West Hawk annual water report

This report is to provide public awareness about the operation, requirements and results of the water treatment system for West Hawk lake MB. Under The Environment Act's Water and Wastewater Facility Operators Regulation, the plant is rated a class 2 treatment facility as well as the operators maintaining the plant. Copies of this report will be made available at the Falcon District Office as well as on the Manitoba government website. Residents will be made aware of this report via e-mail and/or signage posted on bulletins around town. The Whiteshell cottagers association will also direct residents on how to access this report.

Plant operators:

Matthew MacInnis – MM3 Steve Kuharski – MM1 Jacob klassen – PK2

For the year of 2024

Where does the water come from?

 Our raw water source comes from two 8" drilled wells, each well equipped with its own submersible pump tapped into an underground aquafer. These wells are classified as GUDI due to the potential of being contaminated in the scenario of a flood. When our system calls for water these pumps pump the raw water into the water plant to be then treated.

What do you do to this raw water once it's at the water plant?

Once the raw water is pumped into the water plant, chlorine (sodium hypochlorite) is
injected into the raw water line. Once chlorine is added it then distributes between 3
green sand filters which remove particulates/debris/solids from the water. The now
filtered water gets distributed between 4 UV lights before entering our 1600 gal storage
tanks. We have 6 above ground storage tanks which hold 9600 gals to store our now
treated potable water ready for distribution supplied to town from three variable speed
distribution pumps that supply water to the town through the underground piping in our
distribution system. We are required to have a minimum of 20 minutes of chlorine
contact time. This means that we exceed the minimum required 20 minutes of contact
time of chlorine with the raw water, before going to the distribution system.

What is the purpose for adding this chlorine to the water?

• The main purpose of the chlorine is that it disinfects and kills any harmful bacteria that may be present in the water. This makes chlorine your number one line of defense in providing safe drinking water, but it also helps with filtration process by pulling out particulates from the water so the filters can then remove them.

• What is the purpose of the UV lights?

- We are required to have dual disinfection which is where the UV comes into play. The UV lights kill or sterilize any bacteria that may be present in the water. This step is an extra precautionary measure, an extra bit of security to make sure the public is always safe and can help to guarantee consistently safe water at all times. UV monitoring is done daily with the units functioning properly at 95% of the time as required by the drinking water safety act. A dosage of 40mJ/cm2 is a standard minimum.
- Should we worry about the safety of our water during a power outage?

 If and when a power outage does occur the water plant is equipped with a generator that provides ample amount of power and starts up automatically to keep everything running. The generator will continue every step of the treatment process so that the water is always being properly treated.

How can we be assured our water is safe at all times?

• There is an entire branch of the government designated to monitoring water plants throughout the province called The Office of Drinking Water. These water officers work very closely with plant operators to help ensure water quality is at its best while also making sure operators are following Drinking Water Safety Acts and it supporting regulations on a daily basis.

What kind of regulations need to be met?

The Office of Drinking Water has different requirements for ever system depending on • the water source, population, treatment method, etc. West Hawk water treatment plant is required to test chlorine free and total in person every day of the year. We must also send water samples to an accredited laboratory every two weeks to be tested for E-coli and total coliforms. We do this test to the raw water, treatment water at the plant and from various sample points around town in the distribution system. The lab results are sent to the water officer every two weeks and our daily monitoring of chlorine levels are sent to the officer every month. We monitor turbidity on a daily basis in the raw and treated water. Further into this report you will find two charts for turbidity. One is our monthly average over the year and the other from our bi weekly samples that get sent in for lab analysis. We must also sample for THM (trihalomethane) and HAAs (haloacetic acids) quarterly or four times a year every second year making sure to not exceed 0.10 mg/l for THMs and to not exceed 0.08 mg/l for HAAs. Last year average of THMs = 0.0503 mg/l and HAAs = 0.0203 mg/l our next sampling will done in 2026. We are also required to sample annually for benzene, toluene, ethyibenzene, and xylenes in our water. UV disinfection must be monitored daily and be operational 95% of each month at a UV dose of 40mJ/cm2. The microbial standards that we are required to meet are inactivation or reduction at 99.9% of Cryptosporidium cysts and Giardia lamblia cysts, this standard is met through our UV disinfection process. We are also required to maintain in effective working order the filtration and disinfection equipment to provide reduction or inactivation of 99.99% all viruses. This standard is met through chlorination contact time. These are all requirements of our operating licence which you can review below.

OPERATING LICENCE FOR A PUBLIC WATER SYSTEM

LICENCE NUMBER: PWS-10-426-02

THE DRINKING WATER SAFETY ACT CHAPTER D101, C.C.S.M.

WATER SYSTEM CODE:	245.00
OPERATION ID:	7226
EFFECTIVE DATE:	DECEMBER 1, 2021
EXPIRY DATE:	FEBRUARY 28, 2025

IN ACCORDANCE WITH THE DRINKING WATER SAFETY ACT, THIS OPERATING LICENCE IS ISSUED PURSUANT TO SUBSECTION 8(1) TO:

ENVIRONMENT, CLIMATE AND PARKS: "THE LICENSEE"

FOR THE OPERATION OF THE WEST HAWK LAKE PUBLIC WATER SYSTEM, WHICH INCLUDES WELLS UNDER THE DIRECT INFLUENCE OF SURFACE WATER, TREATMENT EQUIPMENT, WATER STORAGE TANKS, AND DISTRIBUTION LINES, SUBJECT TO THE ATTACHED TERMS AND CONDITIONS.

THIS LICENCE DOES NOT AFFECT THE LICENSEE'S OBLIGATIONS WITH RESPECT TO COMPLIANCE WITH ALL APPLICABLE MUNICIPAL, PROVINCIAL, AND FEDERAL LEGISLATION. THIS LICENCE SUPERSEDES ALL PREVIOUS LICENCES FOR THIS PUBLIC WATER SYSTEM.

Digitally signed by Kate Bolton Date: 2022.11.30 15:44:11 -06'00'

DATE: November 30, 2022

Kate Bolton Director, Office of Drinking Water

TERMS AND CONDITIONS

1. GENERAL

- 1.1. The Licensee shall operate the public water system in accordance with all applicable requirements of The Drinking Water Safety Act and its regulations, and the requirements of this licence. In the event that specific terms and conditions of this licence imposed under the authority of subsection 8(3) of the Act exceed the general requirements of the Act and regulations, the specific requirements of this licence shall apply.
- 1.2. The Licensee shall obtain approval from the Office of Drinking Water prior to making any significant alterations to the water source, the water treatment process, the water storage facilities, or the water distribution system.
- 1.3. This licence may be amended by the director where, in the opinion of the director, an amendment is necessary and the amendment will not negatively impact the safety of water obtained from the water system, or effective environmental management.
- 1.4. The Licensee may request an amendment to this licence by submitting an amendment application to the Office of Drinking Water.
- 1.5. This Licence may be suspended or cancelled by the director for any of the reasons identified in Section 11 of Manitoba Regulation 40/2007, Drinking Water Safety Regulation or due to a failure to comply with any term or condition of this licence.
- 1.6. The Licensee shall provide written notice to the Office of Drinking Water of any change in ownership of the water system within seven days of the transfer of ownership.
- 1.7. The Licensee shall provide written notice to the Office of Drinking Water of any changes in the operational status of the water system, such as a permanent cessation of service, or changing the length of service from year-round to seasonal or the opposite.
- 1.8. The director of the Office of Drinking Water, medical officer of health or drinking water officer may enter any water system facility as necessary to carry out the provisions of The Drinking Water Safety Act and its regulations.
- 1.9. The Licensee shall post a copy of the first page of this licence at the water treatment facility.
- 1.10.The Licensee shall keep a copy of this licence in its entirety at a location established by the drinking water officer and ensure all operators are familiar with its terms and conditions.
- 1.11. The Licensee shall apply for renewal of this licence at least 60 days prior to its expiry.

2. OPERATION - GENERAL

- 2.1. The Licensee shall operate all water system facilities, control systems, equipment, any reservoirs/cisterns and/or distribution lines as efficiently as possible, inspect them on a regular basis, maintain them in good working order, and ensure that the water system is protected from the risks associated with contamination.
- 2.2. The Licensee shall ensure that all chemicals and components that may come into contact with potable water are certified safe for potable water use through AWWA Standards, ANSI/NSF Standard 60 or 61, Health Canada, or other standards acceptable to the director.
- 2.3. No alternate water source shall be brought into service without the consent of the drinking water officer and the maintenance of adequate cross connection control between the alternate source and the primary source.
- 2.4. The Licensee shall follow the requirements as specified in Operational Guideline ODW-OG-02 Seasonal Water Systems Start-up Shut-down Procedures for any portion(s) of the distribution system that operate on a seasonal basis.
- 2.5. The Licensee shall have re-assessments of the water system infrastructure and water supply sources completed by a qualified person, who is not an employee of the water system, in accordance with assessment checklist GUDI by September 1, 2019, and every five years thereafter. The Licensee may instead have the assessment completed by a qualified professional engineer, who is not an employee of the water system, in accordance with terms of reference for engineering assessments.
- 2.6. The Licensee shall, upon request from the Office of Drinking Water, submit or resubmit a compliance plan, in a form satisfactory to the director, to address any noncompliance issues identified at the time.

3. OPERATION - EMERGENCIES

- 3.1. The Licensee shall ensure that disinfection is undertaken following construction, repair or maintenance activities on the water system, in accordance with applicable AWWA standards, or Manitoba Water Services Board specifications, or any other standards approved by the director. A copy of all associated test results must be kept available for review by the Office of Drinking Water for a minimum of 24 months.
- 3.2. The Licensee shall ensure that all equipment used for disinfection is maintained in effective working order and keep available for immediate use all spare parts and chemical supplies as may be necessary to ensure continuous disinfection, including a spare disinfection unit, if necessary.
- 3.3. The Licensee shall immediately notify the Office of Drinking Water of any condition that may affect the ability of the water system to produce or deliver safe drinking water including but not limited to treatment upsets or bypass conditions, contamination of the source water or treated water, a disinfection system failure, or a distribution system failure.
- 3.4. If a medical officer of health, the director of the Office of Drinking Water, or a drinking water officer issues a water advisory on the water system, the Licensee shall provide notice of the advisory to all water users in accordance with the advisory notification plan or by a method acceptable to the issuer.

4. WATER QUALITY/TREATMENT STANDARDS

4.1. The Licensee shall operate the water system in a manner that achieves the water quality/treatment standards specified in Table 1, as determined through the monitoring requirements specified in Table 2:

	Table 1: Water Quality/Treatment Standards
Parameter	Quality
Parameter	Standard
Total Coliform	Less than one total coliform bacteria detectable per 100 mL in all treated
Total Coliform	and distributed water
E. coli	Less than one E. coli bacteria detectable per 100 mL in all treated and
E. COII	distributed water
	A free chlorine residual of at least 0.5 mg/L in water entering the
	distribution system following a minimum contact time of 20 minutes
Chlorine Residual	
	A free chlorine residual of at least 0.1 mg/L at all times at any point in
	the water distribution system
Ultraviolet Disinfection	95% of water produced per month is disinfected within validated
	conditions
Total Trihalomethanes	Less than or equal to 0.10 mg/L as locational annual average of
(THMs)	quarterly samples
Total Haloacetic Acids	Less than or equal to 0.08 mg/L as locational annual average of
(HAAs)	quarterly samples
Arsenic	Less than or equal to 0.01 mg/L
Benzene	Less than or equal to 0.005 mg/L
Ethylbenzene	Less than or equal to 0.14 mg/L
Fluoride	Less than or equal to 1.5 mg/L
	Less than or equal to 0.005 mg/L based on a sample(s) collected at a
Lead	cold water tap or other appropriate location where water may be used
	for drinking or food preparation
Manganese	Less than or equal to 0.12 mg/L
Nitrate	Less than or equal to 45 mg/L measured as nitrate (10 mg/L measured
INITALE	as nitrogen)
Nitrite	Less than or equal to 3 mg/L measured as nitrite (1 mg/L measured as
Withte	nitrogen)
Trichloroethylene	Less than or equal to 0.005 mg/L
Tetrachloroethylene	Less than or equal to 0.01 mg/L
Toluene	Less than or equal to 0.06 mg/L
Total Xylenes	Less than or equal to 0.09 mg/L
Uranium	Less than or equal to 0.02 mg/L

- 4.2. If a bacteriological standard is not met, the Licensee shall immediately undertake the applicable corrective actions as listed in "Schedule A" of Manitoba Regulation 41/2007, Drinking Water Quality Standards Regulation.
- 4.3. If a microbial, chemical, radiological, or physical standard is not met, the Licensee shall immediately undertake the applicable corrective actions specified in "Schedule C" of Manitoba Regulation 41/2007, the Drinking Water Quality Standards Regulation.
- 4.4. The Licensee shall have in place and maintain in effective working order, filtration and/or disinfection equipment and controls designed to provide reduction or inactivation of 99.9% (3-log) of *Cryptosporidium* oocysts and 99.9% (3-log) of *Giardia lamblia* cysts.

- 4.5. The Licensee shall have in place and maintain in effective working order, filtration and/or disinfection equipment and controls designed to provide reduction or inactivation of 99.99% (4-log) of viruses.
- 4.6. The Licensee shall maintain in effective working order chlorination and treated water storage equipment and controls designed to achieve a minimum of 20 minutes of chlorine contact time prior to water entering the distribution system.
- 4.7. The Licensee shall maintain in effective working order ultraviolet (UV) light disinfection equipment and controls that result in greater than or equal to 95% of the water produced per month undergoing UV light disinfection within validated conditions and at a minimum dose of 40 mJ/cm².

5. WATER QUALITY MONITORING

5.1. The Licensee shall ensure monitoring is completed as set out in Table 2.

	Table 2: Monitoring Schedule
Parameter	Monitoring
Farameter	Requirement
Bacteriological	Biweekly sampling program with each set of samples consisting of one
(total coliform and	raw, one treated, and a minimum of one distribution sample
E. coli)	Consecutive sample sets to be separated by at least 12 days
Free Chlorine	One sample per day of water entering the distribution system following at
(treated water)	least 20 minutes of contact time
Free Chlorine	At the same times and location(s) as bacteriological distribution system
(distribution system)	sampling
Total Chlorine	One sample per day of water entering the distribution system following at
(treated water)	least 20 minutes of contact time
Total Chlorine	At the same times and location(s) as bacteriological distribution system
(distribution system)	sampling
Ultraviolet Disinfection	Continuous monitoring of UV intensity level for each operating UV unit
	One raw water sample per day
Turbidity	
Turning .	One treated water sample per day at the location established by the
T 110	drinking water officer
Turbidity	At the same times and location(s) as bacteriological distribution system
(distribution system)	sampling
General Chemistry	One raw and one treated water sample once every year
(parameter list	
provided by Office	
of Drinking Water)	
Total Metals	One sample taken at the same time(s) as General Chemistry sampling at a
(distribution system)	mid-point in the distribution system
Total Trihalomethanes	One preserved sample taken on a quarterly basis during February, May,
(THMs)	August, and November, every second year at the furthest point in the
(distribution system)	distribution system beginning 2023
Total Haloacetic Acids	One preserved sample taken on a quarterly basis during February, May,
(HAAs)	August, and November, every second year at a mid-point in the distribution
(distribution system)	system beginning 2023
Lead	As per the instructions of the drinking water officer
Manganese	Monitoring included in the general chemistry and total metals analysis
(Laboratory Analysis)	
Other Parameters	As per the instructions of the drinking water officer

- 5.2. The Licensee shall ensure that an accredited laboratory, as specified in section 35 of Manitoba Regulation 40/2007 the Drinking Water Safety Regulation, undertake the following analysis required in Table 2:
 - a) bacteriological (total coliform and E. coli)
 - b) general chemistry
 - c) manganese
 - d) total metals
 - e) total trihalomethanes
 - f) total haloacetic acids

 g) any other parameter required by the drinking water officer and that all samples are collected, handled, and submitted in a manner that is

satisfactory to the accredited laboratory.

- 5.3. The Licensee shall ensure that parameters listed in Table 2 but not specified in clause 5.2 are measured utilizing certified water quality monitoring equipment and methods approved by the latest edition of *Standard Methods for the Examination of Water and Wastewater* published jointly by the American Public Health Association, the American Water Works Association and the Water Environment Federation.
- 5.4. The Licensee shall ensure that raw water samples are taken on an alternating basis in instances where more than one water supply source is used.
- 5.5. The Licensee shall ensure that all water quality monitoring equipment is properly maintained and calibrated by a qualified person according to manufacturer recommendations and that records are maintained to that effect.
- 5.6. The Licensee shall operate equipment capable of continuously monitoring the UV light intensity to ensure compliance with the inactivation requirement specified in Clause 4.4.
- 5.7. The Licensee shall ensure that sampling within the distribution system takes place at varied locations acceptable to the drinking water officer.

6. RECORD-KEEPING AND REPORTING

- 6.1. The Licensee shall maintain in a secure location all construction drawings for the life of the water system components.
- 6.2. The Licensee shall retain in chronological order for a minimum of 24 months all information specified in subsection 34(2) of Manitoba Regulation 40/2007, Drinking Water Safety Regulation.
- 6.3. The Licensee shall ensure the information identified in clause 6.2 is available for inspection by any member of the public during normal business hours at the office of the water supplier or at a location convenient to the users of the system.
- 6.4. The Licensee shall record disinfectant residual measurements on the monthly disinfection report or other forms satisfactory to the director.
- 6.5. The Licensee shall record turbidity measurements on the monthly report forms or other forms satisfactory to the director.

- 6.6. The Licensee shall record UV alarms and maintenance procedures performed on the water system and its supporting equipment on the monthly UV report forms or other forms satisfactory to the director.
- 6.7. The Licensee shall record validated UV condition verifications on the monthly report forms or other forms satisfactory to the director.
- 6.8. The Licensee shall keep one copy of all monthly report forms required in this licence, and forward the original copy to the drinking water officer within seven days after the end of each calendar month.
- 6.9. The Licensee shall record all distribution system measurements specified in *Table 2: Monitoring Schedule* on the chain of custody form (laboratory submission form) which accompanies the bacteriological sample bottles to the laboratory.
- 6.10. The Licensee shall ensure that water metering devices at the water treatment plant or storage reservoir are maintained in good working order and that flow meter readings are recorded on a daily basis and such records are made available for inspection by a drinking water officer.
- 6.11. The Licensee shall submit an annual report to the director by March 31st of each year on the operation of the water system in the immediately preceding calendar year. The report shall include the information as set out in subsection 32(2) of Manitoba Regulation 40/2007, Drinking Water Safety Regulation.
- 6.12. The Licensee shall inform the public, in a form satisfactory to the director, when an annual report has been prepared and identify how a free copy can be obtained.
- 6.13. The Licensee shall make a copy of each annual report available to the public at no charge on an internet website within two weeks of the issuance of the report, unless otherwise approved by the director. The annual report shall remain available to the public for at least one year.
- 6.14. The Licensee shall maintain and submit an advisory notification plan to the drinking water officer by May 1st of each year. The plan must include a detailed description of communication tools and methods to be used to notify the public of a drinking water emergency, considering key contacts, fan-outs, critical customers, susceptible or difficult-to-reach sub-groups, and template notices where applicable.

Are your operators trained?

Yes, all our operators were trained at Red River College in each field (water treatment, water distribution, wastewater collection and wastewater treatment) to the level/classification meeting our operations licences. To make sure we keep up with changes in these fields, regulations, new products, testing, etc. we are taking training and extra courses every year as part of our CEU program. CEU's are continuing education units which we are required to obtain every year.

What is free and total? And how do you know how much chlorine to make the water safe?

• Free chlorine is the amount of unused chlorine in the water and total chlorine is the total amount of chlorine that was in the water, the deference between the two is how much chlorine was needed to treat the water and make it safe. The drinking water safety acts requires that we maintain no less than 0.5 mg/l of free chlorine at the water plant at all times as well as 0.1 mg/l in the piping/distribution system. The chart below is our free

and total readings at the water plant for everyday of the year. The second chart shows our bi weekly readings of the distribution system. Failing to meet requirements under the drinking water safety act can result in drinking water safety orders, charges, boil water advisories or water quality advisories.

	<u>Jan</u>	uary	<u>Feb</u>	<u>ruary</u>	Ma	arch	<u>Ar</u>	<u>oril</u>	N	<u>1ay</u>	<u>Jı</u>	<u>ine</u>	<u>Jı</u>	<u>ily</u>	<u>Au</u>	<u>ust</u>	<u>Septe</u>	mber	<u>Oct</u>	ober	Nove	mber	<u>Dece</u>	mber_
	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	total	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>	<u>Free</u>	<u>total</u>
1	1.1 7	1.3 5	<mark>1.2</mark> 3	1.4 4	<mark>1.0</mark> 3	<mark>1.2</mark> 0	<mark>.89</mark>	<mark>1.1</mark> 8	<mark>1.2</mark> 8	<mark>1.4</mark> 8	1.0 2	1.1 4	<mark>1.2</mark> 0	<mark>1.4</mark> 4	<mark>.89</mark>	1.1 1	1.4 6	<mark>1.6</mark> 1	<mark>.98</mark>	1.1 7	<mark>.81</mark>	<mark>.97</mark>	<mark>.52</mark>	<mark>61</mark>
2	1.1 1	1.3 2	1.2 2	1.4 5	<mark>.91</mark>	1.1 4	1.0 8	<mark>1.2</mark> 5	1.3 0	<mark>1.5</mark> 4	1.3 3	1.4 7	1.0 6	1.25	1.0 1	1.1 0	1.3 7	1.5 4	<mark>1.0</mark> 8	1.2 7	<mark>1.2</mark> 2	<mark>1.4</mark> 2	<mark>.54</mark>	<mark>.60</mark>
3	1.1 0	1.2 9	1.2 7	1.4 9	1.0 3	1.1 9	1.1 1	1.3 1	1.2 4	1.5 5	<mark>.98</mark>	1.1 4	1.2 6	1.4 7	<mark>.96</mark>	1.1 2	1.3 5	1.5 3	.74	<mark>.90</mark>	1.1 1	1.3 1	<mark>.93</mark>	1.1 2
4	1.1	1.2 1	1.3 3	1.5 8	.89	1.1 3	<mark>.89</mark>	1.0 8	1.3 2	1.6 3	<mark>.93</mark>	1.1 3	1.1	1.3 0	1.1 2	1.3 0	1.3 3	1.5 0	1.0 0	1.0 9	1.0 9	1.2 7	1.0 9	1.2 2
5	1.0	1.2 6	1.2	1.4	1.0	1.1 7	1.0	1.2 3	1.3	1.5 6	<mark>.89</mark>	1.0	.97	1.2 2	1.0 6	1.1 9	1.2	1.3 8	1.0	1.1 9	1.4	1.6 9	2.2	2.2 0
6	1.0	1.2 1	1.2	1.4 7	1.0	1.0 9	1.0 9	1.2 5	1.1	1.3 2	<mark>.79</mark>	.93	1.0 •	1.2 3	1.0	1.1 9	1.2	1.3 6	.99	1.1 0	1.0	1.2 0	2.2	2.2 0
7	2 .96	1.1	1.2	1.4	.98	9 1.1	1.0	5 1.1 6	.93	1.1	<mark>.78</mark>	1.0	1.0	1.2	4 1.0	9 1.1 8	1.2	1.4	1.0	0 1.2	1.2	0 1.2	2.2	2.2 0
8	<mark>.98</mark>	1.2 0	1.0	1.2 4	1.0 3	1.2 0	1.2	1.4 2	<mark>1.1</mark>	1.4 0	1.1	1.2	4 1.0	1.2 2	1.0	0 1.0 9	9 1.2 9	8 1.5 4	<u>.94</u>	1.1 0	. <mark>62</mark>	.68	1.4	<mark>1.6</mark>
9	1.1	1.2	8 1.2	4 1.4 0	3 .97	1.1	1.2	2 1.4 6	9 1.1	1.3	1.1	1 1.3	3 .95	2 1.1 8	1.0	9 1.1 9	9 1.2	4 1.4 0	1.1 c	1.3	.57	<mark>.66</mark>	6 1.3	4 1.5 2
10	4 .96	/ 1.1	5 1.1 0	0 1.4 3	1.0	3 1.2 3	4 1.0 9	6 1.2 6	4 1.2	1 1.4 1	1.1	1 1.3 3	1.1	8 1.3 1	0 1.0 3	9 1.2 1	1.4	0 1.5 6	6 1.0	1 1.1 8	<mark>.60</mark>	<mark>.72</mark>	9 1.3	2 1.4 1
11	<mark>.98</mark>	6 1.1	• 1.2	1.4 3	.97	5 1.1 7	1.0	1.2 2	0 1.2	1.5 0	.95	1.1	4 1.1	1.4	.90	1.1 5	5 1.4 7	0 1.6 0	1.2	0 1.4 7	<mark>.96</mark>	1.1	5 1.4	1.5
12	1.0 0	4 1.3 2	1.2	1.4 1	<mark>1.1</mark>	7 1.4 1	4 1.2 9	2 1.5 0	0 1.4	1.6 1	1.2 6	1.4	1.1	1.1 7	<mark>.89</mark>	1.0 8	1.2	1.4 6	4 1.3	7 1.5 9	<mark>.85</mark>	.97	4 1.3	4 1.4 5
13	5 1.0	2 1.1 0	1.0	1.2	, 1.1	1.3 2	1.3	1.5 7	1.4	1.7	.96	1.1 7	1.1	, 1.2 2	<mark>.87</mark>	0 1.0 3	1.3	0 1.4 9	4 1.4	1.4	<mark>1.2</mark>	<mark>1.4</mark>	1.3	1.5
14	4 1.2	9 1.3 8	2 .98	1.2 0	2 .98	2 1.1 9	1.2	1.3 8	1.3	1.6 6	<mark>.94</mark>	1.0 8	4 1.0	1.2 4	1.1 2	5 1.3 5	0 1.4 0	9 1.5 1	1.2 6	7 1.4 7	1.2	1.5 3	5 1.4 6	1.6 5
15	1.1	1.2 5	<mark>.88</mark>	1.1 2	1.3 0	1.4 3	4 1.0 6	0 1.1 6	1.2	1.5 2	1.0 2	1.2	1.0	4 1.2 2	.84	1.0 8	1.3	1.4 1	1.2	7 1.3 9	1.5 6	3 1.7 5	1.4 7	1.6 7
16	1.1	1.3 4	<mark>.96</mark>	1.0 8	.99	1.1 4	1.2 6	1.5 0	1.1 7	1.2 9	1.1	1.2 5	.89	1.1 0	<mark>.85</mark>	1.0 1	1.3	1.5 6	1.4 0	1.6	1.6	1.8 8	1.3	1.5 3
17	1.1	4 1.2 9	<mark>.90</mark>	1.0 9	1.1	1.2 8	.94	1.1 4	, 1.3 0	1.4 7	1.1	1.2	1.0	1.2 5	<mark>.97</mark>	1.1 0	1.2 0	1.4 7	1.3 6	4 1.5 7		1.6 6	1.3	1.4 9
18	1.0	1.2 3	<mark>.92</mark>	1.1 1	2 .98	8 1.1 8	<mark>.96</mark>	1.1	1.3	1.6	1.0 2	1.2 0	.99	1.1 0	<mark>.98</mark>	1.1 7	0 1.1 0	1.3	1.2	1.4	1.4	1.6	4 1.6	9 1.7 8
19	4 1.1 7	1.3 2	<mark>.78</mark>	.96	<mark>1.2</mark> 3	8 8	<mark>1.1</mark> 3	6 1.3 2	1.3	1.5 9	2 1.0	1.0 2	1.0 0	0 1.1 2	<mark>.98</mark>	7 1.1 7	8 1.2 7	9 <mark>1.4</mark> 0	1.4	1 1.6 3	5 1.4	6 1.7 2	6 1.4 0	1.6
20	1.1	2 1.3 4	<mark>.86</mark>	1.0 7	1.0 1	0 1.2 0	1.1 2	1.3 2	4 1.5 1	9 1.6 7	<u>.99</u>	1.0 9	1.0 2	2 1.1 8	.75	1.0 0	, 1.1 6	1.3 6	4 1.3 8	1.6 1	9 1.5 0	1.8 6	ہ <mark>.95</mark>	4 1.1 6
21	4 1.1 9	4 1.3 7	<mark>.93</mark>	7 1.1 2	1.0	0 1.1 6	2 1.0 8	2 1.2 9	1.2	7 1.4 6	<mark>.95</mark>	9 1.1 2	2 .94	8 1.2 1	<mark>.98</mark>	0 1.2 1	о 1. 27	6 1.4 6	8 1.4 6	1 1.6 4	9 1.6 4	6 1.9 0	<mark>.74</mark>	6 .85
22	-	7 1.3 7	<mark>1.0</mark> 8	1.3 7	1.1 1	1.3 2	0 1.0 3	9 1.1 8	2 1.1 2	1.3 0	<mark>1.0</mark> 3	1.2 4	<mark>.92</mark>	1.1 5	<mark>.92</mark>	1 1.0 7	1.2 2	0 1.4 2	0 1.4 2	4 1.5 7	4 1.9 6	2.1 2	1.0 1	1.1 2
23	4 .97	7 1.1 6	ہ 94.	7 1.2 2	1.0 9	2 1.2 8	3 1.2 3	8 1.3 4	2 1.1 5	1.3 4	5 1.0 5	4 1.2 8	<mark>.94</mark>	5 1.1 1	<mark>.78</mark>	.99	2 1.1 9	2 1.4 4	2 1.4 6	7 1.7 2	0 1.5 5	2 1.7 1	1 .86	2 1.0 5
24	<mark>1.2</mark>	0 1.4 7	<mark>.92</mark>	2 1.0 8	9 1.0 8	8 1.3 0	3 1.3 1	4 1.4 4	5 1.2 1	4 1.3 0	5 1.0 0	8 8	<mark>.95</mark>	1 1.1 6	<mark>.88</mark>	<mark>1.0</mark> 2	9 1.2 0	4 1.3 0	0 1.4 9	2 1.7 3	1.2	1.3 8	<mark>.62</mark>	.67
25	2 1.6	7 1.8 3	<mark>.80</mark>	8 .97	• 1.0 7	1.2 1	1.1 2	4 1.3 7	1.2 7	1.4 3	.87	8 1.0 8	<mark>.90</mark>	0 1.0 3	<mark>.94</mark>	2 1.1 1	0 1.3 7	0 1.4 9	9 1.3 2	3 1.6 2	1.1	8 1.2 4	<mark>.70</mark>	<mark>.81</mark>
26	9 1.2	1.5 0	<mark>.73</mark>	<mark>.91</mark>	7 1.2 1	1.3 6	2 1.2 7	7 1.4 7	/ 1.2	1.4 1	1.0 4	0 1.1 9	<mark>.88</mark>	3 1.0 5	<mark>.83</mark>	.96	1.2	9 1.4 1	2 1.5 9	2 1.7 6	4 1.1	4 1.2 6	<mark>.60</mark>	<mark>.72</mark>
27	5 1.1 1	1.2 4	.97	1.0 6	1.0 7	1.1	/ 1.7	<mark>1.8</mark>	1.0 0	1.3	4 .93	.96	1.0 2	1.1	<mark>.80</mark>	<mark>.99</mark>	4 1.2	1.3	9 1.6	6 1.7 5	1.2	6 1.4 1	1.1 1	<mark>1.3</mark> 2
	-	4		b	/	<mark>5</mark>	<mark>0</mark>	<mark>6</mark>	9	<mark>3</mark>			2 	<mark>2</mark>			<mark>4</mark>	<mark>9</mark>	U	2	D	1	4	2 2

28	<mark>.58</mark>	<mark>.66</mark>	<mark>.70</mark>	<mark>.80</mark>	<mark>.67</mark>	<mark>.77</mark>	1.7 0	<mark>1.8</mark> 7	1.2 0	1.3 1	<mark>.92</mark>	1.0 0	1.0 8	1.2 7	<mark>.93</mark>	1.1 2	1.3 9	1.5 7	1.4 2	1.6 7	1.0 6	1.2 2	1.0 4	<mark>1.1</mark> 9
29	<mark>1.6</mark> 5	1.9 4	<mark>.75</mark>	<mark>.82</mark>	<mark>1.1</mark> 6	<mark>1.2</mark> 9	1.6 4	1.9 2	1.1 3	1.2 9	1.1 6	1.2 1	.93	1.1 5	<mark>.72</mark>	<mark>.89</mark>	1.3 0	1.4 4	1.5 4	1.7 2	1.0 1	1.1 8	1.1 2	1.2 8
30	<mark>1.3</mark> 6	1.5 2			<mark>.96</mark>	1.1 8	<mark>1.3</mark> 8	<mark>1.6</mark> 5	1.1 4	1.2 9	1.1 6	1.3 2	1.1 1	1.3 1	<mark>.95</mark>	<mark>1.1</mark> 9	<mark>1.2</mark> 6	<mark>1.3</mark> 8	1.5 2	1.7 7	<mark>.55</mark>	<mark>.62</mark>	<mark>.96</mark>	1.1 5
31	1.2 9	<mark>1.4</mark> 8			<mark>.97</mark>	1.1 2			1.0 3	<mark>1.2</mark> 4			<mark>1.1</mark> 0	<mark>1.2</mark> 8	<mark>1.2</mark> 4	1.5 2			<mark>.94</mark>	1.1 0			1.0 1	1.1 7

Date	Location	Free	Total	turbidity	Date	Location	Free	Total	turbidity
Jan 11	Fire hall	.67	.79	.14	Jul 9	Fire hall	.72	.91	.12
Jan 25	Fire hall	.47	.71	.21	Jun 24	Meteor mikes	.85	1.02	.12
Feb 8	Lunch room	.58	.75	.11	Aug 7	Meteor mikes	.66	.91	.11
Feb 22	Fire hall	.97	1.15	.14	Aug 21	Fire hall	1.01	1.17	.19
Mar 6	Fire hall	.77	.87	.27	Sep 4	Fire hall	.90	1.14	.18
Mar 21	Bunkhouse	.24	.42	2.45	Sep 18	Meteor mikes	1.19	1.36	.26
Apr 4	Fire hall	.46	.63	.17	Oct 3	Bunkhouse	1.24	1.34	.20
Apr 18	Fire hall	.48	.71	.18	Oct 16	Fire hall	.36	.49	.26
Apr 25	Bcg site e1	1.07	1.24	1.29	Oct 30	Fire hall	.82	1.07	.25
May 2	Seasonal site 21	.82	1.30	.23	13	CBC	.81	1.39	.19
May 16	Meteor mikes	.96	1.11	.27	25	Fire hall	.72	.94	.11
May 30	CBC	.94	1.05	.16	10	Fire hall	.61	.70	.18
Jun 12	Meteor mikes	1.01	1.25	.33	22	Fire hall	.61	.74	.17
Jun 27	Picnic shelter	.52	.67	.19					

Collection Date	TC	EC	Sample Identification
11-Jan-24	<1	<1	WEST HAWK LAKE 1 - RAW
11-Jan-24	<1	<1	WEST HAWK LAKE 2 - TREATED
11-Jan-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ FIRE HALL
25-Jan-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ FIREHALL
25-Jan-24	<1	<1	WEST HAWK LAKE 2 - TREATED
25-Jan-24	<1	<1	WEST HAWK LAKE 1 - RAW
08-Feb-24	<1	<1	WEST HAWK LAKE 1 - RAW
08-Feb-24	<1	<1	WEST HAWK LAKE 2 - TREATED
08-Feb-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Fire hall
22-Feb-24	<1	<1	WEST HAWK LAKE 1 - RAW
22-Feb-24	<1	<1	WEST HAWK LAKE 2 - TREATED
22-Feb-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ FIRE HALL
06-Mar-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ FIRE HALL
06-Mar-24	<1	<1	WEST HAWK LAKE 1 - RAW
06-Mar-24	<1	<1	WEST HAWK LAKE 2 - TREATED
21-Mar-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ BUNB HOUSE
21-Mar-24	<1	<1	WEST HAWK LAKE 1 - RAW
21-Mar-24	<1	<1	WEST HAWK LAKE 2 - TREATED
04-Apr-24	<1	<1	WEST HAWK LAKE 1 - RAW
04-Apr-24	<1	<1	WEST HAWK LAKE 2 - TREATED
04-Apr-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ FIRE HALL
18-Apr-24	<1	<1	WEST HAWK LAKE 2 - TREATED
18-Apr-24	<1	<1	WEST HAWK LAKE 1 - RAW
18-Apr-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ FIRE HALL
25-Apr-24	<1	<1	WEST HAWK LAKE 4 - DISTRIBUTION @ BCG SITE E1
25-Apr-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ SEASONAL SITE 21
25-Apr-24	<1	<1	WEST HAWK LAKE 1 - RAW
25-Apr-24	<1	<1	WEST HAWK LAKE 2 - TREATED
26-Apr-24	<1	<1	WEST HAWK LAKE 4 BCG SITE E1
26-Apr-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ SEASONAL SITE 21
26-Apr-24	<1	<1	WEST HAWK LAKE 1 - RAW
26-Apr-24	<1	<1	WEST HAWK LAKE 2 - TREATED
02-May-24	<1	<1	WEST HAWK LAKE 2 - TREATED
02-May-24	<1	<1	WEST HAWK LAKE 1 - RAW
02-May-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ BCG Site E1
02-May-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Seasonal Site 21
16-May-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Meteor Mikes
16-May-24	<1	<1	WEST HAWK LAKE 2 - TREATED
16-May-24	<1	<1	WEST HAWK LAKE 1 - RAW
21-May-24	<1	<1	WEST HAWK LAKE 2 - TREATED
21-May-24	<1	<1	WEST HAWK LAKE 1 - RAW
21-May-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ fire hall
22-May-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @
22-May-24	<1	<1	WEST HAWK LAKE 1 - RAW
22-May-24	<1	<1	WEST HAWK LAKE 2 - TREATED
30-May-24	<1	<1	WEST HAWK LAKE 1 - RAW
30-May-24	<1	<1	WEST HAWK LAKE 2 - TREATED
30-May-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ CBC
-	•		

12 km 24		1	WEST HAWK LAKE 2 DISTRIBUTION @Mataza Mikas
12-Jun-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @Metero Mikes
12-Jun-24	<1	<1	WEST HAWK LAKE 1 - RAW
12-Jun-24	<1	<1	WEST HAWK LAKE 2 - TREATED
27-Jun-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Picnic Shelter
27-Jun-24	<1	<1	WEST HAWK LAKE 1 - RAW
27-Jun-24	<1	<1	WEST HAWK LAKE 2 - TREATED
09-Jul-24	<1	<1	WEST HAWK LAKE 1 - RAW
09-Jul-24	<1	<1	WEST HAWK LAKE 2 - TREATED
09-Jul-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @Fire Hall
24-Jul-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @Metero Mikes
24-Jul-24	<1	<1	WEST HAWK LAKE 1 - RAW
24-Jul-24	<1	<1	WEST HAWK LAKE 2 - TREATED
07-Aug-24	<1	<1	WEST HAWK LAKE 1 - RAW
07-Aug-24	<1	<1	WEST HAWK LAKE 2 - TREATED
07-Aug-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Fire Hall
21-Aug-24	<1	<1	WEST HAWK LAKE 1 - RAW
21-Aug-24	<1	<1	WEST HAWK LAKE 2 - TREATED
21-Aug-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Firehall
04-Sep-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Fire Hall
04-Sep-24	<1	<1	WEST HAWK LAKE 2 - TREATED
04-Sep-24	<1	<1	WEST HAWK LAKE 1 - RAW
18-Sep-24	<1	<1	WEST HAWK LAKE 1 - RAW
18-Sep-24	<1	<1	WEST HAWK LAKE 2 - TREATED
18-Sep-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Meteor Mikes Tap
03-Oct-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Bankhouse
03-Oct-24	<1	<1	WEST HAWK LAKE 1 - RAW
03-Oct-24	<1	<1	WEST HAWK LAKE 2 - TREATED
16-Oct-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Fire Hall
16-Oct-24	<1	<1	WEST HAWK LAKE 1 - RAW
16-Oct-24	<1	<1	WEST HAWK LAKE 2 - TREATED
30-Oct-24	<1	_	
	<1	<1	WEST HAWK LAKE 2 - TREATED
30-Oct-24	_		WEST HAWK LAKE 1 - RAW
30-Oct-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @Fire Hall
13-Nov-24	<1	<1	WEST HAWK LAKE 1 - RAW
13-Nov-24	<1	<1	WEST HAWK LAKE 2 - TREATED
13-Nov-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @CBC
27-Nov-24	<1	<1	WEST HAWK LAKE 1 - RAW
27-Nov-24	<1	<1	WEST HAWK LAKE 2 - TREATED
27-Nov-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Fire Hall
10-Dec-24	<1	<1	WEST HAWK LAKE 1 - RAW
10-Dec-24	<1	<1	WEST HAWK LAKE 2 - TREATED
10-Dec-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Fire Hall
19-Dec-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Tall Pine Office
19-Dec-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Tall Pine Cabin #10
19-Dec-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Tall Pine Cabin #11
22-Dec-24	<1	<1	WEST HAWK LAKE 3 - DISTRIBUTION @ Fire Hall
22-Dec-24	<1	<1	WEST HAWK LAKE 1 - RAW
22-Dec-24	<1	<1	WEST HAWK LAKE 2 - TREATED

• What is turbidity? And why do we care about it?

• Turbidity is the measure of clarity of water; it is measured by light passing through water and is calculated by the amount of light that is scattered on the other side of the water. The more light that is scattered the higher the turbidity meaning there are more particulates in the water scattering the beam of light and a smaller turbidity reading where more light travels undisturbed or less scattered means the clearer the water. We care about this very much because bacteria can use these particulates to hide behind and evade the UV light disinfection process so we want the water to be as clear as possible.

Treated monthly average turbidity

January	February	March	April	May	June
.12	.15	.15	.17	.26	.15

July	August	September	October	November	December
.13	.15	.17	.14	.13	.13

ALS Canada Ltd.

Work Order	WP2402659	Page	: 1 of 6
Client	: Manitoba Conservation & Climate	Laboratory	: ALS Environmental - Winnipeg
Contact	: Matthew MacInnis	Account Manager	
Address	: Box 130	Address	: 1329 Niakwa Road East, Unit 12
	Rennie, MB Canada R0E 1R0		Winnipeg, Manitoba Canada R2J 3T4
Telephone	204 371 9257	Telephone	+1 204 255 9720
Project	: WEST GAWK LAKE - PWS - 245.00	Date Samples Received	: 02-Feb-2024 15:29
PO		Date Analysis Commenced	: 02-Feb-2024
C-O-C number	:	Issue Date	: 09-Feb-2024 07:51
Sampler	:		
Site	: WEST HAWK LAKE - PWS - 245.00 OP ID: 7226		
Quote number	: DWQ-C		
No. of samples received	: 3		
No. of samples analysed	: 3		
	is contains the following information:	e sample(s) as submitted. This document sha	in not be reproduced, except in fuil.
This Certificate of Analys General Comme Analytical Resul Guideline Comp	is contains the following information: ents ts varison pertiment to this report will be found in the follo		ntrol Report, QC Interpretive report to assist with Quality
This Certificate of Analys General Comm Analytical Resul Guideline Comp Additional information Review and Sample Rec	is contains the following information: ents ts varison pertiment to this report will be found in the follo		
This Certificate of Analys General Commo Analytical Resu Guideline Comp Additional information Review and Sample Rec Signatories	is contains the following information: ents ts varison pertiment to this report will be found in the follo	wing separate attachments: Quality Cor	ntrol Report, QC Interpretive report to assist with Quality
This Certificate of Analys General Comm Analytical Resu Guideline Comp Additional information Review and Sample Rec Signatories This document has been	is contains the following information: ents ts varison pertinent to this report will be found in the follo eipt Notification (SRN).	wing separate attachments: Quality Cor	ntrol Report, QC Interpretive report to assist with Quality with US FDA 21 CFR Part 11.
This Certificate of Analys General Commo Analytical Resul Guideline Comp Additional information Review and Sample Rec Signatories This document has been Signatories	is contains the following information: ents anison pertiment to this report will be found in the follo eipt Notification (SRN). electronically signed by the authorized signatories below. E	wing separate attachments: Quality Cor	ntrol Report, QC Interpretive report to assist with Quality with US FDA 21 CFR Part 11.
This Certificate of Analys General Commo Analytical Resul Guideline Comp Additional information Review and Sample Rec Signatories This document has been Signatories Christopher Chow	is contains the following information: ents anison pertiment to this report will be found in the follo eipt Notification (SRN). electronically signed by the authorized signatories below. E	wing separate attachments: Quality Con Electronic signing is conducted in accordance Laboratory Departm	ntrol Report, QC Interpretive report to assist with Quality with US FDA 21 CFR Part 11. ent eg, Manitoba
This Certificate of Analys General Commo Analytical Resu Guideline Comp Additional information Review and Sample Rec Signatories	is contains the following information: ents ts parison pertinent to this report will be found in the follo eipt Notification (SRN). electronically signed by the authorized signatories below. E Position	wing separate attachments: Quality Con Electronic signing is conducted in accordance Laboratory Departm Inorganics, Winnip	ntrol Report, QC Interpretive report to assist with Quality with US FDA 21 CFR Part 11. eg, Manitoba g, Manitoba

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WP2402659	Page	: 1 of 6
Client	: Manitoba Conservation & Climate	Laboratory	: ALS Environmental - Winnipeg
Contact	: Matthew Maclonia	Account Manager	1
Address	: Box 130 Rennie,, MB Canada ROE 1R0	Address	: 1329 <u>Niakwa</u> Road East, Unit 12 Winnipeg, Manitoba Canada R2J 3T4
Telephone	: 204 371 9257	Telephone	: +1 204 255 9720
Project	: WEST GAWK LAKE - PWS - 245.00	Date Samples Received	: 02-Feb-2024 15:29
PO		Date Analysis Commenced	: 02-Feb-2024
C-O-C number	:	Issue Date	: 09-Feb-2024 07:51
Sampler			
Site	: WEST HAWK LAKE - PWS - 245.00 OP ID: 7226		
Quote number	: DWQ-C		
No. of samples received	3		
No. of samples analysed	3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Christopher Chow		Inorganics, Winnipeg, Manitoba
Gerry Vera	Analyst	Organics, Winnipeg, Manitoba
Lee McTavish		Inorganics, Winnipeg, Manitoba
Lee McTavish		Metals, Winnipeg, Manitoba

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOB. This may be due to primary sample, extracting estate, dividor, and/or, insufficient, sample, for analysis,

Where the LOR of a reported result differs from standard LOR, this may be due to high molisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sagople...(the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key.,: LOR: Limit of Reporting (detection limit).

Unit	Description
-	ζο units
%	percent
% T/cm	% transmittance per ceptionetce
µg/L	micrograms per Utre
µS/cm	microsiemens, per centimetre
AU/cm	absorbance units per ceptimetre
cu	colour, units (1 cu = 1 mg/l pl)
meq.l.	colliequivalenta per litre
ացվ.	milligrams per litre
NTU	nephelometric turbidity units
pH units	pH units

>: greater than.

less than.

Red shading is applied where the result or the LOR is greater than the Guideline Upper Limit (or Lower, than the Guideline Lower Limit, If applicable).

For drinking water samples, Red shading is applied where the result for Ecoli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Page :	3 o f6
Work Order :	WP2402859
Client :	Manitoba Conservation & Climate
Project	WEST GAWK LAKE - PWS - 245.00

Analytical Results Evaluation

Client sample ID			WEST HAWK LAKE 1 - RAW	WESTHAWK LAKE 2 - TREATED	WEST HAWK LAKE 3 - DISTRIBUTION MID-POINT CBC	 	 	
		Sampling	∣ date/time	02-Feb-2024 09:11	02-Feb-2024 09:11	02-Feb-2024 09:20	 	
			Sub-Matrix	Water	Water	Water	 	
Analyte	CAS Number	Method/Lab	Unit	WP2402659-001	WP2402659-002	WP2402659-003	 	
Physical Tests								
Absorbance, UV (@ 254nm)		E404/WP	AU/cm	0.103	0.0730		 	
Alkalinity, bicarbonate (as CaCO3)		E290/WP	mg/L	178	180		 	
Alkalinity, carbonate (as CaCO3)		E290WP	mg/L	Not Detected	Not Detected		 	
Alkalinity, hydroxide (as CaCO3)		E290WP	mg/L	Not Detected	Not Detected		 	
Alkalinity, total (as CaCO3)		E290WP	mg/L	178	180		 	
Colour. true		E329WP	CU	5.8	<5.0		 	
Conductivity		E100WP	µS/cm	573	591		 	
Hardness (as CaCO3), from total Ca/Mg		EC100AWP	mg/L	221	219		 	
Langelier index (@ 4°C)		EC105AWP	-	-0.640	-0.523		 	
Langelier index (@ 60°C)		EC105AWP	-	0.128	0.246		 	
рН		E108/WP	pH units	6.90	7.02		 	
Solids, total dissolved [TD S]		E162-L/WP	mg/L	326	335		 	
Turbidity		E121/WP	NTU	<0.10	Not Detected		 	
Transmittance, UV (@ 254nm)		E404/WP	% T/cm	78.9	84.5		 	
Anions and Nutrients								
Bromide	24959-67-9	E235.Br-L/WP	mg/L	0.060	Not Detected		 	
Chloride	16887-00-6	E235.CI-L/WP	mg/L	63.2	68.2		 	
Fluoride	16984-48-8	E235.F/WP	mg/L	0.047	0.044		 	
Nitrate (as N)	14797-55-8	E235.NO3-LWP	mg/L	0.216	0.222		 	
Nitrite (as N)	14797-65-0	E235.NO2-LWP	mg/L	Not Detected	Not Detected		 	
Sulfate (as SO4)	14808-79-8	E235.904WP	mg/L	15.7	16.2		 	
Organic / Inorganic Carbon								
Carbon, dissolved organic [DOC]		E358-L/WP	mg/L	4.74	4.85		 	
Carbon, total organic [TOC]		E355-L/WP	mg/L	5.44	4.96		 	
Ion Balance								
Anion sum		EC101AWP	Meg/L	5.68	5.88		 	

Page : 4 o f6 Work Order : WP2402 Client : Manito	2659 oba Conservation (& Climate							(ALS)
Project : WEST	GAWK LAKE - PWS								
Analytical Results Evalu	ation								
Matrix: Water		Client	sample ID	WEST HAWK LAKE 1 - RAW	WESTHAWK LAKE 2 - TREATED	WEST HAWK LAKE 3 - DISTRIBUTION MID-POINT CBC	 		
		Sampling	g date/time	02-Feb-2024 09:11	02-Feb-2024 09:11	02-Feb-2024 09:20	 		
			Sub-Matrix	Water	Water	Water	 	_	
Analyte	CAS Number	r Method/Lab	Unit	WP2402659-001	WP2402659-002	WP2402659-003	 		
Ion Balance									
Cation sum (total)		EC101AWP	meg/L	5.75	5.83		 		
Ion balance (cations/anions)		EC101AWP	%	101	99.1		 		
Ion balance (APHA)		EC101AWP	%	0.612	-0.427		 		
Total Metals									
Aluminum, total	7429-90-5	E420WP	µg/L	4.8	<3.0	<3.0	 		
Antimony, total	7440-36-0	E420/WP	µg/L	<0.10	<0.10	<0.10	 		
Arsenic, total	7440-38-2	E420/WP	µg/L	1.92	1.72	1.77	 		
Barium, total	7440-39-3	E420/WP	µg/L	9.95	8.82	8.77	 		
Beryllium, total	7440-41-7	E420/WP	µg/L	Not Detected	⊲0.020	<0.020	 		
Bismuth, total	7440-69-9	E420WP	µg/L	Not Detected	<0.050	Not Detected	 		
Boron, total	7440-42-8	E420/WP	µg/L	20	20	19	 		
Cadmium, total	7440-43-9	E420/WP	µg/L	0.0093	<0.0050	<0.0050	 		
Calcium, total	7440-70-2	E420/WP	µg/L	76900	76200	75800	 		
Cesium, total	7440-46-2	E420/WP	µg/L	2.55	2.42	2.61	 		
Chromium, total	7440-47-3	E420/WP	µg/L	<0.50	<0.50	<0.50	 		
Cobalt, total	7440-48-4	E420/WP	µg/L	0.12	<0.10	<0.10	 		
Copper, total	7440-50-8	E420/WP	µg/L	6.61	32.2	33.2	 		
Iron, total	7439-89-6	E420/WP	µg/L	24	<10	<10	 		
Lead, total	7439-92-1	E420WP	µg/L	0.053	0.352	0.367	 		
Lithium, total	7439-93-2	E420/WP	µg/L	2.8	2.8	2.7	 		
Magnesium, total	7439-95-4	E420WP	µg/L	6950	6920	7190	 		
Manganese, total	7439-96-5	E420/WP	µg/L	80.9	0.38	0.22	 		
Molybdenum, total	7439-98-7	E420WP	µg/L	0.151	0.118	0.121	 		
Nickel, total	7440-02-0	E420/WP	µg/L	2.38	1.35	1.63	 		
Phosphorus, total	7723-14-0	E420/WP	µg/L	<50	<50	<50	 		
Potassium, total	7440-09-7	E420/WP	µg/L	1570	1540	1560	 		
Rubidium, total	7440-17-7	E420WP	µg/L	3.68	3.56	3.65	 		

Page Work Order	5 o f6 WP2402859
Client Project	Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

Analyt	ioal E	locult.	- Eval	ustion	

Analytical Results Evalua	tion							
Anaryucar Results Evalua Matrix: Water	uon	Client	sample ID	WEST HAWK LAKE 1 - RAW	WE ST HAWK LAKE 2 - TREATED	WEST HAWK LAKE 3 - DISTRIBUTION MID-POINT CBC	 	
		Samplin	g date/time	02-Feb-2024 09:11	02-Feb-2024 09:11	02-Feb-2024 09:20	 	
			Sub-Matrix	Water	Water	Water	 	
Analyte	CAS Number	Method/Lab	Unit	WP2402659-001	WP2402659-002	WP2402659-003	 	
Total Metals								
Selenium, total	7782-49-2	E420WP	µg/L	0.271	0.282	0.190	 	
Silicon, total	7440-21-3	E420/WP	µg/L	9330	9410	9500	 	
Silver, total	7440-22-4	E420/WP	µg/L	<0.010	<0.010	<0.010	 	
Sodium, total	7440-23-5	E420WP	µg/L	29800	32700	33100	 	
Strontium, total	7440-24-6	E420/WP	µg/L	110	108	113	 	
Sulfur, total	7704-34-9	E420/WP	µg/L	5680	5910	5690	 	
Tellurium, total	13494-80-9	E420/WP	µg/L	<0.20	<0.20	Not Detected	 	
Thallium, total	7440-28-0	E420WP	µg/L	<0.010	Not Detected	Not Detected	 	
Thorium, total	7440-29-1	E420/WP	µg/L	Not Detected	Not Detected	Not Detected	 	
Tin, total	7440-31-5	E420/WP	µg/L	Not Detected	0.14	0.19	 	
Titanium, total	7440-32-6	E420/WP	µg/L	<0.30	<0.30	<0.30	 	
Tungsten, total	7440-33-7	E420/WP	µg/L	Not Detected	<0.10	<0.10	 	
Uranium, total	7440-61-1	E420/WP	µg/L	1.58	1.65	1.60	 	
Vanadium, total	7440-62-2	E420/WP	µg/L	<0.50	<0.50	<0.50	 	
Zinc, total	7440-66-6	E420/WP	µg/L	<3.0	5.7	10.3	 	
Zirconium, total	7440-67-7	E420/WP	µg/L	<0.20	<0.20	<0.20	 	
VolatileOrganicCompounds								
Benzene	71-43-2	E611DAWP	mg/L	<0.00050			 	
Bromodichloromethane	75-27-4	E611D/WP	mg/L	<0.00050			 	
Bromoform	75-25-2	E611D/WP	mg/L	<0.00050			 	
Chloroform	67-66-3	E611D/WP	mg/L	<0.00050			 	
Dibromochloromethane	124-48-1	E611DAWP	mg/L	<0.00050			 	
Dichloromethane	75-09-2	E611D/WP	mg/L	<0.0010			 	
Ethylbenzene	100-41-4	E611D/WP	mg/L	<0.00050			 	
Methyl-tert-butyl ether [MTBE]	1634-04-4	E611D/WP	mg/L	<0.00050			 	
Tetrachloroethylene	127-18-4	E611DAWP	mg/L	<0.00050			 	
Toluene	108-88-3	E611D/WP	mg/L	<0.00050			 	

Page Work Order Client Project

6 o f6 WP2402659 Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

Analytical Results									
Sub-Matrix: Water			Ci	lient sample ID	WEST HAWK	WESTHAWK	WEST HAWK		
(Matrix: Water)					LAKE 1 - RAW	LAKE 2 -	LAKE 3 -		
						TREATED	DISTRIBUTION		
							MID-POINT CBC		
			Client samp	ling date / time	02-Feb-2024	02-Feb-2024	02-Feb-2024		
					09:11	09:11	09:20		
Analyte	CAS Number	Method/Lab	LOR	Unit	WP2402659-001	WP2402659-002	WP2402659-003		
					Result	Result	Result		
Volatile Organic Compounds									
Trichloroethylene		E611D/WP	0.00050	mg/L	<0.00050				
Xylene, mtp	179601-23-1	E611D/WP	0.00040	mg/L	<0.00040			—	
Xylene, o-	95-47-6	E611D/WP	0.00030	mg/L	<0.00030				
Xylenes, total	1330-20-7	E611D/WP	0.00050	mg/L	<0.00050				
BTEX, total	1	E611D/WP	0.0010	mg/L	<0.0010				
Volatile Organic Compounds Surrogates									
Bromofluorobenzene, 4-	460-00-4	E611D/WP	1.0	%	87.2			-	
Difluorobenzene. 1.4-	540-36-3	E611D/WP	1.0	%	96.0				

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

alsglobal.com ALS

ALS

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:WP2402659	Page
Client	Manitoba Conservation & Climate	Labora
Contact	: Matthew Maclonia	Accourt
Address	:Box 130	Addres
	Rennie, MB Canada R0E 1R0	
Telephone	204 371 9257	Teleph
Project	:WEST GAWK LAKE - PWS - 245.00	Date S
PO	1	Issuel
C-O-C number	:	
Sampler	:	
Site	:WEST HAWK LAKE - PWS - 245.00 OP ID: 7226	
Quote number	:DWQ-C	
No. of samples received	3	
No. of samples analysed	3	

Laboratory Account Manager Address

Telephone Date Samples Received Issue Date : ALS Environmental - Winnipeg : : 1329 <u>Niakwa</u> Road East, Unit 12 Winnipeg, Manitoba Canada R2J 3T4 : +1 204 255 9720

: 02-Feb-2024 15:29 : 09-Feb-2024 07:51

1 of 13

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.

Qutliers : Quality Control Samples

- Method Blank value outliers occur please see following pages for full details.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Page : Work Order	3 of 13 WP2402859
Client :	Manitoba Conservation & Climate
Project .	WEST GAWK LAKE - PWS - 245.00

Duplicates, Method Blanks, Laboratory Control Samples and Matrix: Spikes Matrix: Water Antike Gram

В	Nethod Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.												
Result Qualifiers	Description												
						mg/L		permitted value					
Total Metals	QC-1324985-001		Selenium, total	7782-49-2	E420	0.000131	0.00005 mg/L	Blank result exceeds					
thod Blank (MB) Values													
Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment					

Page	4 of 13
Work Order	WP2402659
Client	Manitoba Conservation & Climate
Project	WEST GAWK LAKE - PWS - 245.00

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	valuation: 🖂 =	Holding time exce	edance: •	<pre>< = Within</pre>	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ed	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times Exal		Eval Analysis Date		Times	Exal
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE WEST HAWK LAKE 1 - RAW	E235.Br-L	02-Feb-2024	02-Feb-2024	28 days	0 days	*	02-Feb-2024	28 days	0 days	*
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE WEST HAWK LAKE 2 - TREATED	E235.Br-L	02-Feb-2024	02-Feb-2024	28 days	0 days	*	02-Feb-2024	28 days	0 days	*
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE WEST HAWK LAKE 1 - RAW	E235.CI+L	02-Feb-2024	02-Feb-2024	28 days	0 days	*	02-Feb-2024	28 days	0 days	~
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE WEST HAWK LAKE 2 - TREATED	E235.CI-L	02-Feb-2024	02-Feb-2024	28 days	0 days	*	02-Feb-2024	28 days	0 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE WEST HAWK LAKE 1 - RAW	E235.F	02-Feb-2024	02-Feb-2024	28 days	0 days	*	02-Feb-2024	28 days	0 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE WEST HAWK LAKE 2 - TREATED	E235.F	02-Feb-2024	02-Feb-2024	28 days	0 days	*	02-Feb-2024	28 days	0 days	~
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE WEST HAWK LAKE 1 - RAW	E235.NO3-L	02-Feb-2024	02-Feb-2024	3 days	0 days	*	02-Feb-2024	3 days	0 days	×

Page :	5 o f 13
Work Order	WP2402659
Client :	Manitoba Conservation & Climate
Project .	WEST GAWK LAKE - PWS - 245.

Page Work Order	6 of13 WP2402859
Client Project	Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

latrix: Water				traction / Dr		aldation. dd -	Holding time exce			Holding Ti
Analyte Group : Analytical Method	Method	Sampling Date		traction / Pr	· · · · · · · · · · · · · · · · · · ·			Analys		
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Exal	Analysis Date	Rec	g Times Actual	Exal
Physical Tests : Alkalinity Species by Titration										
HDPE WEST HAWK LAKE 1 - RAW	E290	02-Feb-2024	05-Feb-2024	14 days	3 days	*	05-Feb-2024	14 days	3 days	~
Physical Tests : Alkalinity Species by Titration										
HDPE WEST HAWK LAKE 2 - TREATED	E290	02-Feb-2024	05-Feb-2024	14 days	3 days	*	05-Feb-2024	14 days	3 days	1
Physical Tests : Colour (True) by Spectrometer (5 CU)				1						
HDPE WEST HAWK LAKE 1 - RAW	E329	02-Feb-2024	06-Feb-2024	3 days	4 days	EHT	06-Feb-2024	3 days	4 days	EHT
Physical Tests : Colour (True) by Spectrometer (5 CU)										
HDPE WEST HAWK LAKE 2 - TREATED	E329	02-Feb-2024	06-Feb-2024	3 days	4 days	EHT	06-Feb-2024	3 days	4 days	EHT
Physical Tests : Conductivity in Water										
HDPE WEST HAWK LAKE 1 - RAW	E100	02-Feb-2024	05-Feb-2024	28 days	3 days	*	05-Feb-2024	28 days	3 days	*
Physical Tests : Conductivity in Water										
HDPE WEST HAWK LAKE 2 - TREATED	E100	02-Feb-2024	05-Feb-2024	28 days	3 days	4	05-Feb-2024	28 days	3 days	~
Physical Tests : pH by Meter										
HDPE WEST HAWK LAKE 1 - RAW	E108	02-Feb-2024	05-Feb-2024	0.25 bra	71 <u>bra</u>	EHTR-FM	05-Feb-2024	0.25 bts.	71 <u>bra</u>	EHTR-F
Physical Tests : pH by Meter										
HDPE WEST HAWK LAKE 2 - TREATED	E108	02-Feb-2024	05-Feb-2024	0.25 bra	71 <u>bra</u>	EHTR-FM	05-Feb-2024	0.25 bra	71 <u>bra</u>	EHTR-F
Physical Tests : TDS by Gravimetry (Low Level)										
HDPE WEST HAWK LAKE 1 - RAW	E162-L	02-Feb-2024					07-Feb-2024	7 days	5 days	~

	7 o f 13 WP2402859
Client	Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

nalyte Group : Analytical Method	Method	Method Sampling Date			Extraction / Preparation				Analysis		
Container / Client Sample ID(e)			Preparation Date	Holding Rec	g Times Actual	Exal	Analysis Date	Holding Rec	Times Actual	Exal	
nysical Tests : TDS by Gravimetry (Low Level)											
IDPE WEST HAWK LAKE 2 - TREATED	E162-L	02-Feb-2024		-	—		07-Feb-2024	7 daxa	_5ٍ days	1	
nysical Tests : Turbidity by Nephelometry											
IDPE WEST HAWK LAKE 1 - RAW	E121	02-Feb-2024		—			05-Feb-2024	3 daxa	_3 days	1	
hysical Tests : Turbidity by Nephelometry.											
HDPE WEST HAWK LAKE 2 - TREATED	E121	02-Feb-2024			—		05-Feb-2024	3 daxa	<u>, 3</u> days	*	
hysical Tests : UV Absorbance and Transmittance by Spectrometry											
IDPE WEST HAWK LAKE 1 - RAW	E404	02-Feb-2024			—		06-Feb-2024	3 daxa	<u>4</u> days	IX EHT	
nysical Tests : UV Absorbance and Transmittance by Spectrometry											
IDPE WEST HAWK LAKE 2 - TREATED	E404	02-Feb-2024		-	-		06-Feb-2024	3 daxa	<u>4</u> days	EHT	
otal Metals : Total Metals in Water by CRC ICPMS											
IDPE total (nitric acid) WEST HAWK LAKE 1 - RAW	E420	02-Feb-2024	07-Feb-2024	180 daxa	5 days	*	07-Feb-2024	180 ਫ਼ੇਕੁxੁਙ	5 days	~	
otal Metals : Total Metals in Water by CRC ICPMS											
IDPE total (nitric acid) WEST HAWK LAKE 2 - TREATED	E420	02-Feb-2024	07-Feb-2024	180 daya	5 days	*	07-Feb-2024	180 daya	5 days	~	
otal Metals : Total Metals in Water by CRC ICPMS											
IDPE total (nitric acid) WEST HAWK LAKE 3 - DISTRIBUTION MID-POINT CBC	E420	02-Feb-2024	07-Feb-2024	180 daya	5 days	×	07-Feb-2024	180 daya	5 days	~	
platile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-	MS										
lass vial (sodium bisulfate) WEST HAWK LAKE 1 - RAW	E611D	02-Feb-2024	06-Feb-2024	14 days	4 days	~	06-Feb-2024	14 days.	4 days	1	

ALS

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches...(QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	1323596	1	10	10.0	5.0	~
Bromide in Water by IC (Low Level)	E235.Br-L	1322882	0	2	0.0	5.0	X
Chloride in Water by IC (Low Level)	E235.CI-L	1322883	0	2	0.0	5.0	X
Colour, (True) by Spectrometer (5 CU)	E329	1324331	1	10	10.0	5.0	~
Conductivity in Water	E100	1323595	1	18	5.5	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1323717	1	19	5.2	5.0	√
Fluoride in Water by IC	E235.F	1322875	1	17	5.8	5.0	~
Nitrate in Water by IC (Low Level)	E235.NO3-L	1322880	0	3	0.0	5.0	X
Vitrite in Water by IC (Low Level)	E235.NO2-L	1322881	0	3	0.0	5.0	X
H by Meter	E108	1323594	1	20	5.0	5.0	~
Sulfate in Water by IC	E235.SO4	1322878	1	17	5.8	5.0	~
IDS by Gravimetry (Low Level)	E162-L	1323160	1	4	25.0	5.0	~
Total Metals in Water by CRC ICPMS	E420	1324985	1	20	5.0	5.0	~
otal Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1324082	1	12	8.3	5.0	~
urbidity by Nephelometry	E121	1322842	1	15	6.6	5.0	~
JV Absorbance and Transmittance by Spectrometry	E404	1323777	1	5	20.0	5.0	~
/OCs (Eastern Canada List) by Headspace GC-MS	E611D	1323629	1	9	11.1	5.0	~
aboratory Control Samples (LCS)							
Ikalinity Species by Titration	E290	1323596	1	10	10.0	5.0	~
Bromide in Water by IC (Low Level)	E235.Br-L	1322882	1	2	50.0	5.0	~
Chloride in Water by IC (Low Level)	E235.CI-L	1322883	1	2	50.0	5.0	~
Colour, (True) by Spectrometer (5 CU)	E329	1324331	1	10	10.0	5.0	~
Conductivity in Water	E100	1323595	1	18	5.5	5.0	~
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1323717	1	19	5.2	5.0	~
luoride in Water by IC	E235.F	1322875	1	17	5.8	5.0	~
Vitrate in Water by IC (Low Level)	E235.NO3-L	1322880	1	3	33.3	5.0	~
Vitrite in Water by IC (Low Level)	E235.NO2-L	1322881	1	3	33.3	5.0	~
oH by Meter	E108	1323594	1	20	5.0	5.0	~
Sulfate in Water by IC	E235.SO4	1322878	1	17	5.8	5.0	~
DS by Gravimetry (Low Level)	E162-L	1323160	1	4	25.0	5.0	~
otal Metals in Water by CRC ICPMS	E420	1324985	1	20	5.0	5.0	~
otal Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1324082	1	12	8.3	5.0	~
urbidity by Nephelometry	E121	1322842	1	15	6.6	5.0	~
JV Absorbance and Transmittance by Spectrometry	E404	1323777	1	5	20.0	5.0	~
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	1323629	1	9	11.1	5.0	~

Page Work Order	10 of 13 WP2402659
Client :	Manitoba Conservation & Climate
Project	WEST GAWK LAKE - PWS - 245.00

Quality Control Sample Type			C	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Method Blanks (MB)							
Alkalinity Species by Titration	E290	1323596	1	10	10.0	5.0	~
Bromide in Water by IC (Low Level)	E235.Br-L	1322882	1	2	50.0	5.0	~
Chloride in Water by IC (Low Level)	E235.CI-L	1322883	1	2	50.0	5.0	~
olour, (True) by Spectrometer (5 CU)	E329	1324331	1	10	10.0	5.0	~
Conductivity in Water	E100	1323595	1	18	5.5	5.0	~
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1323717	1	19	5.2	5.0	~
Fluoride in Water by IC	E235.F	1322875	1	17	5.8	5.0	~
Vitrate in Water by IC (Low Level)	E235.NO3-L	1322880	1	3	33.3	5.0	~
Vitrite in Water by IC (Low Level)	E235.NO2-L	1322881	1	3	33.3	5.0	~
Sulfate in Water by IC	E235.SO4	1322878	1	17	5.8	5.0	~
IDS by Gravimetry (Low Level)	E162-L	1323160	1	4	25.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	1324985	1	20	5.0	5.0	~
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1324082	1	12	8.3	5.0	~
Turbidity by Nephelometry	E121	1322842	1	15	6.6	5.0	~
JV Absorbance and Transmittance by Spectrometry	E404	1323777	1	5	20.0	5.0	✓
/OCs (Eastern Canada List) by Headspace GC-MS	E611D	1323629	1	9	11.1	5.0	~
Natrix Spikes (MS)							
Bromide in Water by IC (Low Level)	E235.Br-L	1322882	0	2	0.0	5.0	X
Chloride in Water by IC (Low Level)	E235.CI-L	1322883	0	2	0.0	5.0	X
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	1323717	1	19	5.2	5.0	✓
Fluoride in Water by IC	E235.F	1322875	1	17	5.8	5.0	~
Nitrate in Water by IC (Low Level)	E235.NO3-L	1322880	0	3	0.0	5.0	X
Vitrite in Water by IC (Low Level)	E235.NO2-L	1322881	0	3	0.0	5.0	X
Sulfate in Water by IC	E235.SO4	1322878	1	17	5.8	5.0	~
Fotal Metals in Water by CRC ICPMS	E420	1324985	1	20	5.0	5.0	~
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	1324082	1	12	8.3	5.0	✓
/OCs (Eastern Canada List) by Headspace GC-MS	E611D	1323629	1	9	11.1	5.0	~

Page Work Order Client Project

11 o f13 WP2402859 Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

ALS

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Nethod Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
				measured by immersion of a conductivity cell with platinum electrodes into a water
	ALS Environmental -			sample. Conductivity measurements are temperature-compensated to 25°C.
	Winnipeg			
pH by Meter	E108	Water	APHA 4500-H (mod)	gH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	ALS Environmental -			pH should be measured in the field within the recommended 15 minute hold time.
	Winnipeg			
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the negligibility method, by measuring the intensity of light scatter under defined conditions.
	ALS Environmental -			
	Winnipeg			
TDS by Gravimetry (Low Level)	E162-L	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre, filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	ALS Environmental -			with gravimetric measurement of the residue.
	Winnipeg			
Bromide in Water by IC (Low Level)	E235.Br-L	°	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.	
	ALS Environmental -			
	Winnipeg			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	Water EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			detection.
	Winnipeg			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	ALS Environmental -			
	Winnipeg			

age : 12 o f13 fork Order : WP2402659 lient : Manitoba Conservatic roject : WEST GAWK LAKE -				(ALS)
Analytical Methods	Method / Lab	Mətrix	Method Reference	Nethod Descriptions
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbona
	2200		,	carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and to
	ALS Environmental -			alkalinity values.
	Winnipeg			,
Colour, (True) by Spectrometer (5 CU)	E329	Water	APHA 2120 C (mod)	Colour, (True Colour) is determined by filtering a sample through a 0.45 micron membra
				filter followed by analysis of the filtrate using the platinum -cobalt colouring
	ALS Environmental -			method. Colour, measurements can be highly pH dependent, and apply to the pH of t
	Winnipeg			sample as received (at time of testing), without pH adjustment.
Total Organic Carbon (Non-Purgeable) by	E355-L	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a dir
Combustion (Low Level)				measurement of TOC after an acidified sample has been purged to remove inorga
	ALS Environmental -			carbon (IC). Analysis is by high temperature combustion with infrared detection of CC
	Winnipeg			NPOC does not include volatile organic species that are purged off with IC.
				samples where the majority of total carbon (TC) is comprised of IC (which is commo
				this method is more accurate and more reliable than the TOC by subtraction method (
Disaster d'Ossaria Ossiana ter Ossaturation	E358-I.	Water	APHA 5310 B (mod)	TC minus TIC). Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is
Dissolved Organic Carbon by Combustion (Low Level)	E308-L	vvater	AFRA 5510 B (mod)	direct measurement of DOC after a filtered (0.45 micron) sample has been acidified a
(Low Level)	ALS Environmental -			purged to remove inorganic carbon (IC). Analysis is by high temperature combust
	Winnipeg			with infrared detection of CO2. NPOC does not include volatile organic species that
	vviimpeg			purged off with IC. For samples where the majority of DC (dissolved carbon)
				comprised of IC (which is common), this method is more accurate and more reliable th
				the DOC by subtraction method (i.e. DC minus DIC).
UV Absorbance and Transmittance by	E404	Water	APHA 5910 B (mod)	UV Absorbance is determined by first filtering a sample through a 0.45 micron filt
Spectrometry				followed by UV absorbance measurement in a quartz cell at 254 nm. The analysis
	ALS Environmental -			carried out without pH adjustment.
	Winnipeg			
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
			(mod)	Collision/Reaction Cell ICPMS.
	ALS Environmental -			
	Winnipeg			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
VOCs (Eastern Canada List) by Headspace	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC -I
GC-MS	ALS Environmental -			Samples are prepared in headspace vials and are heated and agitated on
	ALS Environmental - Winnipeg			headspace autosampler, causing VOCs to partition between the aqueous phase and
Hardness (Calculated) from Total Ca/Mg	EC100A	Water	APHA 2340B	the headspace in accordance with Henry's law. "Hardness (as CaCO3), from total CaMg" is calculated from the sum of total Calcium a
naroness (Galculateu) nom rotar Ga/Mg	ECTUUA	water	AL TA 20100	Magnesiumconcentrations, expressed in CaQQ.3 equivalents. "TotalHardness," ref
	ALS Environmental -			to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferenti
	ALS Environmental - Winnipeg			calculated from dissolved Calcium and Magnesium concentrations, because it is
	samuheA			propertyof, water due to dissolved divalent cations. Hardness from total Ca/Mg
				normally comparable to Dissolved Hardness in non-turbid waters.
				converge comparisons to Dissource instances in non-terior waters.

13 o f13 WP2402859 Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Ion Balance using Total Metals	EC101A	Water	APHA 1030E	Cation Sum (using total metals), Anion Sum, and Ion Balance are calculated based of
		1		guidance from APHA Standard Methods (1030E Checking Correctness of Analysi
	ALS Environmental -	1		Minor ions are included where data is present. Ion Balance cannot be calculat
	Winnipeg	1		accurately for waters with very low electrical conductivity (EC).
Saturation Index using Laboratory pH (Ca-T)	EC105A	Water	APHA 2330B	Langelier Index provides an indication of scale formation potential at a given pH a
		1		temperature, and is calculated as per APHA 2330B Saturation Index. Positive value
	ALS Environmental -	1		indicate oversaturation with respect to CaCO3. Negative values indic
	Winnipeg	1		undersaturation of CaCO3. This calculation uses laboratory pH measurements a
	1 1 1	1		provides estimates of Langelier, Index at temperatures of 4, 15, 20, 25, 66, and 77
		1		Ryznar Stability Index is an alternative index used for scale formation and corrosi
		1		potential
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Total Organic Carbon by	EP355	Water		Preparation for Total Organic Carbon by Combustion
Combustion		1		
	ALS Environmental -	1		
	Winnipeg	1		
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion		1		
	ALS Environmental -	1		
	Winnipeg	1		
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on
	1	1		headspace autosampler. An aliquot of the headspace is then injected into
	ALS Environmental -	1		GC/MS-FID system.

alsglobal.com

ALS Canada Ltd.

QUALITY CONTROL REPORT							
Work Order	WP2402659	Page	: 1 of 14				
Client	: Manitoba Conservation & Climate	Laboratory	ALS Environmental - Winnipeg				
Contact	Matthew MacInnis	Account Manager					
Address	: Box 130	Address	: 1329 Niakwa Road East, Unit 12				
	Rennie, MB Canada R0E 1R0		Winnipeg, Manitoba Canada R2J 3T4				
Telephone		Telephone	:+1 204 255 9720				
Project	WEST GAWK LAKE - PWS - 245.00	Date Samples Received	:02-Feb-2024 15:29				
PO		Date Analysis Commenced	02-Feb-2024				
C-O-C number		Issue Date	:09-Feb-2024 07:52				
Sampler	204 371 9257						
Site	WEST HAWK LAKE - PWS - 245.00 OP ID: 7226						
Quote number	:DWQ-C						
No. of samples received	3						
No. of samples analysed	3						
This Quality Control Repo Laboratory Duplicate Matrix Spike (MS) Rej Method Blank (MB) R	ny previous report(s) with this reference. Results apply to the sa nt contains the following information: (DUP) Report; Relative Percent Difference (RPD) and Data Q port, Recovery and Data Quality Objectives leport; Recovery and Data Quality Objectives ample (LCS) Report; Recovery and Data Quality Objectives		t be reproduced, except in full.				
Signatories	electronically signed by the authorized signatories below. Elec	tronic signing is conducted in accordance wit	hUSEDA21 CER Part 11				
Signatories	Position	Laboratory Department					
Christopher Chow	103000		Facility Maritaka				
	Annhust	Winnipeg Inorganics, W					
Gerry Vera	Analyst	Winnipeg Organics, Wir Winnipeg Inorganics, W					
Lee McTavish							
Lee McTavish		Winnipeg Metals, Winni	ipeg, Manitoba				

		alsglobal.com
Page : Work <u>Order :</u> Client : Project :	2 o f14 WF2402859 Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 246.00	ALS .

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation <code>regeot___(QCI)</code> for applicable method references and methodology summaries.

Kexii

- Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.
- CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.
- DQO = Data Quality Objective.
- LOR = Limit of Reporting (detection limit). RPD = Relative Percent Difference
- # = Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page :	3 o f 1 4
Work Order	WP2402659
Client :	Manitoba Conservation & Climate
Project .	WEST GAWK LAKE - PWS - 245.00

Laboratory Duplicate (DUP) Report
A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for
Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10
times the LOR (out-off is test-specific).

ub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Clienz sample ID	Analyze	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 1322842)										
WP2402550-001	Anonymous	Turbidity		E121	0.10	NTU	3.54	3.46	2.28%	15%	
Physical Tests (QC	Lot: 1323160)										
WP2402659-001	WEST HAWK LAKE 1- RAW	Solids, total dissolved [TDS]		E162-L	15.0	mg/L	326	326	0.00%	20%	
Physical Tests (QC	Lot: 1323594)										
WP2402618-001	Anonymous	рн		E108	0.10	pH units	7.81	7.83	0.255%	4%	
Physical Tests (QC	Lot: 1323595)										
WP2402618-001	Anonymous	Conductivity		E100	2.0	µS/cm	245	244	0.409%	10%	
Physical Tests (QC	Lot: 1323596)										
WP2402618-001	Anonymous	Alkalinity, total (as CaCO3)		E290	1.0	mg/L	84.7	83.2	1.79%	20%	
Physical Tests (QC											
WP2402550-001	Anonymous	Absorbance, UV (@ 254nm)		E404	0.0050	AU/cm	0.0220	0.0230	0.0010	Diff <2x LOR	
Physical Tests (QC	Lot: 1324331)										
WP2402550-001	Anonymous	Colour, true		E329	5.0	CU	<5.0	<5.0	0	Diff <2x LOR	
Anions and Nutrient	(QC Lot: 1322875)										
WP2402618-001	Anonymous	Fluoride	16984-48-8	E235.F	0.020	mg/L	0.101	0.099	0.002	Diff <2x LOR	
Anions and Nutrient	(QC Lot: 1322878)										
WP2402618-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.9O4	0.30	mg/L	22.4	22.3	0.392%	20%	
Organic / Inorganic	(rhon (QC Lot: 132371)									
WP2402487-001	Anonymous	Carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	7.89	7.82	0.827%	20%	
Droanic / Inorganic	(rbon (QC Lot: 132408										
WP2402535-001	Anonymous	Carbon, total organic [TOC]		E355-L	0.50	mg/L	1.38	1.27	0.11	Diff <2x LOR	
Fotal Metals (QC Lo	x : 1324985)										
WP2402626-003	Anonymous	Aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff<2x LOR	
		Antimony, total	7440-36-0	E420	0.00010	mg/L	0.00010	0.00010	0.000004	Diff <2x LOR	
		Arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00730	0.00726	0.608%	20%	
		Barlum, total	7440-39-3	E420	0.00010	mg/L	0.00022	0.00024	0.00002	Diff<2x LOR	
		Beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff<2x LOR	
		Bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	DIff <2x LOR	
		Boron, total	7440-42-8	E420	0.010	mg/L	0.187	0.185	1.40%	20%	

Page :	4 o f 14
Work Order :	WP2402659
Client .	Manitoba Conservation & Climate
Project .	WEST GAWK LAKE - PWS - 245.00

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyze	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	: 1324985) - continued										
WP2402626-003	Anonymous	Cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff<2x LOR	
		Calcium, total	7440-70-2	E420	0.050	mg/L	0.073	0.074	0.0005	Diff <2x LOR	
		Cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff<2x LOR	
		Chromlum, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff<2x LOR	
		Cobalt, total	7440-48-4	E42 0	0.00010	mg/L	<0.00010	<0.00010	0	DIff<2x LOR	
		Copper, total	7440-50-8	E420	0.00050	mg/L	0.0240	0.0237	0.946%	20%	
		Iron, total	7439-89-6	E420	0.010	mg/L	0.053	0.052	0.0004	Diff<2x LOR	
		Lead, total	7439-92-1	E420	0.000050	mg/L	0.000229	0.000226	0.000003	Diff <2x LOR	
		Lithium, total	7439-93-2	E420	0.0010	mg/L	0.0029	0.0029	0.00002	Diff<2x LOR	
		Magnesium, total	7439-95-4	E420	0.0050	mg/L	0.204	0.203	0.544%	20%	
		Manganese, total	7439-96-5	E42.0	0.00010	mg/L	0.00020	0.00030	0.00010	Diff<2x LOR	
		Molybdenum, total	7439-98-7	E42.0	0.000050	mg/L	0.00630	0.00637	1.13%	20%	
		Nickel, total	7440-02-0	E42.0	0.00050	mg/L	<0.00050	<0.00050	0	Diff<2x LOR	
		Phosphorus, total	7723-14-0	E42.0	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
		Potassium, total	7440-09-7	E420	0.050	mg/L	0.594	0.592	0.246%	20%	
		Rubidium, total	7440-17-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff<2x LOR	
		Silicon, total	7440-21-3	E420	0.10	mg/L	7.59	7.31	3.74%	20%	
		Silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Sodium, total	7440-23-5	E420	0.050	mg/L	127	125	1.72%	20%	
		Strontlum, total	7440-24-6	E420	0.00020	mg/L	0.00046	0.00047	0.0000009	Diff <2x LOR	
		Sultur, total	7704-34-9	E420	0.50	mg/L	8.62	8.12	5.96%	20%	
		Tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff<2x LOR	
		Thaillum, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		Thorium, total	7440-29-1	E42.0	0.00010	mg/L	<0.00010	<0.00010	0	Diff<2x LOR	
		Tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		Titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		Tungsten, total	7440-33-7	E420	0.00010	mg/L	0.00117	0.00116	0.874%	20%	
		Uranium, total	7440-61-1	E420	0.000010	mg/L	0.000316	0.000315	0.0887%	20%	
		Vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	DIff <2x LOR	
		Zinc. total	7440-66-6	E420	0.0030	mg/L	0.0089	0.0094	0.0005	DI#<2x LOR	
		Zirconium, total	7440-67-7	E420.	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
/olatile Organie Cer	r pounds (QC Lot: 1323	(29)				-					
WP2402642-001	Anonymous	Benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	DIff <2x LOR	
		Bromodichloromethane.	75-27-4	E611D.	0.50	µg/L	<0.50	<0.50	0	DIff <2x LOR	

Page : Work Order : Client : Project :

5 o f14 WP2402659 Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

ub-Matrix: Water			Laboratory Duplicate (DUP) Report								
aboratory sample ID.	Client sample ID	Алауте	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
/olatile Organic Con	pounds (QC Lot: 1323	29) - continued									
WP2402642-001	Anonymous	Bromotorm.	75-25-2	E611D	0.50	µg/L	<0.50	<0.50	0	DIff <2x LOR	
		Chioroform	67-66-3	E6.11D	0.50	µg/L	<0.50	<0.50	0	DIff<2x LOR	
		Dibromochloromethane	124-48-1	E611D	0.50	µg/L	<0.50	<0.50	0	DIff<2x LOR	
		Dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		Ethylbenzene	100-41-4	EGIID	0.50	µg/L	<0.50	<0.50	0	Diff<2x LOR	
		Methyl-ted-butyl ether [MTBE]	1634-04-4	E6.11D	0.50	µg/L	<0.50	<0.50	0	DIff<2x LOR	
		Tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Toluene	108-88-3	EGIID	0.50	µg/L	<0.50	<0.50	0	Diff<2x LOR	
		Trichlorgethane, 1,1,1-	71-55-6	55.11D	0.50	µg/L	<0.50	<0.50	0	DIff<2x LOR	
		Trichlorgethane, 1,1,2-	79-00-5	55.11D	0.50	µg/L	<0.50	<0.50	0	DIff<2x LOR	
		Trichloroethylene	79-01-6	EGIID	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		Xylene, mtp-	179601-23-1	55.11D	0.40	µg/L	<0.40	<0.40	0	DIff<2x LOR	
		Xylene, o-	95-47-6	5511D.	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	

alsglobal.com

_

ALS

ALS

Page :	6 o f 1 4
Work Order	WP2402659
Client	Manitoba Conservation & Climate
Project	WEST GAWK LAKE - PWS - 245.00

Method Blank (MB) Report

A Method Blank is an analytic-free matrix that undergoes sample processing identical to that carried out for test samples. In contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Method Blank results are used to monitor and control for potential

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 1322842)						
Turbidity		E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 1323160)						
Solids, total dissolved [TDS]		E162-L	3	ացվ	<3.0	
Physical Tests (QCLot: 1323595)						
Conductivity		E100	1	µS/cm	<1.0	
Physical Tests (QCLot: 1323596)						
Alkalinity, total (as CaCO3)		E290	1	ոցչ,	<1.0	
Physical Tests (QCLot: 1323777)						
Absorbance, UV (@ 254nm)		E404	0.005	AU/cm	<0.0050	
Physical Tests (QCLot: 1324331)						
Colour, true		E329	5	cu	<5.0	
Anions and Nutrients (QCLot: 1322875)						
Fluoride	16984-48-8	E235.F	0.02		<0.020	
Anions and Nutrients (QCLot: 1322878)						
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mgd.	<0.30	
Anions and Nutrients (QGLot: 1322880)						
Nitrate (as N)	14797-55-8	E235.NO3-L	0.005	ացվ.	<0.0050	
Anions and Nutrients (QCLot: 1322881)						
Nitrite (as N)	14797-65-0	E235.NO2-L	0.001	ոցե	<0.0010	
Anions and Nutrients (QCLot: 1322882)						
Bromide	24959-67-9	E235.Br-L	0.05	ացմ.	<0.050	
Anions and Nutrients (QCLot: 1322883)						
Chloride	16887-00-6	E235.CI-L	0.1	ացվ.	<0.10	
Organic / Inorganic Carbon (OCLot: 132371						
Carbon, dissolved organic [DOC]		E358-L	0.5	090 .	<0.50	
Organic / Inorganic Carbon (QCLot: 132408						
Carbon, total organic [TOC]		E355-L	0.5	ացմ.	<0.50	
fotal Metals (QCLot: 1324985)						
Aluminum, total	7429-90-5		0.003	ոցԱ	<0.0030	
Antimony, total	7440-36-0		0.0001	mg/L	<0.00010	
Arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
Barlum, total	7440-39-3	E420	0.0001	mg/L	<0.00010	

7 o f 14
WP2402659
Manitoba Conservation & Climate
WEST GAWK LAKE - PWS - 245.00

nalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
otal Metals (QCLot: 1324985) -	continued					
Beryillum, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
Bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
Boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
Cadmlum, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
Calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
Ceslum, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
Chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
Cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
Copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
Iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
Lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
Lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
Magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
Manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
Molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
Nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
Phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
Potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
Rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
Selenium, total	7782-49-2	E420	0.00005	mg/L	# 0.000131	в
Silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
Silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
Sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
Strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
Sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
Tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
Thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
Thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
Tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
Titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
Tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
Uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
Vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
Zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	

Page : Work <u>Order :</u> Client : Project : 8 o f14 WP2402859 Manitoba Conservation & Climate WEST GAWK LAKE - PWS - 245.00

nalyte	CAS Number	Method	LOR	Unit	Result	Qualifier
olatile Organic Compounds (Q	CLot: 1323629)					
Benzene	71-43-2	E611D	0.5	µg/L	<0.50	
Bromodicbloromethane	75-27-4	E611D	0.5	µg/L	<0.50	
Sconolorm.	75-25-2	E611D	0.5	µg/L	<0.50	
Chloroform	67-66-3	E611D	0.5	µg/L	<0.50	
Dibromochloromethane	124-48-1	E611D	0.5	µg/L	<0.50	
Dichloromethane	75-09-2	E611D	1	µg/L	<1.0	
Ethylbenzene	100-41-4	E611D	0.5	µg/L	<0.50	
Methyl-ted-butyl ether [MTBE]	1634-04-4	E611D	0.5	µg/L	<0.50	
Tetrachioroethylene	127-18-4	E611D	0.5	µg/L	<0.50	
Toluene	108-88-3	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1.1.1-	71-55-6	E611D	0.5	µg/L	<0.50	
Trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	<0.50	
Trichloroethylene	79-01-6	E611D	0.5	µg/L	<0.50	
Xylene, 00±p-	179601-23-1	E611D	0.4	µg/L	<0.40	
Xylene, o-	95-47-6	E611D	0.3	µg/L	<0.30	
				1	1	
Qualifiers						
ualifier	Description					

Description
Method Blank exceeds ALS DQO. Associated sample results which are < Limit of Reporting or > 5 times blank level are considered reliable.

Page :	9 o f 1 4
Work Order	WP2402659
Client	Manitoba Conservation & Climate
Project	WEST GAWK LAKE - PWS - 245.00

LCS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analytic-free matrix that has been fortified (spiked) with test analytics, at known concentration and processed in an identical manner to test samples. results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report						
					Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 1322842)										
Turbidity		-E121	0.1	NTU	200 NTU	107	85.0	115		
Physical Tests (QCLot: 1323160)										
Solids, total dissolved [TDS]		E162-L	3	mg/L	1000 mg/L	93.8	85.0	115		
Physical Tests (QCLot: 1323594)										
pt		E108		pH units	7 pH units	99.6	98.0	102		
Physical Tests (QCLot: 1323595)										
Conductivity		E100	1	µS/om	1412 µS/om	100	90.0	110		
Physical Tests (QCLot: 1323596)										
Alkalinity, total (as CaCO3)		-E290	1	mg/L	100 mg/L	103	85.0	115	-	
Physical Tests (QCLot: 1323777)										
Absorbance, UV (@ 254nm)		E404	0.005	AU/cm	0.582 AU/cm	101	85.0	115		
Physical Tests (QCLot: 1324331)										
Colour, true		-E329	5	CU	250 CU	100	85.0	115		
Anions and Nutrients (QCLot: 1322875)										
Fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 1322878)										
Sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 1322880)										
Nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 1322881)										
Nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	99.8	90.0	110		
Anions and Nutrients (QCLot: 1322882)										
Bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	101	85.0	115		
Anions and Nutrients (QCLot: 1322883)										
Chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	100.0	0.06	110		
Organic / Inorganic Carbon (QCLot: 1323717)										
Carbon, dissolved organic [DOC]		-E358-L	0.5	mg/L	8.57 mg/L	94.5	80.0	120	_	
Organic / Inorganic Carbon (QCLot: 1324082)										
Carbon, total organic [TOC]		-E355-L	0.5	mg/L	8.57 mg/L	102	80.0	120		

Page :	10 o f 14
Work Order	WP2402659
Client .	Manitoba Conservation & Climate
Project	WEST GAWK LAKE - PWS - 245.00

ą

Control Contro <thcontrol< th=""> <thcontrol< th=""> <thco< th=""><th>ub-Matrix: Water</th><th colspan="6">Laboratory Control Sample (LCS) Report</th></thco<></thcontrol<></thcontrol<>	ub-Matrix: Water	Laboratory Control Sample (LCS) Report								
Catol Media Control Labor Contro Labor Control Labor Control Lab					Spike Recovery (%) Recovery Limits (%)					
Ammlum, test 729-96 64:00 0.001 mgL 2 mgL 104 80.0 120 Ardmany, total 7449-96 64:00 0.0001 mgL 1 mgL 1 mgL 80.0 120 Barlum, total 7449-36 64:00 0.0001 mgL 0.25 mgL 102 60.0 120 Barlum, total 7449-36 64:00 0.0001 mgL 0.1 mgL 102 60.0 120 Barlum, total 7449-54 64:0 0.00002 mgL 1 mgL 101 60.0 120 Barlum, total 7449-54 64:0 0.00005 mgL 1 mgL 96.2 60.0 120 Cashum, total 7449-75 64:0 0.0005 mgL 0.01 mgL 1 mgL 96.4 60.0 120 Cashum, total 7449-76 64:0 0.0005 mgL 0.05 mgL 10.1 80.0 120	nalyte CAS Nu	ber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Arrandia										
Average, total T40-458 E400 0.001 mgl. tmgl. 104 80.0 102	uminum, totai 7429	0-5 E420	0.003	mg/L	2 mg/L	104	80.0	120		
Barlum, total TAGE	tlimony, total 7440	6-0 E420	0.0001	mg/L	1 mg/L	99.6	80.0	120		
Bernium, total 7440-41- EdD 000002 mg L 0.1 mg L 10.1 90.0 10.0 10.0 Birnum, total 7440-42- EdD 00005 mg L 1 mg L 101 00.0 100	senic, total 7440	8-2 E420	0.0001	mg/L	1 mg/L	104	80.0	120		
Binner, Itali Table Binner, Itali Binner, Itali <td>arium, total 7440</td> <td>9-3 E420</td> <td>0.0001</td> <td>mg/L</td> <td>0.25 mg/L</td> <td>102</td> <td>80.0</td> <td>120</td> <td></td>	arium, total 7440	9-3 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120		
Torn trainTorn train	aryllium, total 7440	1-7 E420	0.00002	mg/L	0.1 mg/L	92.3	80.0	120		
Camburn, total T440-45 E420 0.000005 mgl. 0.1 mgl. 102 80.0 120 40.00 Calcium, total 740-76 E400 0.05 mgl. 50 mgl. 95.4 80.0 120 40.00 Calcium, total 740-76 E400 0.05 mgl. 50 mgl. 95.4 80.0 120 40.00 Calcium, total 740-76 E400 0.000 mgl. 0.05 mgl. 96.7 80.0 120 40.00 Cobart, total 740-46 E400 0.000 mgl. 0.25 mgl. 101 80.0 120 40.00 Cobart, total 749-66 E400 0.000 mgl. 0.25 mgl. 104 80.0 120 40.00 Linhtum, total 749-66 E400 0.0005 mgl. 0.25 mgl. 101 80.0 120 40.00 Linhtum, total 749-66 E400 0.005 mgl. 0.5 mgl. 111 80.0 120 40.00 <td>smuth, total 7440</td> <td>9-9 E420</td> <td>0.00005</td> <td>mg/L</td> <td>1 mg/L</td> <td>101</td> <td>80.0</td> <td>120</td> <td></td>	smuth, total 7440	9-9 E420	0.00005	mg/L	1 mg/L	101	80.0	120		
Cardum, total Y440-75 E40 0.6 mg, L 0.6 mg, L <td>rron, total 7440</td> <td>2-8 E420</td> <td>0.01</td> <td>mg/L</td> <td>1 mg/L</td> <td>96.2</td> <td>80.0</td> <td>120</td> <td></td>	rron, total 7440	2-8 E420	0.01	mg/L	1 mg/L	96.2	80.0	120		
Calin Total Total <th< td=""><td>admium, total 7440</td><td>3-9 E420</td><td>0.000005</td><td>mg/L</td><td>0.1 mg/L</td><td>102</td><td>80.0</td><td>120</td><td></td></th<>	admium, total 7440	3-9 E420	0.000005	mg/L	0.1 mg/L	102	80.0	120		
Chromium, total 744-7- E420 0.0005 mgl. 0.25 mgl. 101 80.0 120 Cobart, total 744-8- E420 0.0005 mgl. 0.25 mgl. 103 80.0 120 Copper, total 744-8-6 E420 0.0005 mgl. 0.25 mgl. 104 80.0 120 Von, total 749-8-6 E420 0.01 mgl. 1.031 104 80.0 120 Van, total 749-8-6 E420 0.01 mgl. 1.05 mgl. 104 80.0 120 Law, total 749-8-2 E420 0.001 mgl. 0.25 mgl. 100 80.0 120 Magnesium, total 749-8-7 E420 0.005 mgl. 50 mgl. 111 80.0 120 Magnesium, total 749-8-7 E420 0.0005 mgl. 0.25 mgl. 90.0 80.0 120	alcium, total 7440	0-2 E420	0.05	mg/L	50 mg/L	95.4	80.0	120		
Const. total 7440-45 E420 0.0001 mgL 0.25 mgL 10.0 80.0 120	asium, total 7440	6-2 E420	0.00001	mg/L	0.05 mg/L	98.7	80.0	120		
Copper, total 744-9-5 E420 0.005 mgL 0.25 mgL 104 Ref 100 104 Ref 100 104 Ref 100 104 Ref 100 <td>hromium, total 7440</td> <td>7-3 E420</td> <td>0.0005</td> <td>mg/L</td> <td>0.25 mg/L</td> <td>101</td> <td>80.0</td> <td>120</td> <td></td>	hromium, total 7440	7-3 E420	0.0005	mg/L	0.25 mg/L	101	80.0	120		
Total 7439-89 E420 0.01 mgL 1 mgL 101 80.0 120	obalt, total 7440	8-4 E420	0.0001	mg/L	0.25 mg/L	103	80.0	120		
Lask, total 7499-95 E420 0.0005 mgL 0.5 mgL 100 100 120 Magnesium, total 749-94-2 E420 0.001 mgL 0.25 mgL 92.8 80.0 120 Magnesium, total 749-94-5 E420 0.001 mgL 50 mgL 111 80.0 120 Margamese, total 749-94-5 E420 0.001 mgL 0.25 mgL 104 60.0 120 Margamese, total 749-94-5 E420 0.0005 mgL 0.25 mgL 99.0 80.0 120 Margamese, total 749-94-5 E420 0.0005 mgL 0.5 mgL 99.0 80.0 120 Notes, total 723-14-7 E420 0.0005 mgL 10 mgL 101 80.0 120 Potseslum, total 740-04-7 E420 0.0002 mgL 50 mgL 101 80.0 120	opper, total 7440	0-8 E420	0.0005	mg/L	0.25 mg/L	104	80.0	120		
Lithum, total 749-93-2 E420 0.001 mg,L 0.25 mg,L 92.8 80.0 120	in, total 7439	9-6 E420	0.01	mg/L	1 mg/L	101	80.0	120		
Magnesium, total 749-95- E420 0.005 mgl. 50 mgl. 111 80.0 120	ad, total 7439	2-1 E420	0.00005	mg/L	0.5 mg/L	100	80.0	120		
Marganese, total 749-96 E420 0.001 mgL 0.25 mgL 10.4 Ru 10.0<	hlum, total 7439	3-2 E420	0.001	mg/L	0.25 mg/L	92.8	80.0	120		
Majobenum, total 7439-87 E420 0.00005 mgl. 0.25 mgl. 93.7 80.0 120 Nickel, total 740-02- E420 0.0005 mgl. 0.5 mgl. 99.0 80.0 120 Phosphorus, total 7723-14- E420 0.05 mgl. 10 mgl. 103 80.0 120 Potasslum, total 740-03- E420 0.05 mgl. 10 mgl. 103 80.0 120 Rubidum, total 740-03- E420 0.05 mgl. 50 mgl. 101 80.0 120 Rubidum, total 740-03- E420 0.055 mgl. 0.1 mgl. 103 80.0 120 Selenum, total 740-17- E420 0.0002 mgl. 11 mgl. 103 80.0 120 Selenum, total 740-24- E420 0.0005 mgl. 1 mgl. 102 80.0 120 <td>agnesium, total 7439</td> <td>5-4 E420</td> <td>0.005</td> <td>mg/L</td> <td>50 mg/L</td> <td>111</td> <td>80.0</td> <td>120</td> <td></td>	agnesium, total 7439	5-4 E420	0.005	mg/L	50 mg/L	111	80.0	120		
Notesi, total 744-22- E420 0.0005 mg/L 0.5 mg/L 99.0 80.0 120 Phosphorus, total 7723-14- E420 0.05 mg/L 10 mg/L 103 80.0 120 Potaselum, total 742-0-9 E420 0.05 mg/L 50 mg/L 101 80.0 120 Rubidum, total 740-0-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 Rubidum, total 740-0-7 E420 0.002 mg/L 0.1 mg/L 103 80.0 120 Selerium, total 740-2-7 E420 0.0002 mg/L 1 mg/L 103 80.0 120 Selerium, total 740-2-1 E420 0.0005 mg/L 1 mg/L 102 80.0 120 Sillicon, total 740-2-1 E420 0.0001 mg/L 0.1 mg/L 92.7 80.0 120 <t< td=""><td>anganese, total 7435</td><td>6-5 E420</td><td>0.0001</td><td>mg/L</td><td>0.25 mg/L</td><td>104</td><td>80.0</td><td>120</td><td></td></t<>	anganese, total 7435	6-5 E420	0.0001	mg/L	0.25 mg/L	104	80.0	120		
Prosphorus, total 772-14-2 E420 0.05 mg/L 10 mg/L 103 80.0 120 Potasslum, total 7440-09- E420 0.05 mg/L 50 mg/L 101 80.0 120 Rudidum, total 7440-17- E420 0.002 mg/L 0.1 mg/L 103 80.0 120 Selenum, total 740-17- E420 0.0005 mg/L 0.1 mg/L 103 80.0 120 Selenum, total 740-21- E420 0.0005 mg/L 1 mg/L 102 80.0 120 Silicon, total 740-21- E420 0.0005 mg/L 1 mg/L 102 80.0 120 Silicon, total 740-21- E420 0.0001 mg/L 0.1 mg/L 92.7 80.0 120 Sodium, total 740-24- E420 0.05 mg/L 80 mg/L 105 80.0 120	olybdenum, total 7439	8-7 E420	0.00005	mg/L	0.25 mg/L	93.7	80.0	120		
Potssium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 101 80.0 120 Rubidum, total 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 103 80.0 120 Salenium, total 7762-49-2 E420 0.0005 mg/L 1 mg/L 102 80.0 120 Salenium, total 7762-49-2 E420 0.0005 mg/L 1 mg/L 102 80.0 120 Salerium, total 7762-49-2 E420 0.0005 mg/L 1 mg/L 102 80.0 120 Salerium, total 740-21-4 E420 0.00001 mg/L 101 mg/L 92.7 80.0 120 Soldum, total 740-23-4 E420 0.00001 mg/L 0.1 mg/L 92.7 80.0 120 Soldum, total 740-24-4 E420 0.0002 mg/L 0.25 mg/L 96.2 80.0 120	ickel, total 7440	2-0 E420	0.0005	mg/L	0.5 mg/L	99.0	80.0	120		
Reliable 7440-17 E420 0.0002 mg/L 0.1 mg/L 103 80.0 120 Selenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 103 80.0 120 Silicon, total 7440-21- E420 0.1 mg/L 100 mg/L 106 80.0 120 Silicon, total 7440-21- E420 0.1 mg/L 101 mg/L 106 80.0 120 Silver, total 7440-22- E420 0.0001 mg/L 0.1 mg/L 92.7 80.0 120 Sodium, total 7440-24- E420 0.05 mg/L 50 mg/L 105 80.0 120 Stortium, total 7440-24-4 E420 0.002 mg/L 0.25 mg/L 96.2 80.0 120	rosphorus, total 7723	4-0 E420	0.05	mg/L	10 mg/L	103	80.0	120		
Selection Total Total <thtotal< th=""> Total Total</thtotal<>	otassium, total 7440	9-7 E420	0.05	mg/L	50 mg/L	101	80.0	120		
Selentum, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 102 80.0 120 Silicon, total 7440-21-≤ E420 0.1 mg/L 100 mg/L 106 80.0 120 Silicon, total 7440-21-≤ E420 0.00001 mg/L 0.1 mg/L 92.7 80.0 120 Solum, total 7440-24-≤ E420 0.05 mg/L 50 mg/L 105 80.0 120 Solum, total 7440-24-≤ E420 0.05 mg/L 50 mg/L 105 80.0 120	ubidium, total 7440	7-7 E420	0.0002	mg/L	0.1 mg/L	103	80.0	120		
Silicon, total 7440-21-2 E420 0.1 mg/L 10 mg/L 106 80.0 120 Siliver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 92.7 80.0 120 Sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 105 80.0 120 Strontlum, total 7440-24-5 E420 0.002 mg/L 50 mg/L 105 80.0 120	alenium, total 7782	9-2 E420	0.00005	-	-	102	80.0	120		
Silver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 92.7 80.0 120 Sodium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 105 80.0 120 Stortium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 96.2 80.0 120	Ilcon, total 7440	1-3 E420	0.1	mg/L	-	106	80.0	120		
Sodium, total 7440-23-€ E420 0.05 mg/L 50 mg/L 105 80.0 120 Strontum, total 7440-24-€ E420 0.0002 mg/L 0.25 mg/L 96.2 80.0 120	Iver, total 7440	2-4 E420	0.00001	-	-	92.7	80.0	120		
Strontlum, total 7440-24-6420 0.0002 mg/L 0.25 mg/L 96.2 80.0 120	dium, total 7440	3-5 E420	0.05		-		80.0	120		
	rontium, total 7440	4-6 E420	0.0002	-	-		80.0	120		
	ultur, total 7704	4-9 E420	0.5	-	-		80.0	120		
Tellurium, total 13494-80-9 E420 0.0002 mg/L 0.1 mg/L 94.7 80.0 120	allurium, total 13494	0-9 E420	0.0002	-	-	94.7	80.0	120		
	valilum, total 7440	8-0 E420	0.00001	-	-		80.0	120		
	vorium, total 7440	9-1 E420	0.0001	-	-	99.4	80.0	120		
Tin, total 7440-51-€ E420 0.0001 mg/L 0.5 mg/L 97.4 80.0 120	n, total 7440	1-5 E420	0.0001	-	-		80.0	120		
	tanium, total 7440	2-6 E420	0.0003	-	-		80.0	120		
	ungsten, total 7440	3-7 E420	0.0001	-	-		80.0	120		
	-	1-1 E420	0.00001	-	-		80.0	120		
		1 1								

Page :	11 o f 14
Work Order	WP2402659
Client	Manitoba Conservation & Climate
Project	WEST GAWK LAKE - PWS - 245.00

Sub-Matrix: Water Laboratory Control Sample (LCS) Report Recovery (%) Spike Recovery Limits (%) CAS Number Method LOR Qualifier Analyte Unit Concentration LCS Low High Total Metals (QCLot: 1324985) - continued 7440-62-2 E420 80.0 120 0.0005 /anadium, total mg/L 0.5 mg/L 103 7440-66-6 E420 Zinc. total ----0.003 mg/L 0.5 mg/L 99.0 80.0 120 7440-67-7 E420 ----Zirconium, total 0.0002 mg/L 0.1 mg/L 94.7 80.0 120 Volatile Organic Compounds (OCLot: 1323629) Benzene 71-43-2 E611D 0.5 70.0 130 ---µg/L 100 µg/L 99.1 75-27-4 E611D Bromodichloromethane 0.5 µg/L 70.0 130 ----100 µg/L 101 Bromatorin. 75-25-2 E611D 0.5 µg/L 93.8 70.0 130 ----100 µg/L ----Chloroform 67-66-3 E611D 0.5 70.0 130 µg/L 100 µg/L 100.0 124-48-1 E611D 0.5 100 µg/L 70.0 130 Dibromochloromethane µg/L 95.4 75-09-2 E611D Dichloromethane 1 µg/L 100 µg/L 70.0 130 104 ----100-41-4 E611D 0.5 70.0 130 Ethylbenzene µg/L 100 µg/L 96.0 Methyl-tect-butyl ether [MTBE] 1634-04-4 E611D 0.5 70.0 130 µg/L 100 µg/L 97.4 ----127-18-4 E611D Tetrachloroethylene 0.5 70.0 130 µg/L 100 µg/L 99.4 108-88-3 E611D Toluene 0.5 µg/L 70.0 130 100 µg/L 92.0 ----Trichloroethane, 1.1.1-71-55-6 E611D 0.5 µg/L 100 µg/L 95.8 70.0 130 79-00-5 E611D Trichloroethane, 1.1.2-0.5 µg/L 100 µg/L 101 70.0 130 79-01-6 E611D ----Trichloroethylene 0.5 µg/L 100 µg/L 99.4 70.0 130 179601-23-1 E611D Xylene, mtp-0.4 µg/L 200 µg/L 107 70.0 130 95-47-6 E611D ----Xylene, o-0.3 µg/L 97.9 70.0 130 100 µg/L

alsglobal.com AL

ALS

Page :	12 of 14
Work Order :	WP2402659
Client	Manitoba Conservation & Climate
Project .	WEST GAWK LAKE - PWS - 245.00

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test applyies, at known concentration, and processed in an identical manner to test samples. Matrix Spike provide information regarding applyies recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test presults for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level > 1 x spike level.

Sub-Matrix: Water			Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery Limits (%)		
aboratory sample	Client sample ID	Analyze	CAS Number	Method	Concentration	Targer	MS	Low	High	Qualifie
	ents (QCLot: 1322875)									
WP2402618-001	Anonymous	Fluoride	16984-48-8	E235.F	1.06 mg/L	1 mg/L	105	75.0	125	
nions and Nutri	e ts. (QCLot: 1322878)									
NP2402618-001	Anonymous	Sulfate (as SO4)	14808-79-8	E235.SO4	105 mg/L	100 mg/L	105	75.0	125	
rganic / Inorgar	i Carbon (QCLot: 132	3 17)								
NP2402487-002	Anonymous	Carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
)rganic / Inorgar	i Carbon (QCLot: 132	4 82)								
WP2402535-002	Anonymous	Carbon, total organic [TOC]		E355-L	5.19 mg/L	5 mg/L	104	70.0	130	
otal Metals (QC	L ot: 1324985)									
NP2402626-003	Anonymous	Aluminum, total	7429-90-5	E420	0.225 mg/L	0.2 mg/L	113	70.0	130	
		Antimony, total	7440-36-0	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		Arsenic, total	7440-38-2	E420	0.0219 mg/L	0.02 mg/L	110	70.0	130	
		Barlum, total	7440-39-3	E420	0.0227 mg/L	0.02 mg/L	113	70.0	130	
		Beryllium, total	7440-41-7	E420	0.0440 mg/L	0.04 mg/L	110	70.0	130	
		Bismuth, total	7440-69-9	E420	0.0114 mg/L	0.01 mg/L	114	70.0	130	
		Boron, total	7440-42-8	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		Cadmlum, total	7440-43-9	E420	0.00439 mg/L	0.004 mg/L	110	70.0	130	
		Calcium, total	7440-70-2	E420	4.50 mg/L	4 mg/L	113	70.0	130	
		Ceslum, total	7440-46-2	E420	0.0113 mg/L	0.01 mg/L	113	70.0	130	
		Chromium, total	7440-47-3	E420	0.0451 mg/L	0.04 mg/L	113	70.0	130	
		Cobalt, total	7440-48-4	E420	0.0222 mg/L	0.02 mg/L	111	70.0	130	
		Copper, total	7440-50-8	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		Iron, total	7439-89-6	E420	2.21 mg/L	2 mg/L	110	70.0	130	
		Lead, total	7439-92-1	E420	0.0218 mg/L	0.02 mg/L	109	70.0	130	
		Lithium, total	7439-93-2	E420	0.112 mg/L	0.1 mg/L	112	70.0	130	
		Magnesium, total	7439-95-4	E420	1.13 mg/L	1 mg/L	113	70.0	130	
		Manganese, total	7439-96-5	E420	0.0226 mg/L	0.02 mg/L	113	70.0	130	
		Molybdenum, total	7439-98-7	E420	0.0198 mg/L	0.02 mg/L	99.2	70.0	130	
		Nickel, total	7440-02-0	E420	0.0429 mg/L	0.04 mg/L	107	70.0	130	
		Phosphorus, total	7723-14-0	E420	11.4 mg/L	10 mg/L	114	70.0	130	
	1	Potassium, total	7440-09-7	E420	4.61 mg/L	4 mg/L	115	70.0	130	

Page Vork <u>Order</u> Dient Project										A
Sub-Matrix: Water							Matrix Spi	ke (MS) Report		
					Sp	like	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyze	CAS Number	Method	Concentration	Targer	MS	Low	High	Qualifier
	Lot: 1324985) - conti	nued								
WP2402626-003	Anonymous	Rubidium, total	7440-17-7	E420	0.0224 mg/L	0.02 mg/L	112	70.0	130	
		Silicon, total	7440-21-3	E420	9.91 mg/L	10 mg/L	99.1	70.0	130	
		Silver, total	7440-22-4	E420	0.00410 mg/L	0.004 mg/L	103	70.0	130	
		Sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		Strontium, total	7440-24-6	E420	0.0222 mg/L	0.02 mg/L	111	70.0	130	
		Sulfur, total	7704-34-9	E420	22.6 mg/L	20 mg/L	113	70.0	130	
		Tellurium, total	13494-80-9	E420	0.0388 mg/L	0.04 mg/L	97.0	70.0	130	
		Thaillum, total	7440-28-0	E420	0.00425 mg/L	0.004 mg/L	105	70.0	130	
		Thorium, total	7440-29-1	E420	0.0227 mg/L	0.02 mg/L	114	70.0	130	
		Tin, total	7440-31-5	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		Titanium, total	7440-32-6	E420	0.0420 mg/L	0.04 mg/L	105	70.0	130	
		Tungsten, total	7440-33-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		Uranium, total	7440-61-1	E420	0.00452 mg/L	0.004 mg/L	113	70.0	130	
		Vanadium, total	7440-62-2	E420	0.114 mg/L	0.1 mg/L	114	70.0	130	
		Zinc, total	7440-66-6	E420	0.441 mg/L	0.4 mg/L	110	70.0	130	
		Zirconium, total	7440-67-7	E420	0.0422 mg/L	0.04 mg/L	105	70.0	130	
/olatile Organic (C mnounds (QCLot	13; 3629)								
WP2402642-001	Anonymous	Berzene	71-43-2	E611D	95.6 µg/L	100 µg/L	95.6	60.0	140	
		Bromodichloromethane.	75-27-4	E611D	94.1 µg/L	100 µg/L	94.1	60.0	140	
		Bramatarm.	75-25-2	E611D	87.6 µg/L	100 µg/L	87.6	60.0	140	
		Chigroform	67-66-3	E611D	94.9 µg/L	100 µg/L	94.9	60.0	140	
		Dibromochloromethane	124-48-1	E611D	91.0 µg/L	100 µg/L	91.0	60.0	140	
		Dichloromethane	75-09-2	E611D	100 µg/L	100 µg/L	100	60.0	140	
		Ethylberzene	100-41-4	E611D	93.9 µg/L	100 µg/L	93.9	60.0	140	
		Methyl-tect-butyl ether [MTBE]	1634-04-4	E611D	96.4 µg/L	100 µg/L	96.4	60.0	140	
		Tetrachioroethylene	127-18-4	E611D	98.3 µg/L	100 µg/L	98.3	60.0	140	
		Toluene	108-88-3	E611D	91.0 µg/L	100 µg/L	91.0	60.0	140	
		Trichloroethape, 1,1,1-	71-55-6	E611D	93.3 µg/L	100 µg/L	93.3	60.0	140	
		Trichlorgethane, 1,1,2-	79-00-5	E611D	95.7 µg/L	100 µg/L	95.7	60.0	140	
		Trichloroethylene	79-01-6	E611D	96.4 µg/L	100 µg/L	96.4	60.0	140	
		Xylene, mtp-	179601-23-1	E611D	210 µg/L	200 µg/L	105	60.0	140	
		Xylene, o-	95-47-6	E611D	210 µg/L 96.0 µg/L	200 μg/L 100 μg/L	96.0	60.0	140	

What happens if you fail to meet any of these regulations?

 If any lab samples come back with positive results then the laboratory immediately notifies us as well as the water officer. With a positive result for bacteria, The Office of Drinking Water and/ or Medical Officer of Health will provide instructions on how to proceed.

Will we be notified if a problem occurs?

 Yes, if for any reason a boil water advisory is put in place then you will be notified via call/e-mail list and signage will be posted around town. The Whiteshell Cottagers Association will also immediately be notified and can reach residents through social platforms.

• Is there anything else in the water that should be monitored or regulations you should meet?

• Our main focus is the disinfection and bacteria in the water because that has the most concerning effect to the publics' direct health, but yes there is much more that we monitor. Things that don't directly affect your health like how the water looks, tastes, smells, etc. is monitored through a full lab analysis to insure their limits are within the regulated guidelines. Below is a full analytical report on our water from the laboratory, this includes raw water, treated water and distribution water giving any limits set and the results of our water.

• Were there any issues or failures with meeting any requirements over the year?

- No, all requirements were met.
- Where there any incidents of non-compliance or boil water advisories.
 - On May 19th a boil water advisory was issued due to low reservoir levels for the distribution water supply. Water was hauled from Falco lake water treatment plant. This order was rescinded aft the completion of the required sampled results.

Environment and Climate Change

BOIL WATER ADVISORY FOR THE WEST HAWK LAKE PUBLIC WATER SYSTEM

Issued by the Medical Officer of Health, Manitoba Health and the Office of Drinking Water, Manitoba Environment and Climate Change

May 19, 2024

Low water storage levels at the water plant have created the need to haul water from another water source, which could result in inadequately treated water entering the distribution system. A boil water advisory has been issued to ensure public health protection.

RECOMMENDATIONS

Until further notice, all water used for consumption should be brought to a rolling boil for at least one minute before it is used for:

- Drinking and ice making
- · Preparing beverages, such as infant formula
- Preparing food, including washing fruits and vegetables
- Brushing teeth

It is **not** necessary to boil tap water used for other household purposes, such as laundry or washing dishes. Adults and older children that are able to avoid swallowing the water can wash, bathe, or shower. Young children should be sponge bathed. If boiling is not practical, an alternate and safe supply of water should be used for consumptive purposes; i.e. bottled water. <u>Boil Water Advisory Fact Sheet #1 - Boil</u> Water Advisory For Manitoba Water System Users contains additional information on water use and can be found on the website below.

All commercial, public and permitted facilities (ex: restaurants, health care facilities, day cares, personal care homes and other private facilities that provide food and water services) must follow water use recommendations from the <u>Boil Water Advisory Fact Sheet #3 – Boil Water Advisory For</u> <u>Commercial/Public Facilities</u>. A copy of this Fact Sheet is available on the website below.

To avoid burn injuries from hot water, caution should be taken. Please keep young children away from boiling water. Place kettles and pots away from counter and stove edges.

Please share this information with other people who use the tap water, especially those who may not have received this notice directly (ex: renters, tenants, staff, or clients). This notice can also be posted in common areas where people tend to gather.

DURATION

The Boil Water Advisory will remain in effect until the water supplied by this water system no longer presents a risk to public health. You will be notified when the advisory has been rescinded.

If you have any questions or concerns, please contact water system at 204-349-6026 or the Regional Drinking Water Officer at 204-371-5065, or Health Links at 204-788-8200 (toll free at 1-888-315-9257).

To review Fact Sheets on water use, please go to www.manitoba.ca/drinkingwater or http://www.gov.mb.ca/health/publichealth/environmentalhealth/water.html

Dr. Karen Robinson 589 – 3rd Avenue South Stonewall, Manitoba R0C 220

Code: 245.00

Manitoba Environment and Climate Change Rob Nedotiafko, Director of Parks 4th Floor – 254/258 Portage Avenue Winnipeg, MB R3C 086 rob nedotiafko@gov.mb.ca

RE: RESCIND BOIL WATER ADVISORY ISSUED TO WEST HAWK PUBLIC WATER SYSTEM

Dear Rob Nedotiafko:

May 23, 2024

Drinking Water Officer, Sarah Belisle has advised me that the West Hawk public water system has met all conditions for rescinding the boll water advisory and that bacteriological testing results meet regulatory standards.

I am therefore rescinding the boil water advisory that was placed on the West Hawk public water system on May 19, 2024.

Please ensure all water users are notified that the advisory has been rescinded and that normal water usage can be resumed. A copy of this letter can be provided as notification. Notices posted in public locations such as washrooms are to be removed.

Should you have any questions, please contact Sarah Belisle, Senior Regional Drinking Water Officer at 204-371-5065.

Sincerely,

w

Dr. Karen Robinson Medical Officer of Health Interlake-Eastern Regional Health Authority

cc: Sacha Janzen – A/Director, Office of Drinking Water Marc Balcaen – A/Manager, Field Operations, Office of Drinking Water Colin Nakata – A/Supervisor Drinking Water Officer, Office of Drinking Water Keith Hood, Parks District Manager Matthew MacInnis, Parks Operator Public Health Inspector – <u>healthprotection@gov.mb.ca</u> ERT Duty Officer - <u>ERTDutyOfficer@gov.mb.ca</u> Intertake Eastern Health Authority Emergency Preparedness Program (disastermanagement@jerha.ca)

Pinawa	Stonewall	Selkirk		
24 Aberdeen Avenue, Box 339 Pinawa, Manitoba ROE 110 Phone: 1.204.753.2012 Toll Free: 1.877.753.2012 Fae: 1.204.753.2015	589-3rd Avenue South Stonewall, Manitoba ROC 220 Phone: 1.204.467.4742 Toll Free: 1.888.488.2299 Fax: 1.204.467.4750	100 Easton Drive, Box 5000 Selkirk, Manitoba R1A 2M2 Phone: 1,204 482,5800 Toll Free: 1,888,488,2299 Fax: 1,204,785,9113		
		bsite: www.ierha.ca nail: info@ierha.ca		

• On December 18th a boil water advisory was issued for a scheduled water main repair. This was rescinded following the required sampling results.

Environment and Climate Change

PUBLIC NOTICE

BOIL WATER ADVISORY

FOR A PORTION OF THE WEST HAWK LAKE PUBLIC WATER SYSTEM Tallpine Lodges

Issued by the Medical Officer of Health, Manitoba Health and the Office of Drinking Water, Manitoba Environment and Climate Change

December 18, 2024

Scheduled maintenance to the water system will lead to the loss of water pressure in a portion of the West Hawk Lake distribution system that services **Tallpine Lodges**. Distribution depressurization can compromise the safety of the water supply. A boil water advisory is being issued starting at **11:00 am on December 18, 2024** to ensure the protection of public health.

RECOMMENDATIONS

Until further notice, all water used for consumption should be brought to a rolling boil for at least one minute before it is used for:

- Drinking and ice making
- Preparing beverages, such as infant formula
- Preparing food, including washing fruits and vegetables
- Brushing teeth

It is **not** necessary to boil tap water used for other household purposes, such as laundry or washing dishes. Adults and older children that are able to avoid swallowing the water can wash, bathe, or shower. Young children should be sponge bathed. If boiling is not practical, an alternate and safe supply of water should be used for consumptive purposes; i.e. bottled water. <u>Boil Water Advisory Fact Sheet #1 - Boil</u> <u>Water Advisory For Manitoba Water System Users</u> contains additional information on water use and can be found on the website below.</u>

All commercial, public and permitted facilities (ex: restaurants, health care facilities, day cares, personal care homes and other private facilities that provide food and water services) must follow water use recommendations from the <u>Boil Water Advisory Fact Sheet #3 – Boil Water Advisory For</u> <u>Commercial/Public Facilities</u>. A copy of this Fact Sheet is available on the website below.

To avoid burn injuries from hot water, caution should be taken. Please keep young children away from boiling water. Place kettles and pots away from counter and stove edges.

Please share this information with other people who use the tap water, especially those who may not have received this notice directly (ex: renters, tenants, staff, or clients). This notice can also be posted in common areas where people tend to gather.

DURATION

The Boil Water Advisory will remain in effect until the water supplied by this water system no longer presents a risk to public health. You will be notified when the advisory has been rescinded.

If you have any questions or concerns, please contact water system at 204-371-9376 or the Regional Drinking Water Officer at 204-371-5065, or Health Links at 204-788-8200 (toll free at 1-888-315-9257).

To review Fact Sheets on water use, please go to <u>www.manitoba.ca/drinkingwater</u> or http://www.gov.mb.ca/health/publichealth/environmentalhealth/water.html

Are you required to disclose any non - compliances to public?

• Yes, if any non-compliances due occur in the year it will be on our audit. We will also give you a description on the incident such as what it means, what happened, why it happened, and what corrective actions were taken to solve this issue and prevent the issue from recurring.

- Were there any unforeseen major issues or expenses over the year?
 - We had some maintenance done to the raw water wells and lines to try to help keep up with the daily peek demands. The wells and lines were flushed and swabbed to increase flow, and the pumps were replaced.
- Do you expect any major projects or expenses next year that we should be aware of, or that may affect my water service?
 - Current there are no major projects or expenses planned for the next year.

Here at West Hawk Lake Water Treatment Plant we would like to say thank you for your support and we plan to work diligently in the new year to improve our water system and provide a constant supply of clean potable water to our community.

Sincerely your operators

Matt, Steve, Jake

