Power Electrician
Level 3
This unit is designed to provide the apprentice with introductory knowledge about the electrical code for industrial applications. The unit begins with coverage of industrial wiring methods and devices. Part of the unit covers other industrial components and concepts, including transformers, capacitors, motors, and lightning protection and lighting applications. Finally, the unit covers demand factors for industrial applications, and interpretation of plans, drawings and specifications.

Objectives and Content:

1. Describe industrial wiring methods and practices.
 a. CEC requirements
 b. Single conductors, cables, busways and raceways
 • Ampacities
 • Derations
 • Conditions of use
 • Metallurgy (compatibility of materials)
 c. Bonding and grounding
 d. Underground ampacities and installations
 e. Perform related calculations
 • Voltage drop calculations
 • Raceway fill calculations

 Percent of Unit Mark (%): 20%

2. Describe industrial wiring devices and applications.
 a. CEC requirements
 b. Outlet boxes
 • Sizes
 • Types
 • Applications
 • Box fill calculations
 c. Receptacles
 d. Switches and disconnects
 e. Specialty outlets

 Percent of Unit Mark (%): 15%

3. Describe industrial lighting applications.
 a. CEC requirement

 Percent of Unit Mark (%): 5%
b. Types, including:
 • Incandescent
 • Fluorescent
 • High-intensity discharge (HID)
 • Light emitting diode (LED)
c. Considerations in lamp selection
 • Colour rendition
 • Efficacy
 • Maintenance
 • Purpose and location
d. Control options

4. Describe transformers and capacitors. 20%
 a. CEC requirements for transformers and capacitors
 b. Transformer types
 • Dry
 • Liquid-filled
 • High voltage
c. Transformer installations
 • Single phase
 • Three phase
d. Perform related calculations
e. Grounded and ungrounded systems
 f. Unit substation
 • Medium voltage installation

5. Describe the installation of single motors and groups of motors. 15%
 a. CEC requirements
 b. Single phase AC
 c. Three phase AC
d. DC
e. Various duty cycles
 • Continuous
 • Intermittent
 • Varying
 • Periodic
 • Short-time
f. Perform related calculations (including tap conductors)

6. Describe welder installations. 5%
 a. CEC requirements.
 b. Perform related calculations

7. Interpret plans, drawings and specifications for industrial applications. 10%
 a. Symbols and terminology
 b. Specifications
 c. Scaling
d. Read site plans to determine the locations of specific items
e. Switching procedures
f. Project planning
8. Describe demand factors for industrial applications. 10%
 a. Single phase voltage drop
 b. Three phase voltage drop
 c. Continuous loading
 d. Conductor derating
 e. System voltages
Power Electrician

Unit: C2 Three Phase Circuit Analysis

Level: Three
Duration: 30 hours
 Theory: 30 hours
 Practical: 0 hours

Overview:
This unit is designed to provide the apprentice with the knowledge about three phase circuit analysis. The unit covers three phase systems and loads in wye and delta configurations, and power draw and power ratings of three phase loads and sources.

Objectives and Content:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Percent of Unit Mark (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Define and describe three phase systems in wye and delta configurations.</td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>a. Relationship between phase and line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Vector (phasor) relationship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Phasor diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Define and describe three phase loads in wye and delta configurations.</td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>a. Perform related calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Balanced and unbalanced loads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Draw and interpret vector (phasor) diagrams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Unity and non-unity power factor loads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Effects of a broken neutral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Determine the power draw and power ratings of three phase loads and sources.</td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>a. Power factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Perform related calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Balanced and unbalanced loads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Power factor correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Power measurement (two and three wattmeter method)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Electrician

Unit: C3 Power Transformers

Level: Three

Duration: 60 hours
 Theory: 55 hours
 Practical: 5 hours

Overview:

This unit is designed to provide the apprentice with the knowledge about power transformers. The unit begins with coverage of transformers, instrument transformers and special transformer connections. Part of the unit covers three phase transformers and transformer banks. Finally, the unit covers transformer testing and connection techniques.

Objectives and Content:

1. Describe principles of transformers.
 a. Purpose
 b. Basic components
 c. Operation and maintenance
 • Transformer action
 • Regulated and non-regulated transformers
 • Cooling methods
 d. Nameplate data
 e. Types and application
 • Isolation
 • Auto transformer
 f. Transformer polarities
 • Inductive kick test
 • Low voltage polarity test
 g. Efficiencies
 • Types of losses
 h. Perform related calculations
 • Percent impedance and fault current
 • Rated primary and secondary currents (based on nameplate data)
 • Efficiency calculations
 • Determine primary and secondary currents under various loads
 i. Perform testing calculations
 • Winding resistance (temperature coefficient)
 • Ratio
 • Capacitance bridge theory

Percent of Objectives and Content:

<table>
<thead>
<tr>
<th>Unit Mark (%)</th>
<th>Overview:</th>
</tr>
</thead>
<tbody>
<tr>
<td>35%</td>
<td>This unit is designed to provide the apprentice with the knowledge about power transformers. The unit begins with coverage of transformers, instrument transformers and special transformer connections. Part of the unit covers three phase transformers and transformer banks. Finally, the unit covers transformer testing and connection techniques.</td>
</tr>
</tbody>
</table>
2. **Describe instrument transformers.** 20%
 a. Current transformers (CT)
 • Connection and safety
 b. Potential transformers (PT)
 • Connection
 c. Perform related calculations for metering

3. **Describe and draw three phase transformers and transformer banks.** 25%
 a. Connections
 • Wye
 • Delta (3 and 4 wire)
 • Open delta
 b. Phase shifting
 • Power flow
 • Paralleling
 • Reflected impedance
 • Dot polarity direction

4. **Describe special transformer connections.** 5%
 a. Applications
 b. Connections
 • Scott
 • T-connection
 • Zig zag (ground bank)

5. **Demonstrate principles of three phase systems in wye and delta configurations.** 5%
 a. Verify phase and line relationship by connections and measurements.
 b. Verify power measurement

6. **Perform transformer testing to verify nameplate data.** 5%
 a. Verify polarity of transformers
 • Inductive kick test
 • Low voltage polarity test
 b. Verify primary and secondary voltages

7. **Demonstrate connections of three phase transformer banks.** 5%
 a. Wye
 b. Delta
 • Delta closure test

Power Electrician

Unit: C4 Electronic Concepts II

Level: Three
Duration: 50 hours
Theory: 20 hours
Practical: 30 hours

Overview:
This unit, which builds on B5 Electronic Concepts I, is designed to provide the apprentice with additional knowledge about electronic concepts. The unit begins with coverage of filtration and percent ripple in a circuit. Part of the unit covers silicon controlled rectifiers, triacs and transistors. Finally, the unit covers additional applications of electronic concepts.

Objectives and Content:

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit Mark (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe filtration and percent ripple in a circuit.</td>
<td>10%</td>
</tr>
<tr>
<td>a. Perform related calculations</td>
<td></td>
</tr>
<tr>
<td>2. Describe a silicon controlled rectifier (SCR).</td>
<td>20%</td>
</tr>
<tr>
<td>a. Purpose and applications</td>
<td></td>
</tr>
<tr>
<td>• DC circuits</td>
<td></td>
</tr>
<tr>
<td>• AC circuits</td>
<td></td>
</tr>
<tr>
<td>b. Phase shifting (voltage controllers)</td>
<td></td>
</tr>
<tr>
<td>c. Identify the schematic symbols and terminal connections</td>
<td></td>
</tr>
<tr>
<td>d. Perform related calculations</td>
<td></td>
</tr>
<tr>
<td>3. Describe a triac.</td>
<td>10%</td>
</tr>
<tr>
<td>a. Purpose and applications</td>
<td></td>
</tr>
<tr>
<td>b. Phase shifting (voltage controllers)</td>
<td></td>
</tr>
<tr>
<td>c. Identify the schematic symbols and terminal connections</td>
<td></td>
</tr>
<tr>
<td>d. Perform related calculations</td>
<td></td>
</tr>
<tr>
<td>4. Describe a transistor.</td>
<td>20%</td>
</tr>
<tr>
<td>a. Purpose and applications</td>
<td></td>
</tr>
<tr>
<td>• Switching</td>
<td></td>
</tr>
<tr>
<td>• Amplification</td>
<td></td>
</tr>
<tr>
<td>b. Types</td>
<td></td>
</tr>
<tr>
<td>• Bi-polar</td>
<td></td>
</tr>
<tr>
<td>• Junction field effect transistor (JFET)</td>
<td></td>
</tr>
<tr>
<td>• Metal oxide semiconductor field effect transistor (MOSFET)</td>
<td></td>
</tr>
<tr>
<td>• Depletion enhancement metal oxide semiconductor field effect transistor (DEMOSFET)</td>
<td></td>
</tr>
</tbody>
</table>
c. Identify and label schematic symbols and terminals
d. Describe transistor characteristics
 • Operating point
 • Current gain
 • Voltage gain
 • Load lines
e. Perform related calculations

5. **Demonstrate and apply electronic concepts.**
 a. Measure the voltages and verify the percent ripple
 b. Test an SCR
 c. Connect an SCR to control a DC circuit
 d. Connect an SCR to control a single phase AC circuit
 e. Analyze the operation of SCR and triac phase control
 f. Test a transistor in a circuit and out of a circuit
 g. Use an oscilloscope to demonstrate transistor characteristics

Power Electrician

Unit: C5 Industrial Control Systems

Level: Three
Duration: 90 hours
 Theory: 60 hours
 Practical: 30 hours

Overview:

This unit is designed to provide the apprentice with the knowledge about industrial control systems. The unit begins with coverage of industrial control system components, including sensors, detectors and control transformers. Part of the unit covers advanced control circuits and heating, ventilating and air conditioning systems, and variable frequency drives. Finally, the unit covers installation, testing and troubleshooting techniques using wiring diagrams.

Objectives and Content:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Description</th>
<th>Percent of Unit Mark (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Describe sensors and detectors.</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose and application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hall effect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Proximity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Photo</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Describe reduced voltage starting methods.</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose and application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resistor and reactor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Autotransformer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wye – Delta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Variable frequency drives (VFD)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Describe control transformers.</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose and application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Terminal markings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Turns ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Dual voltage connections</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Describe solenoids and motor operated valves.</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Types and application</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Design and interpret advanced control circuits.</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Applications</td>
<td></td>
</tr>
</tbody>
</table>
• Conveyors
• Alternating pumps
• Other automated equipment

6. **Describe heating, ventilating and air conditioning (HVAC) systems.**
 a. Purpose
 b. Cycle of operations
 c. Types and applications
 • Gas furnaces
 • Electric furnaces
 • A/C units
 • Heat recovery ventilator (HRV)

7. **Describe variable frequency drives (VFD).**
 a. Purpose
 b. Types and applications
 • AC drives
 • DC drives

8. **Describe testing and troubleshooting of control circuits using hand held devices.**
 a. Purpose
 b. Types
 • Ohmmeter
 • Ammeter
 • Voltmeter
 • Megohmmeter
 c. Operation and applications
 • Meter selection
 • Meter placement
 • Meter reading
 d. Logical testing procedure
 e. Grounded and ungrounded control circuits

9. **Describe plugging and dynamic braking.**
 a. Purpose and application

10. **Perform practical wiring projects.**
 a. Design and wire advanced control circuits
 • Timing sequence
 • Order of operation
 • Counters
 • Memory circuits
 b. Design and wire HVAC systems
 c. Design and wire VFD systems

11. **Describe programmable logic controllers.**
 a. Purpose and application

Power Electrician

Unit: C6 Interrupting Equipment and Electrical Bus Networks

Level: Three
Duration: 20 hours
 Theory: 20 hours
 Practical: 0 hours

Overview:
This unit is designed to provide the apprentice with the knowledge about interrupting equipment and electrical bus networks. The unit begins with coverage of breakers, arc and arc-extinguishing media, fuses and disconnects. Part of the unit covers electrical bus networks. Finally, the unit covers sizing and ampacity considerations and installation applications.

Objectives and Content:

1. Describe breakers and automatic circuit reclosers (ACRs).
 a. Purpose and applications
 b. Classification
 • Low voltage (any voltage not exceeding 750 V)
 • Medium voltage (any voltage exceeding 750 V but not exceeding 25 kV)
 • High voltage (any voltage exceeding 25 kV)
 c. Operating mechanisms
 • Stored energy (springs)
 • Solenoid
 • Hydraulic
 • High pressure air
 • Motor
 d. Hazards

2. Describe arc and arc-extinguishing media.
 a. Purpose
 b. Types and applications
 • Gas
 • Bulk oil
 • Magna blast
 • Minimum oil
 • Air blast
 • Vacuum
 c. Hazards and safe handling procedures
 • Filling and recovery of SF₆ gas and oil
3. Describe fuses.
 a. Purpose
 b. Types and applications
 c. Co-ordination
 d. Perform related calculation
 • Short circuit calculation

4. Describe disconnects.
 a. Purpose
 b. Types and applications
 • Centre-break
 • Horizontal and vertical
 • Propeller
 • Single-break
 • Tandem
 • Vacrupters
 c. Means of disconnection
 • Manual
 • Motorized
 • Insulated switch stick

5. Describe electrical bus networks.
 a. Purpose
 b. Types and applications
 c. Electrical clearances
 d. Insulators
 e. Connections and terminations

6. Describe sizing and ampacity considerations and installation applications.
 a. Breakers
 b. Fuses
 c. Disconnects
 d. Electrical bus networks

Power Electrician

Unit: C7 Governor and Excitation Equipment

Level: Three
Duration: 10 hours
Theory: 10 hours
Practical: 0 hours

Overview:
This unit is designed to provide the apprentice with the knowledge about governor and excitation equipment. The unit begins with coverage of mechanical/hydraulic governor and governor control systems. Part of the unit covers components and controls for speed control and excitation. Finally, the unit covers generator voltage output controls.

Objectives and Content:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Describe mechanical/hydraulic governor systems.</td>
</tr>
<tr>
<td></td>
<td>a. Purpose</td>
</tr>
<tr>
<td></td>
<td>b. Application</td>
</tr>
<tr>
<td>2.</td>
<td>Describe governor control systems and how they are integrated into the hydraulic governor.</td>
</tr>
<tr>
<td></td>
<td>a. Types</td>
</tr>
<tr>
<td></td>
<td>• Electrical</td>
</tr>
<tr>
<td></td>
<td>• Electronic</td>
</tr>
<tr>
<td></td>
<td>• Digital</td>
</tr>
<tr>
<td></td>
<td>b. Applications</td>
</tr>
<tr>
<td>3.</td>
<td>Describe components and controls for speed control.</td>
</tr>
<tr>
<td></td>
<td>a. Permanent Magnet Generator (PMG) and ball head motor</td>
</tr>
<tr>
<td></td>
<td>b. Speeder motor controls</td>
</tr>
<tr>
<td></td>
<td>• Gate limit</td>
</tr>
<tr>
<td></td>
<td>• Best gate</td>
</tr>
<tr>
<td></td>
<td>• Full gate</td>
</tr>
<tr>
<td></td>
<td>c. Servos, control rings, and wicket gates</td>
</tr>
<tr>
<td>4.</td>
<td>Describe components and controls for excitation.</td>
</tr>
<tr>
<td></td>
<td>a. Slip rings and commutators</td>
</tr>
<tr>
<td></td>
<td>b. Exciters</td>
</tr>
<tr>
<td></td>
<td>• Electronic</td>
</tr>
<tr>
<td></td>
<td>• Motor generator (MG) set</td>
</tr>
<tr>
<td></td>
<td>c. Field breaker</td>
</tr>
</tbody>
</table>

Percent of Objectives and Content: 20%
5. **Describe generator voltage output controls.**
 a. Purpose
 b. Types and components
 - Automatic voltage regulator (AVR)
 - Amplidyces
 - Silicon control rectifier (SCR)

Power Electrician

Unit: C8 Metering

Level: Three
Duration: 30 hours
 Theory: 30 hours
 Practical: 0 hours

Overview:
This unit is designed to provide the apprentice with the knowledge about metering. The unit begins with coverage of meters and instrument transformers. Part of the unit covers single and three phase metering systems. Finally, the unit covers specific requirements for customer, station and power sales agreement metering.

Objectives and Content:

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Percent of Unit Mark (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Describe meters.</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Types</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Full-scale deflection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Extended ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Loading error</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Describe instrument transformers.</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Types</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Potential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Perform related calculations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Hazards</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Describe specific requirements for customer, station and power sales agreement (PSA) metering.</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Perform related calculations</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Describe single phase metering systems</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>a. Purpose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Types</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3 wire CT metering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 240V CT metering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Perform related calculations</td>
<td></td>
</tr>
</tbody>
</table>
5. **Describe three phase metering systems** 25%
 a. Purpose
 b. Types
 • 3 phase-Wye
 • 3 phase-Delta
 • Open delta
 c. Perform related calculations

6. **Describe customer metering.** 25%
 a. Purpose
 b. Types
 • Energy
 • Demand
 • Pulse
 • Recording meters (analog, digital)
 c. Perform related calculations
 d. Related test and analysis equipment