	Ν	lo Access due	to constructio	n
	17-Sep-19	Ν	lo Access due	to constructio	n
	8-Oct-19	0.0	19.1	0.0	0.0
	15-Nov-19	0.0	18.7	1.0	0.0
	10-Dec-19	0.0	23.8	0.0	0.0
	10-Jan-19	0.0	21.1	0.0	0.0
	11-Feb-19	0.0	20.9	0.0	0.0
	15-Mar-19	0.0	19.1	0.0	0.0
	18-Apr-19	0.0	16.1	0.0	0.0
	27-May-19	0.0	19.4	0.0	0.0
2	6-Jun-19	0.0	17.4	1.0	0.0
2	10-Jul-19	0.0	18.9	0.0	0.0
	8-Aug-19	Ν	lo Access due	to constructio	n
	17-Sep-19	N	lo Access due	to constructio	n
	8-Oct-19	0.0	18.7	0.0	0.0
	15-Nov-19	0.0	19.1	0.0	0.0
	10-Dec-19	0.0	22.9	0.0	0.0
	10-Jan-19	0.0	21.0	0.0	0.0
	12-Feb-19	0.0	20.8	0.0	0.0
	15-Mar-19	0.0	20.1	0.0	0.0
	18-Apr-19	0.0	21.3	0.0	0.0
	27-May-19	0.0	19.6	0.0	0.0
3	7-Jun-19	0.0	18.3	0.0	0.0
5	10-Jul-19	0.0	18.5	0.0	0.0
	9-Aug-19	0.0	19.8	0.0	0.0
	17-Sep-19	0.0	14.4	0.0	0.0
	8-Oct-19	0.0	19.7	0.0	0.0
	15-Nov-19	0.0	19.6	0.0	0.0
	10-Dec-19	0.0	23.8	0.0	0.0

Winnipeg Water and Waste Eaux et déchets

Table 10. 2019 External Gas Probe Monitoring

	Data	CH4	02	CO	H2S
weit NO.	Date	% LEL	(%)	PPM	PPM
	10-Jan-19	0.0	21.2	1.0	0.0
	12-Feb-19	0.0	20.9	0.0	0.0
	15-Mar-19	0.0	20.2	0.0	0.0
	18-Apr-19	0.0	22.5	0.0	0.0
	27-May-19	0.0	20.2	0.0	0.0
Δ	7-Jun-19	0.0	19.3	0.0	0.0
+	10-Jul-19	0.0	19.1	0.0	0.0
	9-Aug-19	0.0	20.1	0.0	0.0
	17-Sep-19	0.0	18.2	0.0	0.0
	8-Oct-19	0.1	19.7	0.0	0.0
	15-Nov-19	0.0	19.5	0.0	0.0
	10-Dec-19	0.0	22.7	0.0	0.0
	10-Jan-19	0.0	22.0	0.0	0.0
	12-Feb-19	0.0	21.8	0.0	0.0
	15-Mar-19	0.0	22.0	0.0	0.0
	18-Apr-19	0.0	21.8	0.0	0.0
	27-May-19	0.0	20.0	0.0	0.0
5	7-Jun-19	0.0	18.5	0.0	0.0
5	10-Jul-19	0.0	19.6	0.0	0.0
	9-Aug-19	0.0	20.5	0.0	0.0
	17-Sep-19	0.0	16.2	0.0	0.0
	8-Oct-19	0.1	20.5	0.0	0.0
	15-Nov-19	0.0	20.3	0.0	0.0
	10-Dec-19	0.0	22.7	0.0	0.0
	10-Jan-19	0.0	21.5	0.0	0.0
	12-Feb-19	0.0	21.1	0.0	0.0
	15-Mar-19	0.0	19.4	0.0	0.0
	18-Apr-19	0.0	20.4	0.0	0.0
	27-May-19	0.0	20.7	0.0	0.0
6	6-Jun-19	0.0	19.4	1.0	0.0
•	10-Jul-19	0.0	19.2	0.0	0.0
	9-Aug-19	0.0	19.5	0.0	0.0
	18-Sep-19	0.0	19.2	0.0	0.0
	7-Oct-19	0.0	19.5	0.0	0.0
	15-Nov-19	0.0	19.3	0.0	0.0
	10-Dec-19		No A	ccess	

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

Table 10. 2019 External Gas Probe Monitoring

				0	
Well No	Date	CH4	02	CO	H2S
WearNO.	Date	% LEL	(%)	PPM	PPM
	10-Jan-19	0.0	21.3	0.0	0.0
	14-Feb-19	0.0	20.3	0.0	0.0
	15-Mar-19	0.0	19.7	0.0	0.0
	18-Apr-19	0.0	17.4	0.0	0.0
	27-May-19	0.0	19.0	0.0	0.0
7	6-Jun-19	0.0	18.2	1.0	0.0
<i>'</i>	10-Jul-19	0.0	19.4	0.0	0.0
	9-Aug-19	0.0	20.3	0.0	0.0
	18-Sep-19	0.0	18.7	0.0	0.0
	7-Oct-19	0.0	20.1	0.0	0.0
	15-Nov-19	0.0	18.4	0.0	0.0
	10-Dec-19	0.0	20.9	0.0	0.0
	10-Jan-19	0.0	21.8	0.0	0.0
	14-Feb-19	0.0	21.5	0.0	0.0
	15-Mar-19	0.0	20.2	1.0	0.0
	18-Apr-19	0.0	18.0	0.0	0.0
	27-May-19	0.0	20.0	0.0	0.0
ß	6-Jun-19	0.0	18.8	1.0	0.0
5	10-Jul-19	0.0	19.0	0.0	0.0
	9-Aug-19	0.0	20.5	0.0	0.0
	18-Sep-19	0.0	18.6	0.0	0.0
	7-Oct-19	0.0	18.4	0.0	0.0
	15-Nov-19	0.0	18.0	0.0	0.0
	10-Dec-19	0.0	20.9	0.0	0.0
	10-Jan-19	0.0	21.3	0.0	0.0
	14-Feb-19	0.0	21.0	1.0	0.0
	15-Mar-19	0.0	19.1	1.0	0.0
	18-Apr-19	0.0	18.9	0.0	0.0
	27-May-19	0.0	19.2	0.0	0.0
٥	6-Jun-19	0.0	17.5	1.0	0.0
5	10-Jul-19	0.0	18.7	0.0	0.0
	9-Aug-19	0.0	20.7	0.0	0.0
	18-Sep-19	0.0	20.8	0.0	0.0
	7-Oct-19	0.0	19.6	0.0	0.0
	15-Nov-19	0.0	19.2	0.0	0.0
	10-Dec-19	0.0	20.8	0.0	72.0

Table 10.2	2019 Externa	l Gas Probe	Monitoring
------------	--------------	-------------	------------

Well No.	Date	CH4	02	CO	H2S
		% LEL	(%)	PPM	PPM
	10-Jan-19	0.0	21.8	0.0	0.0
	14-Feb-19	0.0	21.0	0.0	0.0
	15-Mar-19	0.0	19.7	1.0	0.0
	18-Apr-19	0.0	14.3	0.0	0.0
	27-May-19	0.0	21.0	0.0	0.0
10	6-Jun-19	0.0	19.6	1.0	0.0
10	10-Jul-19	0.0	19.3	0.0	0.0
	9-Aug-19	0.0	20.9	0.0	0.0
	18-Sep-19	0.0	20.9	0.0	0.0
	7-Oct-19	0.0	19.8	0.0	0.0
	15-Nov-19	0.0	20.2	0.0	0.0
	10-Dec-19	0.0	20.8	0.0	0.0
	10-Jan-19	0.0	22.8	0.0	0.0
	14-Feb-19	0.0	21.6	0.0	0.0
	15-Mar-19	0.0	21.2	0.0	0.0
	18-Apr-19	0.0	20.9	0.0	0.0
P28E	27-May-19	0.0	20.5	0.0	0.0
	6-Jun-19	0.0	20.0	0.0	0.0
	10-Jul-19	0.0	18.1	0.0	0.0
	9-Aug-19	0.0	18.4	0.0	0.0
	18-Sep-19	0.0	18.9	0.0	0.0
	7-Oct-19	0.0	18.5	0.0	0.0
	15-Nov-19	0.0	20.3	0.0	0.0
	10-Dec-19	0.0	20.3	0.0	0.0
	10-Jan-19	0.0	22.4	0.0	0.0
	14-Feb-19	0.0	21.6	0.0	0.0
	15-Mar-19	0.0	19.4	1.0	0.0
	18-Apr-19	0.0	19.0	0.0	0.0
P30ER	27-May-19	0.0	21.1	0.0	0.0
	6-Jun-19	0.0	20.1	0.0	0.0
	10-Jul-19	0.0	19.4	0.0	0.0
	9-Aug-19	0.0	20.1	0.0	0.0
	18-Sep-19	0.0	18.8	1.0	0.0
	7-Oct-19	0.0	19.3	0.0	0.0
	15-Nov-19	0.0	19.8	0.0	0.0
	10-Dec-19	0.0	21.8	0.0	0.0

Table 10. 2019 External Gas Probe Monitoring					
Well No.	Date	CH4	02	CO	H2S
Heu No.	Date	% LEL	(%)	PPM	PPM
	10-Jan-19	0.0	22.1	0.0	0.0
	14-Feb-19	0.0	18.2	0.0	0.0
	15-Mar-19	0.0	19.9	0.0	0.0
	18-Apr-19	0.0	20.5	0.0	0.0
	27-May-19	0.0	21.0	0.0	0.0
P34FR	6-Jun-19	0.0	20.0	0.0	0.0
I JILK	10-Jul-19	0.0	20.1	0.0	0.0
	9-Aug-19	0.0	20.0	0.0	0.0
	18-Sep-19	0.0	18.2	0.0	0.0
	8-Oct-19	0.0	18.2	0.0	0.0
	15-Nov-19	0.0	20.5	0.0	0.0
	10-Dec-19	0.0	20.9	0.0	0.0
	10-Jan-19	0.0	21.2	0.0	0.0
	11-Feb-19	0.1	18.6	0.0	0.0
P106E	15-Mar-19	0.1	18.6	0.0	0.0
	18-Apr-19	0.0	20.6	0.0	0.0
	27-May-19	0.1	20.5	0.0	0.0
	6-Jun-19	0.1	19.7	0.0	0.0
	10-Jul-19	0.0	18.4	0.0	0.0
	8-Aug-19	0.0	20.2	0.0	0.0
	17-Sep-19	0.0	17.4	0.0	0.0
	7-Oct-19	0.0	19.9	0.0	0.0
	15-Nov-19	0.1	19.9	0.0	0.0
	10-Dec-19	0.0	20.1	0.0	0.0
	10-Jan-19	0.0	21.5	0.0	0.0
	11-Feb-19	0.0	16.6	0.0	0.0
	15-Mar-19	0.1	18.6	0.0	0.0
P107E	18-Apr-19	0.0	17.4	0.0	0.0
	27-May-19	0.0	19.0	0.0	0.0
	6-Jun-19	0.0	18.9	0.0	0.0
	10-Jul-19	0.0	20.9	0.0	0.0
	8-Aug-19	0.0	19.5	0.0	0.0
	17-Sep-19	0.0	17.6	0.0	0.0
	7-Oct-19	0.1	19.1	0.0	0.0
	15-Nov-19	0.0	19.9	0.0	0.0
	10-Dec-19	0.0	20.6	0.0	0.0

Table 10. 2019 External Gas Probe Monitoring						
Well Ne	Data	CH4	02	CO	H2S	
well No.	Date	% LEL	(%)	PPM	PPM	
	10-Jan-19	0.0	21.5	0.0	0.0	
	11-Feb-19	0.0	19.9	0.0	0.0	
	15-Mar-19	0.0	20.3	0.0	0.0	
	18-Apr-19	0.0	20.8	0.0	0.0	
	27-May-19	0.0	20.7	0.0	0.0	
D109E	6-Jun-19	0.0	19.8	0.0	0.0	
FIUGE	10-Jul-19	0.0	19.0	0.0	0.0	
	8-Aug-19	0.0	20.1	0.0	0.0	
	17-Sep-19	0.0	19.4	0.0	0.0	
	7-Oct-19	0.1	19.1	0.0	0.0	
	15-Nov-19	0.0	20.0	0.0	0.0	
	10-Dec-19		No A	ccess		
	10-Jan-19	No Access				
	11-Feb-19	No Access				
P109E	15-Mar-19	No Access				
	18-Apr-19	No Access				
	27-May-19	0.0	17.7	0.0	0.0	
	6-Jun-19	0.0	17.1	0.0	0.0	
	10-Jul-19	0.0	16.5	0.0	0.0	
	8-Aug-19	0.0	17.3	0.0	0.0	
	17-Sep-19	0.0	14.7	0.0	0.0	
	7-Oct-19	0.0	19.9	0.0	0.0	
	15-Nov-19	0.0	20.0	0.0	0.0	
	10-Dec-19	0.0	21.9	0.0	0.0	
	10-Jan-19	0.0	21.5	0.0	0.0	
	11-Feb-19	0.0	20.7	0.0	0.0	
P110E	15-Mar-19	0.0	19.9	0.0	0.0	
	18-Apr-19	0.0	20.3	0.0	0.0	
	27-May-19	0.0	6.5	0.0	0.0	
	6-Jun-19	0.0	13.2	0.0	0.0	
	10-Jul-19	0.0	0.0	0.0	0.0	
	8-Aug-19	0.0	20.3	0.0	0.0	
	17-Sep-19	0.0	16.5	0.0	0.0	
	7-Oct-19	0.0	19.9	0.0	0.0	
	15-Nov-19	0.0	20.1	0.0	0.0	
	10-Dec-19	0.0	18.7	0.0	0.0	

Winnipeg Water and Waste Eaux et déchets

Table 10. 2019 External Gas Probe Monitoring

Well No.	Data	CH4	02	CO	H2S
	Date	% LEL	(%)	PPM	PPM
	10-Jan-19	0.0	21.5	0.0	0.0
	11-Feb-19	0.0	20.7	0.0	0.0
	15-Mar-19	0.0	18.6	0.0	0.0
	18-Apr-19	0.0	20.9	0.0	0.0
	27-May-19	0.0	20.6	0.0	0.0
D111E	6-Jun-19	0.0	19.5	1.0	0.0
FIIIC	10-Jul-19	0.0	20.1	0.0	0.0
	8-Aug-19	0.0	20.4	0.0	0.0
	17-Sep-19	0.0	20.1	0.0	0.0
	7-Oct-19	0.1	20.1	0.0	0.0
	15-Nov-19	0.0	20.1	0.0	0.0
	10-Dec-19	0.0	22.8	0.0	0.0
	10-Jan-19	0.1	23.4	0.0	0.0
	11-Feb-19	0.0	21.7	0.0	0.0
	15-Mar-19	0.1	20.3	0.0	0.0
	18-Apr-19	0.0	21.2	0.0	0.0
	27-May-19	0.0	20.7	0.0	0.0
D112E	6-Jun-19	0.0	19.5	1.0	0.0
FIIZE	10-Jul-19	0.0	20.2	0.0	0.0
	8-Aug-19	0.0	20.2	0.0	0.0
	17-Sep-19	0.0	19.9	0.0	0.0
	7-Oct-19	0.0	19.9	0.0	0.0
	15-Nov-19	0.0	20.3	0.0	0.0
	10-Dec-19	0.0	21.7	0.0	0.0

6.0 NUISANCE MANAGEMENT

In order to reduce odour, litter, and vector nuisances at the landfill, several best practices and operating procedures are used, such as placement of screens, minimizing the working face of each cell, application of appropriate cover material (daily, intermediate, or final), site landscaping, weekly litter control patrols, and odour monitoring. If necessary, a licensed professional will apply vector control products to ensure that proper chemicals are used and properly handled. Noise is not a significant issue due to the separation from surrounding homes. Fugitive dust emissions are minimized by spraying site roads with uncontaminated surface water.

In 2019, there were 38 odour complaints from 15 customers; in all cases the source of the odour was investigated. Several of the calls came from one customer; investigations revealed that the storm sewer adjacent to their property was the source of the odour in many instances. If the source of the odour could be located within the BRRMF, we immediately covered the odour causing material, moved the tipping face to a more favorable area if available, and used compost or wood chips to reduce the odour and prevent further occurrence. Table 11 provides a summary of nuisance complaints received in 2019.

Winnipeg Water and Waste Eaux et déchets

Table 11. 2019 Nuisance Complaint Monitoring

Data Carata d	Consider t	Dava series
Date Created	Complaint	lours
1/4/2019	Citizen reached out via Twitter, concerned with the stronger smell of rotten garbage in Bridgewater Trails coming from Brady Rd today.	Responded to the resident stating we investigated your concern and have found that the atmospheric conditions and landfill operations suggest that it would be unlikely the odour originated from Brady landfill. We continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we < cover garbage on a daily basis, < use natural bio filters (woodchips) on manholes to capture and biologically remove odours, < continue to expand the landfill gas capture system, < use dedicated trenches for dead animals and cover all loads immediately, < monitor odours in and around the landfill on a regular basis, < plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, < continue to move landfilling operations further south , and reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids<br composition trial program.
1/5/2019	Citizen who lives in Bridgewater area, sends an email reporting foul smell in their neighborhood. Citizen would like to know if there is anything going on with Brady dump causing this and if the situation is temporary.	Resonded to the resident stating we investigated your concern and have found that the atmospheric conditions and landfill operations suggest that it would be likely the odour originated from Brady landfill. We continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we • cover garbage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • use dedicated trenches for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling operations further south , and • reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids composting trial program.
1/19/2019	Citizen states that they are once again expereincing a strong odour in the air in their neighbourhood which they believe is coming from the Brady Rd landfill.	Responded to the resident stating we have received your complaint and are going to continue to try to reduce odour issues at the landfill. At the moment, we are working on reducing the size of the tipping face and diverting some of our dominant odour causing waste streams. We are working to reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried at Brady through a soil fabrication project. We are starting our second year of this on February 4th, 2019 and this should hopefully greatly reduce some of the odour in the coming months.
1/24/2019	Caller states that he can smell garbage odour at his address which comes from the city dump. Caller states that it is much stonger than it has been in the past.	Responded to the resident stating we have been continuing to monitor the odour coming from Brady and noticed that with the strong south wind over the weekend, there was a distinct odour being pushed northwards. We have checked the area around your residence and did not detect any Hydrogen Sulfide. As such, we are working to reduce the size of our tipping
1/26/2019	Citizen is following up. Citizen states the odour is significant again and smells like meat.	Tace and hope once the weather warms up we can improve our daily cover. Additionally, I am hoping once we remove biosolids from the site (starting Monday next week) we will also see an improvement in odour.
1/31/2019	Citizen states that for the past 3 days, the odour from the Brady has been medium/low but today (January 30th), it is substantially high to the point what it can also be smelled inside my house.	Spoke with resident on the phone indicating that we are continuing to monitor the odour in that area. We also spoke about directing his concerns to Waste water services, to check and see if the odour is originating from the sewer.
2/18/2019	Citizen reached out for contact information regarding a sewer investagation due to continuing odour issues.	Responded to the resident stating a contact at Waste Water Services and the person I have spoken with regarding the odour issues at your residence. We will continue to monitor odour and H2S levels in and around your residence this week.
2/19/2019	Citizen stated that the air smells like very rotten egg.	
2/27/2019	Citizen states, "There is a strong sewer like odour happening currently""I am not sure if it is coming from the Brady Landfill or not. All I know is it smells like sewer and is substantial."	Sent to Sewer Odour Outside Lagan
2/27/2019	Citizen reached out again via email stating, "there is a strong sewer like odour happening currently [Feb 27 1:36pm]"	Responded to the resident stating staff are out as we speak doing an odour round and following up with operations if there
3/3/2019	Unfortunately, we have actually seen an uptick in odour lately (I reported the vast majority of them to 311). I believe we are experiencing odours from multiple sources - some of which I believe are coming from the sewer system and others from the landfill. I believe your team also feels that way as odours come in situations where the wind is coming from the South or the North. When it comes to the landfill in particular, what I was trying ask in my last email is, based on Provincial Legislation should I expect not to experience odours based on where I live. In speaking to long term residences of Richmond West it seems like this odour issue is something new in past few years and wasn't an issue in years prior. That leads me to conclude that something has changed and that perhaps the odour is outside of what is expected based on the Provicial Legislation. Another way of looking at it is, it would seem surprising to me that residence should expect to have stong odour in residential areas as an orm and that the Provicial Legislation would be such that there wouldn't be odours in residential areas sincluding schools, etc. On Saturday I was literally unable to be in my own yard for more than a few minutes as the smell was so strong.	Was anyoning out or the ordinary tins weekend that the west at around 9 km/h and the wind on March 1st and 2nd was predominantly from the west to north west and very frigid. Resident's house is approximately north east of the landfill. This in my opinion would not be atmospheric conditions that would be conducive for Brady to be the culprit of the odour complaint as any odour would ravel directly east or south east from Brady. As discussed before I believe the resident has alluded that the odour is sewer like for the most part and we have contacted Staff Member from WW and informed her of the current situation and she thinks the odour could be coming from the land drainage sewer which is very close to the resident's property and is going to investigate further. Also another interesting note is that we have not received any other odour complaints from any other residents within at least 1 km from resident's property, 1 am not really sure why this is but 1 would have thought that we would receive a few more if the odour was as debilitating as described. This could further support that the odour is more specific to the land drainage sewer than related to the landfill. Councillor's question regarding odour related to the Provincial regulations is another matter and in our license it states in clause 15 that "The Licencee shall not cause or permit an odour nuisance to be created as a result of the construction, operation, or alteration of the Development, and shall take such steps as the Director may require to eliminate or mitigate an odour nuisance" and the bevelopment when the vertice the weak of the down are to be more the provide the weak of the bevelopment, and shall take such steps as the Director may require to eliminate or mitigate an odour nuisance" and the bevelopment.
3/2/2019	Via email citizen stated There is a medium-low grade garbage like smell now - March 2 15:58 The wind has changed direction and now there is a very substantial sewer like odour - March 2 17:26	this matter as I think this would be a question that Manitoba Sustainable Development would be better suited to answer.
4/15/2019	We are experiencing an odour issue currently. Citizen has previous similar reports	Responded to the resident stating we are continuing to routinely check the area in and around your residence for hydrogen sulfide and odour. The wind on Monday was coming from the south, and could have pushed odour from the landfill northbound. However, when our technologist monitored the area at 1:00pm on Monday no odour or hydrogen sulfide was detected. By Tuesday the wind had changed direction and odour would not have been directed towards your neighborhood. We also checked the area just in case on Tuesday and did not detect any odour or hydrogen sulfide. Solid Waste Services is continuing to try and improve odour issues at Brady Landfill, and we will continue to monitor neighbouring communities for odour causing gases.
4/21/2019	Citizen states on April 19th there was a medium level odour around the block.	
4/21/2019	Citizen states there is a medium grade odor around the block on April 19th. Citizen has submitted similar concerns previously	Continued to montion concerned citizen residence by checking the level of LDC and adout doily infront of their barries
5/3/2019	Citizen states there is a medium grade odor around the block and at citizen's house. He states that the odor was present around 12:00 am on May 02 and the smell was so bad that it woke them up from their sleep.	continued to montoli concerned cluzer residence by checking the level of rizs and obour daily infront of their house.
7/11/2019	Citizen states that the whole neighbourhood smells like garbage and they can't enjoy being outside.	Responded to the resident stating we investigated your concern and have found that the atmospheric conditions and landfill operations suggest that it would be likely the odour originated from Brady landfill. We continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we • cover garbage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • use dedicated trenches for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling operations further south , and • reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids compositing trial program.

Date Created	Complaint	Response
7/18/2019	UA VIA EMAIL: The citizen stated that they are wanting to be advised why there is a very bad odour coming from the Brady Road landfill. The citizen stated that they were outside on Thursday, July 18 at 8:30 p.m. and can't even sit outside on their back yard due to the smell.	Aurs Responded to the resident stating we investigated your concern and have found that the atmospheric conditions suggest that it would be unlikely the odour originated from Brady landfill. Although, we have been going through an adjustment period with the new contractors onsite which may lead to a temporary increase in odour when atmospheric conditions are right. We continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we cover garbage on a daily basis, use natural bio filters (woodchips) on manholes to capture and biologically remove odours, cover garbage thren.bs (or dead animals and cover all loads immediately, use dedicated trenches for dead animals and cover all loads immediately, monitor odours in and around the landfill on a regular basis, plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, continue to move landfilling operations further south, and reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids compositing trial program and land application pilot program.
7/24/2019	Via E-mail, citizen reported on July 25 from 17:30 until late night there was a bad compost and garbage smell. They believe this came from the landfill. Citizen stated they could not walk outside, they got headaches and had to close their windows. Citizen would like the City to be more vigilant about the landfill.	Responded to the resident stating we will review with our operators and foreman to see if something was done differently on the 25th of July that could be corrected. We continuously working to reduce the impact of the landfill on our community. In particular, to address odour issues we: • cover garbage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • use dedicated trenches for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling operations further south , and • reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids compositing triang rogram.
8/2/2019	Caller states the odour coming from the landfill tonight is unbearable and nauseating. Caller states they cannot even open the windows the odour is so bad. Caller would appreciate if this was investigated.	Staff spoke with citizen and they raised a number of concerns with the odour at Brady. Primarily they was concerned with their health being affected by the odour at the site. I informed her that we do regular checks in the area for Hydrogen Sulfide and have yet to detect any levels that could be harmful to human health. They also mentioned that they had been informed when they purchased the house that the landfill was going to be closed very soon. I informed them that this is incorrect and that the landfill will remain open for the foreseeable future. I also mentioned the twarious initiatives we are taking to reduce the yedne. This includes improving our cap and increasing our landfill gas system. They remain weary of the site and states they get headaches from the odour. They ended the call mentioning that they wished they hadn't purchased in the area given the fact that the landfill is going to stay there.
8/14/2019	Resident states that the odor from the landfill is worse today. She had to go in the house as the smell is giving her a headache. This is an ongoing issue and she is worried about how this will affect her health in the long run.	Staff spoke with the concerned citizen . We will add their address to our odour round route. They are worried the odour will affect their health.
8/14/2019	The caller advised that since 19:00 today the caller can smell a garbage smell from Brady.	Staff spoke with concerned citizen and explained that we are doing work to expand our landfill gas system and this is causing a spike in odour coming from the landfill. Citizen was very appreciative of the work we are doing and understood the importance of expanding this system.
8/14/2019	Citizen is phoning in to complain about the smell coming from Brady road landfill. Citizen claims the smell coming from brady is so bad right now that she is unable to keep her windows open.	Staff left a message to call return call and explained what Brady was doing to mitigate odours and explained that we are doing work to expand our landfill gas system and this is causing a spike in odour coming from the landfill.
8/17/2019	Citizen emailed to report odour from the Brady Landfill.	Staff spoke with concerened citizen and explaied that we are currently working to expand our landfill gas system, which has caused a spike in odour issues. They were understanding and seemed encouraged that we are working to try and mitigate the problem. They will continue to contact us with further odour concerns.
9/10/2019	Citizen emailed 'I would like to report a sulphur like odour in the area.	Responded to the resident stating that we continue to monitor odour in and around your residence. We have not detected any hydrogen sulfide in your neighbourhood, although we have noticed an garbage like odour in the last couple of days closer to the landfill. This issue has been mentioned to the foreman and supervisors at Brady. I believe it is partially attributed to the expansion of our landfill gas collection system, once this work is complete some of the odour issue should be mitigated. We will continue to monitor your neighbourhood and the surrounding area for the foreseable future.
9/23/2019	Citizen states there the landfill smells really bad right now.	Responded to the resident stating we investigated your concern and have found that the atmospheric conditions and current landfill operations suggest that it would be likely the odour originated from Brady landfill. We apologize for any inconvenience this may have caused and we are working to address the issue to reduce the impact of the landfill on our community. To control odours in and around the landfill, we cover garbage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • use dedicated trenches for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis, • plant threes and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling operations further south, and • reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids
10/4/2019	Citizen emailed 311 stating that she lives on Stan Bailie Drive, and that there has been a strong strong smell afrom the landfill on October 3rd around 10:30pm.	Responded to the resident stating we investigated your concern and have found that the atmospheric conditions (SSW) and landfill operations (having to re-work the tipping face due to the amount of precipitation we have received) suggest that it could be likely the odour originated from Brady landfill. I conducted an odour investigation today, as the winds were once again favourable of moving odour to your area, and am happy to report no (0ppm) H2S was detected, and no odour was detected. We do continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we: • cover garbage on a daily basis, • created a smaller, more controlled tipping face (area the garbage is dumped at), • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • cover all loads of dead animals immediately, • monitor odours in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • currently have zero biosolids (lutrient-rich by-product of sewage treatment) being brought to Brady, as they are being used in the soil fabrication project.
10/7/2019	Via email citizen states that there is another sulfur like smell this morning.	Responded to the resident stating I investigated your concern and have found that the atmospheric conditions (SSE) and landfil operations (having to re-work the tipping face due to the amount of precipitation we have received) suggest that it could be likely the odour originated from Bravdy landfill. Although, when I was at Aintree investigating the odour, with my H2S reader at 10:30 am, there was no distinct sulfur smell or landfill odour detected. My reader was 0.000ppm H2S in the air, and I was unable to detect any odours outside. We do continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we: • cover garbage on a daily basis, • created a smaller, more controlled tipping face (area the garbage is dumped at), • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • cover all loads of dead animals immediately, • monitor odours in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling operations further south (the new cell will be completed by the end of this year), and • currently have zero biosolids (nutrient-rich by-product of sewage treatment) being brought to Brady, as they are being used in the soil fabrication project.

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

Date Created	Complaint	Response
10/12/2019	us Citizen emailed 311 stating that you can smell the foul odour from Brady Landfill on the South Perimeter.	Aurs Responded to the resident stating we investigated your concern and have found that the atmospheric conditions suggest that it would be unlikely the odour originated from Brady landfill, but due to complications landfill operations, South perimeter proximity to the landfill and the state of emergency the city was in, it is possible the smell originated from Brady. We continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, ve e. ocver garbage on a daily basis, e. use natural bio filters (woodchips) on manholes to capture and biologically remove odours, e. continue to expand the landfill gas capture system, e. over all loads of dead animals immediately, monitor odours in and around the landfill on a regular basis, e. land trues and shrubs on the berms along Brady Road and the Perimeter Highway, e. continue to move landfilling operations further south, and a. recurrently directing biosolids (the nutrient-rich by-product of sewage treatment) to a soil fabrication program at another loration.
10/22/2019	Via email citizen is reporting that there is a terrible odor coming from the landfill. Citizen states they can smell it all the way up to Costco on Kenaston. Citizen is wondering what happened and when it will get better.	Responded to the resident stating, I would like to share with you some of the work we are doing to reduce the impact of the landfill on our community. To control odours in and around the landfill, we • cover garbage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system (further extensions are to be done in the new year), • use dedicated trenches for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis and test for Hydrogen Sulfide, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling operations further south , and • reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids compositing tria program.
10/22/2019	Via email citizen states that they live in bridge water trails and they have been experiencing a horrible smell coming from the Brady Landfill.	Responded to the resident stating we investigated your concern and have found that the atmospheric conditions (NNE Wind) and landfill operations suggest that it would be unlikely an odour yesterday originated from Brady landfill. However, we do recognized that given the right conditions, an strong odour can be produced and spread by the landfill. However, we do recognized that given the right conditions, an strong odour can be produced and spread by the landfill. How of the landfill we over garbage on a daily basis, - use natural bio filters (woodchips) on manholes to capture and biologically remove odours, - continue to expand the landfill gas capture system (further extensions are to be done in the new year), - use dedicated trenches for dead animals and cover all loads immediately, - monitor odours in and around the landfill on a regular basis and test for Hydrogen Sulfide, - plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, - continue to move landfilling operations further south , and - reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids compositing trial program.
11/1/2019	Citizen emailed us again complaining of trashy smell in Bridgewater Trails area coming from landfill.	Responded to the resident stating we investigated your concern and have found that the atmospheric conditions and minor complications with landfill operations suggest that it would be likely the odour originated from Brady landfill. Most of the day there was a SSW wind, which would lead to odours migrating to bridgwater area. Operations were in the process of filling in a trench and working to cover the garbage received that day, which could explain the odour. We do continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we: • cover garbage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • use dedicated trenches and/or folding-in-method for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling (the nutrient-rich by-product of sewage treatment) being buried through a biosolids soil amendment program at another location.
11/24/2019	Citizen emailed 311 stating that she lives in South Pointe and the Brady Landfill odour has been overwhelming.	Responded to the resident stating we investigated your concern and have found that the atmospheric conditions over the weekend (predominantly South, West-Southwest winds) suggest that it would be likely the odour originated from Brady landfill. Operations is currently trying a new method of handling Specified Risk Material, which will no longer involve opening a trench up, but they have to stock pile garbage to fold the SRN into at the end of the day. Operations was experiencing some teaching and learning curves, but will hopefully be rectified soon. We continuously work to reduce the impact of the landfill on our community. To control odours in and around the landfill, we cover garbage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system, • use dedicated trenches for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to biosolids (the untrent-rich by-product of sewage treatment) being buried through a biosolids composting trial program at another location.
12/5/2019	Citizen states there is an unbearable smell outside coming from the Brady Landfill. It's really hard to breath. Please do something about the smell. They worried that this will make my family sick.	Spoke with resident about her concerns with the odour being produced at Brady Landfill. Resident recently purchased a new house in close proximity to the landfill and is concerned with how strong the odour is at this time of year. I went over some of the initiatives that we are undertaking to try to reduce some of the odour. I reassured the resident that we have checked H2S levels in and around her residents and have not detected any of the hazardous gas. Some of the initiatives I discussed with her include: • cover grabage on a daily basis, • use natural bio filters (woodchips) on manholes to capture and biologically remove odours, • continue to expand the landfill gas capture system (further extensions are to be done in the new year), • use dedicated trenches for dead animals and cover all loads immediately, • monitor odours in and around the landfill on a regular basis and test for Hydrogen Sulfide, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • continue to move landfilling operations further south
12/14/2019	Citizen emailed 311 wanting to state that the odour coming from the landfill is horrible. She states that she would like this to be looked into as soon as possible. She states that it shouldn't be the atmosphere as it's - 25 outside.	Responded to citizen via voice mail asking them to please call back and discuss their concerns further. We have included the address in our odour monitoring rounds.
12/19/2019	Citizen states, they moved in very recently and since their move, they have been getting strong foul odours from time to time on certain days. Just minutes ago, they went out their doors and got the same bad smell. Is there anything that can be done to prevent the smell? They would have newer built this home here if they knew they would end up feeling like living in a dump. This is how strong the smell is when it smells. They am very worried about my sick elderly parents who live with me as the strong smell does not help them make it a pleasant place to live.	Further to our discussion this morning, I would like to send you an outline of some of the activities we are doing to try and mitigate some of the odours originating from Brady Landfill. We are continuously working to reduce the impact of the landfill on our community. To control odours in and around the landfill, we • Improve daily coverage of garbage on a daily basis, • continue to expand the landfill gas capture system, • monitor odours and hydrogen sulfide in and around the landfill on a regular basis, • plant trees and shrubs on the berms along Brady Road and the Perimeter Highway, • Improve the vegetative cover on the north slope, to reduce cracking in the clay cap. • continue to move landfilling operations further south, and • reduce the amount of biosolids (the nutrient-rich by-product of sewage treatment) being buried through a biosolids composing trial program. Although all these initiatives will greatly reduce the amount and consistency of odour. We can never guarantee that there will not be odour coming from the site, given the nature of the material being buried.

Client File No. 5556.00 Manitoba Environment Act Licence No. 3081 R

Date created	complaint	Response				
	Odours					
12/19/2019	Citizen reports that there is a strong garbage like smell occurring in our neighborhood that has been happening for numerous hours.	We did investigate your odour concern on Friday December 20 (and a regular odour monitor on Monday December 23). The atmospheric conditions suggest it was unlikely originating from Brady, but there was an odour due to some operations complications that was getting to the perimeter, so there is a chance it may have made it to your neighborhood but unlikely. As we continue to move operations south and the biosolids soil fabrication program starts up again in February, the odour should start to be less impactful/noticeable.				
12/26/2019	Via email citizen states that the smell was so bad tonight that they had to plug their nose when they were walking their dog at 8:15.	Responded to the resident stating we have investigated your concern, and have found that the atmospheric conditions suggest that it would be highly likely the odour originated from Brady Landfill. Operations was dealing with setbacks and complications of being closed the prior day, and receiving some waste that was not planned for. But it was dealt with to their best ability at the time. We are continuing to cover garbage on a daily basis, and find better locations in the landfill for handling more odorous waste (SRM containing material) as options arise with the cell operations moving further south. As well, the biosolids soil fabrication program will be starting up again end of January/beginning of February and that will also help to reduce odour and operation complications.				

7.0 CONCLUSION

The diversion operations taking place at the BRRMF have been effective in diverting tens of thousands of metric tonnes of material from the landfill.

Leachate management was successful in 2019 as there were no breakouts of leachate.

The quality of the ground water beneath the site has not been negatively impacted, as demonstrated by the comparison of upstream to downstream ground water quality.

The quality of the surface water measured at the Weir is statistically similar to the quality of the surface water upstream of the BRRMF.

The areas where landfill gas is escaping should be repaired.

The BRRMF will continue to operate so as to ensure that the environment is maintained in such a manner as to sustain a high quality of life, including social and economic development, recreation and leisure for present and future Manitobans.

8.0 **REFERENCES**

1. Brady Road Resource Management Facility – Manitoba Environment Act Licence No. 3081 R

https://www.winnipeg.ca/waterandwaste/pdfs/garbage/bradylicence.pdf

2. Ontario Ministry of the Environment. (2011, July 1). Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

https://www.ontario.ca/page/soil-ground-water-and-sediment-standards-use-under-partxv1-environmental-protection-act

3. Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines Summary Table. Water Quality Guidelines for the Protection of Freshwater Aquatic Life. (CCME, 2003).

http://ceqg-rcqe.ccme.ca/download/en/221

